-
Notifications
You must be signed in to change notification settings - Fork 5
/
metrics.py
261 lines (200 loc) · 8.37 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
"""Thanks to https://github.com/chakki-works/seqeval
Metrics to assess performance on sequence labeling task given prediction
Functions named as ``*_score`` return a scalar value to maximize: the higher
the better
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from collections import defaultdict
import numpy as np
def get_entities(seq, suffix=False):
"""Gets entities from sequence.
Args:
seq (list): sequence of labels.
Returns:
list: list of (chunk_type, chunk_start, chunk_end).
Example:
>>> from seqeval.metrics.sequence_labeling import get_entities
>>> seq = ['B-PER', 'I-PER', 'O', 'B-LOC']
>>> get_entities(seq)
[('PER', 0, 1), ('LOC', 3, 3)]
"""
# for nested list
if any(isinstance(s, list) for s in seq):
seq = [item for sublist in seq for item in sublist + ['O']]
prev_tag = 'O'
prev_type = ''
begin_offset = 0
chunks = []
for i, chunk in enumerate(seq + ['O']):
if suffix:
tag = chunk[-1]
type_ = chunk.split('-')[0]
else:
tag = chunk[0]
type_ = chunk.split('-')[-1]
if end_of_chunk(prev_tag, tag, prev_type, type_):
chunks.append((prev_type, begin_offset, i-1))
if start_of_chunk(prev_tag, tag, prev_type, type_):
begin_offset = i
prev_tag = tag
prev_type = type_
return chunks
def end_of_chunk(prev_tag, tag, prev_type, type_):
"""Checks if a chunk ended between the previous and current word.
Args:
prev_tag: previous chunk tag.
tag: current chunk tag.
prev_type: previous type.
type_: current type.
Returns:
chunk_end: boolean.
"""
chunk_end = False
if prev_tag == 'E': chunk_end = True
if prev_tag == 'S': chunk_end = True
if prev_tag == 'B' and tag == 'B': chunk_end = True
if prev_tag == 'B' and tag == 'S': chunk_end = True
if prev_tag == 'B' and tag == 'O': chunk_end = True
if prev_tag == 'I' and tag == 'B': chunk_end = True
if prev_tag == 'I' and tag == 'S': chunk_end = True
if prev_tag == 'I' and tag == 'O': chunk_end = True
if prev_tag != 'O' and prev_tag != '.' and prev_type != type_:
chunk_end = True
return chunk_end
def start_of_chunk(prev_tag, tag, prev_type, type_):
"""Checks if a chunk started between the previous and current word.
Args:
prev_tag: previous chunk tag.
tag: current chunk tag.
prev_type: previous type.
type_: current type.
Returns:
chunk_start: boolean.
"""
chunk_start = False
if tag == 'B': chunk_start = True
if tag == 'S': chunk_start = True
if prev_tag == 'E' and tag == 'E': chunk_start = True
if prev_tag == 'E' and tag == 'I': chunk_start = True
if prev_tag == 'S' and tag == 'E': chunk_start = True
if prev_tag == 'S' and tag == 'I': chunk_start = True
if prev_tag == 'O' and tag == 'E': chunk_start = True
if prev_tag == 'O' and tag == 'I': chunk_start = True
if tag != 'O' and tag != '.' and prev_type != type_:
chunk_start = True
return chunk_start
def f1_score(y_true, y_pred, average='micro', digits=2, suffix=False):
"""Compute the F1 score.
The F1 score can be interpreted as a weighted average of the precision and
recall, where an F1 score reaches its best value at 1 and worst score at 0.
The relative contribution of precision and recall to the F1 score are
equal. The formula for the F1 score is::
F1 = 2 * (precision * recall) / (precision + recall)
Args:
y_true : 2d array. Ground truth (correct) target values.
y_pred : 2d array. Estimated targets as returned by a tagger.
Returns:
score : float.
Example:
>>> from seqeval.metrics import f1_score
>>> y_true = [['O', 'O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'O'], ['B-PER', 'I-PER', 'O']]
>>> y_pred = [['O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'I-MISC', 'O'], ['B-PER', 'I-PER', 'O']]
>>> f1_score(y_true, y_pred)
0.50
"""
true_entities = set(get_entities(y_true, suffix))
pred_entities = set(get_entities(y_pred, suffix))
nb_correct = len(true_entities & pred_entities)
nb_pred = len(pred_entities)
nb_true = len(true_entities)
p = 100 * nb_correct / nb_pred if nb_pred > 0 else 0
r = 100 * nb_correct / nb_true if nb_true > 0 else 0
score = 2 * p * r / (p + r) if p + r > 0 else 0
return score
def accuracy_score(y_true, y_pred):
"""Accuracy classification score.
In multilabel classification, this function computes subset accuracy:
the set of labels predicted for a sample must *exactly* match the
corresponding set of labels in y_true.
Args:
y_true : 2d array. Ground truth (correct) target values.
y_pred : 2d array. Estimated targets as returned by a tagger.
Returns:
score : float.
Example:
>>> from seqeval.metrics import accuracy_score
>>> y_true = [['O', 'O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'O'], ['B-PER', 'I-PER', 'O']]
>>> y_pred = [['O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'I-MISC', 'O'], ['B-PER', 'I-PER', 'O']]
>>> accuracy_score(y_true, y_pred)
0.80
"""
if any(isinstance(s, list) for s in y_true):
y_true = [item for sublist in y_true for item in sublist]
y_pred = [item for sublist in y_pred for item in sublist]
nb_correct = sum(y_t==y_p for y_t, y_p in zip(y_true, y_pred))
nb_true = len(y_true)
score = nb_correct / nb_true
return score
def classification_report(y_true, y_pred, digits=2, suffix=False):
"""Build a text report showing the main classification metrics.
Args:
y_true : 2d array. Ground truth (correct) target values.
y_pred : 2d array. Estimated targets as returned by a classifier.
digits : int. Number of digits for formatting output floating point values.
Returns:
report : string. Text summary of the precision, recall, F1 score for each class.
Examples:
>>> from seqeval.metrics import classification_report
>>> y_true = [['O', 'O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'O'], ['B-PER', 'I-PER', 'O']]
>>> y_pred = [['O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'I-MISC', 'O'], ['B-PER', 'I-PER', 'O']]
>>> print(classification_report(y_true, y_pred))
precision recall f1-score support
<BLANKLINE>
MISC 0.00 0.00 0.00 1
PER 1.00 1.00 1.00 1
<BLANKLINE>
avg / total 0.50 0.50 0.50 2
<BLANKLINE>
"""
true_entities = set(get_entities(y_true, suffix))
pred_entities = set(get_entities(y_pred, suffix))
name_width = 0
d1 = defaultdict(set)
d2 = defaultdict(set)
for e in true_entities:
d1[e[0]].add((e[1], e[2]))
name_width = max(name_width, len(e[0]))
for e in pred_entities:
d2[e[0]].add((e[1], e[2]))
last_line_heading = 'avg / total'
width = max(name_width, len(last_line_heading), digits)
headers = ["precision", "recall", "f1-score", "support"]
head_fmt = u'{:>{width}s} ' + u' {:>9}' * len(headers)
report = head_fmt.format(u'', *headers, width=width)
report += u'\n\n'
row_fmt = u'{:>{width}s} ' + u' {:>9.{digits}f}' * 3 + u' {:>9}\n'
ps, rs, f1s, s = [], [], [], []
for type_name, true_entities in d1.items():
pred_entities = d2[type_name]
nb_correct = len(true_entities & pred_entities)
nb_pred = len(pred_entities)
nb_true = len(true_entities)
p = 100 * nb_correct / nb_pred if nb_pred > 0 else 0
r = 100 * nb_correct / nb_true if nb_true > 0 else 0
f1 = 2 * p * r / (p + r) if p + r > 0 else 0
report += row_fmt.format(*[type_name, p, r, f1, nb_true], width=width, digits=digits)
ps.append(p)
rs.append(r)
f1s.append(f1)
s.append(nb_true)
report += u'\n'
# compute averages
report += row_fmt.format(last_line_heading,
np.average(ps, weights=s),
np.average(rs, weights=s),
np.average(f1s, weights=s),
np.sum(s),
width=width, digits=digits)
return report