diff --git a/.github/workflows/ci.yml b/.github/workflows/ci.yml index 72c045818fe..e8d61f9b16e 100644 --- a/.github/workflows/ci.yml +++ b/.github/workflows/ci.yml @@ -89,7 +89,7 @@ jobs: needs: prepare strategy: matrix: - ext: ["", -mkl, -gpu] #, -mkl-gpu] + ext: ["", -gpu] #, -mkl, -mkl-gpu] steps: - name: Install environment run: | @@ -104,7 +104,7 @@ jobs: tar xzf $HOME/apache-maven-3.6.3-bin.tar.gz -C /opt/ ln -sf /opt/apache-maven-3.6.3/bin/mvn /usr/bin/mvn echo Downloading Bazel - curl -L https://github.com/bazelbuild/bazel/releases/download/3.1.0/bazel-3.1.0-installer-linux-x86_64.sh -o bazel.sh --retry 10 + curl -L https://github.com/bazelbuild/bazel/releases/download/3.7.2/bazel-3.7.2-installer-linux-x86_64.sh -o bazel.sh --retry 10 bash bazel.sh if [[ "${{ matrix.ext }}" == *-gpu ]]; then echo Installing CUDA @@ -153,13 +153,13 @@ jobs: needs: prepare strategy: matrix: - ext: ["", -mkl] + ext: [""] # , -mkl] steps: - name: Install environment run: | python3 -m pip install numpy six echo Downloading Bazel - curl -L https://github.com/bazelbuild/bazel/releases/download/3.1.0/bazel-3.1.0-installer-darwin-x86_64.sh -o bazel.sh --retry 10 + curl -L https://github.com/bazelbuild/bazel/releases/download/3.7.2/bazel-3.7.2-installer-darwin-x86_64.sh -o bazel.sh --retry 10 bash bazel.sh brew install libomp perl - name: Checkout repository @@ -189,7 +189,7 @@ jobs: needs: prepare strategy: matrix: - ext: ["", -gpu, -mkl] #, -mkl-gpu] + ext: ["", -gpu] #, -mkl, -mkl-gpu] steps: - name: Configure page file uses: al-cheb/configure-pagefile-action@v1.2 @@ -208,7 +208,7 @@ jobs: bash.exe -lc "find 'C:/Program Files (x86)/Microsoft Visual Studio/2019/Enterprise/VC/' -iname '14.1*' -exec rm -Rf {} \;" echo Downloading Bazel mkdir C:\bazel - curl.exe -L https://github.com/bazelbuild/bazel/releases/download/3.1.0/bazel-3.1.0-windows-x86_64.exe -o C:/bazel/bazel.exe --retry 10 + curl.exe -L https://github.com/bazelbuild/bazel/releases/download/3.7.2/bazel-3.7.2-windows-x86_64.exe -o C:/bazel/bazel.exe --retry 10 set "EXT=${{ matrix.ext }}" if "%EXT:~-4%" == "-gpu" ( echo Removing some unused stuff to avoid running out of disk space diff --git a/tensorflow-core/pom.xml b/tensorflow-core/pom.xml index 190ce84ff50..d36b91776c0 100644 --- a/tensorflow-core/pom.xml +++ b/tensorflow-core/pom.xml @@ -102,9 +102,10 @@ tensorflow-core-platform - tensorflow-core-platform-mkl - tensorflow-core-platform-mkl-gpu tensorflow-core-platform-gpu + + + diff --git a/tensorflow-core/tensorflow-core-api/.bazelrc b/tensorflow-core/tensorflow-core-api/.bazelrc index 461b2996401..d15d83ee9a2 100644 --- a/tensorflow-core/tensorflow-core-api/.bazelrc +++ b/tensorflow-core/tensorflow-core-api/.bazelrc @@ -151,8 +151,8 @@ build --define open_source_build=true test --define open_source_build=true # For workaround https://github.com/bazelbuild/bazel/issues/8772 with Bazel >= 0.29.1 -build --java_toolchain=@org_tensorflow//third_party/toolchains/java:tf_java_toolchain -build --host_java_toolchain=@org_tensorflow//third_party/toolchains/java:tf_java_toolchain +build --java_toolchain=@tf_toolchains//toolchains/java:tf_java_toolchain +build --host_java_toolchain=@tf_toolchains//toolchains/java:tf_java_toolchain # Please note that MKL on MacOS or windows is still not supported. # If you would like to use a local MKL instead of downloading, please set the @@ -616,3 +616,33 @@ build:release_gpu_linux_cuda_10_1 --config=release_gpu_linux build:release_gpu_linux_cuda_10_1 --action_env CUDA_TOOLKIT_PATH="/usr/local/cuda-10.1" build:release_gpu_linux_cuda_10_1 --action_env=TF_CUDA_VERSION="10" build:release_gpu_linux_cuda_10_1 --action_env=TF_CUDNN_VERSION="7" + +# Address sanitizer +# CC=clang bazel build --config asan +build:asan --strip=never +build:asan --copt -fsanitize=address +build:asan --copt -DADDRESS_SANITIZER +build:asan --copt -g +build:asan --copt -O3 +build:asan --copt -fno-omit-frame-pointer +build:asan --linkopt -fsanitize=address + +# Memory sanitizer +# CC=clang bazel build --config msan +build:msan --strip=never +build:msan --copt -fsanitize=memory +build:msan --copt -DADDRESS_SANITIZER +build:msan --copt -g +build:msan --copt -O3 +build:msan --copt -fno-omit-frame-pointer +build:msan --linkopt -fsanitize=memory + +# Undefined Behavior Sanitizer +# CC=clang bazel build --config ubsan +build:ubsan --strip=never +build:ubsan --copt -fsanitize=undefined +build:ubsan --copt -g +build:ubsan --copt -O3 +build:ubsan --copt -fno-omit-frame-pointer +build:ubsan --linkopt -fsanitize=undefined +build:ubsan --linkopt -lubsan diff --git a/tensorflow-core/tensorflow-core-api/WORKSPACE b/tensorflow-core/tensorflow-core-api/WORKSPACE index bd5ce478f66..8a6251a2a02 100644 --- a/tensorflow-core/tensorflow-core-api/WORKSPACE +++ b/tensorflow-core/tensorflow-core-api/WORKSPACE @@ -17,28 +17,31 @@ http_archive( patch_args = ["-p1"], patch_cmds = ["grep -rl 'java_package' tensorflow/core | xargs sed -i.bak 's/^\(.* java_package = \"org\.tensorflow\.\)\(.*\"\)/\\1proto.\\2'/"], urls = [ - "https://github.com/tensorflow/tensorflow/archive/v2.4.1.tar.gz", + "https://github.com/tensorflow/tensorflow/archive/refs/tags/v2.5.0.tar.gz", ], - sha256 = "f681331f8fc0800883761c7709d13cda11942d4ad5ff9f44ad855e9dc78387e0", - strip_prefix = "tensorflow-2.4.1" + sha256 = "233875ea27fc357f6b714b2a0de5f6ff124b50c1ee9b3b41f9e726e9e677b86c", + strip_prefix = "tensorflow-2.5.0" ) # START: Upstream TensorFlow dependencies # TensorFlow build depends on these dependencies. # Needs to be in-sync with TensorFlow sources. -http_archive( - name = "io_bazel_rules_closure", - sha256 = "5b00383d08dd71f28503736db0500b6fb4dda47489ff5fc6bed42557c07c6ba9", - strip_prefix = "rules_closure-308b05b2419edb5c8ee0471b67a40403df940149", - urls = [ - "https://storage.googleapis.com/mirror.tensorflow.org/github.com/bazelbuild/rules_closure/archive/308b05b2419edb5c8ee0471b67a40403df940149.tar.gz", - "https://github.com/bazelbuild/rules_closure/archive/308b05b2419edb5c8ee0471b67a40403df940149.tar.gz", # 2019-06-13 - ], -) -# END: Upstream TensorFlow dependencies +load("@org_tensorflow//tensorflow:workspace3.bzl", "tf_workspace3") + +tf_workspace3() -load("@org_tensorflow//tensorflow:workspace.bzl", "tf_workspace") -tf_workspace() +load("@org_tensorflow//tensorflow:workspace2.bzl", "tf_workspace2") + +tf_workspace2() + +load("@org_tensorflow//tensorflow:workspace1.bzl", "tf_workspace1") + +tf_workspace1() + +load("@org_tensorflow//tensorflow:workspace0.bzl", "tf_workspace0") + +tf_workspace0() +# END: Upstream TensorFlow dependencies load("@com_github_grpc_grpc//bazel:grpc_deps.bzl", "grpc_deps") grpc_deps() diff --git a/tensorflow-core/tensorflow-core-api/build.sh b/tensorflow-core/tensorflow-core-api/build.sh index 895832f3df1..fdddaafa18b 100755 --- a/tensorflow-core/tensorflow-core-api/build.sh +++ b/tensorflow-core/tensorflow-core-api/build.sh @@ -68,12 +68,13 @@ done echo "Listing $TENSORFLOW_BIN:" && ls -l $TENSORFLOW_BIN if [[ -x /usr/bin/install_name_tool ]] && [[ -e $BAZEL_BIN/external/llvm_openmp/libiomp5.dylib ]]; then - # Fix library with correct rpath on Mac - chmod +w $BAZEL_BIN/external/llvm_openmp/libiomp5.dylib $TENSORFLOW_BIN/libtensorflow_cc.2.dylib $TENSORFLOW_BIN/libtensorflow_framework.2.dylib - UGLYPATH=$(otool -L $TENSORFLOW_BIN/libtensorflow_cc.2.dylib | grep @loader_path | cut -f1 -d ' ') - install_name_tool -add_rpath @loader_path/. -id @rpath/libiomp5.dylib $BAZEL_BIN/external/llvm_openmp/libiomp5.dylib - install_name_tool -change $UGLYPATH @rpath/libiomp5.dylib $TENSORFLOW_BIN/libtensorflow_cc.2.dylib - install_name_tool -change $UGLYPATH @rpath/libiomp5.dylib $TENSORFLOW_BIN/libtensorflow_framework.2.dylib + # Fix library with correct rpath on Mac + chmod +w $BAZEL_BIN/external/llvm_openmp/libiomp5.dylib $TENSORFLOW_BIN/libtensorflow_cc.2.dylib $TENSORFLOW_BIN/libtensorflow_framework.2.dylib + UGLYPATH=$(otool -L $TENSORFLOW_BIN/libtensorflow_cc.2.dylib | grep @loader_path | cut -f1 -d ' ') + echo $UGLYPATH + install_name_tool -add_rpath @loader_path/. -id @rpath/libiomp5.dylib $BAZEL_BIN/external/llvm_openmp/libiomp5.dylib + install_name_tool -change $UGLYPATH @rpath/libiomp5.dylib $TENSORFLOW_BIN/libtensorflow_cc.2.dylib + install_name_tool -change $UGLYPATH @rpath/libiomp5.dylib $TENSORFLOW_BIN/libtensorflow_framework.2.dylib fi GEN_SRCS_DIR=src/gen/java diff --git a/tensorflow-core/tensorflow-core-api/external/tensorflow-proto.patch b/tensorflow-core/tensorflow-core-api/external/tensorflow-proto.patch index 3dac55ccee7..3372dc23a83 100644 --- a/tensorflow-core/tensorflow-core-api/external/tensorflow-proto.patch +++ b/tensorflow-core/tensorflow-core-api/external/tensorflow-proto.patch @@ -1,6 +1,6 @@ -diff -ruN tensorflow-2.4.1/tensorflow/core/protobuf/bfc_memory_map.proto tensorflow-2.4.1-proto/tensorflow/core/protobuf/bfc_memory_map.proto ---- tensorflow-2.4.1/tensorflow/core/protobuf/bfc_memory_map.proto 2021-01-21 09:25:54.000000000 +0900 -+++ tensorflow-2.4.1-proto/tensorflow/core/protobuf/bfc_memory_map.proto 2021-02-08 09:43:41.885495355 +0900 +diff -ruN tensorflow-2.5.0-rc1/tensorflow/core/protobuf/bfc_memory_map.proto tensorflow-2.5.0-rc1-proto/tensorflow/core/protobuf/bfc_memory_map.proto +--- tensorflow-2.5.0-rc1/tensorflow/core/protobuf/bfc_memory_map.proto 2021-04-13 01:43:40.000000000 +0900 ++++ tensorflow-2.5.0-rc1-proto/tensorflow/core/protobuf/bfc_memory_map.proto 2021-04-27 10:18:43.910313526 +0900 @@ -3,6 +3,9 @@ package tensorflow; @@ -11,9 +11,9 @@ diff -ruN tensorflow-2.4.1/tensorflow/core/protobuf/bfc_memory_map.proto tensorf // Some of the data from AllocatorStats message MemAllocatorStats { -diff -ruN tensorflow-2.4.1/tensorflow/core/protobuf/data/experimental/snapshot.proto tensorflow-2.4.1-proto/tensorflow/core/protobuf/data/experimental/snapshot.proto ---- tensorflow-2.4.1/tensorflow/core/protobuf/data/experimental/snapshot.proto 2021-01-21 09:25:54.000000000 +0900 -+++ tensorflow-2.4.1-proto/tensorflow/core/protobuf/data/experimental/snapshot.proto 2021-02-08 09:40:24.584065472 +0900 +diff -ruN tensorflow-2.5.0-rc1/tensorflow/core/protobuf/snapshot.proto tensorflow-2.5.0-rc1-proto/tensorflow/core/protobuf/snapshot.proto +--- tensorflow-2.5.0-rc1/tensorflow/core/protobuf/snapshot.proto 2021-04-13 01:43:40.000000000 +0900 ++++ tensorflow-2.5.0-rc1-proto/tensorflow/core/protobuf/snapshot.proto 2021-04-27 10:19:52.002448627 +0900 @@ -6,6 +6,10 @@ import "tensorflow/core/framework/tensor_shape.proto"; import "tensorflow/core/framework/types.proto"; @@ -25,9 +25,9 @@ diff -ruN tensorflow-2.4.1/tensorflow/core/protobuf/data/experimental/snapshot.p // Each SnapshotRecord represents one batch of pre-processed input data. A batch // consists of a list of tensors that we encode as TensorProtos. This message // doesn't store the structure of the batch. -diff -ruN tensorflow-2.4.1/tensorflow/core/protobuf/device_properties.proto tensorflow-2.4.1-proto/tensorflow/core/protobuf/device_properties.proto ---- tensorflow-2.4.1/tensorflow/core/protobuf/device_properties.proto 2021-01-21 09:25:54.000000000 +0900 -+++ tensorflow-2.4.1-proto/tensorflow/core/protobuf/device_properties.proto 2021-02-08 09:41:23.317918806 +0900 +diff -ruN tensorflow-2.5.0-rc1/tensorflow/core/protobuf/device_properties.proto tensorflow-2.5.0-rc1-proto/tensorflow/core/protobuf/device_properties.proto +--- tensorflow-2.5.0-rc1/tensorflow/core/protobuf/device_properties.proto 2021-04-13 01:43:40.000000000 +0900 ++++ tensorflow-2.5.0-rc1-proto/tensorflow/core/protobuf/device_properties.proto 2021-04-27 10:19:52.002448627 +0900 @@ -19,6 +19,8 @@ option cc_enable_arenas = true; @@ -37,9 +37,9 @@ diff -ruN tensorflow-2.4.1/tensorflow/core/protobuf/device_properties.proto tens option go_package = "github.com/tensorflow/tensorflow/tensorflow/go/core/protobuf/for_core_protos_go_proto"; message DeviceProperties { -diff -ruN tensorflow-2.4.1/tensorflow/core/protobuf/saved_object_graph.proto tensorflow-2.4.1-proto/tensorflow/core/protobuf/saved_object_graph.proto ---- tensorflow-2.4.1/tensorflow/core/protobuf/saved_object_graph.proto 2021-01-21 09:25:54.000000000 +0900 -+++ tensorflow-2.4.1-proto/tensorflow/core/protobuf/saved_object_graph.proto 2021-02-08 09:41:50.066852012 +0900 +diff -ruN tensorflow-2.5.0-rc1/tensorflow/core/protobuf/saved_object_graph.proto tensorflow-2.5.0-rc1-proto/tensorflow/core/protobuf/saved_object_graph.proto +--- tensorflow-2.5.0-rc1/tensorflow/core/protobuf/saved_object_graph.proto 2021-04-13 01:43:40.000000000 +0900 ++++ tensorflow-2.5.0-rc1-proto/tensorflow/core/protobuf/saved_object_graph.proto 2021-04-27 10:19:52.003448629 +0900 @@ -11,6 +11,9 @@ option cc_enable_arenas = true; @@ -50,9 +50,9 @@ diff -ruN tensorflow-2.4.1/tensorflow/core/protobuf/saved_object_graph.proto ten // A SavedObjectGraph is part of object-based SavedModels in TF 2.0. It // describes the directed graph of Python objects (or equivalent in other -diff -ruN tensorflow-2.4.1/tensorflow/core/protobuf/struct.proto tensorflow-2.4.1-proto/tensorflow/core/protobuf/struct.proto ---- tensorflow-2.4.1/tensorflow/core/protobuf/struct.proto 2021-01-21 09:25:54.000000000 +0900 -+++ tensorflow-2.4.1-proto/tensorflow/core/protobuf/struct.proto 2021-02-08 09:42:06.645810614 +0900 +diff -ruN tensorflow-2.5.0-rc1/tensorflow/core/protobuf/struct.proto tensorflow-2.5.0-rc1-proto/tensorflow/core/protobuf/struct.proto +--- tensorflow-2.5.0-rc1/tensorflow/core/protobuf/struct.proto 2021-04-13 01:43:40.000000000 +0900 ++++ tensorflow-2.5.0-rc1-proto/tensorflow/core/protobuf/struct.proto 2021-04-27 10:19:52.003448629 +0900 @@ -7,6 +7,9 @@ import "tensorflow/core/framework/types.proto"; @@ -63,9 +63,9 @@ diff -ruN tensorflow-2.4.1/tensorflow/core/protobuf/struct.proto tensorflow-2.4. // `StructuredValue` represents a dynamically typed value representing various // data structures that are inspired by Python data structures typically used in -diff -ruN tensorflow-2.4.1/tensorflow/core/protobuf/trackable_object_graph.proto tensorflow-2.4.1-proto/tensorflow/core/protobuf/trackable_object_graph.proto ---- tensorflow-2.4.1/tensorflow/core/protobuf/trackable_object_graph.proto 2021-01-21 09:25:54.000000000 +0900 -+++ tensorflow-2.4.1-proto/tensorflow/core/protobuf/trackable_object_graph.proto 2021-02-08 09:42:24.581760720 +0900 +diff -ruN tensorflow-2.5.0-rc1/tensorflow/core/protobuf/trackable_object_graph.proto tensorflow-2.5.0-rc1-proto/tensorflow/core/protobuf/trackable_object_graph.proto +--- tensorflow-2.5.0-rc1/tensorflow/core/protobuf/trackable_object_graph.proto 2021-04-13 01:43:40.000000000 +0900 ++++ tensorflow-2.5.0-rc1-proto/tensorflow/core/protobuf/trackable_object_graph.proto 2021-04-27 10:19:52.003448629 +0900 @@ -4,6 +4,9 @@ option cc_enable_arenas = true; @@ -76,29 +76,29 @@ diff -ruN tensorflow-2.4.1/tensorflow/core/protobuf/trackable_object_graph.proto // A TensorBundle addition which saves extra information about the objects which // own variables, allowing for more robust checkpoint loading into modified -diff -ruN tensorflow-2.4.1/tensorflow/core/protobuf/transport_options.proto tensorflow-2.4.1-proto/tensorflow/core/protobuf/transport_options.proto ---- tensorflow-2.4.1/tensorflow/core/protobuf/transport_options.proto 2021-01-21 09:25:54.000000000 +0900 -+++ tensorflow-2.4.1-proto/tensorflow/core/protobuf/transport_options.proto 2021-02-08 09:42:56.660650580 +0900 -@@ -3,6 +3,7 @@ - package tensorflow; - - option go_package = "github.com/tensorflow/tensorflow/tensorflow/go/core/protobuf/for_core_protos_go_proto"; -+option java_package = "org.tensorflow.distruntime"; - - // Extra data needed on a non-RDMA RecvBufResponse. - message RecvBufRespExtra { -diff -ruN tensorflow-2.4.1/tensorflow/core/lib/core/error_codes.proto tensorflow-2.4.1-proto/tensorflow/core/lib/core/error_codes.proto ---- tensorflow-2.4.1/tensorflow/core/lib/core/error_codes.proto 2021-01-21 09:25:54.000000000 +0900 -+++ tensorflow-2.4.1-proto/tensorflow/core/lib/core/error_codes.proto 2021-02-08 09:40:24.590065457 +0900 + diff -ruN tensorflow-2.5.0-rc1/tensorflow/core/protobuf/transport_options.proto tensorflow-2.5.0-rc1-proto/tensorflow/core/protobuf/transport_options.proto + --- tensorflow-2.5.0-rc1/tensorflow/core/protobuf/transport_options.proto 2021-01-21 09:25:54.000000000 +0900 + +++ tensorflow-2.5.0-rc1-proto/tensorflow/core/protobuf/transport_options.proto 2021-02-08 09:42:56.660650580 +0900 + @@ -3,6 +3,7 @@ + package tensorflow; + + option go_package = "github.com/tensorflow/tensorflow/tensorflow/go/core/protobuf/for_core_protos_go_proto"; + +option java_package = "org.tensorflow.distruntime"; + + // Extra data needed on a non-RDMA RecvBufResponse. + message RecvBufRespExtra { +diff -ruN tensorflow-2.5.0-rc1/tensorflow/core/lib/core/error_codes.proto tensorflow-2.5.0-rc1-proto/tensorflow/core/lib/core/error_codes.proto +--- tensorflow-2.5.0-rc1/tensorflow/core/lib/core/error_codes.proto 2021-04-13 01:43:40.000000000 +0900 ++++ tensorflow-2.5.0-rc1-proto/tensorflow/core/lib/core/error_codes.proto 2021-04-27 10:19:52.003448629 +0900 @@ -1,3 +1,5 @@ syntax = "proto3"; +option java_package = "org.tensorflow.framework"; + import public "tensorflow/core/protobuf/error_codes.proto"; -diff -ruN tensorflow-2.4.1/tensorflow/core/profiler/protobuf/xplane.proto tensorflow-2.4.1-proto/tensorflow/core/profiler/protobuf/xplane.proto ---- tensorflow-2.4.1/tensorflow/core/profiler/protobuf/xplane.proto 2021-01-21 09:25:54.000000000 +0900 -+++ tensorflow-2.4.1-proto/tensorflow/core/profiler/protobuf/xplane.proto 2021-02-08 09:40:24.591065455 +0900 +diff -ruN tensorflow-2.5.0-rc1/tensorflow/core/profiler/protobuf/xplane.proto tensorflow-2.5.0-rc1-proto/tensorflow/core/profiler/protobuf/xplane.proto +--- tensorflow-2.5.0-rc1/tensorflow/core/profiler/protobuf/xplane.proto 2021-04-13 01:43:40.000000000 +0900 ++++ tensorflow-2.5.0-rc1-proto/tensorflow/core/profiler/protobuf/xplane.proto 2021-04-27 10:19:52.004448631 +0900 @@ -3,6 +3,9 @@ package tensorflow.profiler; @@ -109,9 +109,9 @@ diff -ruN tensorflow-2.4.1/tensorflow/core/profiler/protobuf/xplane.proto tensor // A container of parallel XPlanes, generated by one or more profiling sources. // Next ID: 5 -diff -ruN tensorflow-2.4.1/tensorflow/core/util/memmapped_file_system.proto tensorflow-2.4.1-proto/tensorflow/core/util/memmapped_file_system.proto ---- tensorflow-2.4.1/tensorflow/core/util/memmapped_file_system.proto 2021-01-21 09:25:54.000000000 +0900 -+++ tensorflow-2.4.1-proto/tensorflow/core/util/memmapped_file_system.proto 2021-02-08 09:40:24.592065452 +0900 +diff -ruN tensorflow-2.5.0-rc1/tensorflow/core/util/memmapped_file_system.proto tensorflow-2.5.0-rc1-proto/tensorflow/core/util/memmapped_file_system.proto +--- tensorflow-2.5.0-rc1/tensorflow/core/util/memmapped_file_system.proto 2021-04-13 01:43:40.000000000 +0900 ++++ tensorflow-2.5.0-rc1-proto/tensorflow/core/util/memmapped_file_system.proto 2021-04-27 10:19:52.004448631 +0900 @@ -17,6 +17,9 @@ package tensorflow; @@ -122,9 +122,9 @@ diff -ruN tensorflow-2.4.1/tensorflow/core/util/memmapped_file_system.proto tens // A message that describes one region of memmapped file. message MemmappedFileSystemDirectoryElement { -diff -ruN tensorflow-2.4.1/tensorflow/core/profiler/profiler_options.proto tensorflow-2.4.1-proto/tensorflow/core/profiler/profiler_options.proto ---- tensorflow-2.4.1/tensorflow/core/profiler/profiler_options.proto 2021-01-21 09:25:54.000000000 +0900 -+++ tensorflow-2.4.1-proto/tensorflow/core/profiler/profiler_options.proto 2021-02-08 09:40:24.593065450 +0900 +diff -ruN tensorflow-2.5.0-rc1/tensorflow/core/profiler/profiler_options.proto tensorflow-2.5.0-rc1-proto/tensorflow/core/profiler/profiler_options.proto +--- tensorflow-2.5.0-rc1/tensorflow/core/profiler/profiler_options.proto 2021-04-13 01:43:40.000000000 +0900 ++++ tensorflow-2.5.0-rc1-proto/tensorflow/core/profiler/profiler_options.proto 2021-04-27 10:19:52.004448631 +0900 @@ -1,6 +1,9 @@ syntax = "proto3"; @@ -135,16 +135,69 @@ diff -ruN tensorflow-2.4.1/tensorflow/core/profiler/profiler_options.proto tenso // Next ID: 11 message ProfileOptions { - -diff --git a/tensorflow/core/protobuf/data/experimental/service_config.proto b/tensorflow/core/protobuf/data/experimental/service_config.proto -index 3dcd2cd48d..ae2cfdd94f 100644 ---- a/tensorflow/core/protobuf/data/experimental/service_config.proto -+++ b/tensorflow/core/protobuf/data/experimental/service_config.proto +diff -ruN tensorflow-2.5.0-rc1/tensorflow/core/protobuf/service_config.proto tensorflow-2.5.0-rc1-proto/tensorflow/core/protobuf/service_config.proto +--- tensorflow-2.5.0-rc1/tensorflow/core/protobuf/service_config.proto 2021-04-13 01:43:40.000000000 +0900 ++++ tensorflow-2.5.0-rc1-proto/tensorflow/core/protobuf/service_config.proto 2021-04-27 10:20:13.501491398 +0900 @@ -1,6 +1,7 @@ syntax = "proto3"; - + package tensorflow.data.experimental; +option java_package = "org.tensorflow.data.experimental"; - + // Configuration for a tf.data service DispatchServer. message DispatcherConfig { +diff --git a/tensorflow/core/framework/dataset_options.proto b/tensorflow/core/framework/dataset_options.proto +index 3d71a560956..4c427640148 100644 +--- a/tensorflow/core/framework/dataset_options.proto ++++ b/tensorflow/core/framework/dataset_options.proto +@@ -2,6 +2,10 @@ syntax = "proto3"; + + package tensorflow.data; + ++option java_outer_classname = "DatasetOptionsProtos"; ++option java_multiple_files = true; ++option java_package = "org.tensorflow.data"; ++ + // Represents the type of auto-sharding we enable. + enum AutoShardPolicy { + // AUTO: Attempts FILE-based sharding, falling back to DATA-based sharding. +diff --git a/tensorflow/core/framework/model.proto b/tensorflow/core/framework/model.proto +index ba74d7a2b7e..721dee57867 100644 +--- a/tensorflow/core/framework/model.proto ++++ b/tensorflow/core/framework/model.proto +@@ -3,6 +3,9 @@ syntax = "proto3"; + package tensorflow.data.model; + + option cc_enable_arenas = true; ++option java_outer_classname = "ModelProtos"; ++option java_multiple_files = true; ++option java_package = "org.tensorflow.data.model"; + + // Class of a node in the performance model. + enum NodeClass { +diff --git a/tensorflow/core/grappler/costs/op_performance_data.proto b/tensorflow/core/grappler/costs/op_performance_data.proto +index 5ef5fd927b8..7c9a6ca2141 100644 +--- a/tensorflow/core/grappler/costs/op_performance_data.proto ++++ b/tensorflow/core/grappler/costs/op_performance_data.proto +@@ -17,6 +17,9 @@ syntax = "proto3"; + + package tensorflow; + option cc_enable_arenas = true; ++option java_outer_classname = "OpPerformanceDataProtos"; ++option java_multiple_files = true; ++option java_package = "org.tensorflow.framework"; + + import "tensorflow/core/framework/tensor.proto"; + import "tensorflow/core/framework/tensor_shape.proto"; +diff --git a/tensorflow/core/protobuf/extension_type_variant.proto b/tensorflow/core/protobuf/extension_type_variant.proto +index 536db3b2435..88c4701b505 100644 +--- a/tensorflow/core/protobuf/extension_type_variant.proto ++++ b/tensorflow/core/protobuf/extension_type_variant.proto +@@ -3,6 +3,7 @@ syntax = "proto3"; + package tensorflow; + + import "tensorflow/core/protobuf/struct.proto"; ++option java_package = "org.tensorflow.framework"; + + // Metadata for ExtensionTypeVariant, used when serializing as Variant. + // diff --git a/tensorflow-core/tensorflow-core-api/external/tensorflow-visibility.patch b/tensorflow-core/tensorflow-core-api/external/tensorflow-visibility.patch index 03fda9811c3..acfab123fd5 100644 --- a/tensorflow-core/tensorflow-core-api/external/tensorflow-visibility.patch +++ b/tensorflow-core/tensorflow-core-api/external/tensorflow-visibility.patch @@ -1,8 +1,7 @@ -diff --git a/tensorflow/BUILD b/tensorflow/BUILD -index 55406a5686..35d1547dfb 100644 ---- a/tensorflow/BUILD -+++ b/tensorflow/BUILD -@@ -33,7 +33,7 @@ load( +diff -ruN tensorflow-2.5.0-rc1/tensorflow/BUILD tensorflow-2.5.0-rc1-visibility/tensorflow/BUILD +--- tensorflow-2.5.0-rc1/tensorflow/BUILD 2021-04-13 01:43:40.000000000 +0900 ++++ tensorflow-2.5.0-rc1-visibility/tensorflow/BUILD 2021-04-27 10:26:14.196211286 +0900 +@@ -38,7 +38,7 @@ load("@bazel_skylib//:bzl_library.bzl", "bzl_library") package( @@ -11,27 +10,26 @@ index 55406a5686..35d1547dfb 100644 licenses = ["notice"], # Apache 2.0 ) -diff --ruN a/tensorflow/core/api_def/BUILD b/tensorflow/core/api_def/BUILD ---- a/tensorflow/core/api_def/BUILD 2020-03-26 18:19:19.000000000 -0400 -+++ b/tensorflow/core/api_def/BUILD 2020-04-01 22:50:37.000000000 -0400 -@@ -28,7 +28,7 @@ package( - filegroup( +diff -ruN tensorflow-2.5.0-rc1/tensorflow/core/api_def/BUILD tensorflow-2.5.0-rc1-visibility/tensorflow/core/api_def/BUILD +--- tensorflow-2.5.0-rc1/tensorflow/core/api_def/BUILD 2021-04-13 01:43:40.000000000 +0900 ++++ tensorflow-2.5.0-rc1-visibility/tensorflow/core/api_def/BUILD 2021-04-27 10:29:38.712785268 +0900 +@@ -29,7 +29,7 @@ + alias( name = "base_api_def", - srcs = glob(["base_api/*"]), + actual = "//tensorflow/core/api_def/base_api:base_api_def", - visibility = ["//tensorflow:internal"], + visibility = ["//visibility:public"], ) - filegroup( -diff -ruN a/tensorflow/tools/api/lib/BUILD b/tensorflow/tools/api/lib/BUILD ---- a/tensorflow/tools/api/lib/BUILD 2020-03-26 18:19:19.000000000 -0400 -+++ b/tensorflow/tools/api/lib/BUILD 2020-04-01 22:50:37.000000000 -0400 -@@ -13,6 +13,7 @@ + alias( +diff -ruN tensorflow-2.5.0-rc1/tensorflow/tools/api/lib/BUILD tensorflow-2.5.0-rc1-visibility/tensorflow/tools/api/lib/BUILD +--- tensorflow-2.5.0-rc1/tensorflow/tools/api/lib/BUILD 2021-04-13 01:43:40.000000000 +0900 ++++ tensorflow-2.5.0-rc1-visibility/tensorflow/tools/api/lib/BUILD 2021-04-27 10:26:14.196211286 +0900 +@@ -16,6 +16,7 @@ tf_proto_library( name = "api_objects_proto", srcs = ["api_objects.proto"], + visibility = ["//visibility:public"], ) - + py_library( - \ No newline at end of file diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_CollectiveBcastRecvV2.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_CollectiveBcastRecvV2.pbtxt new file mode 100644 index 00000000000..bc995cab1bb --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_CollectiveBcastRecvV2.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "CollectiveBcastRecvV2" + endpoint { + name: "rawops.CollectiveBcastRecvV2" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_CollectiveBcastSendV2.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_CollectiveBcastSendV2.pbtxt new file mode 100644 index 00000000000..226379d303e --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_CollectiveBcastSendV2.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "CollectiveBcastSendV2" + endpoint { + name: "rawops.CollectiveBcastSendV2" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_DataServiceDatasetV2.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_DataServiceDatasetV2.pbtxt new file mode 100644 index 00000000000..da39be5c1c1 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_DataServiceDatasetV2.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "DataServiceDatasetV2" + endpoint { + name: "rawops.DataServiceDatasetV2" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_FinalizeDataset.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_FinalizeDataset.pbtxt new file mode 100644 index 00000000000..ab2a5fa846a --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_FinalizeDataset.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "FinalizeDataset" + endpoint { + name: "rawops.FinalizeDataset" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_GetOptions.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_GetOptions.pbtxt new file mode 100644 index 00000000000..188a9290620 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_GetOptions.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "GetOptions" + endpoint { + name: "rawops.GetOptions" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_LoadTPUEmbeddingFrequencyEstimatorParameters.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_LoadTPUEmbeddingFrequencyEstimatorParameters.pbtxt new file mode 100644 index 00000000000..99f5e920acf --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_LoadTPUEmbeddingFrequencyEstimatorParameters.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "LoadTPUEmbeddingFrequencyEstimatorParameters" + endpoint { + name: "rawops.LoadTPUEmbeddingFrequencyEstimatorParameters" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_LoadTPUEmbeddingFrequencyEstimatorParametersGradAccumDebug.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_LoadTPUEmbeddingFrequencyEstimatorParametersGradAccumDebug.pbtxt new file mode 100644 index 00000000000..0ced843d210 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_LoadTPUEmbeddingFrequencyEstimatorParametersGradAccumDebug.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "LoadTPUEmbeddingFrequencyEstimatorParametersGradAccumDebug" + endpoint { + name: "rawops.LoadTPUEmbeddingFrequencyEstimatorParametersGradAccumDebug" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_OptionsDataset.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_OptionsDataset.pbtxt new file mode 100644 index 00000000000..e90dfd7bd04 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_OptionsDataset.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "OptionsDataset" + endpoint { + name: "rawops.OptionsDataset" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_ParallelBatchDataset.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_ParallelBatchDataset.pbtxt new file mode 100644 index 00000000000..f05138a1bd8 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_ParallelBatchDataset.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "ParallelBatchDataset" + endpoint { + name: "rawops.ParallelBatchDataset" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RetrieveTPUEmbeddingFrequencyEstimatorParameters.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RetrieveTPUEmbeddingFrequencyEstimatorParameters.pbtxt new file mode 100644 index 00000000000..b69d019664f --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RetrieveTPUEmbeddingFrequencyEstimatorParameters.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "RetrieveTPUEmbeddingFrequencyEstimatorParameters" + endpoint { + name: "rawops.RetrieveTPUEmbeddingFrequencyEstimatorParameters" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RetrieveTPUEmbeddingFrequencyEstimatorParametersGradAccumDebug.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RetrieveTPUEmbeddingFrequencyEstimatorParametersGradAccumDebug.pbtxt new file mode 100644 index 00000000000..734b2cb441e --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RetrieveTPUEmbeddingFrequencyEstimatorParametersGradAccumDebug.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "RetrieveTPUEmbeddingFrequencyEstimatorParametersGradAccumDebug" + endpoint { + name: "rawops.RetrieveTPUEmbeddingFrequencyEstimatorParametersGradAccumDebug" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscAbs.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscAbs.pbtxt new file mode 100644 index 00000000000..c2ab94f053b --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscAbs.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "RiscAbs" + endpoint { + name: "risc.RiscAbs" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscAdd.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscAdd.pbtxt new file mode 100644 index 00000000000..5694b59c62f --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscAdd.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "RiscAdd" + endpoint { + name: "risc.RiscAdd" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscBinaryArithmetic.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscBinaryArithmetic.pbtxt new file mode 100644 index 00000000000..910399fa401 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscBinaryArithmetic.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "RiscBinaryArithmetic" + endpoint { + name: "risc.RiscBinaryArithmetic" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscBinaryComparison.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscBinaryComparison.pbtxt new file mode 100644 index 00000000000..014e43b1444 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscBinaryComparison.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "RiscBinaryComparison" + endpoint { + name: "risc.RiscBinaryComparison" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscBitcast.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscBitcast.pbtxt new file mode 100644 index 00000000000..3393f70a8b5 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscBitcast.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "RiscBitcast" + endpoint { + name: "risc.RiscBitcast" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscBroadcast.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscBroadcast.pbtxt new file mode 100644 index 00000000000..755892ca968 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscBroadcast.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "RiscBroadcast" + endpoint { + name: "risc.RiscBroadcast" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscCast.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscCast.pbtxt new file mode 100644 index 00000000000..d1bffc26bff --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscCast.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "RiscCast" + endpoint { + name: "risc.RiscCast" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscCeil.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscCeil.pbtxt new file mode 100644 index 00000000000..286b8298d51 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscCeil.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "RiscCeil" + endpoint { + name: "risc.RiscCeil" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscCholesky.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscCholesky.pbtxt new file mode 100644 index 00000000000..cdb5975e035 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscCholesky.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "RiscCholesky" + endpoint { + name: "risc.RiscCholesky" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscConcat.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscConcat.pbtxt new file mode 100644 index 00000000000..670cb46be04 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscConcat.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "RiscConcat" + endpoint { + name: "risc.RiscConcat" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscCondition.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscCondition.pbtxt new file mode 100644 index 00000000000..2284aeed689 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscCondition.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "RiscCondition" + endpoint { + name: "risc.RiscCondition" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscConv.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscConv.pbtxt new file mode 100644 index 00000000000..4e2342a8da9 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscConv.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "RiscConv" + endpoint { + name: "risc.RiscConv" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscCos.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscCos.pbtxt new file mode 100644 index 00000000000..d9905d7e1b0 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscCos.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "RiscCos" + endpoint { + name: "risc.RiscCos" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscDiv.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscDiv.pbtxt new file mode 100644 index 00000000000..651d569b479 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscDiv.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "RiscDiv" + endpoint { + name: "risc.RiscDiv" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscDot.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscDot.pbtxt new file mode 100644 index 00000000000..4eac65da4f8 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscDot.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "RiscDot" + endpoint { + name: "risc.RiscDot" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscExp.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscExp.pbtxt new file mode 100644 index 00000000000..35bb77b83c6 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscExp.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "RiscExp" + endpoint { + name: "risc.RiscExp" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscFft.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscFft.pbtxt new file mode 100644 index 00000000000..a3dcbe69337 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscFft.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "RiscFft" + endpoint { + name: "risc.RiscFft" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscFloor.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscFloor.pbtxt new file mode 100644 index 00000000000..9f5d762d1a4 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscFloor.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "RiscFloor" + endpoint { + name: "risc.RiscFloor" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscGather.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscGather.pbtxt new file mode 100644 index 00000000000..c4fe724889d --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscGather.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "RiscGather" + endpoint { + name: "risc.RiscGather" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscImag.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscImag.pbtxt new file mode 100644 index 00000000000..70d8136856b --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscImag.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "RiscImag" + endpoint { + name: "risc.RiscImag" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscIsFinite.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscIsFinite.pbtxt new file mode 100644 index 00000000000..5418f7a9906 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscIsFinite.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "RiscIsFinite" + endpoint { + name: "risc.RiscIsFinite" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscLog.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscLog.pbtxt new file mode 100644 index 00000000000..b0bb8f3aaed --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscLog.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "RiscLog" + endpoint { + name: "risc.RiscLog" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscLogicalAnd.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscLogicalAnd.pbtxt new file mode 100644 index 00000000000..1ccb0264901 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscLogicalAnd.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "RiscLogicalAnd" + endpoint { + name: "risc.RiscLogicalAnd" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscLogicalNot.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscLogicalNot.pbtxt new file mode 100644 index 00000000000..6f97af1c7b6 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscLogicalNot.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "RiscLogicalNot" + endpoint { + name: "risc.RiscLogicalNot" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscLogicalOr.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscLogicalOr.pbtxt new file mode 100644 index 00000000000..97e37710419 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscLogicalOr.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "RiscLogicalOr" + endpoint { + name: "risc.RiscLogicalOr" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscMax.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscMax.pbtxt new file mode 100644 index 00000000000..240f8119a9e --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscMax.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "RiscMax" + endpoint { + name: "risc.RiscMax" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscMin.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscMin.pbtxt new file mode 100644 index 00000000000..a8ccba66ae1 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscMin.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "RiscMin" + endpoint { + name: "risc.RiscMin" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscMul.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscMul.pbtxt new file mode 100644 index 00000000000..21fc1e0e336 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscMul.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "RiscMul" + endpoint { + name: "risc.RiscMul" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscNeg.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscNeg.pbtxt new file mode 100644 index 00000000000..894b769a72a --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscNeg.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "RiscNeg" + endpoint { + name: "risc.RiscNeg" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscPad.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscPad.pbtxt new file mode 100644 index 00000000000..729bba07740 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscPad.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "RiscPad" + endpoint { + name: "risc.RiscPad" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscPool.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscPool.pbtxt new file mode 100644 index 00000000000..9ed6a55dd07 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscPool.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "RiscPool" + endpoint { + name: "risc.RiscPool" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscPow.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscPow.pbtxt new file mode 100644 index 00000000000..3eac196376f --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscPow.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "RiscPow" + endpoint { + name: "risc.RiscPow" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscRandomUniform.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscRandomUniform.pbtxt new file mode 100644 index 00000000000..ef96f0a2796 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscRandomUniform.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "RiscRandomUniform" + endpoint { + name: "risc.RiscRandomUniform" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscReal.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscReal.pbtxt new file mode 100644 index 00000000000..5b9691512fc --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscReal.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "RiscReal" + endpoint { + name: "risc.RiscReal" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscReduce.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscReduce.pbtxt new file mode 100644 index 00000000000..d5d614c828e --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscReduce.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "RiscReduce" + endpoint { + name: "risc.RiscReduce" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscRem.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscRem.pbtxt new file mode 100644 index 00000000000..0bb38f8de55 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscRem.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "RiscRem" + endpoint { + name: "risc.RiscRem" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscReshape.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscReshape.pbtxt new file mode 100644 index 00000000000..b2ab27447a3 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscReshape.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "RiscReshape" + endpoint { + name: "risc.RiscReshape" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscReverse.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscReverse.pbtxt new file mode 100644 index 00000000000..ccb027a8859 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscReverse.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "RiscReverse" + endpoint { + name: "risc.RiscReverse" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscScatter.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscScatter.pbtxt new file mode 100644 index 00000000000..0eea45dcf04 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscScatter.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "RiscScatter" + endpoint { + name: "risc.RiscScatter" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscShape.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscShape.pbtxt new file mode 100644 index 00000000000..dab7319a922 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscShape.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "RiscShape" + endpoint { + name: "risc.RiscShape" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscSign.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscSign.pbtxt new file mode 100644 index 00000000000..a157b69acbb --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscSign.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "RiscSign" + endpoint { + name: "risc.RiscSign" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscSlice.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscSlice.pbtxt new file mode 100644 index 00000000000..fc630149b69 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscSlice.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "RiscSlice" + endpoint { + name: "risc.RiscSlice" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscSort.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscSort.pbtxt new file mode 100644 index 00000000000..2048ca7aab1 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscSort.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "RiscSort" + endpoint { + name: "risc.RiscSort" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscSqueeze.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscSqueeze.pbtxt new file mode 100644 index 00000000000..f09b55721f9 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscSqueeze.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "RiscSqueeze" + endpoint { + name: "risc.RiscSqueeze" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscSub.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscSub.pbtxt new file mode 100644 index 00000000000..924d3f38189 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscSub.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "RiscSub" + endpoint { + name: "risc.RiscSub" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscTranspose.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscTranspose.pbtxt new file mode 100644 index 00000000000..877ee6d6570 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscTranspose.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "RiscTranspose" + endpoint { + name: "risc.RiscTranspose" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscTriangularSolve.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscTriangularSolve.pbtxt new file mode 100644 index 00000000000..f74b9a88a86 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscTriangularSolve.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "RiscTriangularSolve" + endpoint { + name: "risc.RiscTriangularSolve" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscUnary.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscUnary.pbtxt new file mode 100644 index 00000000000..429c93bff49 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscUnary.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "RiscUnary" + endpoint { + name: "risc.RiscUnary" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscWhile.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscWhile.pbtxt new file mode 100644 index 00000000000..e4810438b46 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_RiscWhile.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "RiscWhile" + endpoint { + name: "risc.RiscWhile" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_StatelessRandomGetAlg.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_StatelessRandomGetAlg.pbtxt new file mode 100644 index 00000000000..276b6f4422e --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_StatelessRandomGetAlg.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "StatelessRandomGetAlg" + endpoint { + name: "rawops.StatelessRandomGetAlg" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_StatelessRandomGetKeyCounter.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_StatelessRandomGetKeyCounter.pbtxt new file mode 100644 index 00000000000..e0e2f305b7f --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_StatelessRandomGetKeyCounter.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "StatelessRandomGetKeyCounter" + endpoint { + name: "rawops.StatelessRandomGetKeyCounter" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_TPUReshardVariables.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_TPUReshardVariables.pbtxt new file mode 100644 index 00000000000..7a6a824b2bd --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_TPUReshardVariables.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "TPUReshardVariables" + endpoint { + name: "tpu.TPUReshardVariables" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_XlaConvV2.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_XlaConvV2.pbtxt new file mode 100644 index 00000000000..d2c9637c0ba --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_XlaConvV2.pbtxt @@ -0,0 +1,3 @@ +op { + graph_op_name: "XlaConvV2" +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_XlaDotV2.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_XlaDotV2.pbtxt new file mode 100644 index 00000000000..357866b27ac --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_XlaDotV2.pbtxt @@ -0,0 +1,3 @@ +op { + graph_op_name: "XlaDotV2" +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_XlaSetDynamicDimensionSize.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_XlaSetDynamicDimensionSize.pbtxt new file mode 100644 index 00000000000..aeaeb87d701 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_XlaSetDynamicDimensionSize.pbtxt @@ -0,0 +1,3 @@ +op { + graph_op_name: "XlaSetDynamicDimensionSize" +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_XlaVariadicSort.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_XlaVariadicSort.pbtxt new file mode 100644 index 00000000000..5ae24c7686a --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_XlaVariadicSort.pbtxt @@ -0,0 +1,3 @@ +op { + graph_op_name: "XlaVariadicSort" +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/import/api_import.cc b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/import/api_import.cc index 0d43afb5e6a..429761e1ce7 100644 --- a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/import/api_import.cc +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/import/api_import.cc @@ -161,26 +161,26 @@ int main(int argc, char* argv[]) { ApiDefMap python_api_map(op_defs); // Load Python API defs - string base_api_dir = tf_src_dir + "/tensorflow/core/api_def/base_api"; - string python_api_dir = tf_src_dir + "/tensorflow/core/api_def/python_api"; + string base_api_path = tf_src_dir + "/tensorflow/core/api_def/base_api/*.pbtxt"; + string python_api_path = tf_src_dir + "/tensorflow/core/api_def/python_api/*.pbtxt"; vector api_files; - TF_CHECK_OK(env->GetChildren(base_api_dir, &api_files)); + TF_CHECK_OK(env->GetMatchingPaths(base_api_path, &api_files)); LOG(INFO) << "Loading " << api_files.size() << " Base API definition files"; for (const auto& filename : api_files) { - TF_CHECK_OK(python_api_map.LoadFile(env, base_api_dir + "/" + filename)) << filename; + TF_CHECK_OK(python_api_map.LoadFile(env, filename)) << filename; } - TF_CHECK_OK(env->GetChildren(python_api_dir, &api_files)); + TF_CHECK_OK(env->GetMatchingPaths(python_api_path, &api_files)); LOG(INFO) << "Loading " << api_files.size() << " Python API definition files"; for (const auto& filename : api_files) { - TF_CHECK_OK(python_api_map.LoadFile(env, python_api_dir + "/" + filename)) << filename; + TF_CHECK_OK(python_api_map.LoadFile(env, filename)) << filename; } python_api_map.UpdateDocs(); // Load golden API member names with their module path - string golden_api_dir = tf_src_dir + "/tensorflow/tools/api/golden/v1"; + string golden_api_path = tf_src_dir + "/tensorflow/tools/api/golden/v1/*.pbtxt"; vector> golden_api_names; vector golden_api_files; - TF_CHECK_OK(env->GetChildren(golden_api_dir, &golden_api_files)); + TF_CHECK_OK(env->GetMatchingPaths(golden_api_path, &golden_api_files)); LOG(INFO) << "Loading " << golden_api_files.size() << " Python API golden files"; for (const auto& filename : golden_api_files) { // Skip the raw_ops API, as it contains all op endpoints @@ -188,7 +188,7 @@ int main(int argc, char* argv[]) { continue; } string contents; - TF_CHECK_OK(ReadFileToString(env, golden_api_dir + "/" + filename, &contents)); + TF_CHECK_OK(ReadFileToString(env, filename, &contents)); third_party::tensorflow::tools::api::TFAPIObject object; google::protobuf::TextFormat::ParseFromString(contents, &object); if (object.has_tf_module()) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/DataExperimentalOps.java b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/DataExperimentalOps.java deleted file mode 100644 index d512607172b..00000000000 --- a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/DataExperimentalOps.java +++ /dev/null @@ -1,72 +0,0 @@ -// Copyright 2020 The TensorFlow Authors. All Rights Reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -// http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. -// ============================================================================== -// -// This class has been generated, DO NOT EDIT! -// -package org.tensorflow.op; - -import java.util.List; -import org.tensorflow.Operand; -import org.tensorflow.ndarray.Shape; -import org.tensorflow.op.data.experimental.DataServiceDataset; -import org.tensorflow.types.TInt64; -import org.tensorflow.types.TString; -import org.tensorflow.types.family.TType; - -/** - * An API for building {@code data.experimental} operations as {@link Op Op}s - * - * @see {@link Ops} - */ -public final class DataExperimentalOps { - private final Scope scope; - - private final Ops ops; - - DataExperimentalOps(Ops ops) { - this.scope = ops.scope(); - this.ops = ops; - } - - /** - * The DataServiceDataset operation - * - * @param datasetId the datasetId value - * @param processingMode the processingMode value - * @param address the address value - * @param protocol the protocol value - * @param jobName the jobName value - * @param maxOutstandingRequests the maxOutstandingRequests value - * @param iterationCounter the iterationCounter value - * @param outputTypes the value of the outputTypes property - * @param outputShapes the value of the outputShapes property - * @param options carries optional attribute values - * @return a new instance of DataServiceDataset - */ - public DataServiceDataset dataServiceDataset(Operand datasetId, - Operand processingMode, Operand address, Operand protocol, - Operand jobName, Operand maxOutstandingRequests, - Operand iterationCounter, List> outputTypes, - List outputShapes, DataServiceDataset.Options... options) { - return DataServiceDataset.create(scope, datasetId, processingMode, address, protocol, jobName, maxOutstandingRequests, iterationCounter, outputTypes, outputShapes, options); - } - - /** - * Get the parent {@link Ops} object. - */ - public final Ops ops() { - return ops; - } -} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/DataOps.java b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/DataOps.java index 523b1596398..4197dac5fee 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/DataOps.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/DataOps.java @@ -55,8 +55,6 @@ * @see {@link Ops} */ public final class DataOps { - public final DataExperimentalOps experimental; - private final Scope scope; private final Ops ops; @@ -64,7 +62,6 @@ public final class DataOps { DataOps(Ops ops) { this.scope = ops.scope(); this.ops = ops; - experimental = new DataExperimentalOps(ops); } /** diff --git a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/ImageOps.java b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/ImageOps.java index 0ddfec44759..94bfe32ace0 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/ImageOps.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/ImageOps.java @@ -155,7 +155,9 @@ public AdjustSaturation adjustSaturation(Operand image * representing a single score corresponding to each box (each row of boxes). * @param maxOutputSizePerClass A scalar integer tensor representing the maximum number of * boxes to be selected by non max suppression per class - * @param maxTotalSize A scalar representing maximum number of boxes retained over all classes. + * @param maxTotalSize An int32 scalar representing the maximum number of boxes retained over all + * classes. Note that setting this value to a large number may result in OOM error + * depending on the system workload. * @param iouThreshold A 0-D float tensor representing the threshold for deciding whether * boxes overlap too much with respect to IOU. * @param scoreThreshold A 0-D float tensor representing the threshold for deciding when to remove diff --git a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/IoOps.java b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/IoOps.java index 188270728d9..889c234eff1 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/IoOps.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/IoOps.java @@ -138,12 +138,13 @@ public DecodeCsv decodeCsv(Operand records, Iterable> record /** * Convert JSON-encoded Example records to binary protocol buffer strings. - * This op translates a tensor containing Example records, encoded using - * the standard JSON - * mapping , - * into a tensor containing the same records encoded as binary protocol - * buffers. The resulting tensor can then be fed to any of the other - * Example-parsing ops. + * Note: This is not a general purpose JSON parsing op. + *

This op converts JSON-serialized + * {@code tf.train.Example} (created with {@code json_format.MessageToJson}, following the + * standard JSON mapping ) + * to a binary-serialized {@code tf.train.Example} (equivalent to + * {@code Example.SerializeToString()}) suitable for conversion to tensors with + * {@code tf.io.parse_example}. * * @param jsonExamples Each string is a JSON object serialized according to the JSON * mapping of the Example proto. diff --git a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/LinalgOps.java b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/LinalgOps.java index 2180a8b95f1..192973c6a32 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/LinalgOps.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/LinalgOps.java @@ -95,25 +95,25 @@ public final class LinalgOps { *

For example: *

    *  # if 'input' is [[ 0,  1,  2, 3]
-   *                   [-1,  0,  1, 2]
-   *                   [-2, -1,  0, 1]
-   *                   [-3, -2, -1, 0]],
+   *  #                [-1,  0,  1, 2]
+   *  #                [-2, -1,  0, 1]
+   *  #                [-3, -2, -1, 0]],
    *
-   *  tf.matrix_band_part(input, 1, -1) ==> [[ 0,  1,  2, 3]
+   *  tf.linalg.band_part(input, 1, -1) ==> [[ 0,  1,  2, 3]
    *                                         [-1,  0,  1, 2]
    *                                         [ 0, -1,  0, 1]
    *                                         [ 0,  0, -1, 0]],
    *
-   *  tf.matrix_band_part(input, 2, 1) ==> [[ 0,  1,  0, 0]
+   *  tf.linalg.band_part(input, 2, 1) ==> [[ 0,  1,  0, 0]
    *                                        [-1,  0,  1, 0]
    *                                        [-2, -1,  0, 1]
    *                                        [ 0, -2, -1, 0]]
    *  
*

Useful special cases: *

-   *   tf.matrix_band_part(input, 0, -1) ==> Upper triangular part.
-   *   tf.matrix_band_part(input, -1, 0) ==> Lower triangular part.
-   *   tf.matrix_band_part(input, 0, 0) ==> Diagonal.
+   *   tf.linalg.band_part(input, 0, -1) ==> Upper triangular part.
+   *   tf.linalg.band_part(input, -1, 0) ==> Lower triangular part.
+   *   tf.linalg.band_part(input, 0, 0) ==> Diagonal.
    *  
* * @param data type for {@code band} output diff --git a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/MathOps.java b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/MathOps.java index cc90d2e1b0f..9c796755cb4 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/MathOps.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/MathOps.java @@ -1960,7 +1960,7 @@ public Sinh sinh(Operand x) { } /** - * Computes softplus: {@code log(exp(features) + 1)}. + * The Softplus operation * * @param data type for {@code activations} output * @param features the features value diff --git a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/NnOps.java b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/NnOps.java index acab988384a..8b25a15522f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/NnOps.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/NnOps.java @@ -954,8 +954,26 @@ public Dilation2dBackpropInput dilation2dBackpropInput(Op } /** - * Computes exponential linear: {@code exp(features) - 1} if < 0, {@code features} otherwise. - * See Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs) + * Computes the exponential linear function. + * The ELU function is defined as: + *
    + *
  • $ e ^ x - 1 $ if $ x < 0 $
  • + *
  • $ x $ if $ x >= 0 $
  • + *
+ *

Examples: + *

+ *
+ *
+ *

tf.nn.elu(1.0) + * <tf.Tensor: shape=(), dtype=float32, numpy=1.0> + * tf.nn.elu(0.0) + * <tf.Tensor: shape=(), dtype=float32, numpy=0.0> + * tf.nn.elu(-1000.0) + * <tf.Tensor: shape=(), dtype=float32, numpy=-1.0> + *

+ *
+ *
+ *

See Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs) * * * @param data type for {@code activations} output @@ -1753,8 +1771,8 @@ public QuantizedReluX quantizedReluX(Operand *

*
- *

tf.nn.relu([-2., 0., -0., 3.]).numpy() - * array([ 0., 0., -0., 3.], dtype=float32) + *

tf.nn.relu([-2., 0., 3.]).numpy() + * array([0., 0., 3.], dtype=float32) *

*
* diff --git a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/Ops.java b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/Ops.java index c68b6ee8ff7..a4a7f5d6dbc 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/Ops.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/Ops.java @@ -166,7 +166,6 @@ import org.tensorflow.op.core.RefNextIteration; import org.tensorflow.op.core.RefSelect; import org.tensorflow.op.core.RefSwitch; -import org.tensorflow.op.core.RemoteFusedGraphExecute; import org.tensorflow.op.core.Reshape; import org.tensorflow.op.core.ResourceCountUpTo; import org.tensorflow.op.core.ResourceGather; @@ -187,7 +186,6 @@ import org.tensorflow.op.core.Reverse; import org.tensorflow.op.core.ReverseSequence; import org.tensorflow.op.core.Roll; -import org.tensorflow.op.core.Rpc; import org.tensorflow.op.core.ScatterAdd; import org.tensorflow.op.core.ScatterDiv; import org.tensorflow.op.core.ScatterMax; @@ -271,7 +269,6 @@ import org.tensorflow.op.core.Timestamp; import org.tensorflow.op.core.TopKUnique; import org.tensorflow.op.core.TopKWithUnique; -import org.tensorflow.op.core.TryRpc; import org.tensorflow.op.core.Unbatch; import org.tensorflow.op.core.UnbatchGrad; import org.tensorflow.op.core.Unique; @@ -284,6 +281,9 @@ import org.tensorflow.op.core.Variable; import org.tensorflow.op.core.VariableShape; import org.tensorflow.op.core.Where; +import org.tensorflow.op.core.XlaConvV2; +import org.tensorflow.op.core.XlaDotV2; +import org.tensorflow.op.core.XlaSetDynamicDimensionSize; import org.tensorflow.op.core.XlaSpmdFullToShardShape; import org.tensorflow.op.core.XlaSpmdShardToFullShape; import org.tensorflow.op.core.Zeros; @@ -2953,9 +2953,8 @@ public InitializeTableFromTextFile initializeTableFromTextFile( } /** - *
-   *  Adds v into specified rows of x.
-   *
+   * Adds v into specified rows of x.
+   *  
    *  Computes y = x; y[i, :] += v; return y.
    *  
* @@ -4159,27 +4158,6 @@ public RefSwitch refSwitch(Operand data, Operand return RefSwitch.create(scope, data, pred); } - /** - * Execute a sub graph on a remote processor. - * The graph specifications(such as graph itself, input tensors and output names) - * are stored as a serialized protocol buffer of RemoteFusedGraphExecuteInfo - * as serialized_remote_fused_graph_execute_info. - * The specifications will be passed to a dedicated registered - * remote fused graph executor. The executor will send the graph specifications - * to a remote processor and execute that graph. The execution results - * will be passed to consumer nodes as outputs of this node. - * - * @param inputs Arbitrary number of tensors with arbitrary data types - * @param Toutputs the value of the Toutputs property - * @param serializedRemoteFusedGraphExecuteInfo Serialized protocol buffer - * of RemoteFusedGraphExecuteInfo which contains graph specifications. - * @return a new instance of RemoteFusedGraphExecute - */ - public RemoteFusedGraphExecute remoteFusedGraphExecute(Iterable> inputs, - List> Toutputs, String serializedRemoteFusedGraphExecuteInfo) { - return RemoteFusedGraphExecute.create(scope, inputs, Toutputs, serializedRemoteFusedGraphExecuteInfo); - } - /** * Reshapes a tensor. * Given {@code tensor}, this operation returns a tensor that has the same values @@ -4857,64 +4835,6 @@ public Roll roll(Operand input, Operand - *
  • {@code address} (the host+port or BNS address of the request)
  • - *
  • {@code method} (the RPC method name for the request)
  • - *
  • {@code request} (the serialized proto string, or vector of strings, - * of the RPC request argument).
  • - * - *

    For example, if you have an RPC service running on port localhost:2345, - * and its interface is configured with the following proto declaration: - *

    -   *  service MyService {
    -   *    rpc MyMethod(MyRequestProto) returns (MyResponseProto) {
    -   *    }
    -   *  };
    -   *  
    - *

    then call this op with arguments: - *

    -   *  address = "localhost:2345"
    -   *  method = "MyService/MyMethod"
    -   *  
    - *

    The {@code request} tensor is a string tensor representing serialized {@code MyRequestProto} - * strings; and the output string tensor {@code response} will have the same shape - * and contain (upon successful completion) corresponding serialized - * {@code MyResponseProto} strings. - *

    For example, to send a single, empty, {@code MyRequestProto}, call - * this op with {@code request = ""}. To send 5 parallel empty requests, - * call this op with {@code request = ["", "", "", "", ""]}. - *

    More generally, one can create a batch of {@code MyRequestProto} serialized protos - * from regular batched tensors using the {@code encode_proto} op, and convert - * the response {@code MyResponseProto} serialized protos to batched tensors - * using the {@code decode_proto} op. - *

    NOTE Working with serialized proto strings is faster than instantiating - * actual proto objects in memory, so no performance degradation is expected - * compared to writing custom kernels for this workflow. - *

    If the connection fails or the remote worker returns an error - * status, the op reraises this exception locally. - *

    See the {@code TryRpc} op if you prefer to handle RPC failures manually in the graph. - * - * @param address {@code 0-D} or {@code 1-D}. The address (i.e. host_name:port) of the RPC server. - * If this tensor has more than 1 element, then multiple parallel rpc requests - * are sent. This argument broadcasts with {@code method} and {@code request}. - * @param method {@code 0-D} or {@code 1-D}. The method address on the RPC server. - * If this tensor has more than 1 element, then multiple parallel rpc requests - * are sent. This argument broadcasts with {@code address} and {@code request}. - * @param request {@code 0-D} or {@code 1-D}. Serialized proto strings: the rpc request argument. - * If this tensor has more than 1 element, then multiple parallel rpc requests - * are sent. This argument broadcasts with {@code address} and {@code method}. - * @param options carries optional attribute values - * @return a new instance of Rpc - */ - public Rpc rpc(Operand address, Operand method, Operand request, - Rpc.Options... options) { - return Rpc.create(scope, address, method, request, options); - } - /** * Adds sparse updates to a variable reference. * This operation computes @@ -5930,7 +5850,39 @@ public StageSize stageSize(List> dtypes, StageSize.Option * in the graph it inputs are masked from the gradient generator. They are not * taken into account for computing gradients. *

    This is useful any time you want to compute a value with TensorFlow but need - * to pretend that the value was a constant. Some examples include: + * to pretend that the value was a constant. For example, the softmax function + * for a vector x can be written as + *

    +   *
    +   *    def softmax(x):
    +   *      numerator = tf.exp(x)
    +   *      denominator = tf.reduce_sum(numerator)
    +   *      return numerator / denominator
    +   *  
    + *

    This however is susceptible to overflow if the values in x are large. An + * alternative more stable way is to subtract the maximum of x from each of the + * values. + *

    +   *
    +   *    def stable_softmax(x):
    +   *      z = x - tf.reduce_max(x)
    +   *      numerator = tf.exp(z)
    +   *      denominator = tf.reduce_sum(numerator)
    +   *      return numerator / denominator
    +   *  
    + *

    However, when we backprop through the softmax to x, we dont want to backprop + * through the {@code tf.reduce_max(x)} (if the max values are not unique then the + * gradient could flow to the wrong input) calculation and treat that as a + * constant. Therefore, we should write this out as + *

    +   *
    +   *    def stable_softmax(x):
    +   *      z = x - tf.stop_gradient(tf.reduce_max(x))
    +   *      numerator = tf.exp(z)
    +   *      denominator = tf.reduce_sum(numerator)
    +   *      return numerator / denominator
    +   *  
    + *

    Some other examples include: *

      *
    • The EM algorithm where the M-step should not involve backpropagation * through the output of the E-step.
    • @@ -7193,8 +7145,8 @@ public Timestamp timestamp() { } /** - * Returns the TopK unique values in the array in sorted order. The - * running time is proportional to the product of K and the input + * Returns the TopK unique values in the array in sorted order. + * The running time is proportional to the product of K and the input * size. Sorting the whole array is more efficient for sufficiently large * values of K. The median-of-medians algorithm is probably faster, but * difficult to implement efficiently in XLA. If there are fewer than K @@ -7216,11 +7168,12 @@ public TopKUnique topKUnique(Operand input, Long k) { } /** - * Returns the TopK values in the array in sorted order. This is a combination - * of MakeUnique and TopKUnique. The returned top-K will have its lower bits - * replaced by iota, thus it will be close to the original value but not exactly - * the same. The running time is proportional to the product of K and the input - * size. NaNs are never returned. Subnormal numbers are flushed to zero. + * Returns the TopK values in the array in sorted order. + * This is a combination of MakeUnique and TopKUnique. The returned top-K will + * have its lower bits replaced by iota, thus it will be close to the original + * value but not exactly the same. The running time is proportional to the product + * of K and the input size. NaNs are never returned. Subnormal numbers are flushed + * to zero. * * @param input the input value * @param k the value of the k property @@ -7230,67 +7183,6 @@ public TopKWithUnique topKWithUnique(Operand input, Long k) { return TopKWithUnique.create(scope, input, k); } - /** - * Perform batches of RPC requests. - * This op asynchronously performs either a single RPC request, or a batch - * of requests. RPC requests are defined by three main parameters: - *
        - *
      • {@code address} (the host+port or BNS address of the request)
      • - *
      • {@code method} (the method name for the request)
      • - *
      • {@code request} (the serialized proto string, or vector of strings, - * of the RPC request argument).
      • - *
      - *

      For example, if you have an RPC service running on port localhost:2345, - * and its interface is configured with the following proto declaration: - *

      -   *  service MyService {
      -   *    rpc MyMethod(MyRequestProto) returns (MyResponseProto) {
      -   *    }
      -   *  };
      -   *  
      - *

      then call this op with arguments: - *

      -   *  address = "localhost:2345"
      -   *  method = "MyService/MyMethod"
      -   *  
      - *

      The {@code request} tensor is a string tensor representing serialized {@code MyRequestProto} - * strings; and the output string tensor {@code response} will have the same shape - * and contain (upon successful completion) corresponding serialized - * {@code MyResponseProto} strings. - *

      For example, to send a single, empty, {@code MyRequestProto}, call - * this op with {@code request = ""}. To send 5 parallel empty requests, - * call this op with {@code request = ["", "", "", "", ""]}. - *

      More generally, one can create a batch of {@code MyRequestProto} serialized protos - * from regular batched tensors using the {@code encode_proto} op, and convert - * the response {@code MyResponseProto} serialized protos to batched tensors - * using the {@code decode_proto} op. - *

      NOTE Working with serialized proto strings is faster than instantiating - * actual proto objects in memory, so no performance degradation is expected - * compared to writing custom kernels for this workflow. - *

      Unlike the standard {@code Rpc} op, if the connection fails or the remote worker - * returns an error status, this op does not reraise the exception. - * Instead, the {@code status_code} and {@code status_message} entry for the corresponding RPC - * call is set with the error returned from the RPC call. The {@code response} tensor - * will contain valid response values for those minibatch entries whose RPCs did - * not fail; the rest of the entries will have empty strings. - * - * @param address {@code 0-D} or {@code 1-D}. The address (i.e. host_name:port) of the RPC server. - * If this tensor has more than 1 element, then multiple parallel rpc requests - * are sent. This argument broadcasts with {@code method} and {@code request}. - * @param method {@code 0-D} or {@code 1-D}. The method address on the RPC server. - * If this tensor has more than 1 element, then multiple parallel rpc requests - * are sent. This argument broadcasts with {@code address} and {@code request}. - * @param request {@code 0-D} or {@code 1-D}. Serialized proto strings: the rpc request argument. - * If this tensor has more than 1 element, then multiple parallel rpc requests - * are sent. This argument broadcasts with {@code address} and {@code method}. - * @param options carries optional attribute values - * @return a new instance of TryRpc - */ - public TryRpc tryRpc(Operand address, Operand method, Operand request, - TryRpc.Options... options) { - return TryRpc.create(scope, address, method, request, options); - } - /** * Reverses the operation of Batch for a single output Tensor. * An instance of Unbatch either receives an empty batched_tensor, in which case it @@ -7474,29 +7366,29 @@ public Unique unique(Operand x, *

      {@code y[idx[i]] = x[i] for i in [0, 1,...,rank(x) - 1]} *

      For example: *

      -   *  # tensor 'x' is [1, 1, 2, 4, 4, 4, 7, 8, 8]
      -   *  y, idx, count = unique_with_counts(x)
      +   *  x = tf.constant([1, 1, 2, 4, 4, 4, 7, 8, 8])
      +   *  y, idx, count = UniqueWithCountsV2(x, axis = [0])
          *  y ==> [1, 2, 4, 7, 8]
          *  idx ==> [0, 0, 1, 2, 2, 2, 3, 4, 4]
          *  count ==> [2, 1, 3, 1, 2]
          *  
      - *

      For an {@code 2-D} tensor {@code x} with {@code axis = 0}: + *

      For a {@code 2-D} tensor {@code x} with {@code axis = 0}: *

      -   *  # tensor 'x' is [[1, 0, 0],
      -   *  #                [1, 0, 0],
      -   *  #                [2, 0, 0]]
      -   *  y, idx, count = unique_with_counts(x, axis=0)
      +   *  x = tf.constant([[1, 0, 0],
      +   *                  [1, 0, 0],
      +   *                  [2, 0, 0]])
      +   *  y, idx, count = UniqueWithCountsV2(x, axis=[0])
          *  y ==> [[1, 0, 0],
          *         [2, 0, 0]]
          *  idx ==> [0, 0, 1]
          *  count ==> [2, 1]
          *  
      - *

      For an {@code 2-D} tensor {@code x} with {@code axis = 1}: + *

      For a {@code 2-D} tensor {@code x} with {@code axis = 1}: *

      -   *  # tensor 'x' is [[1, 0, 0],
      -   *  #                [1, 0, 0],
      -   *  #                [2, 0, 0]]
      -   *  y, idx, count = unique_with_counts(x, axis=1)
      +   *  x = tf.constant([[1, 0, 0],
      +   *                  [1, 0, 0],
      +   *                  [2, 0, 0]])
      +   *  y, idx, count = UniqueWithCountsV2(x, axis=[1])
          *  y ==> [[1, 0],
          *         [1, 0],
          *         [2, 0]]
      @@ -7530,29 +7422,29 @@ public  UniqueWithCounts uniqueWithCounts(Operand
          *  

      {@code y[idx[i]] = x[i] for i in [0, 1,...,rank(x) - 1]} *

      For example: *

      -   *  # tensor 'x' is [1, 1, 2, 4, 4, 4, 7, 8, 8]
      -   *  y, idx, count = unique_with_counts(x)
      +   *  x = tf.constant([1, 1, 2, 4, 4, 4, 7, 8, 8])
      +   *  y, idx, count = UniqueWithCountsV2(x, axis = [0])
          *  y ==> [1, 2, 4, 7, 8]
          *  idx ==> [0, 0, 1, 2, 2, 2, 3, 4, 4]
          *  count ==> [2, 1, 3, 1, 2]
          *  
      - *

      For an {@code 2-D} tensor {@code x} with {@code axis = 0}: + *

      For a {@code 2-D} tensor {@code x} with {@code axis = 0}: *

      -   *  # tensor 'x' is [[1, 0, 0],
      -   *  #                [1, 0, 0],
      -   *  #                [2, 0, 0]]
      -   *  y, idx, count = unique_with_counts(x, axis=0)
      +   *  x = tf.constant([[1, 0, 0],
      +   *                  [1, 0, 0],
      +   *                  [2, 0, 0]])
      +   *  y, idx, count = UniqueWithCountsV2(x, axis=[0])
          *  y ==> [[1, 0, 0],
          *         [2, 0, 0]]
          *  idx ==> [0, 0, 1]
          *  count ==> [2, 1]
          *  
      - *

      For an {@code 2-D} tensor {@code x} with {@code axis = 1}: + *

      For a {@code 2-D} tensor {@code x} with {@code axis = 1}: *

      -   *  # tensor 'x' is [[1, 0, 0],
      -   *  #                [1, 0, 0],
      -   *  #                [2, 0, 0]]
      -   *  y, idx, count = unique_with_counts(x, axis=1)
      +   *  x = tf.constant([[1, 0, 0],
      +   *                  [1, 0, 0],
      +   *                  [2, 0, 0]])
      +   *  y, idx, count = UniqueWithCountsV2(x, axis=[1])
          *  y ==> [[1, 0],
          *         [1, 0],
          *         [2, 0]]
      @@ -7805,6 +7697,72 @@ public Where where(Operand condition) {
           return Where.create(scope, condition);
         }
       
      +  /**
      +   * Wraps the XLA ConvGeneralDilated operator, documented at
      +   *  https://www.tensorflow.org/performance/xla/operation_semantics#conv_convolution
      +   *  .
      +   *
      +   * @param  data type for {@code output} output
      +   * @param lhs the input tensor
      +   * @param rhs the kernel tensor
      +   * @param windowStrides the inter-window strides
      +   * @param padding the padding to apply at the start and end of each input dimensions
      +   * @param lhsDilation dilation to apply between input elements
      +   * @param rhsDilation dilation to apply between kernel elements
      +   * @param featureGroupCount number of feature groups for grouped convolution.
      +   * @param dimensionNumbers a serialized xla::ConvolutionDimensionNumbers proto.
      +   * @param precisionConfig a serialized xla::PrecisionConfig proto.
      +   * @param preferredElementType The type of the tensor.
      +   * @param  data type for {@code XlaConvV2} output and operands
      +   * @param  data type for {@code XlaConvV2} output and operands
      +   * @return a new instance of XlaConvV2
      +   */
      +  public  XlaConvV2 xlaConvV2(Operand lhs,
      +      Operand rhs, Operand windowStrides, Operand padding,
      +      Operand lhsDilation, Operand rhsDilation, Operand featureGroupCount,
      +      String dimensionNumbers, String precisionConfig, Class preferredElementType) {
      +    return XlaConvV2.create(scope, lhs, rhs, windowStrides, padding, lhsDilation, rhsDilation, featureGroupCount, dimensionNumbers, precisionConfig, preferredElementType);
      +  }
      +
      +  /**
      +   * Wraps the XLA DotGeneral operator, documented at
      +   *  https://www.tensorflow.org/performance/xla/operation_semantics#dotgeneral
      +   *  .
      +   *
      +   * @param  data type for {@code output} output
      +   * @param lhs the LHS tensor
      +   * @param rhs the RHS tensor
      +   * @param dimensionNumbers a serialized xla::DotDimensionNumbers proto.
      +   * @param precisionConfig a serialized xla::PrecisionConfig proto.
      +   * @param preferredElementType The type of the tensor.
      +   * @param  data type for {@code XlaDotV2} output and operands
      +   * @return a new instance of XlaDotV2
      +   */
      +  public  XlaDotV2 xlaDotV2(Operand lhs,
      +      Operand rhs, String dimensionNumbers, String precisionConfig,
      +      Class preferredElementType) {
      +    return XlaDotV2.create(scope, lhs, rhs, dimensionNumbers, precisionConfig, preferredElementType);
      +  }
      +
      +  /**
      +   * Make a static dimension into a xla bounded dynamic dimension.
      +   *  
      +   *      The current static dimension size will become the bound and the second
      +   *      operand becomes the dynamic size of the dimension.
      +   *  
      + * + * @param data type for {@code output} output + * @param input the input value + * @param dimIndex the dimIndex value + * @param sizeOutput the sizeOutput value + * @param data type for {@code XlaSetDynamicDimensionSize} output and operands + * @return a new instance of XlaSetDynamicDimensionSize + */ + public XlaSetDynamicDimensionSize xlaSetDynamicDimensionSize( + Operand input, Operand dimIndex, Operand sizeOutput) { + return XlaSetDynamicDimensionSize.create(scope, input, dimIndex, sizeOutput); + } + /** * An op used by XLA SPMD partitioner to switch from automatic partitioning to * manual partitioning. It annotates the input (full-shape, to be automatically diff --git a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/XlaOps.java b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/XlaOps.java index d838cc65c48..99caae1fdc2 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/XlaOps.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/XlaOps.java @@ -261,9 +261,13 @@ public KeyValueSort keyValueSort(Oper * @param data type for {@code output} output * @param input A {@code Tensor} of type T. * @param paddingValue A scalar {@code Tensor} of type T. - * @param paddingLow the padding to apply at the start of each input dimensions - * @param paddingHigh the padding to apply at the end of each input dimension. - * @param paddingInterior the padding to apply between each input element. + * @param paddingLow the padding to apply at the start of each input dimensions. Must + * be a compile-time constant 1D tensor of length equal to rank of input. + * @param paddingHigh the padding to apply at the end of each input dimension. Must + * be a compile-time constant 1D tensor of length equal to rank of input. + * @param paddingInterior the padding to apply between each input element. Must + * be a compile-time constant 1D tensor of length equal to rank of input, + * containing only non-negative values. * @param data type for {@code XlaPad} output and operands * @param data type for {@code XlaPad} output and operands * @return a new instance of Pad @@ -340,11 +344,12 @@ public Send send(Operand tensor, String tensorName) { * * @param data type for {@code output} output * @param input the input value + * @param options carries optional attribute values * @param data type for {@code XlaSharding} output and operands * @return a new instance of Sharding */ - public Sharding sharding(Operand input) { - return Sharding.create(scope, input); + public Sharding sharding(Operand input, Sharding.Options... options) { + return Sharding.create(scope, input, options); } /** diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/internal/c_api/global/tensorflow.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/internal/c_api/global/tensorflow.java index f83bc6c1394..2441bc1af65 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/internal/c_api/global/tensorflow.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/internal/c_api/global/tensorflow.java @@ -781,8 +781,52 @@ public static native void TF_TensorBitcastFrom(@Const TF_Tensor from, // #ifndef TENSORFLOW_C_TF_TSTRING_H_ // #define TENSORFLOW_C_TF_TSTRING_H_ +// #include "tensorflow/c/tf_tensor.h" // #include "tensorflow/core/platform/ctstring.h" +// #ifdef SWIG +// #define TF_CAPI_EXPORT +// #else +// #if defined(_WIN32) +// #ifdef TF_COMPILE_LIBRARY +// #define TF_CAPI_EXPORT __declspec(dllexport) +// #else +// #define TF_CAPI_EXPORT __declspec(dllimport) +// #endif // TF_COMPILE_LIBRARY +// #else +// #define TF_CAPI_EXPORT __attribute__((visibility("default"))) +// #endif // _WIN32 +// #endif // SWIG + +// #ifdef __cplusplus +// #endif + +public static native void TF_StringInit(TF_TString t); + +public static native void TF_StringCopy(TF_TString dst, @Cast("const char*") BytePointer src, + @Cast("size_t") long size); +public static native void TF_StringCopy(TF_TString dst, String src, + @Cast("size_t") long size); + +public static native void TF_StringAssignView(TF_TString dst, @Cast("const char*") BytePointer src, + @Cast("size_t") long size); +public static native void TF_StringAssignView(TF_TString dst, String src, + @Cast("size_t") long size); + +public static native @Cast("const char*") BytePointer TF_StringGetDataPointer( + @Const TF_TString tstr); + +public static native @Cast("TF_TString_Type") int TF_StringGetType(@Const TF_TString str); + +public static native @Cast("size_t") long TF_StringGetSize(@Const TF_TString tstr); + +public static native @Cast("size_t") long TF_StringGetCapacity(@Const TF_TString str); + +public static native void TF_StringDealloc(TF_TString tstr); + +// #ifdef __cplusplus /* end extern "C" */ +// #endif + // #endif // THIRD_PARTY_TENSORFLOW_C_TF_TSTRING_H_ @@ -2530,7 +2574,7 @@ public static native void TF_FunctionGetAttrValueProto( // Return a new execution session with the associated graph, or NULL on // error. Does not take ownership of any input parameters. // -// *`graph` must be a valid graph (not deleted or nullptr). `graph` will be be +// *`graph` must be a valid graph (not deleted or nullptr). `graph` will be // kept alive for the lifetime of the returned TF_Session. New nodes can still // be added to `graph` after this call. public static native TF_Session TF_NewSession(TF_Graph graph, @@ -3067,6 +3111,7 @@ public static native void TF_RegisterFilesystemPlugin( // #include // #include "tensorflow/c/c_api.h" +// #include "tensorflow/c/experimental/stream_executor/stream_executor.h" // #include "tensorflow/c/tf_datatype.h" // #include "tensorflow/c/tf_status.h" // #include "tensorflow/c/tf_tensor.h" @@ -3101,6 +3146,11 @@ public static native void TF_RegisterFilesystemPlugin( // Targeting ../TF_OpKernelContext.java + +// TF_InitKernel to do op/kernel registration. +// Plugin should implement TF_InitKernel to register kernels. This function +// should register all kernels in a plugin. +public static native void TF_InitKernel(); // Targeting ../Create_func_TF_OpKernelConstruction.java @@ -3158,6 +3208,16 @@ public static native void TF_RegisterKernelBuilder(String kernel_name, // -------------------------------------------------------------------------- // OpKernelContext routines +// TF_GetStream returns the SP_Stream available in ctx. +// This function returns a stream only for devices registered using the +// StreamExecutor C API +// (tensorflow/c/experimental/stream_executor/stream_executor.h). It will return +// nullptr and set error status in all other cases. +// Experimental: this function doesn't have compatibility guarantees and subject +// to change at any time. +public static native @ByVal @Cast("SP_Stream*") Pointer TF_GetStream(TF_OpKernelContext ctx, + TF_Status status); + // TF_NumInputs returns the number of inputs available in ctx. public static native int TF_NumInputs(TF_OpKernelContext ctx); @@ -3200,6 +3260,39 @@ public static native void TF_OpKernelContext_Failure(TF_OpKernelContext ctx, // Returns the step ID of the given context. public static native @Cast("int64_t") long TF_StepId(TF_OpKernelContext ctx); +// Get the list_size and total_size of the attribute `attr_name` of `oper`. +// list_size - the length of the list. +// total_size - total size of the list. +// (1) If attr_type == TF_ATTR_STRING +// then total_size is the cumulative byte size +// of all the strings in the list. +// (3) If attr_type == TF_ATTR_SHAPE +// then total_size is the number of dimensions +// of the shape valued attribute, or -1 +// if its rank is unknown. +// (4) If attr_type == TF_ATTR_SHAPE +// then total_size is the cumulative number +// of dimensions of all shapes in the list. +// (5) Otherwise, total_size is undefined. +public static native void TF_OpKernelConstruction_GetAttrSize( + TF_OpKernelConstruction ctx, @Cast("const char*") BytePointer attr_name, IntPointer list_size, + IntPointer total_size, TF_Status status); +public static native void TF_OpKernelConstruction_GetAttrSize( + TF_OpKernelConstruction ctx, String attr_name, IntBuffer list_size, + IntBuffer total_size, TF_Status status); +public static native void TF_OpKernelConstruction_GetAttrSize( + TF_OpKernelConstruction ctx, @Cast("const char*") BytePointer attr_name, int[] list_size, + int[] total_size, TF_Status status); +public static native void TF_OpKernelConstruction_GetAttrSize( + TF_OpKernelConstruction ctx, String attr_name, IntPointer list_size, + IntPointer total_size, TF_Status status); +public static native void TF_OpKernelConstruction_GetAttrSize( + TF_OpKernelConstruction ctx, @Cast("const char*") BytePointer attr_name, IntBuffer list_size, + IntBuffer total_size, TF_Status status); +public static native void TF_OpKernelConstruction_GetAttrSize( + TF_OpKernelConstruction ctx, String attr_name, int[] list_size, + int[] total_size, TF_Status status); + // Interprets the named kernel construction attribute as a TF_DataType and // places it into *val. *status is set to TF_OK. // @@ -3248,6 +3341,273 @@ public static native void TF_OpKernelConstruction_GetAttrInt32( TF_OpKernelConstruction ctx, String attr_name, int[] val, TF_Status status); +// Interprets the named kernel construction attribute as int64_t and +// places it into *val. *status is set to TF_OK. +// +// If the attribute could not be found or could not be interpreted as +// int64, *status is populated with an error. +public static native void TF_OpKernelConstruction_GetAttrInt64( + TF_OpKernelConstruction ctx, @Cast("const char*") BytePointer attr_name, @Cast("int64_t*") LongPointer val, + TF_Status status); +public static native void TF_OpKernelConstruction_GetAttrInt64( + TF_OpKernelConstruction ctx, String attr_name, @Cast("int64_t*") LongBuffer val, + TF_Status status); +public static native void TF_OpKernelConstruction_GetAttrInt64( + TF_OpKernelConstruction ctx, @Cast("const char*") BytePointer attr_name, @Cast("int64_t*") long[] val, + TF_Status status); +public static native void TF_OpKernelConstruction_GetAttrInt64( + TF_OpKernelConstruction ctx, String attr_name, @Cast("int64_t*") LongPointer val, + TF_Status status); +public static native void TF_OpKernelConstruction_GetAttrInt64( + TF_OpKernelConstruction ctx, @Cast("const char*") BytePointer attr_name, @Cast("int64_t*") LongBuffer val, + TF_Status status); +public static native void TF_OpKernelConstruction_GetAttrInt64( + TF_OpKernelConstruction ctx, String attr_name, @Cast("int64_t*") long[] val, + TF_Status status); + +// Interprets the named kernel construction attribute as float and +// places it into *val. *status is set to TF_OK. +// +// If the attribute could not be found or could not be interpreted as +// float, *status is populated with an error. +public static native void TF_OpKernelConstruction_GetAttrFloat( + TF_OpKernelConstruction ctx, @Cast("const char*") BytePointer attr_name, FloatPointer val, + TF_Status status); +public static native void TF_OpKernelConstruction_GetAttrFloat( + TF_OpKernelConstruction ctx, String attr_name, FloatBuffer val, + TF_Status status); +public static native void TF_OpKernelConstruction_GetAttrFloat( + TF_OpKernelConstruction ctx, @Cast("const char*") BytePointer attr_name, float[] val, + TF_Status status); +public static native void TF_OpKernelConstruction_GetAttrFloat( + TF_OpKernelConstruction ctx, String attr_name, FloatPointer val, + TF_Status status); +public static native void TF_OpKernelConstruction_GetAttrFloat( + TF_OpKernelConstruction ctx, @Cast("const char*") BytePointer attr_name, FloatBuffer val, + TF_Status status); +public static native void TF_OpKernelConstruction_GetAttrFloat( + TF_OpKernelConstruction ctx, String attr_name, float[] val, + TF_Status status); + +// Interprets the named kernel construction attribute as bool and +// places it into *val. *status is set to TF_OK. +// +// If the attribute could not be found or could not be interpreted as +// bool, *status is populated with an error. +public static native void TF_OpKernelConstruction_GetAttrBool( + TF_OpKernelConstruction ctx, @Cast("const char*") BytePointer attr_name, @Cast("unsigned char*") BytePointer val, + TF_Status status); +public static native void TF_OpKernelConstruction_GetAttrBool( + TF_OpKernelConstruction ctx, String attr_name, @Cast("unsigned char*") ByteBuffer val, + TF_Status status); +public static native void TF_OpKernelConstruction_GetAttrBool( + TF_OpKernelConstruction ctx, @Cast("const char*") BytePointer attr_name, @Cast("unsigned char*") byte[] val, + TF_Status status); +public static native void TF_OpKernelConstruction_GetAttrBool( + TF_OpKernelConstruction ctx, String attr_name, @Cast("unsigned char*") BytePointer val, + TF_Status status); +public static native void TF_OpKernelConstruction_GetAttrBool( + TF_OpKernelConstruction ctx, @Cast("const char*") BytePointer attr_name, @Cast("unsigned char*") ByteBuffer val, + TF_Status status); +public static native void TF_OpKernelConstruction_GetAttrBool( + TF_OpKernelConstruction ctx, String attr_name, @Cast("unsigned char*") byte[] val, + TF_Status status); + +// Interprets the named kernel construction attribute as string and +// places it into *val. `val` must +// point to an array of length at least `max_length` (ideally set to +// total_size from TF_OpKernelConstruction_GetAttrSize(ctx, +// attr_name, list_size, total_size)). *status is set to TF_OK. +// +// If the attribute could not be found or could not be interpreted as +// string, *status is populated with an error. +public static native void TF_OpKernelConstruction_GetAttrString( + TF_OpKernelConstruction ctx, @Cast("const char*") BytePointer attr_name, @Cast("char*") BytePointer val, + @Cast("size_t") long max_length, TF_Status status); +public static native void TF_OpKernelConstruction_GetAttrString( + TF_OpKernelConstruction ctx, String attr_name, @Cast("char*") ByteBuffer val, + @Cast("size_t") long max_length, TF_Status status); +public static native void TF_OpKernelConstruction_GetAttrString( + TF_OpKernelConstruction ctx, @Cast("const char*") BytePointer attr_name, @Cast("char*") byte[] val, + @Cast("size_t") long max_length, TF_Status status); +public static native void TF_OpKernelConstruction_GetAttrString( + TF_OpKernelConstruction ctx, String attr_name, @Cast("char*") BytePointer val, + @Cast("size_t") long max_length, TF_Status status); +public static native void TF_OpKernelConstruction_GetAttrString( + TF_OpKernelConstruction ctx, @Cast("const char*") BytePointer attr_name, @Cast("char*") ByteBuffer val, + @Cast("size_t") long max_length, TF_Status status); +public static native void TF_OpKernelConstruction_GetAttrString( + TF_OpKernelConstruction ctx, String attr_name, @Cast("char*") byte[] val, + @Cast("size_t") long max_length, TF_Status status); + +// Interprets the named kernel construction attribute as a TF_DataType array and +// places it into *vals. *status is set to TF_OK. +// `vals` must point to an array of length at least `max_values` (ideally set +// to list_size from +// TF_OpKernelConstruction_GetAttrSize(ctx, attr_name, list_size, +// total_size)). +public static native void TF_OpKernelConstruction_GetAttrTypeList( + TF_OpKernelConstruction ctx, @Cast("const char*") BytePointer attr_name, @Cast("TF_DataType*") IntPointer vals, + int max_vals, TF_Status status); +public static native void TF_OpKernelConstruction_GetAttrTypeList( + TF_OpKernelConstruction ctx, String attr_name, @Cast("TF_DataType*") IntBuffer vals, + int max_vals, TF_Status status); +public static native void TF_OpKernelConstruction_GetAttrTypeList( + TF_OpKernelConstruction ctx, @Cast("const char*") BytePointer attr_name, @Cast("TF_DataType*") int[] vals, + int max_vals, TF_Status status); +public static native void TF_OpKernelConstruction_GetAttrTypeList( + TF_OpKernelConstruction ctx, String attr_name, @Cast("TF_DataType*") IntPointer vals, + int max_vals, TF_Status status); +public static native void TF_OpKernelConstruction_GetAttrTypeList( + TF_OpKernelConstruction ctx, @Cast("const char*") BytePointer attr_name, @Cast("TF_DataType*") IntBuffer vals, + int max_vals, TF_Status status); +public static native void TF_OpKernelConstruction_GetAttrTypeList( + TF_OpKernelConstruction ctx, String attr_name, @Cast("TF_DataType*") int[] vals, + int max_vals, TF_Status status); + +// Interprets the named kernel construction attribute as int32_t array and +// places it into *vals. *status is set to TF_OK. +// `vals` must point to an array of length at least `max_values` (ideally set +// to list_size from +// TF_OpKernelConstruction_GetAttrSize(ctx, attr_name, list_size, +// total_size)). +public static native void TF_OpKernelConstruction_GetAttrInt32List( + TF_OpKernelConstruction ctx, @Cast("const char*") BytePointer attr_name, IntPointer vals, + int max_vals, TF_Status status); +public static native void TF_OpKernelConstruction_GetAttrInt32List( + TF_OpKernelConstruction ctx, String attr_name, IntBuffer vals, + int max_vals, TF_Status status); +public static native void TF_OpKernelConstruction_GetAttrInt32List( + TF_OpKernelConstruction ctx, @Cast("const char*") BytePointer attr_name, int[] vals, + int max_vals, TF_Status status); +public static native void TF_OpKernelConstruction_GetAttrInt32List( + TF_OpKernelConstruction ctx, String attr_name, IntPointer vals, + int max_vals, TF_Status status); +public static native void TF_OpKernelConstruction_GetAttrInt32List( + TF_OpKernelConstruction ctx, @Cast("const char*") BytePointer attr_name, IntBuffer vals, + int max_vals, TF_Status status); +public static native void TF_OpKernelConstruction_GetAttrInt32List( + TF_OpKernelConstruction ctx, String attr_name, int[] vals, + int max_vals, TF_Status status); + +// Interprets the named kernel construction attribute as int64_t array and +// places it into *vals. *status is set to TF_OK. +// `vals` must point to an array of length at least `max_values` (ideally set +// to list_size from +// TF_OpKernelConstruction_GetAttrSize(ctx, attr_name, list_size, +// total_size)). +public static native void TF_OpKernelConstruction_GetAttrInt64List( + TF_OpKernelConstruction ctx, @Cast("const char*") BytePointer attr_name, @Cast("int64_t*") LongPointer vals, + int max_vals, TF_Status status); +public static native void TF_OpKernelConstruction_GetAttrInt64List( + TF_OpKernelConstruction ctx, String attr_name, @Cast("int64_t*") LongBuffer vals, + int max_vals, TF_Status status); +public static native void TF_OpKernelConstruction_GetAttrInt64List( + TF_OpKernelConstruction ctx, @Cast("const char*") BytePointer attr_name, @Cast("int64_t*") long[] vals, + int max_vals, TF_Status status); +public static native void TF_OpKernelConstruction_GetAttrInt64List( + TF_OpKernelConstruction ctx, String attr_name, @Cast("int64_t*") LongPointer vals, + int max_vals, TF_Status status); +public static native void TF_OpKernelConstruction_GetAttrInt64List( + TF_OpKernelConstruction ctx, @Cast("const char*") BytePointer attr_name, @Cast("int64_t*") LongBuffer vals, + int max_vals, TF_Status status); +public static native void TF_OpKernelConstruction_GetAttrInt64List( + TF_OpKernelConstruction ctx, String attr_name, @Cast("int64_t*") long[] vals, + int max_vals, TF_Status status); + +// Interprets the named kernel construction attribute as float array and +// places it into *vals. *status is set to TF_OK. +// `vals` must point to an array of length at least `max_values` (ideally set +// to list_size from +// TF_OpKernelConstruction_GetAttrSize(ctx, attr_name, list_size, +// total_size)). +public static native void TF_OpKernelConstruction_GetAttrFloatList( + TF_OpKernelConstruction ctx, @Cast("const char*") BytePointer attr_name, FloatPointer vals, + int max_vals, TF_Status status); +public static native void TF_OpKernelConstruction_GetAttrFloatList( + TF_OpKernelConstruction ctx, String attr_name, FloatBuffer vals, + int max_vals, TF_Status status); +public static native void TF_OpKernelConstruction_GetAttrFloatList( + TF_OpKernelConstruction ctx, @Cast("const char*") BytePointer attr_name, float[] vals, + int max_vals, TF_Status status); +public static native void TF_OpKernelConstruction_GetAttrFloatList( + TF_OpKernelConstruction ctx, String attr_name, FloatPointer vals, + int max_vals, TF_Status status); +public static native void TF_OpKernelConstruction_GetAttrFloatList( + TF_OpKernelConstruction ctx, @Cast("const char*") BytePointer attr_name, FloatBuffer vals, + int max_vals, TF_Status status); +public static native void TF_OpKernelConstruction_GetAttrFloatList( + TF_OpKernelConstruction ctx, String attr_name, float[] vals, + int max_vals, TF_Status status); + +// Interprets the named kernel construction attribute as bool array and +// places it into *vals. *status is set to TF_OK. +// `vals` must point to an array of length at least `max_values` (ideally set +// to list_size from +// TF_OpKernelConstruction_GetAttrSize(ctx, attr_name, list_size, +// total_size)). +public static native void TF_OpKernelConstruction_GetAttrBoolList( + TF_OpKernelConstruction ctx, @Cast("const char*") BytePointer attr_name, @Cast("unsigned char*") BytePointer vals, + int max_vals, TF_Status status); +public static native void TF_OpKernelConstruction_GetAttrBoolList( + TF_OpKernelConstruction ctx, String attr_name, @Cast("unsigned char*") ByteBuffer vals, + int max_vals, TF_Status status); +public static native void TF_OpKernelConstruction_GetAttrBoolList( + TF_OpKernelConstruction ctx, @Cast("const char*") BytePointer attr_name, @Cast("unsigned char*") byte[] vals, + int max_vals, TF_Status status); +public static native void TF_OpKernelConstruction_GetAttrBoolList( + TF_OpKernelConstruction ctx, String attr_name, @Cast("unsigned char*") BytePointer vals, + int max_vals, TF_Status status); +public static native void TF_OpKernelConstruction_GetAttrBoolList( + TF_OpKernelConstruction ctx, @Cast("const char*") BytePointer attr_name, @Cast("unsigned char*") ByteBuffer vals, + int max_vals, TF_Status status); +public static native void TF_OpKernelConstruction_GetAttrBoolList( + TF_OpKernelConstruction ctx, String attr_name, @Cast("unsigned char*") byte[] vals, + int max_vals, TF_Status status); + +// Interprets the named kernel construction attribute as string array and fills +// in `vals` and `lengths`, each of which must point to an array of length at +// least `max_values`. *status is set to TF_OK. The elements of values will +// point to addresses in `storage` which must be at least `storage_size` bytes +// in length. Ideally, max_values would be set to list_size and `storage` would +// be at least total_size, obtained from +// TF_OpKernelConstruction_GetAttrSize(ctx, attr_name, list_size, +// total_size). +public static native void TF_OpKernelConstruction_GetAttrStringList( + TF_OpKernelConstruction ctx, @Cast("const char*") BytePointer attr_name, @Cast("char**") PointerPointer vals, + @Cast("size_t*") SizeTPointer lengths, int max_values, Pointer storage, @Cast("size_t") long storage_size, + TF_Status status); +public static native void TF_OpKernelConstruction_GetAttrStringList( + TF_OpKernelConstruction ctx, @Cast("const char*") BytePointer attr_name, @Cast("char**") @ByPtrPtr BytePointer vals, + @Cast("size_t*") SizeTPointer lengths, int max_values, Pointer storage, @Cast("size_t") long storage_size, + TF_Status status); +public static native void TF_OpKernelConstruction_GetAttrStringList( + TF_OpKernelConstruction ctx, String attr_name, @Cast("char**") @ByPtrPtr ByteBuffer vals, + @Cast("size_t*") SizeTPointer lengths, int max_values, Pointer storage, @Cast("size_t") long storage_size, + TF_Status status); +public static native void TF_OpKernelConstruction_GetAttrStringList( + TF_OpKernelConstruction ctx, @Cast("const char*") BytePointer attr_name, @Cast("char**") @ByPtrPtr byte[] vals, + @Cast("size_t*") SizeTPointer lengths, int max_values, Pointer storage, @Cast("size_t") long storage_size, + TF_Status status); +public static native void TF_OpKernelConstruction_GetAttrStringList( + TF_OpKernelConstruction ctx, String attr_name, @Cast("char**") @ByPtrPtr BytePointer vals, + @Cast("size_t*") SizeTPointer lengths, int max_values, Pointer storage, @Cast("size_t") long storage_size, + TF_Status status); +public static native void TF_OpKernelConstruction_GetAttrStringList( + TF_OpKernelConstruction ctx, @Cast("const char*") BytePointer attr_name, @Cast("char**") @ByPtrPtr ByteBuffer vals, + @Cast("size_t*") SizeTPointer lengths, int max_values, Pointer storage, @Cast("size_t") long storage_size, + TF_Status status); +public static native void TF_OpKernelConstruction_GetAttrStringList( + TF_OpKernelConstruction ctx, String attr_name, @Cast("char**") @ByPtrPtr byte[] vals, + @Cast("size_t*") SizeTPointer lengths, int max_values, Pointer storage, @Cast("size_t") long storage_size, + TF_Status status); + +// Return true if the kernel construction has the attr_name +public static native @Cast("bool") boolean TF_OpKernelConstruction_HasAttr( + TF_OpKernelConstruction ctx, @Cast("const char*") BytePointer attr_name, TF_Status status); +public static native @Cast("bool") boolean TF_OpKernelConstruction_HasAttr( + TF_OpKernelConstruction ctx, String attr_name, TF_Status status); + // Returns the unique operation name for this OpKernel. public static native @ByVal TF_StringView TF_OpKernelConstruction_GetName( TF_OpKernelConstruction ctx); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/collective/GatherV2.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/collective/GatherV2.java index aaeee6f00f8..346216e935b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/collective/GatherV2.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/collective/GatherV2.java @@ -21,11 +21,13 @@ import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.types.TInt32; import org.tensorflow.types.family.TNumber; +import org.tensorflow.types.family.TType; /** * Mutually accumulates multiple tensors of identical type and shape. @@ -54,6 +56,7 @@ private GatherV2(Operation operation) { * @param groupSize the groupSize value * @param groupKey the groupKey value * @param instanceKey the instanceKey value + * @param orderingToken the orderingToken value * @param options carries optional attribute values * @param data type for {@code CollectiveGatherV2} output and operands * @return a new instance of GatherV2 @@ -63,12 +66,13 @@ private GatherV2(Operation operation) { ) public static GatherV2 create(Scope scope, Operand input, Operand groupSize, Operand groupKey, Operand instanceKey, - Options... options) { + Iterable> orderingToken, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("CollectiveGatherV2", scope.makeOpName("GatherV2")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(groupSize.asOutput()); opBuilder.addInput(groupKey.asOutput()); opBuilder.addInput(instanceKey.asOutput()); + opBuilder.addInputList(Operands.asOutputs(orderingToken)); opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { @@ -78,6 +82,9 @@ public static GatherV2 create(Scope scope, Operand inp if (opts.timeoutSeconds != null) { opBuilder.setAttr("timeout_seconds", opts.timeoutSeconds); } + if (opts.NorderingToken != null) { + opBuilder.setAttr("Nordering_token", opts.NorderingToken); + } } } return new GatherV2<>(opBuilder.build()); @@ -103,6 +110,16 @@ public static Options timeoutSeconds(Float timeoutSeconds) { return new Options().timeoutSeconds(timeoutSeconds); } + /** + * Sets the NorderingToken option. + * + * @param NorderingToken the NorderingToken option + * @return this Options instance. + */ + public static Options NorderingToken(Long NorderingToken) { + return new Options().NorderingToken(NorderingToken); + } + /** * Gets data. * @@ -125,6 +142,8 @@ public static class Options { private Float timeoutSeconds; + private Long NorderingToken; + private Options() { } @@ -149,5 +168,16 @@ public Options timeoutSeconds(Float timeoutSeconds) { this.timeoutSeconds = timeoutSeconds; return this; } + + /** + * Sets the NorderingToken option. + * + * @param NorderingToken the NorderingToken option + * @return this Options instance. + */ + public Options NorderingToken(Long NorderingToken) { + this.NorderingToken = NorderingToken; + return this; + } } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/collective/ReduceV2.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/collective/ReduceV2.java index 33c7a1da9f7..f6b7321ac66 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/collective/ReduceV2.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/collective/ReduceV2.java @@ -21,11 +21,13 @@ import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.types.TInt32; import org.tensorflow.types.family.TNumber; +import org.tensorflow.types.family.TType; /** * Mutually reduces multiple tensors of identical type and shape. @@ -54,6 +56,7 @@ private ReduceV2(Operation operation) { * @param groupSize the groupSize value * @param groupKey the groupKey value * @param instanceKey the instanceKey value + * @param orderingToken the orderingToken value * @param mergeOp the value of the mergeOp property * @param finalOp the value of the finalOp property * @param options carries optional attribute values @@ -65,12 +68,14 @@ private ReduceV2(Operation operation) { ) public static ReduceV2 create(Scope scope, Operand input, Operand groupSize, Operand groupKey, Operand instanceKey, - String mergeOp, String finalOp, Options... options) { + Iterable> orderingToken, String mergeOp, String finalOp, + Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("CollectiveReduceV2", scope.makeOpName("ReduceV2")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(groupSize.asOutput()); opBuilder.addInput(groupKey.asOutput()); opBuilder.addInput(instanceKey.asOutput()); + opBuilder.addInputList(Operands.asOutputs(orderingToken)); opBuilder = scope.apply(opBuilder); opBuilder.setAttr("merge_op", mergeOp); opBuilder.setAttr("final_op", finalOp); @@ -82,6 +87,9 @@ public static ReduceV2 create(Scope scope, Operand inp if (opts.timeoutSeconds != null) { opBuilder.setAttr("timeout_seconds", opts.timeoutSeconds); } + if (opts.NorderingToken != null) { + opBuilder.setAttr("Nordering_token", opts.NorderingToken); + } } } return new ReduceV2<>(opBuilder.build()); @@ -107,6 +115,16 @@ public static Options timeoutSeconds(Float timeoutSeconds) { return new Options().timeoutSeconds(timeoutSeconds); } + /** + * Sets the NorderingToken option. + * + * @param NorderingToken the NorderingToken option + * @return this Options instance. + */ + public static Options NorderingToken(Long NorderingToken) { + return new Options().NorderingToken(NorderingToken); + } + /** * Gets data. * @@ -129,6 +147,8 @@ public static class Options { private Float timeoutSeconds; + private Long NorderingToken; + private Options() { } @@ -153,5 +173,16 @@ public Options timeoutSeconds(Float timeoutSeconds) { this.timeoutSeconds = timeoutSeconds; return this; } + + /** + * Sets the NorderingToken option. + * + * @param NorderingToken the NorderingToken option + * @return this Options instance. + */ + public Options NorderingToken(Long NorderingToken) { + this.NorderingToken = NorderingToken; + return this; + } } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/InitializeTableFromTextFile.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/InitializeTableFromTextFile.java index 529ba4c4ac1..eb3cf4e2c03 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/InitializeTableFromTextFile.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/InitializeTableFromTextFile.java @@ -84,6 +84,9 @@ public static InitializeTableFromTextFile create(Scope scope, if (opts.delimiter != null) { opBuilder.setAttr("delimiter", opts.delimiter); } + if (opts.offset != null) { + opBuilder.setAttr("offset", opts.offset); + } } } return new InitializeTableFromTextFile(opBuilder.build()); @@ -109,6 +112,16 @@ public static Options delimiter(String delimiter) { return new Options().delimiter(delimiter); } + /** + * Sets the offset option. + * + * @param offset the offset option + * @return this Options instance. + */ + public static Options offset(Long offset) { + return new Options().offset(offset); + } + /** * Optional attributes for {@link org.tensorflow.op.core.InitializeTableFromTextFile} */ @@ -117,6 +130,8 @@ public static class Options { private String delimiter; + private Long offset; + private Options() { } @@ -141,5 +156,16 @@ public Options delimiter(String delimiter) { this.delimiter = delimiter; return this; } + + /** + * Sets the offset option. + * + * @param offset the offset option + * @return this Options instance. + */ + public Options offset(Long offset) { + this.offset = offset; + return this; + } } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/InplaceAdd.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/InplaceAdd.java index 9fc6cc0c0b0..c7cc00f87cf 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/InplaceAdd.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/InplaceAdd.java @@ -29,9 +29,8 @@ import org.tensorflow.types.family.TType; /** - *
        * Adds v into specified rows of x.
      - *
      + * 
        * Computes y = x; y[i, :] += v; return y.
        * 
      * diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RemoteFusedGraphExecute.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RemoteFusedGraphExecute.java deleted file mode 100644 index fda684ab296..00000000000 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RemoteFusedGraphExecute.java +++ /dev/null @@ -1,99 +0,0 @@ -/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. -=======================================================================*/ - -// This class has been generated, DO NOT EDIT! - -package org.tensorflow.op.core; - -import java.util.Arrays; -import java.util.Iterator; -import java.util.List; -import org.tensorflow.Operand; -import org.tensorflow.Operation; -import org.tensorflow.OperationBuilder; -import org.tensorflow.Output; -import org.tensorflow.op.Operands; -import org.tensorflow.op.RawOp; -import org.tensorflow.op.Scope; -import org.tensorflow.op.annotation.Endpoint; -import org.tensorflow.op.annotation.Operator; -import org.tensorflow.types.family.TType; - -/** - * Execute a sub graph on a remote processor. - * The graph specifications(such as graph itself, input tensors and output names) - * are stored as a serialized protocol buffer of RemoteFusedGraphExecuteInfo - * as serialized_remote_fused_graph_execute_info. - * The specifications will be passed to a dedicated registered - * remote fused graph executor. The executor will send the graph specifications - * to a remote processor and execute that graph. The execution results - * will be passed to consumer nodes as outputs of this node. - */ -@Operator -public final class RemoteFusedGraphExecute extends RawOp implements Iterable> { - /** - * The name of this op, as known by TensorFlow core engine - */ - public static final String OP_NAME = "RemoteFusedGraphExecute"; - - private List> outputs; - - @SuppressWarnings("unchecked") - private RemoteFusedGraphExecute(Operation operation) { - super(operation); - int outputIdx = 0; - int outputsLength = operation.outputListLength("outputs"); - outputs = Arrays.asList(operation.outputList(outputIdx, outputsLength)); - outputIdx += outputsLength; - } - - /** - * Factory method to create a class wrapping a new RemoteFusedGraphExecute operation. - * - * @param scope current scope - * @param inputs Arbitrary number of tensors with arbitrary data types - * @param Toutputs the value of the Toutputs property - * @param serializedRemoteFusedGraphExecuteInfo Serialized protocol buffer - * of RemoteFusedGraphExecuteInfo which contains graph specifications. - * @return a new instance of RemoteFusedGraphExecute - */ - @Endpoint( - describeByClass = true - ) - public static RemoteFusedGraphExecute create(Scope scope, Iterable> inputs, - List> Toutputs, String serializedRemoteFusedGraphExecuteInfo) { - OperationBuilder opBuilder = scope.env().opBuilder("RemoteFusedGraphExecute", scope.makeOpName("RemoteFusedGraphExecute")); - opBuilder.addInputList(Operands.asOutputs(inputs)); - opBuilder = scope.apply(opBuilder); - opBuilder.setAttr("Toutputs", Operands.toDataTypes(Toutputs)); - opBuilder.setAttr("serialized_remote_fused_graph_execute_info", serializedRemoteFusedGraphExecuteInfo); - return new RemoteFusedGraphExecute(opBuilder.build()); - } - - /** - * Gets outputs. - * Arbitrary number of tensors with arbitrary data types - * @return outputs. - */ - public List> outputs() { - return outputs; - } - - @Override - @SuppressWarnings({"rawtypes", "unchecked"}) - public Iterator> iterator() { - return (Iterator) outputs.iterator(); - } -} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Rpc.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Rpc.java deleted file mode 100644 index 248a76e6104..00000000000 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Rpc.java +++ /dev/null @@ -1,228 +0,0 @@ -/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. -=======================================================================*/ - -// This class has been generated, DO NOT EDIT! - -package org.tensorflow.op.core; - -import org.tensorflow.Operand; -import org.tensorflow.Operation; -import org.tensorflow.OperationBuilder; -import org.tensorflow.Output; -import org.tensorflow.op.RawOp; -import org.tensorflow.op.Scope; -import org.tensorflow.op.annotation.Endpoint; -import org.tensorflow.op.annotation.Operator; -import org.tensorflow.types.TString; - -/** - * Perform batches of RPC requests. - * This op asynchronously performs either a single RPC request, or a batch - * of requests. RPC requests are defined by three main parameters: - *
        - *
      • {@code address} (the host+port or BNS address of the request)
      • - *
      • {@code method} (the RPC method name for the request)
      • - *
      • {@code request} (the serialized proto string, or vector of strings, - * of the RPC request argument).
      • - *
      - *

      For example, if you have an RPC service running on port localhost:2345, - * and its interface is configured with the following proto declaration: - *

      - * service MyService {
      - *   rpc MyMethod(MyRequestProto) returns (MyResponseProto) {
      - *   }
      - * };
      - * 
      - *

      then call this op with arguments: - *

      - * address = "localhost:2345"
      - * method = "MyService/MyMethod"
      - * 
      - *

      The {@code request} tensor is a string tensor representing serialized {@code MyRequestProto} - * strings; and the output string tensor {@code response} will have the same shape - * and contain (upon successful completion) corresponding serialized - * {@code MyResponseProto} strings. - *

      For example, to send a single, empty, {@code MyRequestProto}, call - * this op with {@code request = ""}. To send 5 parallel empty requests, - * call this op with {@code request = ["", "", "", "", ""]}. - *

      More generally, one can create a batch of {@code MyRequestProto} serialized protos - * from regular batched tensors using the {@code encode_proto} op, and convert - * the response {@code MyResponseProto} serialized protos to batched tensors - * using the {@code decode_proto} op. - *

      NOTE Working with serialized proto strings is faster than instantiating - * actual proto objects in memory, so no performance degradation is expected - * compared to writing custom kernels for this workflow. - *

      If the connection fails or the remote worker returns an error - * status, the op reraises this exception locally. - *

      See the {@code TryRpc} op if you prefer to handle RPC failures manually in the graph. - */ -@Operator -public final class Rpc extends RawOp implements Operand { - /** - * The name of this op, as known by TensorFlow core engine - */ - public static final String OP_NAME = "Rpc"; - - private Output response; - - private Rpc(Operation operation) { - super(operation); - int outputIdx = 0; - response = operation.output(outputIdx++); - } - - /** - * Factory method to create a class wrapping a new Rpc operation. - * - * @param scope current scope - * @param address {@code 0-D} or {@code 1-D}. The address (i.e. host_name:port) of the RPC server. - * If this tensor has more than 1 element, then multiple parallel rpc requests - * are sent. This argument broadcasts with {@code method} and {@code request}. - * @param method {@code 0-D} or {@code 1-D}. The method address on the RPC server. - * If this tensor has more than 1 element, then multiple parallel rpc requests - * are sent. This argument broadcasts with {@code address} and {@code request}. - * @param request {@code 0-D} or {@code 1-D}. Serialized proto strings: the rpc request argument. - * If this tensor has more than 1 element, then multiple parallel rpc requests - * are sent. This argument broadcasts with {@code address} and {@code method}. - * @param options carries optional attribute values - * @return a new instance of Rpc - */ - @Endpoint( - describeByClass = true - ) - public static Rpc create(Scope scope, Operand address, Operand method, - Operand request, Options... options) { - OperationBuilder opBuilder = scope.env().opBuilder("Rpc", scope.makeOpName("Rpc")); - opBuilder.addInput(address.asOutput()); - opBuilder.addInput(method.asOutput()); - opBuilder.addInput(request.asOutput()); - opBuilder = scope.apply(opBuilder); - if (options != null) { - for (Options opts : options) { - if (opts.protocol != null) { - opBuilder.setAttr("protocol", opts.protocol); - } - if (opts.failFast != null) { - opBuilder.setAttr("fail_fast", opts.failFast); - } - if (opts.timeoutInMs != null) { - opBuilder.setAttr("timeout_in_ms", opts.timeoutInMs); - } - } - } - return new Rpc(opBuilder.build()); - } - - /** - * Sets the protocol option. - * - * @param protocol RPC protocol to use. Empty string means use the default protocol. - * Options include 'grpc'. - * @return this Options instance. - */ - public static Options protocol(String protocol) { - return new Options().protocol(protocol); - } - - /** - * Sets the failFast option. - * - * @param failFast {@code boolean}. If {@code true} (default), then failures to connect - * (i.e., the server does not immediately respond) cause an RPC failure. - * @return this Options instance. - */ - public static Options failFast(Boolean failFast) { - return new Options().failFast(failFast); - } - - /** - * Sets the timeoutInMs option. - * - * @param timeoutInMs {@code int}. If {@code 0} (default), then the kernel will run the RPC - * request and only time out if the RPC deadline passes or the session times out. - * If this value is greater than {@code 0}, then the op will raise an exception if - * the RPC takes longer than {@code timeout_in_ms}. - * @return this Options instance. - */ - public static Options timeoutInMs(Long timeoutInMs) { - return new Options().timeoutInMs(timeoutInMs); - } - - /** - * Gets response. - * Same shape as {@code request}. Serialized proto strings: the rpc responses. - * @return response. - */ - public Output response() { - return response; - } - - @Override - public Output asOutput() { - return response; - } - - /** - * Optional attributes for {@link org.tensorflow.op.core.Rpc} - */ - public static class Options { - private String protocol; - - private Boolean failFast; - - private Long timeoutInMs; - - private Options() { - } - - /** - * Sets the protocol option. - * - * @param protocol RPC protocol to use. Empty string means use the default protocol. - * Options include 'grpc'. - * @return this Options instance. - */ - public Options protocol(String protocol) { - this.protocol = protocol; - return this; - } - - /** - * Sets the failFast option. - * - * @param failFast {@code boolean}. If {@code true} (default), then failures to connect - * (i.e., the server does not immediately respond) cause an RPC failure. - * @return this Options instance. - */ - public Options failFast(Boolean failFast) { - this.failFast = failFast; - return this; - } - - /** - * Sets the timeoutInMs option. - * - * @param timeoutInMs {@code int}. If {@code 0} (default), then the kernel will run the RPC - * request and only time out if the RPC deadline passes or the session times out. - * If this value is greater than {@code 0}, then the op will raise an exception if - * the RPC takes longer than {@code timeout_in_ms}. - * @return this Options instance. - */ - public Options timeoutInMs(Long timeoutInMs) { - this.timeoutInMs = timeoutInMs; - return this; - } - } -} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/StopGradient.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/StopGradient.java index 521be5199ec..2ae5a7b5431 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/StopGradient.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/StopGradient.java @@ -37,7 +37,39 @@ * in the graph it inputs are masked from the gradient generator. They are not * taken into account for computing gradients. *

      This is useful any time you want to compute a value with TensorFlow but need - * to pretend that the value was a constant. Some examples include: + * to pretend that the value was a constant. For example, the softmax function + * for a vector x can be written as + *

      + *
      + *   def softmax(x):
      + *     numerator = tf.exp(x)
      + *     denominator = tf.reduce_sum(numerator)
      + *     return numerator / denominator
      + * 
      + *

      This however is susceptible to overflow if the values in x are large. An + * alternative more stable way is to subtract the maximum of x from each of the + * values. + *

      + *
      + *   def stable_softmax(x):
      + *     z = x - tf.reduce_max(x)
      + *     numerator = tf.exp(z)
      + *     denominator = tf.reduce_sum(numerator)
      + *     return numerator / denominator
      + * 
      + *

      However, when we backprop through the softmax to x, we dont want to backprop + * through the {@code tf.reduce_max(x)} (if the max values are not unique then the + * gradient could flow to the wrong input) calculation and treat that as a + * constant. Therefore, we should write this out as + *

      + *
      + *   def stable_softmax(x):
      + *     z = x - tf.stop_gradient(tf.reduce_max(x))
      + *     numerator = tf.exp(z)
      + *     denominator = tf.reduce_sum(numerator)
      + *     return numerator / denominator
      + * 
      + *

      Some other examples include: *

        *
      • The EM algorithm where the M-step should not involve backpropagation * through the output of the E-step.
      • diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorArray.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorArray.java index 1dab0aa5619..28fe76db26b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorArray.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorArray.java @@ -134,7 +134,7 @@ public static Options clearAfterRead(Boolean clearAfterRead) { * Sets the identicalElementShapes option. * * @param identicalElementShapes If true (default is false), then all - * elements in the TensorArray will be expected to have have identical shapes. + * elements in the TensorArray will be expected to have identical shapes. * This allows certain behaviors, like dynamically checking for * consistent shapes on write, and being able to fill in properly * shaped zero tensors on stack -- even if the element_shape attribute @@ -234,7 +234,7 @@ public Options clearAfterRead(Boolean clearAfterRead) { * Sets the identicalElementShapes option. * * @param identicalElementShapes If true (default is false), then all - * elements in the TensorArray will be expected to have have identical shapes. + * elements in the TensorArray will be expected to have identical shapes. * This allows certain behaviors, like dynamically checking for * consistent shapes on write, and being able to fill in properly * shaped zero tensors on stack -- even if the element_shape attribute diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorForestTreePredict.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorForestTreePredict.java deleted file mode 100644 index da8cf52fc05..00000000000 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorForestTreePredict.java +++ /dev/null @@ -1,82 +0,0 @@ -/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. -=======================================================================*/ - -// This class has been generated, DO NOT EDIT! - -package org.tensorflow.op.core; - -import org.tensorflow.Operand; -import org.tensorflow.Operation; -import org.tensorflow.OperationBuilder; -import org.tensorflow.Output; -import org.tensorflow.op.RawOp; -import org.tensorflow.op.Scope; -import org.tensorflow.op.annotation.Endpoint; -import org.tensorflow.types.TFloat32; -import org.tensorflow.types.family.TType; - -/** - * Output the logits for the given input data - */ -public final class TensorForestTreePredict extends RawOp implements Operand { - /** - * The name of this op, as known by TensorFlow core engine - */ - public static final String OP_NAME = "TensorForestTreePredict"; - - private Output logits; - - private TensorForestTreePredict(Operation operation) { - super(operation); - int outputIdx = 0; - logits = operation.output(outputIdx++); - } - - /** - * Factory method to create a class wrapping a new TensorForestTreePredict operation. - * - * @param scope current scope - * @param treeHandle Handle to the tree resource. - * @param denseFeatures Rank 2 dense features tensor. - * @param logitsDimension Scalar, dimension of the logits. - * @return a new instance of TensorForestTreePredict - */ - @Endpoint( - describeByClass = true - ) - public static TensorForestTreePredict create(Scope scope, Operand treeHandle, - Operand denseFeatures, Long logitsDimension) { - OperationBuilder opBuilder = scope.env().opBuilder("TensorForestTreePredict", scope.makeOpName("TensorForestTreePredict")); - opBuilder.addInput(treeHandle.asOutput()); - opBuilder.addInput(denseFeatures.asOutput()); - opBuilder = scope.apply(opBuilder); - opBuilder.setAttr("logits_dimension", logitsDimension); - return new TensorForestTreePredict(opBuilder.build()); - } - - /** - * Gets logits. - * The logits predictions from the tree for each instance in the batch. - * @return logits. - */ - public Output logits() { - return logits; - } - - @Override - public Output asOutput() { - return logits; - } -} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorForestTreeResourceHandleOp.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorForestTreeResourceHandleOp.java deleted file mode 100644 index 645b79e00c1..00000000000 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorForestTreeResourceHandleOp.java +++ /dev/null @@ -1,141 +0,0 @@ -/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. -=======================================================================*/ - -// This class has been generated, DO NOT EDIT! - -package org.tensorflow.op.core; - -import org.tensorflow.Operand; -import org.tensorflow.Operation; -import org.tensorflow.OperationBuilder; -import org.tensorflow.Output; -import org.tensorflow.op.RawOp; -import org.tensorflow.op.Scope; -import org.tensorflow.op.annotation.Endpoint; -import org.tensorflow.types.family.TType; - -/** - * Creates a handle to a TensorForestTreeResource - */ -public final class TensorForestTreeResourceHandleOp extends RawOp implements Operand { - /** - * The name of this op, as known by TensorFlow core engine - */ - public static final String OP_NAME = "TensorForestTreeResourceHandleOp"; - - private Output resource; - - @SuppressWarnings("unchecked") - private TensorForestTreeResourceHandleOp(Operation operation) { - super(operation); - int outputIdx = 0; - resource = operation.output(outputIdx++); - } - - /** - * Factory method to create a class wrapping a new TensorForestTreeResourceHandleOp operation. - * - * @param scope current scope - * @param options carries optional attribute values - * @return a new instance of TensorForestTreeResourceHandleOp - */ - @Endpoint( - describeByClass = true - ) - public static TensorForestTreeResourceHandleOp create(Scope scope, Options... options) { - OperationBuilder opBuilder = scope.env().opBuilder("TensorForestTreeResourceHandleOp", scope.makeOpName("TensorForestTreeResourceHandleOp")); - opBuilder = scope.apply(opBuilder); - if (options != null) { - for (Options opts : options) { - if (opts.container != null) { - opBuilder.setAttr("container", opts.container); - } - if (opts.sharedName != null) { - opBuilder.setAttr("shared_name", opts.sharedName); - } - } - } - return new TensorForestTreeResourceHandleOp(opBuilder.build()); - } - - /** - * Sets the container option. - * - * @param container the container option - * @return this Options instance. - */ - public static Options container(String container) { - return new Options().container(container); - } - - /** - * Sets the sharedName option. - * - * @param sharedName the sharedName option - * @return this Options instance. - */ - public static Options sharedName(String sharedName) { - return new Options().sharedName(sharedName); - } - - /** - * Gets resource. - * - * @return resource. - */ - public Output resource() { - return resource; - } - - @Override - @SuppressWarnings("unchecked") - public Output asOutput() { - return (Output) resource; - } - - /** - * Optional attributes for {@link org.tensorflow.op.core.TensorForestTreeResourceHandleOp} - */ - public static class Options { - private String container; - - private String sharedName; - - private Options() { - } - - /** - * Sets the container option. - * - * @param container the container option - * @return this Options instance. - */ - public Options container(String container) { - this.container = container; - return this; - } - - /** - * Sets the sharedName option. - * - * @param sharedName the sharedName option - * @return this Options instance. - */ - public Options sharedName(String sharedName) { - this.sharedName = sharedName; - return this; - } - } -} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TopKUnique.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TopKUnique.java index 8627f1eab1b..0e74b1a7745 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TopKUnique.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TopKUnique.java @@ -29,8 +29,8 @@ import org.tensorflow.types.TInt32; /** - * Returns the TopK unique values in the array in sorted order. The - * running time is proportional to the product of K and the input + * Returns the TopK unique values in the array in sorted order. + * The running time is proportional to the product of K and the input * size. Sorting the whole array is more efficient for sufficiently large * values of K. The median-of-medians algorithm is probably faster, but * difficult to implement efficiently in XLA. If there are fewer than K diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TopKWithUnique.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TopKWithUnique.java index b984e2741f7..89b0c4ea5dc 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TopKWithUnique.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TopKWithUnique.java @@ -29,11 +29,12 @@ import org.tensorflow.types.TInt32; /** - * Returns the TopK values in the array in sorted order. This is a combination - * of MakeUnique and TopKUnique. The returned top-K will have its lower bits - * replaced by iota, thus it will be close to the original value but not exactly - * the same. The running time is proportional to the product of K and the input - * size. NaNs are never returned. Subnormal numbers are flushed to zero. + * Returns the TopK values in the array in sorted order. + * This is a combination of MakeUnique and TopKUnique. The returned top-K will + * have its lower bits replaced by iota, thus it will be close to the original + * value but not exactly the same. The running time is proportional to the product + * of K and the input size. NaNs are never returned. Subnormal numbers are flushed + * to zero. */ @Operator public final class TopKWithUnique extends RawOp { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TryRpc.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TryRpc.java deleted file mode 100644 index b41e0204f36..00000000000 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TryRpc.java +++ /dev/null @@ -1,252 +0,0 @@ -/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. -=======================================================================*/ - -// This class has been generated, DO NOT EDIT! - -package org.tensorflow.op.core; - -import org.tensorflow.Operand; -import org.tensorflow.Operation; -import org.tensorflow.OperationBuilder; -import org.tensorflow.Output; -import org.tensorflow.op.RawOp; -import org.tensorflow.op.Scope; -import org.tensorflow.op.annotation.Endpoint; -import org.tensorflow.op.annotation.Operator; -import org.tensorflow.types.TInt32; -import org.tensorflow.types.TString; - -/** - * Perform batches of RPC requests. - * This op asynchronously performs either a single RPC request, or a batch - * of requests. RPC requests are defined by three main parameters: - *
          - *
        • {@code address} (the host+port or BNS address of the request)
        • - *
        • {@code method} (the method name for the request)
        • - *
        • {@code request} (the serialized proto string, or vector of strings, - * of the RPC request argument).
        • - *
        - *

        For example, if you have an RPC service running on port localhost:2345, - * and its interface is configured with the following proto declaration: - *

        - * service MyService {
        - *   rpc MyMethod(MyRequestProto) returns (MyResponseProto) {
        - *   }
        - * };
        - * 
        - *

        then call this op with arguments: - *

        - * address = "localhost:2345"
        - * method = "MyService/MyMethod"
        - * 
        - *

        The {@code request} tensor is a string tensor representing serialized {@code MyRequestProto} - * strings; and the output string tensor {@code response} will have the same shape - * and contain (upon successful completion) corresponding serialized - * {@code MyResponseProto} strings. - *

        For example, to send a single, empty, {@code MyRequestProto}, call - * this op with {@code request = ""}. To send 5 parallel empty requests, - * call this op with {@code request = ["", "", "", "", ""]}. - *

        More generally, one can create a batch of {@code MyRequestProto} serialized protos - * from regular batched tensors using the {@code encode_proto} op, and convert - * the response {@code MyResponseProto} serialized protos to batched tensors - * using the {@code decode_proto} op. - *

        NOTE Working with serialized proto strings is faster than instantiating - * actual proto objects in memory, so no performance degradation is expected - * compared to writing custom kernels for this workflow. - *

        Unlike the standard {@code Rpc} op, if the connection fails or the remote worker - * returns an error status, this op does not reraise the exception. - * Instead, the {@code status_code} and {@code status_message} entry for the corresponding RPC - * call is set with the error returned from the RPC call. The {@code response} tensor - * will contain valid response values for those minibatch entries whose RPCs did - * not fail; the rest of the entries will have empty strings. - */ -@Operator -public final class TryRpc extends RawOp { - /** - * The name of this op, as known by TensorFlow core engine - */ - public static final String OP_NAME = "TryRpc"; - - private Output response; - - private Output statusCode; - - private Output statusMessage; - - private TryRpc(Operation operation) { - super(operation); - int outputIdx = 0; - response = operation.output(outputIdx++); - statusCode = operation.output(outputIdx++); - statusMessage = operation.output(outputIdx++); - } - - /** - * Factory method to create a class wrapping a new TryRpc operation. - * - * @param scope current scope - * @param address {@code 0-D} or {@code 1-D}. The address (i.e. host_name:port) of the RPC server. - * If this tensor has more than 1 element, then multiple parallel rpc requests - * are sent. This argument broadcasts with {@code method} and {@code request}. - * @param method {@code 0-D} or {@code 1-D}. The method address on the RPC server. - * If this tensor has more than 1 element, then multiple parallel rpc requests - * are sent. This argument broadcasts with {@code address} and {@code request}. - * @param request {@code 0-D} or {@code 1-D}. Serialized proto strings: the rpc request argument. - * If this tensor has more than 1 element, then multiple parallel rpc requests - * are sent. This argument broadcasts with {@code address} and {@code method}. - * @param options carries optional attribute values - * @return a new instance of TryRpc - */ - @Endpoint( - describeByClass = true - ) - public static TryRpc create(Scope scope, Operand address, Operand method, - Operand request, Options... options) { - OperationBuilder opBuilder = scope.env().opBuilder("TryRpc", scope.makeOpName("TryRpc")); - opBuilder.addInput(address.asOutput()); - opBuilder.addInput(method.asOutput()); - opBuilder.addInput(request.asOutput()); - opBuilder = scope.apply(opBuilder); - if (options != null) { - for (Options opts : options) { - if (opts.protocol != null) { - opBuilder.setAttr("protocol", opts.protocol); - } - if (opts.failFast != null) { - opBuilder.setAttr("fail_fast", opts.failFast); - } - if (opts.timeoutInMs != null) { - opBuilder.setAttr("timeout_in_ms", opts.timeoutInMs); - } - } - } - return new TryRpc(opBuilder.build()); - } - - /** - * Sets the protocol option. - * - * @param protocol RPC protocol to use. Empty string means use the default protocol. - * Options include 'grpc'. - * @return this Options instance. - */ - public static Options protocol(String protocol) { - return new Options().protocol(protocol); - } - - /** - * Sets the failFast option. - * - * @param failFast {@code boolean}. If {@code true} (default), then failures to connect - * (i.e., the server does not immediately respond) cause an RPC failure. - * @return this Options instance. - */ - public static Options failFast(Boolean failFast) { - return new Options().failFast(failFast); - } - - /** - * Sets the timeoutInMs option. - * - * @param timeoutInMs {@code int}. If {@code 0} (default), then the kernel will run the RPC - * request and only time out if the RPC deadline passes or the session times out. - * If this value is greater than {@code 0}, then the op will raise an exception if - * the RPC takes longer than {@code timeout_in_ms}. - * @return this Options instance. - */ - public static Options timeoutInMs(Long timeoutInMs) { - return new Options().timeoutInMs(timeoutInMs); - } - - /** - * Gets response. - * Same shape as {@code request}. Serialized proto strings: the rpc responses. - * @return response. - */ - public Output response() { - return response; - } - - /** - * Gets statusCode. - * Same shape as {@code request}. Values correspond to tensorflow Status enum codes. - * @return statusCode. - */ - public Output statusCode() { - return statusCode; - } - - /** - * Gets statusMessage. - * Same shape as {@code request}. Values correspond to Status messages - * returned from the RPC calls. - * @return statusMessage. - */ - public Output statusMessage() { - return statusMessage; - } - - /** - * Optional attributes for {@link org.tensorflow.op.core.TryRpc} - */ - public static class Options { - private String protocol; - - private Boolean failFast; - - private Long timeoutInMs; - - private Options() { - } - - /** - * Sets the protocol option. - * - * @param protocol RPC protocol to use. Empty string means use the default protocol. - * Options include 'grpc'. - * @return this Options instance. - */ - public Options protocol(String protocol) { - this.protocol = protocol; - return this; - } - - /** - * Sets the failFast option. - * - * @param failFast {@code boolean}. If {@code true} (default), then failures to connect - * (i.e., the server does not immediately respond) cause an RPC failure. - * @return this Options instance. - */ - public Options failFast(Boolean failFast) { - this.failFast = failFast; - return this; - } - - /** - * Sets the timeoutInMs option. - * - * @param timeoutInMs {@code int}. If {@code 0} (default), then the kernel will run the RPC - * request and only time out if the RPC deadline passes or the session times out. - * If this value is greater than {@code 0}, then the op will raise an exception if - * the RPC takes longer than {@code timeout_in_ms}. - * @return this Options instance. - */ - public Options timeoutInMs(Long timeoutInMs) { - this.timeoutInMs = timeoutInMs; - return this; - } - } -} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/UniqueWithCounts.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/UniqueWithCounts.java index 95de8a7d015..54a7e8b4e54 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/UniqueWithCounts.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/UniqueWithCounts.java @@ -43,29 +43,29 @@ *

        {@code y[idx[i]] = x[i] for i in [0, 1,...,rank(x) - 1]} *

        For example: *

        - * # tensor 'x' is [1, 1, 2, 4, 4, 4, 7, 8, 8]
        - * y, idx, count = unique_with_counts(x)
        + * x = tf.constant([1, 1, 2, 4, 4, 4, 7, 8, 8])
        + * y, idx, count = UniqueWithCountsV2(x, axis = [0])
          * y ==> [1, 2, 4, 7, 8]
          * idx ==> [0, 0, 1, 2, 2, 2, 3, 4, 4]
          * count ==> [2, 1, 3, 1, 2]
          * 
        - *

        For an {@code 2-D} tensor {@code x} with {@code axis = 0}: + *

        For a {@code 2-D} tensor {@code x} with {@code axis = 0}: *

        - * # tensor 'x' is [[1, 0, 0],
        - * #                [1, 0, 0],
        - * #                [2, 0, 0]]
        - * y, idx, count = unique_with_counts(x, axis=0)
        + * x = tf.constant([[1, 0, 0],
        + *                 [1, 0, 0],
        + *                 [2, 0, 0]])
        + * y, idx, count = UniqueWithCountsV2(x, axis=[0])
          * y ==> [[1, 0, 0],
          *        [2, 0, 0]]
          * idx ==> [0, 0, 1]
          * count ==> [2, 1]
          * 
        - *

        For an {@code 2-D} tensor {@code x} with {@code axis = 1}: + *

        For a {@code 2-D} tensor {@code x} with {@code axis = 1}: *

        - * # tensor 'x' is [[1, 0, 0],
        - * #                [1, 0, 0],
        - * #                [2, 0, 0]]
        - * y, idx, count = unique_with_counts(x, axis=1)
        + * x = tf.constant([[1, 0, 0],
        + *                 [1, 0, 0],
        + *                 [2, 0, 0]])
        + * y, idx, count = UniqueWithCountsV2(x, axis=[1])
          * y ==> [[1, 0],
          *        [1, 0],
          *        [2, 0]]
        diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/XlaConvV2.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/XlaConvV2.java
        new file mode 100644
        index 00000000000..529a0d092c6
        --- /dev/null
        +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/XlaConvV2.java
        @@ -0,0 +1,108 @@
        +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
        +
        +Licensed under the Apache License, Version 2.0 (the "License");
        +you may not use this file except in compliance with the License.
        +You may obtain a copy of the License at
        +
        +    http://www.apache.org/licenses/LICENSE-2.0
        +
        +Unless required by applicable law or agreed to in writing, software
        +distributed under the License is distributed on an "AS IS" BASIS,
        +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
        +See the License for the specific language governing permissions and
        +limitations under the License.
        +=======================================================================*/
        +
        +// This class has been generated, DO NOT EDIT!
        +
        +package org.tensorflow.op.core;
        +
        +import org.tensorflow.Operand;
        +import org.tensorflow.Operation;
        +import org.tensorflow.OperationBuilder;
        +import org.tensorflow.Output;
        +import org.tensorflow.op.Operands;
        +import org.tensorflow.op.RawOp;
        +import org.tensorflow.op.Scope;
        +import org.tensorflow.op.annotation.Endpoint;
        +import org.tensorflow.op.annotation.Operator;
        +import org.tensorflow.types.family.TNumber;
        +import org.tensorflow.types.family.TType;
        +
        +/**
        + * Wraps the XLA ConvGeneralDilated operator, documented at
        + * https://www.tensorflow.org/performance/xla/operation_semantics#conv_convolution
        + * .
        + *
        + * @param  data type for {@code output} output
        + */
        +@Operator
        +public final class XlaConvV2 extends RawOp implements Operand {
        +  /**
        +   * The name of this op, as known by TensorFlow core engine
        +   */
        +  public static final String OP_NAME = "XlaConvV2";
        +
        +  private Output output;
        +
        +  private XlaConvV2(Operation operation) {
        +    super(operation);
        +    int outputIdx = 0;
        +    output = operation.output(outputIdx++);
        +  }
        +
        +  /**
        +   * Factory method to create a class wrapping a new XlaConvV2 operation.
        +   *
        +   * @param scope current scope
        +   * @param lhs the input tensor
        +   * @param rhs the kernel tensor
        +   * @param windowStrides the inter-window strides
        +   * @param padding the padding to apply at the start and end of each input dimensions
        +   * @param lhsDilation dilation to apply between input elements
        +   * @param rhsDilation dilation to apply between kernel elements
        +   * @param featureGroupCount number of feature groups for grouped convolution.
        +   * @param dimensionNumbers a serialized xla::ConvolutionDimensionNumbers proto.
        +   * @param precisionConfig a serialized xla::PrecisionConfig proto.
        +   * @param preferredElementType The type of the tensor.
        +   * @param  data type for {@code XlaConvV2} output and operands
        +   * @param  data type for {@code XlaConvV2} output and operands
        +   * @return a new instance of XlaConvV2
        +   */
        +  @Endpoint(
        +      describeByClass = true
        +  )
        +  public static  XlaConvV2 create(Scope scope,
        +      Operand lhs, Operand rhs, Operand windowStrides,
        +      Operand padding, Operand lhsDilation, Operand rhsDilation,
        +      Operand featureGroupCount, String dimensionNumbers, String precisionConfig,
        +      Class preferredElementType) {
        +    OperationBuilder opBuilder = scope.env().opBuilder("XlaConvV2", scope.makeOpName("XlaConvV2"));
        +    opBuilder.addInput(lhs.asOutput());
        +    opBuilder.addInput(rhs.asOutput());
        +    opBuilder.addInput(windowStrides.asOutput());
        +    opBuilder.addInput(padding.asOutput());
        +    opBuilder.addInput(lhsDilation.asOutput());
        +    opBuilder.addInput(rhsDilation.asOutput());
        +    opBuilder.addInput(featureGroupCount.asOutput());
        +    opBuilder = scope.apply(opBuilder);
        +    opBuilder.setAttr("dimension_numbers", dimensionNumbers);
        +    opBuilder.setAttr("precision_config", precisionConfig);
        +    opBuilder.setAttr("preferred_element_type", Operands.toDataType(preferredElementType));
        +    return new XlaConvV2<>(opBuilder.build());
        +  }
        +
        +  /**
        +   * Gets output.
        +   *
        +   * @return output.
        +   */
        +  public Output output() {
        +    return output;
        +  }
        +
        +  @Override
        +  public Output asOutput() {
        +    return output;
        +  }
        +}
        diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/XlaDotV2.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/XlaDotV2.java
        new file mode 100644
        index 00000000000..de90ac10d8e
        --- /dev/null
        +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/XlaDotV2.java
        @@ -0,0 +1,94 @@
        +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
        +
        +Licensed under the Apache License, Version 2.0 (the "License");
        +you may not use this file except in compliance with the License.
        +You may obtain a copy of the License at
        +
        +    http://www.apache.org/licenses/LICENSE-2.0
        +
        +Unless required by applicable law or agreed to in writing, software
        +distributed under the License is distributed on an "AS IS" BASIS,
        +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
        +See the License for the specific language governing permissions and
        +limitations under the License.
        +=======================================================================*/
        +
        +// This class has been generated, DO NOT EDIT!
        +
        +package org.tensorflow.op.core;
        +
        +import org.tensorflow.Operand;
        +import org.tensorflow.Operation;
        +import org.tensorflow.OperationBuilder;
        +import org.tensorflow.Output;
        +import org.tensorflow.op.Operands;
        +import org.tensorflow.op.RawOp;
        +import org.tensorflow.op.Scope;
        +import org.tensorflow.op.annotation.Endpoint;
        +import org.tensorflow.op.annotation.Operator;
        +import org.tensorflow.types.family.TType;
        +
        +/**
        + * Wraps the XLA DotGeneral operator, documented at
        + * https://www.tensorflow.org/performance/xla/operation_semantics#dotgeneral
        + * .
        + *
        + * @param  data type for {@code output} output
        + */
        +@Operator
        +public final class XlaDotV2 extends RawOp implements Operand {
        +  /**
        +   * The name of this op, as known by TensorFlow core engine
        +   */
        +  public static final String OP_NAME = "XlaDotV2";
        +
        +  private Output output;
        +
        +  private XlaDotV2(Operation operation) {
        +    super(operation);
        +    int outputIdx = 0;
        +    output = operation.output(outputIdx++);
        +  }
        +
        +  /**
        +   * Factory method to create a class wrapping a new XlaDotV2 operation.
        +   *
        +   * @param scope current scope
        +   * @param lhs the LHS tensor
        +   * @param rhs the RHS tensor
        +   * @param dimensionNumbers a serialized xla::DotDimensionNumbers proto.
        +   * @param precisionConfig a serialized xla::PrecisionConfig proto.
        +   * @param preferredElementType The type of the tensor.
        +   * @param  data type for {@code XlaDotV2} output and operands
        +   * @return a new instance of XlaDotV2
        +   */
        +  @Endpoint(
        +      describeByClass = true
        +  )
        +  public static  XlaDotV2 create(Scope scope, Operand lhs,
        +      Operand rhs, String dimensionNumbers, String precisionConfig,
        +      Class preferredElementType) {
        +    OperationBuilder opBuilder = scope.env().opBuilder("XlaDotV2", scope.makeOpName("XlaDotV2"));
        +    opBuilder.addInput(lhs.asOutput());
        +    opBuilder.addInput(rhs.asOutput());
        +    opBuilder = scope.apply(opBuilder);
        +    opBuilder.setAttr("dimension_numbers", dimensionNumbers);
        +    opBuilder.setAttr("precision_config", precisionConfig);
        +    opBuilder.setAttr("preferred_element_type", Operands.toDataType(preferredElementType));
        +    return new XlaDotV2<>(opBuilder.build());
        +  }
        +
        +  /**
        +   * Gets output.
        +   *
        +   * @return output.
        +   */
        +  public Output output() {
        +    return output;
        +  }
        +
        +  @Override
        +  public Output asOutput() {
        +    return output;
        +  }
        +}
        diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/XlaSetDynamicDimensionSize.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/XlaSetDynamicDimensionSize.java
        new file mode 100644
        index 00000000000..0fcb7229afa
        --- /dev/null
        +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/XlaSetDynamicDimensionSize.java
        @@ -0,0 +1,91 @@
        +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
        +
        +Licensed under the Apache License, Version 2.0 (the "License");
        +you may not use this file except in compliance with the License.
        +You may obtain a copy of the License at
        +
        +    http://www.apache.org/licenses/LICENSE-2.0
        +
        +Unless required by applicable law or agreed to in writing, software
        +distributed under the License is distributed on an "AS IS" BASIS,
        +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
        +See the License for the specific language governing permissions and
        +limitations under the License.
        +=======================================================================*/
        +
        +// This class has been generated, DO NOT EDIT!
        +
        +package org.tensorflow.op.core;
        +
        +import org.tensorflow.Operand;
        +import org.tensorflow.Operation;
        +import org.tensorflow.OperationBuilder;
        +import org.tensorflow.Output;
        +import org.tensorflow.op.RawOp;
        +import org.tensorflow.op.Scope;
        +import org.tensorflow.op.annotation.Endpoint;
        +import org.tensorflow.op.annotation.Operator;
        +import org.tensorflow.types.TInt32;
        +import org.tensorflow.types.family.TType;
        +
        +/**
        + * Make a static dimension into a xla bounded dynamic dimension.
        + * 
        + *     The current static dimension size will become the bound and the second
        + *     operand becomes the dynamic size of the dimension.
        + * 
        + * + * @param data type for {@code output} output + */ +@Operator +public final class XlaSetDynamicDimensionSize extends RawOp implements Operand { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "XlaSetDynamicDimensionSize"; + + private Output output; + + private XlaSetDynamicDimensionSize(Operation operation) { + super(operation); + int outputIdx = 0; + output = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new XlaSetDynamicDimensionSize operation. + * + * @param scope current scope + * @param input the input value + * @param dimIndex the dimIndex value + * @param sizeOutput the sizeOutput value + * @param data type for {@code XlaSetDynamicDimensionSize} output and operands + * @return a new instance of XlaSetDynamicDimensionSize + */ + @Endpoint( + describeByClass = true + ) + public static XlaSetDynamicDimensionSize create(Scope scope, + Operand input, Operand dimIndex, Operand sizeOutput) { + OperationBuilder opBuilder = scope.env().opBuilder("XlaSetDynamicDimensionSize", scope.makeOpName("XlaSetDynamicDimensionSize")); + opBuilder.addInput(input.asOutput()); + opBuilder.addInput(dimIndex.asOutput()); + opBuilder.addInput(sizeOutput.asOutput()); + opBuilder = scope.apply(opBuilder); + return new XlaSetDynamicDimensionSize<>(opBuilder.build()); + } + + /** + * Gets output. + * + * @return output. + */ + public Output output() { + return output; + } + + @Override + public Output asOutput() { + return output; + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/DataServiceDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/DataServiceDataset.java index 056c6bb0c21..eec5392bda5 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/DataServiceDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/DataServiceDataset.java @@ -27,17 +27,13 @@ import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; -import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TInt64; import org.tensorflow.types.TString; import org.tensorflow.types.family.TType; /** - * The DataServiceDataset operation + * Creates a dataset that reads data from the tf.data service. */ -@Operator( - group = "data.experimental" -) public final class DataServiceDataset extends RawOp implements Operand { /** * The name of this op, as known by TensorFlow core engine @@ -97,6 +93,9 @@ public static DataServiceDataset create(Scope scope, Operand datasetId, if (opts.taskRefreshIntervalHintMs != null) { opBuilder.setAttr("task_refresh_interval_hint_ms", opts.taskRefreshIntervalHintMs); } + if (opts.dataTransferProtocol != null) { + opBuilder.setAttr("data_transfer_protocol", opts.dataTransferProtocol); + } } } return new DataServiceDataset(opBuilder.build()); @@ -112,6 +111,16 @@ public static Options taskRefreshIntervalHintMs(Long taskRefreshIntervalHintMs) return new Options().taskRefreshIntervalHintMs(taskRefreshIntervalHintMs); } + /** + * Sets the dataTransferProtocol option. + * + * @param dataTransferProtocol the dataTransferProtocol option + * @return this Options instance. + */ + public static Options dataTransferProtocol(String dataTransferProtocol) { + return new Options().dataTransferProtocol(dataTransferProtocol); + } + /** * Gets handle. * @@ -133,6 +142,8 @@ public Output asOutput() { public static class Options { private Long taskRefreshIntervalHintMs; + private String dataTransferProtocol; + private Options() { } @@ -146,5 +157,16 @@ public Options taskRefreshIntervalHintMs(Long taskRefreshIntervalHintMs) { this.taskRefreshIntervalHintMs = taskRefreshIntervalHintMs; return this; } + + /** + * Sets the dataTransferProtocol option. + * + * @param dataTransferProtocol the dataTransferProtocol option + * @return this Options instance. + */ + public Options dataTransferProtocol(String dataTransferProtocol) { + this.dataTransferProtocol = dataTransferProtocol; + return this; + } } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/debugging/CheckNumerics.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/debugging/CheckNumerics.java index 50eb425c04f..068892293e4 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/debugging/CheckNumerics.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/debugging/CheckNumerics.java @@ -29,9 +29,9 @@ /** * Checks a tensor for NaN, -Inf and +Inf values. * When run, reports an {@code InvalidArgument} error if {@code tensor} has any values - * that are not a number (NaN) or infinity (Inf). Otherwise, passes {@code tensor} as-is. - * Unlike CheckNumerics (V1), CheckNumericsV2 distinguishes -Inf and +Inf in the - * errors it throws. + * that are not a number (NaN) or infinity (Inf). Otherwise, returns the input + * tensor. Unlike CheckNumerics (V1), CheckNumericsV2 distinguishes -Inf and +Inf + * in the errors it throws. * * @param data type for {@code output} output */ diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/CombinedNonMaxSuppression.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/CombinedNonMaxSuppression.java index c20c3f981bd..acf5dadb78e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/CombinedNonMaxSuppression.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/CombinedNonMaxSuppression.java @@ -81,7 +81,9 @@ private CombinedNonMaxSuppression(Operation operation) { * representing a single score corresponding to each box (each row of boxes). * @param maxOutputSizePerClass A scalar integer tensor representing the maximum number of * boxes to be selected by non max suppression per class - * @param maxTotalSize A scalar representing maximum number of boxes retained over all classes. + * @param maxTotalSize An int32 scalar representing the maximum number of boxes retained over all + * classes. Note that setting this value to a large number may result in OOM error + * depending on the system workload. * @param iouThreshold A 0-D float tensor representing the threshold for deciding whether * boxes overlap too much with respect to IOU. * @param scoreThreshold A 0-D float tensor representing the threshold for deciding when to remove diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ExtractGlimpse.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ExtractGlimpse.java index 7c038ac4fd9..82b134b39d5 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ExtractGlimpse.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ExtractGlimpse.java @@ -143,7 +143,7 @@ public static Options uniformNoise(Boolean uniformNoise) { * Sets the noise option. * * @param noise indicates if the noise should {@code uniform}, {@code gaussian}, or - * {@code zero}. The default is {@code uniform} which means the the noise type + * {@code zero}. The default is {@code uniform} which means the noise type * will be decided by {@code uniform_noise}. * @return this Options instance. */ @@ -221,7 +221,7 @@ public Options uniformNoise(Boolean uniformNoise) { * Sets the noise option. * * @param noise indicates if the noise should {@code uniform}, {@code gaussian}, or - * {@code zero}. The default is {@code uniform} which means the the noise type + * {@code zero}. The default is {@code uniform} which means the noise type * will be decided by {@code uniform_noise}. * @return this Options instance. */ diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ImageProjectiveTransformV3.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ImageProjectiveTransformV3.java index 94cef1d7502..143c787038e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ImageProjectiveTransformV3.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ImageProjectiveTransformV3.java @@ -93,7 +93,7 @@ public static ImageProjectiveTransformV3 create(Scope sco /** * Sets the fillMode option. * - * @param fillMode Fill mode, "REFLECT", "WRAP", or "CONSTANT". + * @param fillMode Fill mode, "REFLECT", "WRAP", "CONSTANT", or "NEAREST". * @return this Options instance. */ public static Options fillMode(String fillMode) { @@ -127,7 +127,7 @@ private Options() { /** * Sets the fillMode option. * - * @param fillMode Fill mode, "REFLECT", "WRAP", or "CONSTANT". + * @param fillMode Fill mode, "REFLECT", "WRAP", "CONSTANT", or "NEAREST". * @return this Options instance. */ public Options fillMode(String fillMode) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/DecodeJsonExample.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/DecodeJsonExample.java index d2cde0a1a6c..3781c269b84 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/DecodeJsonExample.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/DecodeJsonExample.java @@ -29,12 +29,13 @@ /** * Convert JSON-encoded Example records to binary protocol buffer strings. - * This op translates a tensor containing Example records, encoded using - * the standard JSON - * mapping , - * into a tensor containing the same records encoded as binary protocol - * buffers. The resulting tensor can then be fed to any of the other - * Example-parsing ops. + * Note: This is not a general purpose JSON parsing op. + *

        This op converts JSON-serialized + * {@code tf.train.Example} (created with {@code json_format.MessageToJson}, following the + * standard JSON mapping ) + * to a binary-serialized {@code tf.train.Example} (equivalent to + * {@code Example.SerializeToString()}) suitable for conversion to tensors with + * {@code tf.io.parse_example}. */ @Operator( group = "io" diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BandPart.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BandPart.java index 24c1d6334aa..4205f873deb 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BandPart.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BandPart.java @@ -39,25 +39,25 @@ *

        For example: *

          * # if 'input' is [[ 0,  1,  2, 3]
        - *                  [-1,  0,  1, 2]
        - *                  [-2, -1,  0, 1]
        - *                  [-3, -2, -1, 0]],
        + * #                [-1,  0,  1, 2]
        + * #                [-2, -1,  0, 1]
        + * #                [-3, -2, -1, 0]],
          *
        - * tf.matrix_band_part(input, 1, -1) ==> [[ 0,  1,  2, 3]
        + * tf.linalg.band_part(input, 1, -1) ==> [[ 0,  1,  2, 3]
          *                                        [-1,  0,  1, 2]
          *                                        [ 0, -1,  0, 1]
          *                                        [ 0,  0, -1, 0]],
          *
        - * tf.matrix_band_part(input, 2, 1) ==> [[ 0,  1,  0, 0]
        + * tf.linalg.band_part(input, 2, 1) ==> [[ 0,  1,  0, 0]
          *                                       [-1,  0,  1, 0]
          *                                       [-2, -1,  0, 1]
          *                                       [ 0, -2, -1, 0]]
          * 
        *

        Useful special cases: *

        - *  tf.matrix_band_part(input, 0, -1) ==> Upper triangular part.
        - *  tf.matrix_band_part(input, -1, 0) ==> Lower triangular part.
        - *  tf.matrix_band_part(input, 0, 0) ==> Diagonal.
        + *  tf.linalg.band_part(input, 0, -1) ==> Upper triangular part.
        + *  tf.linalg.band_part(input, -1, 0) ==> Lower triangular part.
        + *  tf.linalg.band_part(input, 0, 0) ==> Diagonal.
          * 
        * * @param data type for {@code band} output diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Softplus.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Softplus.java index c1be1a20816..00e59eadad2 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Softplus.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Softplus.java @@ -28,7 +28,7 @@ import org.tensorflow.types.family.TNumber; /** - * Computes softplus: {@code log(exp(features) + 1)}. + * The Softplus operation * * @param data type for {@code activations} output */ diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Elu.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Elu.java index 66ce871ca7a..d7afc873a44 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Elu.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Elu.java @@ -28,8 +28,26 @@ import org.tensorflow.types.family.TNumber; /** - * Computes exponential linear: {@code exp(features) - 1} if < 0, {@code features} otherwise. - * See Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs) + * Computes the exponential linear function. + * The ELU function is defined as: + *
          + *
        • $ e ^ x - 1 $ if $ x < 0 $
        • + *
        • $ x $ if $ x >= 0 $
        • + *
        + *

        Examples: + *

        + *
        + *
        + *

        tf.nn.elu(1.0) + * <tf.Tensor: shape=(), dtype=float32, numpy=1.0> + * tf.nn.elu(0.0) + * <tf.Tensor: shape=(), dtype=float32, numpy=0.0> + * tf.nn.elu(-1000.0) + * <tf.Tensor: shape=(), dtype=float32, numpy=-1.0> + *

        + *
        + *
        + *

        See Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs) * * * @param data type for {@code activations} output diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Relu.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Relu.java index b85617c997f..6963a4905cb 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Relu.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Relu.java @@ -34,8 +34,8 @@ *

        *
        *
        - *

        tf.nn.relu([-2., 0., -0., 3.]).numpy() - * array([ 0., 0., -0., 3.], dtype=float32) + *

        tf.nn.relu([-2., 0., 3.]).numpy() + * array([0., 0., 3.], dtype=float32) *

        *
        *
        diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedTensorToTensor.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedTensorToTensor.java index 6386ed591b4..6b269656c5d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedTensorToTensor.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedTensorToTensor.java @@ -68,7 +68,7 @@ private RaggedTensorToTensor(Operation operation) { * Factory method to create a class wrapping a new RaggedTensorToTensor operation. * * @param scope current scope - * @param shape The desired shape of the the output tensor. If left unspecified (empty), + * @param shape The desired shape of the output tensor. If left unspecified (empty), * the minimal shape required to contain all the elements in the ragged tensor * (the natural shape) will be used. If some dimensions are left unspecified, then * the size of the natural shape is used in that dimension. diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/rawops/CollectiveBcastRecvV2.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/rawops/CollectiveBcastRecvV2.java new file mode 100644 index 00000000000..aba0663c0d1 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/rawops/CollectiveBcastRecvV2.java @@ -0,0 +1,157 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.rawops; + +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.op.Operands; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.types.TInt32; +import org.tensorflow.types.family.TNumber; +import org.tensorflow.types.family.TType; + +/** + * Receives a tensor value broadcast from another device. + * + * @param data type for {@code data} output + */ +public final class CollectiveBcastRecvV2 extends RawOp implements Operand { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "CollectiveBcastRecvV2"; + + private Output data; + + private CollectiveBcastRecvV2(Operation operation) { + super(operation); + int outputIdx = 0; + data = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new CollectiveBcastRecvV2 operation. + * + * @param scope current scope + * @param groupSize the groupSize value + * @param groupKey the groupKey value + * @param instanceKey the instanceKey value + * @param shape the shape value + * @param T the value of the T property + * @param options carries optional attribute values + * @param data type for {@code CollectiveBcastRecvV2} output and operands + * @return a new instance of CollectiveBcastRecvV2 + */ + @Endpoint( + describeByClass = true + ) + public static CollectiveBcastRecvV2 create(Scope scope, + Operand groupSize, Operand groupKey, Operand instanceKey, + Operand shape, Class T, Options... options) { + OperationBuilder opBuilder = scope.env().opBuilder("CollectiveBcastRecvV2", scope.makeOpName("CollectiveBcastRecvV2")); + opBuilder.addInput(groupSize.asOutput()); + opBuilder.addInput(groupKey.asOutput()); + opBuilder.addInput(instanceKey.asOutput()); + opBuilder.addInput(shape.asOutput()); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("T", Operands.toDataType(T)); + if (options != null) { + for (Options opts : options) { + if (opts.communicationHint != null) { + opBuilder.setAttr("communication_hint", opts.communicationHint); + } + if (opts.timeoutSeconds != null) { + opBuilder.setAttr("timeout_seconds", opts.timeoutSeconds); + } + } + } + return new CollectiveBcastRecvV2<>(opBuilder.build()); + } + + /** + * Sets the communicationHint option. + * + * @param communicationHint the communicationHint option + * @return this Options instance. + */ + public static Options communicationHint(String communicationHint) { + return new Options().communicationHint(communicationHint); + } + + /** + * Sets the timeoutSeconds option. + * + * @param timeoutSeconds the timeoutSeconds option + * @return this Options instance. + */ + public static Options timeoutSeconds(Float timeoutSeconds) { + return new Options().timeoutSeconds(timeoutSeconds); + } + + /** + * Gets data. + * + * @return data. + */ + public Output data() { + return data; + } + + @Override + public Output asOutput() { + return data; + } + + /** + * Optional attributes for {@link org.tensorflow.op.rawops.CollectiveBcastRecvV2} + */ + public static class Options { + private String communicationHint; + + private Float timeoutSeconds; + + private Options() { + } + + /** + * Sets the communicationHint option. + * + * @param communicationHint the communicationHint option + * @return this Options instance. + */ + public Options communicationHint(String communicationHint) { + this.communicationHint = communicationHint; + return this; + } + + /** + * Sets the timeoutSeconds option. + * + * @param timeoutSeconds the timeoutSeconds option + * @return this Options instance. + */ + public Options timeoutSeconds(Float timeoutSeconds) { + this.timeoutSeconds = timeoutSeconds; + return this; + } + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/rawops/CollectiveBcastSendV2.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/rawops/CollectiveBcastSendV2.java new file mode 100644 index 00000000000..28a8a714995 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/rawops/CollectiveBcastSendV2.java @@ -0,0 +1,153 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.rawops; + +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.types.TInt32; +import org.tensorflow.types.family.TType; + +/** + * Broadcasts a tensor value to one or more other devices. + * + * @param data type for {@code data} output + */ +public final class CollectiveBcastSendV2 extends RawOp implements Operand { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "CollectiveBcastSendV2"; + + private Output data; + + private CollectiveBcastSendV2(Operation operation) { + super(operation); + int outputIdx = 0; + data = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new CollectiveBcastSendV2 operation. + * + * @param scope current scope + * @param input the input value + * @param groupSize the groupSize value + * @param groupKey the groupKey value + * @param instanceKey the instanceKey value + * @param options carries optional attribute values + * @param data type for {@code CollectiveBcastSendV2} output and operands + * @return a new instance of CollectiveBcastSendV2 + */ + @Endpoint( + describeByClass = true + ) + public static CollectiveBcastSendV2 create(Scope scope, Operand input, + Operand groupSize, Operand groupKey, Operand instanceKey, + Options... options) { + OperationBuilder opBuilder = scope.env().opBuilder("CollectiveBcastSendV2", scope.makeOpName("CollectiveBcastSendV2")); + opBuilder.addInput(input.asOutput()); + opBuilder.addInput(groupSize.asOutput()); + opBuilder.addInput(groupKey.asOutput()); + opBuilder.addInput(instanceKey.asOutput()); + opBuilder = scope.apply(opBuilder); + if (options != null) { + for (Options opts : options) { + if (opts.communicationHint != null) { + opBuilder.setAttr("communication_hint", opts.communicationHint); + } + if (opts.timeoutSeconds != null) { + opBuilder.setAttr("timeout_seconds", opts.timeoutSeconds); + } + } + } + return new CollectiveBcastSendV2<>(opBuilder.build()); + } + + /** + * Sets the communicationHint option. + * + * @param communicationHint the communicationHint option + * @return this Options instance. + */ + public static Options communicationHint(String communicationHint) { + return new Options().communicationHint(communicationHint); + } + + /** + * Sets the timeoutSeconds option. + * + * @param timeoutSeconds the timeoutSeconds option + * @return this Options instance. + */ + public static Options timeoutSeconds(Float timeoutSeconds) { + return new Options().timeoutSeconds(timeoutSeconds); + } + + /** + * Gets data. + * + * @return data. + */ + public Output data() { + return data; + } + + @Override + public Output asOutput() { + return data; + } + + /** + * Optional attributes for {@link org.tensorflow.op.rawops.CollectiveBcastSendV2} + */ + public static class Options { + private String communicationHint; + + private Float timeoutSeconds; + + private Options() { + } + + /** + * Sets the communicationHint option. + * + * @param communicationHint the communicationHint option + * @return this Options instance. + */ + public Options communicationHint(String communicationHint) { + this.communicationHint = communicationHint; + return this; + } + + /** + * Sets the timeoutSeconds option. + * + * @param timeoutSeconds the timeoutSeconds option + * @return this Options instance. + */ + public Options timeoutSeconds(Float timeoutSeconds) { + this.timeoutSeconds = timeoutSeconds; + return this; + } + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/rawops/DataServiceDatasetV2.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/rawops/DataServiceDatasetV2.java new file mode 100644 index 00000000000..ebd5f4220b8 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/rawops/DataServiceDatasetV2.java @@ -0,0 +1,176 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.rawops; + +import java.util.List; +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.types.TInt64; +import org.tensorflow.types.TString; +import org.tensorflow.types.family.TType; + +/** + * Creates a dataset that reads data from the tf.data service. + */ +public final class DataServiceDatasetV2 extends RawOp implements Operand { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "DataServiceDatasetV2"; + + private Output handle; + + @SuppressWarnings("unchecked") + private DataServiceDatasetV2(Operation operation) { + super(operation); + int outputIdx = 0; + handle = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new DataServiceDatasetV2 operation. + * + * @param scope current scope + * @param datasetId the datasetId value + * @param processingMode the processingMode value + * @param address the address value + * @param protocol the protocol value + * @param jobName the jobName value + * @param consumerIndex the consumerIndex value + * @param numConsumers the numConsumers value + * @param maxOutstandingRequests the maxOutstandingRequests value + * @param iterationCounter the iterationCounter value + * @param outputTypes the value of the outputTypes property + * @param outputShapes the value of the outputShapes property + * @param options carries optional attribute values + * @return a new instance of DataServiceDatasetV2 + */ + @Endpoint( + describeByClass = true + ) + public static DataServiceDatasetV2 create(Scope scope, Operand datasetId, + Operand processingMode, Operand address, Operand protocol, + Operand jobName, Operand consumerIndex, Operand numConsumers, + Operand maxOutstandingRequests, Operand iterationCounter, + List> outputTypes, List outputShapes, Options... options) { + OperationBuilder opBuilder = scope.env().opBuilder("DataServiceDatasetV2", scope.makeOpName("DataServiceDatasetV2")); + opBuilder.addInput(datasetId.asOutput()); + opBuilder.addInput(processingMode.asOutput()); + opBuilder.addInput(address.asOutput()); + opBuilder.addInput(protocol.asOutput()); + opBuilder.addInput(jobName.asOutput()); + opBuilder.addInput(consumerIndex.asOutput()); + opBuilder.addInput(numConsumers.asOutput()); + opBuilder.addInput(maxOutstandingRequests.asOutput()); + opBuilder.addInput(iterationCounter.asOutput()); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); + Shape[] outputShapesArray = new Shape[outputShapes.size()]; + for (int i = 0 ; i < outputShapesArray.length ; i++) { + outputShapesArray[i] = outputShapes.get(i); + } + opBuilder.setAttr("output_shapes", outputShapesArray); + if (options != null) { + for (Options opts : options) { + if (opts.taskRefreshIntervalHintMs != null) { + opBuilder.setAttr("task_refresh_interval_hint_ms", opts.taskRefreshIntervalHintMs); + } + if (opts.dataTransferProtocol != null) { + opBuilder.setAttr("data_transfer_protocol", opts.dataTransferProtocol); + } + } + } + return new DataServiceDatasetV2(opBuilder.build()); + } + + /** + * Sets the taskRefreshIntervalHintMs option. + * + * @param taskRefreshIntervalHintMs the taskRefreshIntervalHintMs option + * @return this Options instance. + */ + public static Options taskRefreshIntervalHintMs(Long taskRefreshIntervalHintMs) { + return new Options().taskRefreshIntervalHintMs(taskRefreshIntervalHintMs); + } + + /** + * Sets the dataTransferProtocol option. + * + * @param dataTransferProtocol the dataTransferProtocol option + * @return this Options instance. + */ + public static Options dataTransferProtocol(String dataTransferProtocol) { + return new Options().dataTransferProtocol(dataTransferProtocol); + } + + /** + * Gets handle. + * + * @return handle. + */ + public Output handle() { + return handle; + } + + @Override + @SuppressWarnings("unchecked") + public Output asOutput() { + return (Output) handle; + } + + /** + * Optional attributes for {@link org.tensorflow.op.rawops.DataServiceDatasetV2} + */ + public static class Options { + private Long taskRefreshIntervalHintMs; + + private String dataTransferProtocol; + + private Options() { + } + + /** + * Sets the taskRefreshIntervalHintMs option. + * + * @param taskRefreshIntervalHintMs the taskRefreshIntervalHintMs option + * @return this Options instance. + */ + public Options taskRefreshIntervalHintMs(Long taskRefreshIntervalHintMs) { + this.taskRefreshIntervalHintMs = taskRefreshIntervalHintMs; + return this; + } + + /** + * Sets the dataTransferProtocol option. + * + * @param dataTransferProtocol the dataTransferProtocol option + * @return this Options instance. + */ + public Options dataTransferProtocol(String dataTransferProtocol) { + this.dataTransferProtocol = dataTransferProtocol; + return this; + } + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/rawops/FinalizeDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/rawops/FinalizeDataset.java new file mode 100644 index 00000000000..9ef62abad9c --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/rawops/FinalizeDataset.java @@ -0,0 +1,129 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.rawops; + +import java.util.List; +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.types.family.TType; + +/** + * Creates a dataset by applying {@code tf.data.Options} to {@code input_dataset}. + */ +public final class FinalizeDataset extends RawOp implements Operand { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "FinalizeDataset"; + + private Output handle; + + @SuppressWarnings("unchecked") + private FinalizeDataset(Operation operation) { + super(operation); + int outputIdx = 0; + handle = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new FinalizeDataset operation. + * + * @param scope current scope + * @param inputDataset A variant tensor representing the input dataset. + * @param outputTypes the value of the outputTypes property + * @param outputShapes the value of the outputShapes property + * @param options carries optional attribute values + * @return a new instance of FinalizeDataset + */ + @Endpoint( + describeByClass = true + ) + public static FinalizeDataset create(Scope scope, Operand inputDataset, + List> outputTypes, List outputShapes, Options... options) { + OperationBuilder opBuilder = scope.env().opBuilder("FinalizeDataset", scope.makeOpName("FinalizeDataset")); + opBuilder.addInput(inputDataset.asOutput()); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); + Shape[] outputShapesArray = new Shape[outputShapes.size()]; + for (int i = 0 ; i < outputShapesArray.length ; i++) { + outputShapesArray[i] = outputShapes.get(i); + } + opBuilder.setAttr("output_shapes", outputShapesArray); + if (options != null) { + for (Options opts : options) { + if (opts.hasCapturedRef != null) { + opBuilder.setAttr("has_captured_ref", opts.hasCapturedRef); + } + } + } + return new FinalizeDataset(opBuilder.build()); + } + + /** + * Sets the hasCapturedRef option. + * + * @param hasCapturedRef the hasCapturedRef option + * @return this Options instance. + */ + public static Options hasCapturedRef(Boolean hasCapturedRef) { + return new Options().hasCapturedRef(hasCapturedRef); + } + + /** + * Gets handle. + * + * @return handle. + */ + public Output handle() { + return handle; + } + + @Override + @SuppressWarnings("unchecked") + public Output asOutput() { + return (Output) handle; + } + + /** + * Optional attributes for {@link org.tensorflow.op.rawops.FinalizeDataset} + */ + public static class Options { + private Boolean hasCapturedRef; + + private Options() { + } + + /** + * Sets the hasCapturedRef option. + * + * @param hasCapturedRef the hasCapturedRef option + * @return this Options instance. + */ + public Options hasCapturedRef(Boolean hasCapturedRef) { + this.hasCapturedRef = hasCapturedRef; + return this; + } + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorForestTreeSerialize.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/rawops/GetOptions.java similarity index 55% rename from tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorForestTreeSerialize.java rename to tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/rawops/GetOptions.java index 81e0658f425..ad7ec23eb00 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorForestTreeSerialize.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/rawops/GetOptions.java @@ -15,7 +15,7 @@ // This class has been generated, DO NOT EDIT! -package org.tensorflow.op.core; +package org.tensorflow.op.rawops; import org.tensorflow.Operand; import org.tensorflow.Operation; @@ -28,50 +28,50 @@ import org.tensorflow.types.family.TType; /** - * Serializes the tree handle to a proto + * Returns the {@code tf.data.Options} attached to {@code input_dataset}. */ -public final class TensorForestTreeSerialize extends RawOp implements Operand { +public final class GetOptions extends RawOp implements Operand { /** * The name of this op, as known by TensorFlow core engine */ - public static final String OP_NAME = "TensorForestTreeSerialize"; + public static final String OP_NAME = "GetOptions"; - private Output treeConfig; + private Output serializedOptions; - private TensorForestTreeSerialize(Operation operation) { + private GetOptions(Operation operation) { super(operation); int outputIdx = 0; - treeConfig = operation.output(outputIdx++); + serializedOptions = operation.output(outputIdx++); } /** - * Factory method to create a class wrapping a new TensorForestTreeSerialize operation. + * Factory method to create a class wrapping a new GetOptions operation. * * @param scope current scope - * @param treeHandle Handle to the tree resource to be serialized. - * @return a new instance of TensorForestTreeSerialize + * @param inputDataset A variant tensor representing the input dataset. + * @return a new instance of GetOptions */ @Endpoint( describeByClass = true ) - public static TensorForestTreeSerialize create(Scope scope, Operand treeHandle) { - OperationBuilder opBuilder = scope.env().opBuilder("TensorForestTreeSerialize", scope.makeOpName("TensorForestTreeSerialize")); - opBuilder.addInput(treeHandle.asOutput()); + public static GetOptions create(Scope scope, Operand inputDataset) { + OperationBuilder opBuilder = scope.env().opBuilder("GetOptions", scope.makeOpName("GetOptions")); + opBuilder.addInput(inputDataset.asOutput()); opBuilder = scope.apply(opBuilder); - return new TensorForestTreeSerialize(opBuilder.build()); + return new GetOptions(opBuilder.build()); } /** - * Gets treeConfig. - * Serialied proto string of the tree resource. - * @return treeConfig. + * Gets serializedOptions. + * + * @return serializedOptions. */ - public Output treeConfig() { - return treeConfig; + public Output serializedOptions() { + return serializedOptions; } @Override public Output asOutput() { - return treeConfig; + return serializedOptions; } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/rawops/LoadTPUEmbeddingFrequencyEstimatorParameters.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/rawops/LoadTPUEmbeddingFrequencyEstimatorParameters.java new file mode 100644 index 00000000000..be8583f352c --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/rawops/LoadTPUEmbeddingFrequencyEstimatorParameters.java @@ -0,0 +1,161 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.rawops; + +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.types.TFloat32; + +/** + * Load frequency estimator embedding parameters. + * An op that loads optimization parameters into HBM for embedding. Must be + * preceded by a ConfigureTPUEmbeddingHost op that sets up the correct + * embedding table configuration. For example, this op is used to install + * parameters that are loaded from a checkpoint before a training loop is + * executed. + */ +public final class LoadTPUEmbeddingFrequencyEstimatorParameters extends RawOp { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "LoadTPUEmbeddingFrequencyEstimatorParameters"; + + private LoadTPUEmbeddingFrequencyEstimatorParameters(Operation operation) { + super(operation); + } + + /** + * Factory method to create a class wrapping a new LoadTPUEmbeddingFrequencyEstimatorParameters operation. + * + * @param scope current scope + * @param parameters Value of parameters used in the frequency estimator optimization algorithm. + * @param lastHitStep Value of last_hit_step used in the frequency estimator optimization algorithm. + * @param numShards the value of the numShards property + * @param shardId the value of the shardId property + * @param options carries optional attribute values + * @return a new instance of LoadTPUEmbeddingFrequencyEstimatorParameters + */ + @Endpoint( + describeByClass = true + ) + public static LoadTPUEmbeddingFrequencyEstimatorParameters create(Scope scope, + Operand parameters, Operand lastHitStep, Long numShards, Long shardId, + Options... options) { + OperationBuilder opBuilder = scope.env().opBuilder("LoadTPUEmbeddingFrequencyEstimatorParameters", scope.makeOpName("LoadTPUEmbeddingFrequencyEstimatorParameters")); + opBuilder.addInput(parameters.asOutput()); + opBuilder.addInput(lastHitStep.asOutput()); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("num_shards", numShards); + opBuilder.setAttr("shard_id", shardId); + if (options != null) { + for (Options opts : options) { + if (opts.tableId != null) { + opBuilder.setAttr("table_id", opts.tableId); + } + if (opts.tableName != null) { + opBuilder.setAttr("table_name", opts.tableName); + } + if (opts.config != null) { + opBuilder.setAttr("config", opts.config); + } + } + } + return new LoadTPUEmbeddingFrequencyEstimatorParameters(opBuilder.build()); + } + + /** + * Sets the tableId option. + * + * @param tableId the tableId option + * @return this Options instance. + */ + public static Options tableId(Long tableId) { + return new Options().tableId(tableId); + } + + /** + * Sets the tableName option. + * + * @param tableName the tableName option + * @return this Options instance. + */ + public static Options tableName(String tableName) { + return new Options().tableName(tableName); + } + + /** + * Sets the config option. + * + * @param config the config option + * @return this Options instance. + */ + public static Options config(String config) { + return new Options().config(config); + } + + /** + * Optional attributes for {@link org.tensorflow.op.rawops.LoadTPUEmbeddingFrequencyEstimatorParameters} + */ + public static class Options { + private Long tableId; + + private String tableName; + + private String config; + + private Options() { + } + + /** + * Sets the tableId option. + * + * @param tableId the tableId option + * @return this Options instance. + */ + public Options tableId(Long tableId) { + this.tableId = tableId; + return this; + } + + /** + * Sets the tableName option. + * + * @param tableName the tableName option + * @return this Options instance. + */ + public Options tableName(String tableName) { + this.tableName = tableName; + return this; + } + + /** + * Sets the config option. + * + * @param config the config option + * @return this Options instance. + */ + public Options config(String config) { + this.config = config; + return this; + } + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/rawops/LoadTPUEmbeddingFrequencyEstimatorParametersGradAccumDebug.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/rawops/LoadTPUEmbeddingFrequencyEstimatorParametersGradAccumDebug.java new file mode 100644 index 00000000000..cb5dcd87eef --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/rawops/LoadTPUEmbeddingFrequencyEstimatorParametersGradAccumDebug.java @@ -0,0 +1,164 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.rawops; + +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.types.TFloat32; + +/** + * Load frequency estimator embedding parameters with debug support. + * An op that loads optimization parameters into HBM for embedding. Must be + * preceded by a ConfigureTPUEmbeddingHost op that sets up the correct + * embedding table configuration. For example, this op is used to install + * parameters that are loaded from a checkpoint before a training loop is + * executed. + */ +public final class LoadTPUEmbeddingFrequencyEstimatorParametersGradAccumDebug extends RawOp { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "LoadTPUEmbeddingFrequencyEstimatorParametersGradAccumDebug"; + + private LoadTPUEmbeddingFrequencyEstimatorParametersGradAccumDebug(Operation operation) { + super(operation); + } + + /** + * Factory method to create a class wrapping a new LoadTPUEmbeddingFrequencyEstimatorParametersGradAccumDebug operation. + * + * @param scope current scope + * @param parameters Value of parameters used in the frequency estimator optimization algorithm. + * @param lastHitStep Value of last_hit_step used in the frequency estimator optimization algorithm. + * @param gradientAccumulators Value of gradient_accumulators used in the frequency estimator optimization + * algorithm. + * @param numShards the value of the numShards property + * @param shardId the value of the shardId property + * @param options carries optional attribute values + * @return a new instance of LoadTPUEmbeddingFrequencyEstimatorParametersGradAccumDebug + */ + @Endpoint( + describeByClass = true + ) + public static LoadTPUEmbeddingFrequencyEstimatorParametersGradAccumDebug create(Scope scope, + Operand parameters, Operand lastHitStep, + Operand gradientAccumulators, Long numShards, Long shardId, Options... options) { + OperationBuilder opBuilder = scope.env().opBuilder("LoadTPUEmbeddingFrequencyEstimatorParametersGradAccumDebug", scope.makeOpName("LoadTPUEmbeddingFrequencyEstimatorParametersGradAccumDebug")); + opBuilder.addInput(parameters.asOutput()); + opBuilder.addInput(lastHitStep.asOutput()); + opBuilder.addInput(gradientAccumulators.asOutput()); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("num_shards", numShards); + opBuilder.setAttr("shard_id", shardId); + if (options != null) { + for (Options opts : options) { + if (opts.tableId != null) { + opBuilder.setAttr("table_id", opts.tableId); + } + if (opts.tableName != null) { + opBuilder.setAttr("table_name", opts.tableName); + } + if (opts.config != null) { + opBuilder.setAttr("config", opts.config); + } + } + } + return new LoadTPUEmbeddingFrequencyEstimatorParametersGradAccumDebug(opBuilder.build()); + } + + /** + * Sets the tableId option. + * + * @param tableId the tableId option + * @return this Options instance. + */ + public static Options tableId(Long tableId) { + return new Options().tableId(tableId); + } + + /** + * Sets the tableName option. + * + * @param tableName the tableName option + * @return this Options instance. + */ + public static Options tableName(String tableName) { + return new Options().tableName(tableName); + } + + /** + * Sets the config option. + * + * @param config the config option + * @return this Options instance. + */ + public static Options config(String config) { + return new Options().config(config); + } + + /** + * Optional attributes for {@link org.tensorflow.op.rawops.LoadTPUEmbeddingFrequencyEstimatorParametersGradAccumDebug} + */ + public static class Options { + private Long tableId; + + private String tableName; + + private String config; + + private Options() { + } + + /** + * Sets the tableId option. + * + * @param tableId the tableId option + * @return this Options instance. + */ + public Options tableId(Long tableId) { + this.tableId = tableId; + return this; + } + + /** + * Sets the tableName option. + * + * @param tableName the tableName option + * @return this Options instance. + */ + public Options tableName(String tableName) { + this.tableName = tableName; + return this; + } + + /** + * Sets the config option. + * + * @param config the config option + * @return this Options instance. + */ + public Options config(String config) { + this.config = config; + return this; + } + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/rawops/OptionsDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/rawops/OptionsDataset.java new file mode 100644 index 00000000000..a8a2bea05a3 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/rawops/OptionsDataset.java @@ -0,0 +1,93 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.rawops; + +import java.util.List; +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.types.family.TType; + +/** + * Creates a dataset by attaching tf.data.Options to {@code input_dataset}. + */ +public final class OptionsDataset extends RawOp implements Operand { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "OptionsDataset"; + + private Output handle; + + @SuppressWarnings("unchecked") + private OptionsDataset(Operation operation) { + super(operation); + int outputIdx = 0; + handle = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new OptionsDataset operation. + * + * @param scope current scope + * @param inputDataset A variant tensor representing the input dataset. + * @param serializedOptions A {@code tf.string} scalar {@code tf.Tensor} of serialized {@code tf.data.Options} protocol buffer. + * @param outputTypes the value of the outputTypes property + * @param outputShapes the value of the outputShapes property + * @return a new instance of OptionsDataset + */ + @Endpoint( + describeByClass = true + ) + public static OptionsDataset create(Scope scope, Operand inputDataset, + String serializedOptions, List> outputTypes, + List outputShapes) { + OperationBuilder opBuilder = scope.env().opBuilder("OptionsDataset", scope.makeOpName("OptionsDataset")); + opBuilder.addInput(inputDataset.asOutput()); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("serialized_options", serializedOptions); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); + Shape[] outputShapesArray = new Shape[outputShapes.size()]; + for (int i = 0 ; i < outputShapesArray.length ; i++) { + outputShapesArray[i] = outputShapes.get(i); + } + opBuilder.setAttr("output_shapes", outputShapesArray); + return new OptionsDataset(opBuilder.build()); + } + + /** + * Gets handle. + * + * @return handle. + */ + public Output handle() { + return handle; + } + + @Override + @SuppressWarnings("unchecked") + public Output asOutput() { + return (Output) handle; + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/rawops/ParallelBatchDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/rawops/ParallelBatchDataset.java new file mode 100644 index 00000000000..49b2b56b1c6 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/rawops/ParallelBatchDataset.java @@ -0,0 +1,138 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.rawops; + +import java.util.List; +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.types.TBool; +import org.tensorflow.types.TInt64; +import org.tensorflow.types.family.TType; + +/** + * The ParallelBatchDataset operation + */ +public final class ParallelBatchDataset extends RawOp implements Operand { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "ParallelBatchDataset"; + + private Output handle; + + @SuppressWarnings("unchecked") + private ParallelBatchDataset(Operation operation) { + super(operation); + int outputIdx = 0; + handle = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new ParallelBatchDataset operation. + * + * @param scope current scope + * @param inputDataset the inputDataset value + * @param batchSize the batchSize value + * @param numParallelCalls the numParallelCalls value + * @param dropRemainder the dropRemainder value + * @param outputTypes the value of the outputTypes property + * @param outputShapes the value of the outputShapes property + * @param options carries optional attribute values + * @return a new instance of ParallelBatchDataset + */ + @Endpoint( + describeByClass = true + ) + public static ParallelBatchDataset create(Scope scope, Operand inputDataset, + Operand batchSize, Operand numParallelCalls, Operand dropRemainder, + List> outputTypes, List outputShapes, Options... options) { + OperationBuilder opBuilder = scope.env().opBuilder("ParallelBatchDataset", scope.makeOpName("ParallelBatchDataset")); + opBuilder.addInput(inputDataset.asOutput()); + opBuilder.addInput(batchSize.asOutput()); + opBuilder.addInput(numParallelCalls.asOutput()); + opBuilder.addInput(dropRemainder.asOutput()); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); + Shape[] outputShapesArray = new Shape[outputShapes.size()]; + for (int i = 0 ; i < outputShapesArray.length ; i++) { + outputShapesArray[i] = outputShapes.get(i); + } + opBuilder.setAttr("output_shapes", outputShapesArray); + if (options != null) { + for (Options opts : options) { + if (opts.deterministic != null) { + opBuilder.setAttr("deterministic", opts.deterministic); + } + } + } + return new ParallelBatchDataset(opBuilder.build()); + } + + /** + * Sets the deterministic option. + * + * @param deterministic the deterministic option + * @return this Options instance. + */ + public static Options deterministic(String deterministic) { + return new Options().deterministic(deterministic); + } + + /** + * Gets handle. + * + * @return handle. + */ + public Output handle() { + return handle; + } + + @Override + @SuppressWarnings("unchecked") + public Output asOutput() { + return (Output) handle; + } + + /** + * Optional attributes for {@link org.tensorflow.op.rawops.ParallelBatchDataset} + */ + public static class Options { + private String deterministic; + + private Options() { + } + + /** + * Sets the deterministic option. + * + * @param deterministic the deterministic option + * @return this Options instance. + */ + public Options deterministic(String deterministic) { + this.deterministic = deterministic; + return this; + } + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/rawops/RetrieveTPUEmbeddingFrequencyEstimatorParameters.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/rawops/RetrieveTPUEmbeddingFrequencyEstimatorParameters.java new file mode 100644 index 00000000000..56a60afbde8 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/rawops/RetrieveTPUEmbeddingFrequencyEstimatorParameters.java @@ -0,0 +1,181 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.rawops; + +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.types.TFloat32; + +/** + * Retrieve frequency estimator embedding parameters. + * An op that retrieves optimization parameters from embedding to host + * memory. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up + * the correct embedding table configuration. For example, this op is + * used to retrieve updated parameters before saving a checkpoint. + */ +public final class RetrieveTPUEmbeddingFrequencyEstimatorParameters extends RawOp { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "RetrieveTPUEmbeddingFrequencyEstimatorParameters"; + + private Output parameters; + + private Output lastHitStep; + + private RetrieveTPUEmbeddingFrequencyEstimatorParameters(Operation operation) { + super(operation); + int outputIdx = 0; + parameters = operation.output(outputIdx++); + lastHitStep = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new RetrieveTPUEmbeddingFrequencyEstimatorParameters operation. + * + * @param scope current scope + * @param numShards the value of the numShards property + * @param shardId the value of the shardId property + * @param options carries optional attribute values + * @return a new instance of RetrieveTPUEmbeddingFrequencyEstimatorParameters + */ + @Endpoint( + describeByClass = true + ) + public static RetrieveTPUEmbeddingFrequencyEstimatorParameters create(Scope scope, Long numShards, + Long shardId, Options... options) { + OperationBuilder opBuilder = scope.env().opBuilder("RetrieveTPUEmbeddingFrequencyEstimatorParameters", scope.makeOpName("RetrieveTPUEmbeddingFrequencyEstimatorParameters")); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("num_shards", numShards); + opBuilder.setAttr("shard_id", shardId); + if (options != null) { + for (Options opts : options) { + if (opts.tableId != null) { + opBuilder.setAttr("table_id", opts.tableId); + } + if (opts.tableName != null) { + opBuilder.setAttr("table_name", opts.tableName); + } + if (opts.config != null) { + opBuilder.setAttr("config", opts.config); + } + } + } + return new RetrieveTPUEmbeddingFrequencyEstimatorParameters(opBuilder.build()); + } + + /** + * Sets the tableId option. + * + * @param tableId the tableId option + * @return this Options instance. + */ + public static Options tableId(Long tableId) { + return new Options().tableId(tableId); + } + + /** + * Sets the tableName option. + * + * @param tableName the tableName option + * @return this Options instance. + */ + public static Options tableName(String tableName) { + return new Options().tableName(tableName); + } + + /** + * Sets the config option. + * + * @param config the config option + * @return this Options instance. + */ + public static Options config(String config) { + return new Options().config(config); + } + + /** + * Gets parameters. + * Parameter parameters updated by the frequency estimator optimization algorithm. + * @return parameters. + */ + public Output parameters() { + return parameters; + } + + /** + * Gets lastHitStep. + * Parameter last_hit_step updated by the frequency estimator optimization + * algorithm. + * @return lastHitStep. + */ + public Output lastHitStep() { + return lastHitStep; + } + + /** + * Optional attributes for {@link org.tensorflow.op.rawops.RetrieveTPUEmbeddingFrequencyEstimatorParameters} + */ + public static class Options { + private Long tableId; + + private String tableName; + + private String config; + + private Options() { + } + + /** + * Sets the tableId option. + * + * @param tableId the tableId option + * @return this Options instance. + */ + public Options tableId(Long tableId) { + this.tableId = tableId; + return this; + } + + /** + * Sets the tableName option. + * + * @param tableName the tableName option + * @return this Options instance. + */ + public Options tableName(String tableName) { + this.tableName = tableName; + return this; + } + + /** + * Sets the config option. + * + * @param config the config option + * @return this Options instance. + */ + public Options config(String config) { + this.config = config; + return this; + } + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/rawops/RetrieveTPUEmbeddingFrequencyEstimatorParametersGradAccumDebug.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/rawops/RetrieveTPUEmbeddingFrequencyEstimatorParametersGradAccumDebug.java new file mode 100644 index 00000000000..dfa83fc4ee2 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/rawops/RetrieveTPUEmbeddingFrequencyEstimatorParametersGradAccumDebug.java @@ -0,0 +1,194 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.rawops; + +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.types.TFloat32; + +/** + * Retrieve frequency estimator embedding parameters with debug support. + * An op that retrieves optimization parameters from embedding to host + * memory. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up + * the correct embedding table configuration. For example, this op is + * used to retrieve updated parameters before saving a checkpoint. + */ +public final class RetrieveTPUEmbeddingFrequencyEstimatorParametersGradAccumDebug extends RawOp { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "RetrieveTPUEmbeddingFrequencyEstimatorParametersGradAccumDebug"; + + private Output parameters; + + private Output lastHitStep; + + private Output gradientAccumulators; + + private RetrieveTPUEmbeddingFrequencyEstimatorParametersGradAccumDebug(Operation operation) { + super(operation); + int outputIdx = 0; + parameters = operation.output(outputIdx++); + lastHitStep = operation.output(outputIdx++); + gradientAccumulators = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new RetrieveTPUEmbeddingFrequencyEstimatorParametersGradAccumDebug operation. + * + * @param scope current scope + * @param numShards the value of the numShards property + * @param shardId the value of the shardId property + * @param options carries optional attribute values + * @return a new instance of RetrieveTPUEmbeddingFrequencyEstimatorParametersGradAccumDebug + */ + @Endpoint( + describeByClass = true + ) + public static RetrieveTPUEmbeddingFrequencyEstimatorParametersGradAccumDebug create(Scope scope, + Long numShards, Long shardId, Options... options) { + OperationBuilder opBuilder = scope.env().opBuilder("RetrieveTPUEmbeddingFrequencyEstimatorParametersGradAccumDebug", scope.makeOpName("RetrieveTPUEmbeddingFrequencyEstimatorParametersGradAccumDebug")); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("num_shards", numShards); + opBuilder.setAttr("shard_id", shardId); + if (options != null) { + for (Options opts : options) { + if (opts.tableId != null) { + opBuilder.setAttr("table_id", opts.tableId); + } + if (opts.tableName != null) { + opBuilder.setAttr("table_name", opts.tableName); + } + if (opts.config != null) { + opBuilder.setAttr("config", opts.config); + } + } + } + return new RetrieveTPUEmbeddingFrequencyEstimatorParametersGradAccumDebug(opBuilder.build()); + } + + /** + * Sets the tableId option. + * + * @param tableId the tableId option + * @return this Options instance. + */ + public static Options tableId(Long tableId) { + return new Options().tableId(tableId); + } + + /** + * Sets the tableName option. + * + * @param tableName the tableName option + * @return this Options instance. + */ + public static Options tableName(String tableName) { + return new Options().tableName(tableName); + } + + /** + * Sets the config option. + * + * @param config the config option + * @return this Options instance. + */ + public static Options config(String config) { + return new Options().config(config); + } + + /** + * Gets parameters. + * Parameter parameters updated by the frequency estimator optimization algorithm. + * @return parameters. + */ + public Output parameters() { + return parameters; + } + + /** + * Gets lastHitStep. + * Parameter last_hit_step updated by the frequency estimator optimization + * algorithm. + * @return lastHitStep. + */ + public Output lastHitStep() { + return lastHitStep; + } + + /** + * Gets gradientAccumulators. + * Parameter gradient_accumulators updated by the frequency estimator optimization + * algorithm. + * @return gradientAccumulators. + */ + public Output gradientAccumulators() { + return gradientAccumulators; + } + + /** + * Optional attributes for {@link org.tensorflow.op.rawops.RetrieveTPUEmbeddingFrequencyEstimatorParametersGradAccumDebug} + */ + public static class Options { + private Long tableId; + + private String tableName; + + private String config; + + private Options() { + } + + /** + * Sets the tableId option. + * + * @param tableId the tableId option + * @return this Options instance. + */ + public Options tableId(Long tableId) { + this.tableId = tableId; + return this; + } + + /** + * Sets the tableName option. + * + * @param tableName the tableName option + * @return this Options instance. + */ + public Options tableName(String tableName) { + this.tableName = tableName; + return this; + } + + /** + * Sets the config option. + * + * @param config the config option + * @return this Options instance. + */ + public Options config(String config) { + this.config = config; + return this; + } + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorForestTreeSize.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/rawops/StatelessRandomGetAlg.java similarity index 56% rename from tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorForestTreeSize.java rename to tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/rawops/StatelessRandomGetAlg.java index d6082e3be89..f2fae0ede92 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorForestTreeSize.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/rawops/StatelessRandomGetAlg.java @@ -15,7 +15,7 @@ // This class has been generated, DO NOT EDIT! -package org.tensorflow.op.core; +package org.tensorflow.op.rawops; import org.tensorflow.Operand; import org.tensorflow.Operation; @@ -25,53 +25,51 @@ import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.types.TInt32; -import org.tensorflow.types.family.TType; /** - * Get the number of nodes in a tree + * Picks the best counter-based RNG algorithm based on device. + * This op picks the best counter-based RNG algorithm based on device. */ -public final class TensorForestTreeSize extends RawOp implements Operand { +public final class StatelessRandomGetAlg extends RawOp implements Operand { /** * The name of this op, as known by TensorFlow core engine */ - public static final String OP_NAME = "TensorForestTreeSize"; + public static final String OP_NAME = "StatelessRandomGetAlg"; - private Output treeSize; + private Output alg; - private TensorForestTreeSize(Operation operation) { + private StatelessRandomGetAlg(Operation operation) { super(operation); int outputIdx = 0; - treeSize = operation.output(outputIdx++); + alg = operation.output(outputIdx++); } /** - * Factory method to create a class wrapping a new TensorForestTreeSize operation. + * Factory method to create a class wrapping a new StatelessRandomGetAlg operation. * * @param scope current scope - * @param treeHandle Handle to the tree resource. - * @return a new instance of TensorForestTreeSize + * @return a new instance of StatelessRandomGetAlg */ @Endpoint( describeByClass = true ) - public static TensorForestTreeSize create(Scope scope, Operand treeHandle) { - OperationBuilder opBuilder = scope.env().opBuilder("TensorForestTreeSize", scope.makeOpName("TensorForestTreeSize")); - opBuilder.addInput(treeHandle.asOutput()); + public static StatelessRandomGetAlg create(Scope scope) { + OperationBuilder opBuilder = scope.env().opBuilder("StatelessRandomGetAlg", scope.makeOpName("StatelessRandomGetAlg")); opBuilder = scope.apply(opBuilder); - return new TensorForestTreeSize(opBuilder.build()); + return new StatelessRandomGetAlg(opBuilder.build()); } /** - * Gets treeSize. - * The size of the tree. - * @return treeSize. + * Gets alg. + * The RNG algorithm (shape int32[]). + * @return alg. */ - public Output treeSize() { - return treeSize; + public Output alg() { + return alg; } @Override public Output asOutput() { - return treeSize; + return alg; } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/rawops/StatelessRandomGetKeyCounter.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/rawops/StatelessRandomGetKeyCounter.java new file mode 100644 index 00000000000..96e06befdc7 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/rawops/StatelessRandomGetKeyCounter.java @@ -0,0 +1,86 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.rawops; + +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.types.family.TNumber; +import org.tensorflow.types.family.TType; + +/** + * Scrambles seed into key and counter, using the best algorithm based on device. + * This op scrambles a shape-[2] seed into a key and a counter, both needed by counter-based RNG algorithms. The scrambing uses the best algorithm based on device. The scrambling is opaque but approximately satisfies the property that different seed results in different key/counter pair (which will in turn result in different random numbers). + */ +public final class StatelessRandomGetKeyCounter extends RawOp { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "StatelessRandomGetKeyCounter"; + + private Output key; + + private Output counter; + + @SuppressWarnings("unchecked") + private StatelessRandomGetKeyCounter(Operation operation) { + super(operation); + int outputIdx = 0; + key = operation.output(outputIdx++); + counter = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new StatelessRandomGetKeyCounter operation. + * + * @param scope current scope + * @param seed 2 seeds (shape [2]). + * @return a new instance of StatelessRandomGetKeyCounter + */ + @Endpoint( + describeByClass = true + ) + public static StatelessRandomGetKeyCounter create(Scope scope, Operand seed) { + OperationBuilder opBuilder = scope.env().opBuilder("StatelessRandomGetKeyCounter", scope.makeOpName("StatelessRandomGetKeyCounter")); + opBuilder.addInput(seed.asOutput()); + opBuilder = scope.apply(opBuilder); + return new StatelessRandomGetKeyCounter(opBuilder.build()); + } + + /** + * Gets key. + * Key for the counter-based RNG algorithm (shape uint64[1]). + * @return key. + */ + public Output key() { + return key; + } + + /** + * Gets counter. + * Counter for the counter-based RNG algorithm. Since counter size is algorithm-dependent, this output will be right-padded with zeros to reach shape uint64[2] (the current maximal counter size among algorithms). + * @return counter. + */ + public Output counter() { + return counter; + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorForestCreateTreeVariable.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscAbs.java similarity index 51% rename from tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorForestCreateTreeVariable.java rename to tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscAbs.java index def3e63a22f..19b042663bd 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorForestCreateTreeVariable.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscAbs.java @@ -15,47 +15,65 @@ // This class has been generated, DO NOT EDIT! -package org.tensorflow.op.core; +package org.tensorflow.op.risc; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; -import org.tensorflow.types.TString; -import org.tensorflow.types.family.TType; +import org.tensorflow.types.family.TNumber; /** - * Creates a tree resource and returns a handle to it. + * The RiscAbs operation + * + * @param data type for {@code y} output */ -public final class TensorForestCreateTreeVariable extends RawOp { +public final class RiscAbs extends RawOp implements Operand { /** * The name of this op, as known by TensorFlow core engine */ - public static final String OP_NAME = "TensorForestCreateTreeVariable"; + public static final String OP_NAME = "RiscAbs"; - private TensorForestCreateTreeVariable(Operation operation) { + private Output y; + + private RiscAbs(Operation operation) { super(operation); + int outputIdx = 0; + y = operation.output(outputIdx++); } /** - * Factory method to create a class wrapping a new TensorForestCreateTreeVariable operation. + * Factory method to create a class wrapping a new RiscAbs operation. * * @param scope current scope - * @param treeHandle Handle to the tree resource to be created. - * @param treeConfig Serialized proto string of the boosted_trees.Tree. - * @return a new instance of TensorForestCreateTreeVariable + * @param x the x value + * @param data type for {@code RiscAbs} output and operands + * @return a new instance of RiscAbs */ @Endpoint( describeByClass = true ) - public static TensorForestCreateTreeVariable create(Scope scope, - Operand treeHandle, Operand treeConfig) { - OperationBuilder opBuilder = scope.env().opBuilder("TensorForestCreateTreeVariable", scope.makeOpName("TensorForestCreateTreeVariable")); - opBuilder.addInput(treeHandle.asOutput()); - opBuilder.addInput(treeConfig.asOutput()); + public static RiscAbs create(Scope scope, Operand x) { + OperationBuilder opBuilder = scope.env().opBuilder("RiscAbs", scope.makeOpName("RiscAbs")); + opBuilder.addInput(x.asOutput()); opBuilder = scope.apply(opBuilder); - return new TensorForestCreateTreeVariable(opBuilder.build()); + return new RiscAbs<>(opBuilder.build()); + } + + /** + * Gets y. + * + * @return y. + */ + public Output y() { + return y; + } + + @Override + public Output asOutput() { + return y; } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscAdd.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscAdd.java new file mode 100644 index 00000000000..33a9471e18b --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscAdd.java @@ -0,0 +1,84 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.risc; + +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.types.family.TNumber; + +/** + * Returns x + y element-wise. + * NOTE: {@code risc.RiscAdd} does not supports broadcasting. + *

        Given two input tensors, the {@code tf.risc_add} operation computes the sum for every element in the tensor. + *

        Both input and output have a range {@code (-inf, inf)}. + * + * @param data type for {@code z} output + */ +public final class RiscAdd extends RawOp implements Operand { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "RiscAdd"; + + private Output z; + + private RiscAdd(Operation operation) { + super(operation); + int outputIdx = 0; + z = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new RiscAdd operation. + * + * @param scope current scope + * @param x the x value + * @param y the y value + * @param data type for {@code RiscAdd} output and operands + * @return a new instance of RiscAdd + */ + @Endpoint( + describeByClass = true + ) + public static RiscAdd create(Scope scope, Operand x, Operand y) { + OperationBuilder opBuilder = scope.env().opBuilder("RiscAdd", scope.makeOpName("RiscAdd")); + opBuilder.addInput(x.asOutput()); + opBuilder.addInput(y.asOutput()); + opBuilder = scope.apply(opBuilder); + return new RiscAdd<>(opBuilder.build()); + } + + /** + * Gets z. + * + * @return z. + */ + public Output z() { + return z; + } + + @Override + public Output asOutput() { + return z; + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscBinaryArithmetic.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscBinaryArithmetic.java new file mode 100644 index 00000000000..94c493dcea1 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscBinaryArithmetic.java @@ -0,0 +1,84 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.risc; + +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.types.family.TNumber; + +/** + * The RiscBinaryArithmetic operation + * + * @param data type for {@code z} output + */ +public final class RiscBinaryArithmetic extends RawOp implements Operand { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "RiscBinaryArithmetic"; + + private Output z; + + private RiscBinaryArithmetic(Operation operation) { + super(operation); + int outputIdx = 0; + z = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new RiscBinaryArithmetic operation. + * + * @param scope current scope + * @param x the x value + * @param y the y value + * @param opType the value of the opType property + * @param data type for {@code RiscBinaryArithmetic} output and operands + * @return a new instance of RiscBinaryArithmetic + */ + @Endpoint( + describeByClass = true + ) + public static RiscBinaryArithmetic create(Scope scope, Operand x, + Operand y, String opType) { + OperationBuilder opBuilder = scope.env().opBuilder("RiscBinaryArithmetic", scope.makeOpName("RiscBinaryArithmetic")); + opBuilder.addInput(x.asOutput()); + opBuilder.addInput(y.asOutput()); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("op_type", opType); + return new RiscBinaryArithmetic<>(opBuilder.build()); + } + + /** + * Gets z. + * + * @return z. + */ + public Output z() { + return z; + } + + @Override + public Output asOutput() { + return z; + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscBinaryComparison.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscBinaryComparison.java new file mode 100644 index 00000000000..8ef2fcd4e79 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscBinaryComparison.java @@ -0,0 +1,83 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.risc; + +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.types.TBool; +import org.tensorflow.types.family.TNumber; + +/** + * The RiscBinaryComparison operation + */ +public final class RiscBinaryComparison extends RawOp implements Operand { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "RiscBinaryComparison"; + + private Output z; + + private RiscBinaryComparison(Operation operation) { + super(operation); + int outputIdx = 0; + z = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new RiscBinaryComparison operation. + * + * @param scope current scope + * @param x the x value + * @param y the y value + * @param opType the value of the opType property + * @param data type for {@code RiscBinaryComparison} output and operands + * @return a new instance of RiscBinaryComparison + */ + @Endpoint( + describeByClass = true + ) + public static RiscBinaryComparison create(Scope scope, Operand x, + Operand y, String opType) { + OperationBuilder opBuilder = scope.env().opBuilder("RiscBinaryComparison", scope.makeOpName("RiscBinaryComparison")); + opBuilder.addInput(x.asOutput()); + opBuilder.addInput(y.asOutput()); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("op_type", opType); + return new RiscBinaryComparison(opBuilder.build()); + } + + /** + * Gets z. + * + * @return z. + */ + public Output z() { + return z; + } + + @Override + public Output asOutput() { + return z; + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscBitcast.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscBitcast.java new file mode 100644 index 00000000000..9692477dfd4 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscBitcast.java @@ -0,0 +1,83 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.risc; + +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.op.Operands; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.types.family.TType; + +/** + * The RiscBitcast operation + * + * @param data type for {@code y} output + */ +public final class RiscBitcast extends RawOp implements Operand { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "RiscBitcast"; + + private Output y; + + private RiscBitcast(Operation operation) { + super(operation); + int outputIdx = 0; + y = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new RiscBitcast operation. + * + * @param scope current scope + * @param x the x value + * @param DstT the value of the DstT property + * @param data type for {@code RiscBitcast} output and operands + * @return a new instance of RiscBitcast + */ + @Endpoint( + describeByClass = true + ) + public static RiscBitcast create(Scope scope, Operand x, + Class DstT) { + OperationBuilder opBuilder = scope.env().opBuilder("RiscBitcast", scope.makeOpName("RiscBitcast")); + opBuilder.addInput(x.asOutput()); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("DstT", Operands.toDataType(DstT)); + return new RiscBitcast<>(opBuilder.build()); + } + + /** + * Gets y. + * + * @return y. + */ + public Output y() { + return y; + } + + @Override + public Output asOutput() { + return y; + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscBroadcast.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscBroadcast.java new file mode 100644 index 00000000000..b8f1bfe7086 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscBroadcast.java @@ -0,0 +1,83 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.risc; + +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.types.family.TNumber; +import org.tensorflow.types.family.TType; + +/** + * The RiscBroadcast operation + * + * @param data type for {@code output} output + */ +public final class RiscBroadcast extends RawOp implements Operand { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "RiscBroadcast"; + + private Output output; + + private RiscBroadcast(Operation operation) { + super(operation); + int outputIdx = 0; + output = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new RiscBroadcast operation. + * + * @param scope current scope + * @param input the input value + * @param shape the shape value + * @param data type for {@code RiscBroadcast} output and operands + * @return a new instance of RiscBroadcast + */ + @Endpoint( + describeByClass = true + ) + public static RiscBroadcast create(Scope scope, Operand input, + Operand shape) { + OperationBuilder opBuilder = scope.env().opBuilder("RiscBroadcast", scope.makeOpName("RiscBroadcast")); + opBuilder.addInput(input.asOutput()); + opBuilder.addInput(shape.asOutput()); + opBuilder = scope.apply(opBuilder); + return new RiscBroadcast<>(opBuilder.build()); + } + + /** + * Gets output. + * + * @return output. + */ + public Output output() { + return output; + } + + @Override + public Output asOutput() { + return output; + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscCast.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscCast.java new file mode 100644 index 00000000000..fcdf9c65520 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscCast.java @@ -0,0 +1,83 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.risc; + +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.op.Operands; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.types.family.TType; + +/** + * The RiscCast operation + * + * @param data type for {@code y} output + */ +public final class RiscCast extends RawOp implements Operand { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "RiscCast"; + + private Output y; + + private RiscCast(Operation operation) { + super(operation); + int outputIdx = 0; + y = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new RiscCast operation. + * + * @param scope current scope + * @param x the x value + * @param DstT the value of the DstT property + * @param data type for {@code RiscCast} output and operands + * @return a new instance of RiscCast + */ + @Endpoint( + describeByClass = true + ) + public static RiscCast create(Scope scope, Operand x, + Class DstT) { + OperationBuilder opBuilder = scope.env().opBuilder("RiscCast", scope.makeOpName("RiscCast")); + opBuilder.addInput(x.asOutput()); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("DstT", Operands.toDataType(DstT)); + return new RiscCast<>(opBuilder.build()); + } + + /** + * Gets y. + * + * @return y. + */ + public Output y() { + return y; + } + + @Override + public Output asOutput() { + return y; + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscCeil.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscCeil.java new file mode 100644 index 00000000000..cff47bfb7aa --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscCeil.java @@ -0,0 +1,79 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.risc; + +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.types.family.TNumber; + +/** + * The RiscCeil operation + * + * @param data type for {@code y} output + */ +public final class RiscCeil extends RawOp implements Operand { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "RiscCeil"; + + private Output y; + + private RiscCeil(Operation operation) { + super(operation); + int outputIdx = 0; + y = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new RiscCeil operation. + * + * @param scope current scope + * @param x the x value + * @param data type for {@code RiscCeil} output and operands + * @return a new instance of RiscCeil + */ + @Endpoint( + describeByClass = true + ) + public static RiscCeil create(Scope scope, Operand x) { + OperationBuilder opBuilder = scope.env().opBuilder("RiscCeil", scope.makeOpName("RiscCeil")); + opBuilder.addInput(x.asOutput()); + opBuilder = scope.apply(opBuilder); + return new RiscCeil<>(opBuilder.build()); + } + + /** + * Gets y. + * + * @return y. + */ + public Output y() { + return y; + } + + @Override + public Output asOutput() { + return y; + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscCholesky.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscCholesky.java new file mode 100644 index 00000000000..a862bfda954 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscCholesky.java @@ -0,0 +1,79 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.risc; + +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.types.family.TNumber; + +/** + * The RiscCholesky operation + * + * @param data type for {@code output} output + */ +public final class RiscCholesky extends RawOp implements Operand { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "RiscCholesky"; + + private Output output; + + private RiscCholesky(Operation operation) { + super(operation); + int outputIdx = 0; + output = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new RiscCholesky operation. + * + * @param scope current scope + * @param input the input value + * @param data type for {@code RiscCholesky} output and operands + * @return a new instance of RiscCholesky + */ + @Endpoint( + describeByClass = true + ) + public static RiscCholesky create(Scope scope, Operand input) { + OperationBuilder opBuilder = scope.env().opBuilder("RiscCholesky", scope.makeOpName("RiscCholesky")); + opBuilder.addInput(input.asOutput()); + opBuilder = scope.apply(opBuilder); + return new RiscCholesky<>(opBuilder.build()); + } + + /** + * Gets output. + * + * @return output. + */ + public Output output() { + return output; + } + + @Override + public Output asOutput() { + return output; + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscConcat.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscConcat.java new file mode 100644 index 00000000000..c5432006fcd --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscConcat.java @@ -0,0 +1,84 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.risc; + +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.op.Operands; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.types.family.TNumber; +import org.tensorflow.types.family.TType; + +/** + * The RiscConcat operation + * + * @param data type for {@code output} output + */ +public final class RiscConcat extends RawOp implements Operand { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "RiscConcat"; + + private Output output; + + private RiscConcat(Operation operation) { + super(operation); + int outputIdx = 0; + output = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new RiscConcat operation. + * + * @param scope current scope + * @param values the values value + * @param axis the axis value + * @param data type for {@code RiscConcat} output and operands + * @return a new instance of RiscConcat + */ + @Endpoint( + describeByClass = true + ) + public static RiscConcat create(Scope scope, Iterable> values, + Operand axis) { + OperationBuilder opBuilder = scope.env().opBuilder("RiscConcat", scope.makeOpName("RiscConcat")); + opBuilder.addInputList(Operands.asOutputs(values)); + opBuilder.addInput(axis.asOutput()); + opBuilder = scope.apply(opBuilder); + return new RiscConcat<>(opBuilder.build()); + } + + /** + * Gets output. + * + * @return output. + */ + public Output output() { + return output; + } + + @Override + public Output asOutput() { + return output; + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscConv.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscConv.java new file mode 100644 index 00000000000..7f320f37311 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscConv.java @@ -0,0 +1,180 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.risc; + +import java.util.Arrays; +import java.util.List; +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.types.family.TNumber; + +/** + * The RiscConv operation + * + * @param data type for {@code output} output + */ +public final class RiscConv extends RawOp implements Operand { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "RiscConv"; + + private Output output; + + private RiscConv(Operation operation) { + super(operation); + int outputIdx = 0; + output = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new RiscConv operation. + * + * @param scope current scope + * @param input the input value + * @param filter the filter value + * @param strides the value of the strides property + * @param options carries optional attribute values + * @param data type for {@code RiscConv} output and operands + * @return a new instance of RiscConv + */ + @Endpoint( + describeByClass = true + ) + public static RiscConv create(Scope scope, Operand input, + Operand filter, List strides, Options... options) { + OperationBuilder opBuilder = scope.env().opBuilder("RiscConv", scope.makeOpName("RiscConv")); + opBuilder.addInput(input.asOutput()); + opBuilder.addInput(filter.asOutput()); + opBuilder = scope.apply(opBuilder); + long[] stridesArray = new long[strides.size()]; + for (int i = 0 ; i < stridesArray.length ; i++) { + stridesArray[i] = strides.get(i); + } + opBuilder.setAttr("strides", stridesArray); + if (options != null) { + for (Options opts : options) { + if (opts.dataFormat != null) { + opBuilder.setAttr("data_format", opts.dataFormat); + } + if (opts.dilations != null) { + long[] dilationsArray = new long[opts.dilations.size()]; + for (int i = 0 ; i < dilationsArray.length ; i++) { + dilationsArray[i] = opts.dilations.get(i); + } + opBuilder.setAttr("dilations", dilationsArray); + } + } + } + return new RiscConv<>(opBuilder.build()); + } + + /** + * Sets the dataFormat option. + * + * @param dataFormat the dataFormat option + * @return this Options instance. + */ + public static Options dataFormat(String dataFormat) { + return new Options().dataFormat(dataFormat); + } + + /** + * Sets the dilations option. + * + * @param dilations the dilations option + * @return this Options instance. + */ + public static Options dilations(List dilations) { + return new Options().dilations(dilations); + } + + /** + * Sets the dilations option. + * + * @param dilations the dilations option + * @return this Options instance. + */ + public static Options dilations(Long[] dilations) { + return new Options().dilations(dilations); + } + + /** + * Gets output. + * + * @return output. + */ + public Output output() { + return output; + } + + @Override + public Output asOutput() { + return output; + } + + /** + * Optional attributes for {@link org.tensorflow.op.risc.RiscConv} + */ + public static class Options { + private String dataFormat; + + private List dilations; + + private Options() { + } + + /** + * Sets the dataFormat option. + * + * @param dataFormat the dataFormat option + * @return this Options instance. + */ + public Options dataFormat(String dataFormat) { + this.dataFormat = dataFormat; + return this; + } + + /** + * Sets the dilations option. + * + * @param dilations the dilations option + * @return this Options instance. + */ + public Options dilations(List dilations) { + this.dilations = dilations; + return this; + } + + /** + * Sets the dilations option. + * + * @param dilations the dilations option + * @return this Options instance. + */ + public Options dilations(Long... dilations) { + this.dilations = Arrays.asList(dilations); + return this; + } + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscCos.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscCos.java new file mode 100644 index 00000000000..f81bc3b4040 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscCos.java @@ -0,0 +1,79 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.risc; + +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.types.family.TNumber; + +/** + * The RiscCos operation + * + * @param data type for {@code y} output + */ +public final class RiscCos extends RawOp implements Operand { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "RiscCos"; + + private Output y; + + private RiscCos(Operation operation) { + super(operation); + int outputIdx = 0; + y = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new RiscCos operation. + * + * @param scope current scope + * @param x the x value + * @param data type for {@code RiscCos} output and operands + * @return a new instance of RiscCos + */ + @Endpoint( + describeByClass = true + ) + public static RiscCos create(Scope scope, Operand x) { + OperationBuilder opBuilder = scope.env().opBuilder("RiscCos", scope.makeOpName("RiscCos")); + opBuilder.addInput(x.asOutput()); + opBuilder = scope.apply(opBuilder); + return new RiscCos<>(opBuilder.build()); + } + + /** + * Gets y. + * + * @return y. + */ + public Output y() { + return y; + } + + @Override + public Output asOutput() { + return y; + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscDiv.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscDiv.java new file mode 100644 index 00000000000..621e4213f56 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscDiv.java @@ -0,0 +1,81 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.risc; + +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.types.family.TNumber; + +/** + * The RiscDiv operation + * + * @param data type for {@code z} output + */ +public final class RiscDiv extends RawOp implements Operand { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "RiscDiv"; + + private Output z; + + private RiscDiv(Operation operation) { + super(operation); + int outputIdx = 0; + z = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new RiscDiv operation. + * + * @param scope current scope + * @param x the x value + * @param y the y value + * @param data type for {@code RiscDiv} output and operands + * @return a new instance of RiscDiv + */ + @Endpoint( + describeByClass = true + ) + public static RiscDiv create(Scope scope, Operand x, Operand y) { + OperationBuilder opBuilder = scope.env().opBuilder("RiscDiv", scope.makeOpName("RiscDiv")); + opBuilder.addInput(x.asOutput()); + opBuilder.addInput(y.asOutput()); + opBuilder = scope.apply(opBuilder); + return new RiscDiv<>(opBuilder.build()); + } + + /** + * Gets z. + * + * @return z. + */ + public Output z() { + return z; + } + + @Override + public Output asOutput() { + return z; + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscDot.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscDot.java new file mode 100644 index 00000000000..650d2db5157 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscDot.java @@ -0,0 +1,147 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.risc; + +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.types.family.TNumber; + +/** + * The RiscDot operation + * + * @param data type for {@code product} output + */ +public final class RiscDot extends RawOp implements Operand { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "RiscDot"; + + private Output product; + + private RiscDot(Operation operation) { + super(operation); + int outputIdx = 0; + product = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new RiscDot operation. + * + * @param scope current scope + * @param a the a value + * @param b the b value + * @param options carries optional attribute values + * @param data type for {@code RiscDot} output and operands + * @return a new instance of RiscDot + */ + @Endpoint( + describeByClass = true + ) + public static RiscDot create(Scope scope, Operand a, Operand b, + Options... options) { + OperationBuilder opBuilder = scope.env().opBuilder("RiscDot", scope.makeOpName("RiscDot")); + opBuilder.addInput(a.asOutput()); + opBuilder.addInput(b.asOutput()); + opBuilder = scope.apply(opBuilder); + if (options != null) { + for (Options opts : options) { + if (opts.transposeA != null) { + opBuilder.setAttr("transpose_a", opts.transposeA); + } + if (opts.transposeB != null) { + opBuilder.setAttr("transpose_b", opts.transposeB); + } + } + } + return new RiscDot<>(opBuilder.build()); + } + + /** + * Sets the transposeA option. + * + * @param transposeA the transposeA option + * @return this Options instance. + */ + public static Options transposeA(Boolean transposeA) { + return new Options().transposeA(transposeA); + } + + /** + * Sets the transposeB option. + * + * @param transposeB the transposeB option + * @return this Options instance. + */ + public static Options transposeB(Boolean transposeB) { + return new Options().transposeB(transposeB); + } + + /** + * Gets product. + * + * @return product. + */ + public Output product() { + return product; + } + + @Override + public Output asOutput() { + return product; + } + + /** + * Optional attributes for {@link org.tensorflow.op.risc.RiscDot} + */ + public static class Options { + private Boolean transposeA; + + private Boolean transposeB; + + private Options() { + } + + /** + * Sets the transposeA option. + * + * @param transposeA the transposeA option + * @return this Options instance. + */ + public Options transposeA(Boolean transposeA) { + this.transposeA = transposeA; + return this; + } + + /** + * Sets the transposeB option. + * + * @param transposeB the transposeB option + * @return this Options instance. + */ + public Options transposeB(Boolean transposeB) { + this.transposeB = transposeB; + return this; + } + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscExp.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscExp.java new file mode 100644 index 00000000000..ab6b1388b52 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscExp.java @@ -0,0 +1,79 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.risc; + +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.types.family.TNumber; + +/** + * The RiscExp operation + * + * @param data type for {@code y} output + */ +public final class RiscExp extends RawOp implements Operand { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "RiscExp"; + + private Output y; + + private RiscExp(Operation operation) { + super(operation); + int outputIdx = 0; + y = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new RiscExp operation. + * + * @param scope current scope + * @param x the x value + * @param data type for {@code RiscExp} output and operands + * @return a new instance of RiscExp + */ + @Endpoint( + describeByClass = true + ) + public static RiscExp create(Scope scope, Operand x) { + OperationBuilder opBuilder = scope.env().opBuilder("RiscExp", scope.makeOpName("RiscExp")); + opBuilder.addInput(x.asOutput()); + opBuilder = scope.apply(opBuilder); + return new RiscExp<>(opBuilder.build()); + } + + /** + * Gets y. + * + * @return y. + */ + public Output y() { + return y; + } + + @Override + public Output asOutput() { + return y; + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorForestTreeDeserialize.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscFft.java similarity index 53% rename from tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorForestTreeDeserialize.java rename to tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscFft.java index 690cd0fba7b..9096bcb2f33 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorForestTreeDeserialize.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscFft.java @@ -15,47 +15,65 @@ // This class has been generated, DO NOT EDIT! -package org.tensorflow.op.core; +package org.tensorflow.op.risc; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; -import org.tensorflow.types.TString; import org.tensorflow.types.family.TType; /** - * Deserializes a proto into the tree handle + * The RiscFft operation + * + * @param data type for {@code output} output */ -public final class TensorForestTreeDeserialize extends RawOp { +public final class RiscFft extends RawOp implements Operand { /** * The name of this op, as known by TensorFlow core engine */ - public static final String OP_NAME = "TensorForestTreeDeserialize"; + public static final String OP_NAME = "RiscFft"; - private TensorForestTreeDeserialize(Operation operation) { + private Output output; + + private RiscFft(Operation operation) { super(operation); + int outputIdx = 0; + output = operation.output(outputIdx++); } /** - * Factory method to create a class wrapping a new TensorForestTreeDeserialize operation. + * Factory method to create a class wrapping a new RiscFft operation. * * @param scope current scope - * @param treeHandle Handle to the tree resource to be restored. - * @param treeConfig Serialied proto string of the boosted_trees.Tree proto. - * @return a new instance of TensorForestTreeDeserialize + * @param input the input value + * @param data type for {@code RiscFft} output and operands + * @return a new instance of RiscFft */ @Endpoint( describeByClass = true ) - public static TensorForestTreeDeserialize create(Scope scope, Operand treeHandle, - Operand treeConfig) { - OperationBuilder opBuilder = scope.env().opBuilder("TensorForestTreeDeserialize", scope.makeOpName("TensorForestTreeDeserialize")); - opBuilder.addInput(treeHandle.asOutput()); - opBuilder.addInput(treeConfig.asOutput()); + public static RiscFft create(Scope scope, Operand input) { + OperationBuilder opBuilder = scope.env().opBuilder("RiscFft", scope.makeOpName("RiscFft")); + opBuilder.addInput(input.asOutput()); opBuilder = scope.apply(opBuilder); - return new TensorForestTreeDeserialize(opBuilder.build()); + return new RiscFft<>(opBuilder.build()); + } + + /** + * Gets output. + * + * @return output. + */ + public Output output() { + return output; + } + + @Override + public Output asOutput() { + return output; } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscFloor.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscFloor.java new file mode 100644 index 00000000000..ceac25a2609 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscFloor.java @@ -0,0 +1,79 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.risc; + +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.types.family.TNumber; + +/** + * The RiscFloor operation + * + * @param data type for {@code y} output + */ +public final class RiscFloor extends RawOp implements Operand { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "RiscFloor"; + + private Output y; + + private RiscFloor(Operation operation) { + super(operation); + int outputIdx = 0; + y = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new RiscFloor operation. + * + * @param scope current scope + * @param x the x value + * @param data type for {@code RiscFloor} output and operands + * @return a new instance of RiscFloor + */ + @Endpoint( + describeByClass = true + ) + public static RiscFloor create(Scope scope, Operand x) { + OperationBuilder opBuilder = scope.env().opBuilder("RiscFloor", scope.makeOpName("RiscFloor")); + opBuilder.addInput(x.asOutput()); + opBuilder = scope.apply(opBuilder); + return new RiscFloor<>(opBuilder.build()); + } + + /** + * Gets y. + * + * @return y. + */ + public Output y() { + return y; + } + + @Override + public Output asOutput() { + return y; + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscGather.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscGather.java new file mode 100644 index 00000000000..9b6f39aa2ac --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscGather.java @@ -0,0 +1,124 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.risc; + +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.types.family.TNumber; +import org.tensorflow.types.family.TType; + +/** + * The RiscGather operation + * + * @param data type for {@code output} output + */ +public final class RiscGather extends RawOp implements Operand { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "RiscGather"; + + private Output output; + + private RiscGather(Operation operation) { + super(operation); + int outputIdx = 0; + output = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new RiscGather operation. + * + * @param scope current scope + * @param params the params value + * @param indices the indices value + * @param axis the axis value + * @param options carries optional attribute values + * @param data type for {@code RiscGather} output and operands + * @return a new instance of RiscGather + */ + @Endpoint( + describeByClass = true + ) + public static RiscGather create(Scope scope, Operand params, + Operand indices, Operand axis, Options... options) { + OperationBuilder opBuilder = scope.env().opBuilder("RiscGather", scope.makeOpName("RiscGather")); + opBuilder.addInput(params.asOutput()); + opBuilder.addInput(indices.asOutput()); + opBuilder.addInput(axis.asOutput()); + opBuilder = scope.apply(opBuilder); + if (options != null) { + for (Options opts : options) { + if (opts.batchDims != null) { + opBuilder.setAttr("batch_dims", opts.batchDims); + } + } + } + return new RiscGather<>(opBuilder.build()); + } + + /** + * Sets the batchDims option. + * + * @param batchDims the batchDims option + * @return this Options instance. + */ + public static Options batchDims(Long batchDims) { + return new Options().batchDims(batchDims); + } + + /** + * Gets output. + * + * @return output. + */ + public Output output() { + return output; + } + + @Override + public Output asOutput() { + return output; + } + + /** + * Optional attributes for {@link org.tensorflow.op.risc.RiscGather} + */ + public static class Options { + private Long batchDims; + + private Options() { + } + + /** + * Sets the batchDims option. + * + * @param batchDims the batchDims option + * @return this Options instance. + */ + public Options batchDims(Long batchDims) { + this.batchDims = batchDims; + return this; + } + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscImag.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscImag.java new file mode 100644 index 00000000000..ba7c79dd7e7 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscImag.java @@ -0,0 +1,99 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.risc; + +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.op.Operands; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.types.TFloat32; +import org.tensorflow.types.family.TNumber; +import org.tensorflow.types.family.TType; + +/** + * The RiscImag operation + * + * @param data type for {@code output} output + */ +public final class RiscImag extends RawOp implements Operand { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "RiscImag"; + + private Output output; + + private RiscImag(Operation operation) { + super(operation); + int outputIdx = 0; + output = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new RiscImag operation. + * + * @param scope current scope + * @param input the input value + * @param Tout the value of the Tout property + * @param data type for {@code RiscImag} output and operands + * @return a new instance of RiscImag + */ + @Endpoint( + describeByClass = true + ) + public static RiscImag create(Scope scope, Operand input, + Class Tout) { + OperationBuilder opBuilder = scope.env().opBuilder("RiscImag", scope.makeOpName("RiscImag")); + opBuilder.addInput(input.asOutput()); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("Tout", Operands.toDataType(Tout)); + return new RiscImag<>(opBuilder.build()); + } + + /** + * Factory method to create a class wrapping a new RiscImag operation, with the default output types. + * + * @param scope current scope + * @param input the input value + * @return a new instance of RiscImag, with default output types + */ + @Endpoint( + describeByClass = true + ) + public static RiscImag create(Scope scope, Operand input) { + return create(scope, input, TFloat32.class); + } + + /** + * Gets output. + * + * @return output. + */ + public Output output() { + return output; + } + + @Override + public Output asOutput() { + return output; + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorForestTreeIsInitializedOp.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscIsFinite.java similarity index 52% rename from tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorForestTreeIsInitializedOp.java rename to tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscIsFinite.java index 42a8b748515..d9f88c6006a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorForestTreeIsInitializedOp.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscIsFinite.java @@ -15,7 +15,7 @@ // This class has been generated, DO NOT EDIT! -package org.tensorflow.op.core; +package org.tensorflow.op.risc; import org.tensorflow.Operand; import org.tensorflow.Operation; @@ -25,54 +25,53 @@ import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.types.TBool; -import org.tensorflow.types.family.TType; +import org.tensorflow.types.family.TNumber; /** - * Checks whether a tree has been initialized. + * The RiscIsFinite operation */ -public final class TensorForestTreeIsInitializedOp extends RawOp implements Operand { +public final class RiscIsFinite extends RawOp implements Operand { /** * The name of this op, as known by TensorFlow core engine */ - public static final String OP_NAME = "TensorForestTreeIsInitializedOp"; + public static final String OP_NAME = "RiscIsFinite"; - private Output isInitialized; + private Output y; - private TensorForestTreeIsInitializedOp(Operation operation) { + private RiscIsFinite(Operation operation) { super(operation); int outputIdx = 0; - isInitialized = operation.output(outputIdx++); + y = operation.output(outputIdx++); } /** - * Factory method to create a class wrapping a new TensorForestTreeIsInitializedOp operation. + * Factory method to create a class wrapping a new RiscIsFinite operation. * * @param scope current scope - * @param treeHandle Handle to the tree. - * @return a new instance of TensorForestTreeIsInitializedOp + * @param x the x value + * @return a new instance of RiscIsFinite */ @Endpoint( describeByClass = true ) - public static TensorForestTreeIsInitializedOp create(Scope scope, - Operand treeHandle) { - OperationBuilder opBuilder = scope.env().opBuilder("TensorForestTreeIsInitializedOp", scope.makeOpName("TensorForestTreeIsInitializedOp")); - opBuilder.addInput(treeHandle.asOutput()); + public static RiscIsFinite create(Scope scope, Operand x) { + OperationBuilder opBuilder = scope.env().opBuilder("RiscIsFinite", scope.makeOpName("RiscIsFinite")); + opBuilder.addInput(x.asOutput()); opBuilder = scope.apply(opBuilder); - return new TensorForestTreeIsInitializedOp(opBuilder.build()); + return new RiscIsFinite(opBuilder.build()); } /** - * Gets isInitialized. - * Whether the tree is initialized. - * @return isInitialized. + * Gets y. + * + * @return y. */ - public Output isInitialized() { - return isInitialized; + public Output y() { + return y; } @Override public Output asOutput() { - return isInitialized; + return y; } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscLog.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscLog.java new file mode 100644 index 00000000000..97fac206298 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscLog.java @@ -0,0 +1,79 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.risc; + +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.types.family.TNumber; + +/** + * The RiscLog operation + * + * @param data type for {@code y} output + */ +public final class RiscLog extends RawOp implements Operand { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "RiscLog"; + + private Output y; + + private RiscLog(Operation operation) { + super(operation); + int outputIdx = 0; + y = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new RiscLog operation. + * + * @param scope current scope + * @param x the x value + * @param data type for {@code RiscLog} output and operands + * @return a new instance of RiscLog + */ + @Endpoint( + describeByClass = true + ) + public static RiscLog create(Scope scope, Operand x) { + OperationBuilder opBuilder = scope.env().opBuilder("RiscLog", scope.makeOpName("RiscLog")); + opBuilder.addInput(x.asOutput()); + opBuilder = scope.apply(opBuilder); + return new RiscLog<>(opBuilder.build()); + } + + /** + * Gets y. + * + * @return y. + */ + public Output y() { + return y; + } + + @Override + public Output asOutput() { + return y; + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscLogicalAnd.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscLogicalAnd.java new file mode 100644 index 00000000000..71ea8855546 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscLogicalAnd.java @@ -0,0 +1,78 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.risc; + +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.types.TBool; + +/** + * The RiscLogicalAnd operation + */ +public final class RiscLogicalAnd extends RawOp implements Operand { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "RiscLogicalAnd"; + + private Output z; + + private RiscLogicalAnd(Operation operation) { + super(operation); + int outputIdx = 0; + z = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new RiscLogicalAnd operation. + * + * @param scope current scope + * @param x the x value + * @param y the y value + * @return a new instance of RiscLogicalAnd + */ + @Endpoint( + describeByClass = true + ) + public static RiscLogicalAnd create(Scope scope, Operand x, Operand y) { + OperationBuilder opBuilder = scope.env().opBuilder("RiscLogicalAnd", scope.makeOpName("RiscLogicalAnd")); + opBuilder.addInput(x.asOutput()); + opBuilder.addInput(y.asOutput()); + opBuilder = scope.apply(opBuilder); + return new RiscLogicalAnd(opBuilder.build()); + } + + /** + * Gets z. + * + * @return z. + */ + public Output z() { + return z; + } + + @Override + public Output asOutput() { + return z; + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscLogicalNot.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscLogicalNot.java new file mode 100644 index 00000000000..053a64376a5 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscLogicalNot.java @@ -0,0 +1,76 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.risc; + +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.types.TBool; + +/** + * The RiscLogicalNot operation + */ +public final class RiscLogicalNot extends RawOp implements Operand { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "RiscLogicalNot"; + + private Output z; + + private RiscLogicalNot(Operation operation) { + super(operation); + int outputIdx = 0; + z = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new RiscLogicalNot operation. + * + * @param scope current scope + * @param x the x value + * @return a new instance of RiscLogicalNot + */ + @Endpoint( + describeByClass = true + ) + public static RiscLogicalNot create(Scope scope, Operand x) { + OperationBuilder opBuilder = scope.env().opBuilder("RiscLogicalNot", scope.makeOpName("RiscLogicalNot")); + opBuilder.addInput(x.asOutput()); + opBuilder = scope.apply(opBuilder); + return new RiscLogicalNot(opBuilder.build()); + } + + /** + * Gets z. + * + * @return z. + */ + public Output z() { + return z; + } + + @Override + public Output asOutput() { + return z; + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscLogicalOr.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscLogicalOr.java new file mode 100644 index 00000000000..e3ffe0141f2 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscLogicalOr.java @@ -0,0 +1,78 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.risc; + +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.types.TBool; + +/** + * The RiscLogicalOr operation + */ +public final class RiscLogicalOr extends RawOp implements Operand { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "RiscLogicalOr"; + + private Output z; + + private RiscLogicalOr(Operation operation) { + super(operation); + int outputIdx = 0; + z = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new RiscLogicalOr operation. + * + * @param scope current scope + * @param x the x value + * @param y the y value + * @return a new instance of RiscLogicalOr + */ + @Endpoint( + describeByClass = true + ) + public static RiscLogicalOr create(Scope scope, Operand x, Operand y) { + OperationBuilder opBuilder = scope.env().opBuilder("RiscLogicalOr", scope.makeOpName("RiscLogicalOr")); + opBuilder.addInput(x.asOutput()); + opBuilder.addInput(y.asOutput()); + opBuilder = scope.apply(opBuilder); + return new RiscLogicalOr(opBuilder.build()); + } + + /** + * Gets z. + * + * @return z. + */ + public Output z() { + return z; + } + + @Override + public Output asOutput() { + return z; + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscMax.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscMax.java new file mode 100644 index 00000000000..f036460b85e --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscMax.java @@ -0,0 +1,83 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.risc; + +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.types.family.TNumber; + +/** + * Returns max(x, y) element-wise. + * NOTE: {@code risc.RiscMax} does not supports broadcasting. + *

        Given two input tensors, the {@code tf.risc_max} operation computes the maximum for every element in the tensor. + * + * @param data type for {@code max} output + */ +public final class RiscMax extends RawOp implements Operand { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "RiscMax"; + + private Output max; + + private RiscMax(Operation operation) { + super(operation); + int outputIdx = 0; + max = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new RiscMax operation. + * + * @param scope current scope + * @param x the x value + * @param y the y value + * @param data type for {@code RiscMax} output and operands + * @return a new instance of RiscMax + */ + @Endpoint( + describeByClass = true + ) + public static RiscMax create(Scope scope, Operand x, Operand y) { + OperationBuilder opBuilder = scope.env().opBuilder("RiscMax", scope.makeOpName("RiscMax")); + opBuilder.addInput(x.asOutput()); + opBuilder.addInput(y.asOutput()); + opBuilder = scope.apply(opBuilder); + return new RiscMax<>(opBuilder.build()); + } + + /** + * Gets max. + * + * @return max. + */ + public Output max() { + return max; + } + + @Override + public Output asOutput() { + return max; + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscMin.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscMin.java new file mode 100644 index 00000000000..259bc140e93 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscMin.java @@ -0,0 +1,81 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.risc; + +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.types.family.TNumber; + +/** + * The RiscMin operation + * + * @param data type for {@code z} output + */ +public final class RiscMin extends RawOp implements Operand { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "RiscMin"; + + private Output z; + + private RiscMin(Operation operation) { + super(operation); + int outputIdx = 0; + z = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new RiscMin operation. + * + * @param scope current scope + * @param x the x value + * @param y the y value + * @param data type for {@code RiscMin} output and operands + * @return a new instance of RiscMin + */ + @Endpoint( + describeByClass = true + ) + public static RiscMin create(Scope scope, Operand x, Operand y) { + OperationBuilder opBuilder = scope.env().opBuilder("RiscMin", scope.makeOpName("RiscMin")); + opBuilder.addInput(x.asOutput()); + opBuilder.addInput(y.asOutput()); + opBuilder = scope.apply(opBuilder); + return new RiscMin<>(opBuilder.build()); + } + + /** + * Gets z. + * + * @return z. + */ + public Output z() { + return z; + } + + @Override + public Output asOutput() { + return z; + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscMul.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscMul.java new file mode 100644 index 00000000000..16518324a8d --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscMul.java @@ -0,0 +1,81 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.risc; + +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.types.family.TNumber; + +/** + * The RiscMul operation + * + * @param data type for {@code z} output + */ +public final class RiscMul extends RawOp implements Operand { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "RiscMul"; + + private Output z; + + private RiscMul(Operation operation) { + super(operation); + int outputIdx = 0; + z = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new RiscMul operation. + * + * @param scope current scope + * @param x the x value + * @param y the y value + * @param data type for {@code RiscMul} output and operands + * @return a new instance of RiscMul + */ + @Endpoint( + describeByClass = true + ) + public static RiscMul create(Scope scope, Operand x, Operand y) { + OperationBuilder opBuilder = scope.env().opBuilder("RiscMul", scope.makeOpName("RiscMul")); + opBuilder.addInput(x.asOutput()); + opBuilder.addInput(y.asOutput()); + opBuilder = scope.apply(opBuilder); + return new RiscMul<>(opBuilder.build()); + } + + /** + * Gets z. + * + * @return z. + */ + public Output z() { + return z; + } + + @Override + public Output asOutput() { + return z; + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscNeg.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscNeg.java new file mode 100644 index 00000000000..8b2833592c1 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscNeg.java @@ -0,0 +1,79 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.risc; + +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.types.family.TNumber; + +/** + * The RiscNeg operation + * + * @param data type for {@code y} output + */ +public final class RiscNeg extends RawOp implements Operand { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "RiscNeg"; + + private Output y; + + private RiscNeg(Operation operation) { + super(operation); + int outputIdx = 0; + y = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new RiscNeg operation. + * + * @param scope current scope + * @param x the x value + * @param data type for {@code RiscNeg} output and operands + * @return a new instance of RiscNeg + */ + @Endpoint( + describeByClass = true + ) + public static RiscNeg create(Scope scope, Operand x) { + OperationBuilder opBuilder = scope.env().opBuilder("RiscNeg", scope.makeOpName("RiscNeg")); + opBuilder.addInput(x.asOutput()); + opBuilder = scope.apply(opBuilder); + return new RiscNeg<>(opBuilder.build()); + } + + /** + * Gets y. + * + * @return y. + */ + public Output y() { + return y; + } + + @Override + public Output asOutput() { + return y; + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscPad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscPad.java new file mode 100644 index 00000000000..34dfbd72afe --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscPad.java @@ -0,0 +1,84 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.risc; + +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.types.family.TNumber; + +/** + * The RiscPad operation + * + * @param data type for {@code output} output + */ +public final class RiscPad extends RawOp implements Operand { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "RiscPad"; + + private Output output; + + private RiscPad(Operation operation) { + super(operation); + int outputIdx = 0; + output = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new RiscPad operation. + * + * @param scope current scope + * @param input the input value + * @param paddings the paddings value + * @param constantValues the constantValues value + * @param data type for {@code RiscPad} output and operands + * @return a new instance of RiscPad + */ + @Endpoint( + describeByClass = true + ) + public static RiscPad create(Scope scope, Operand input, + Operand paddings, Operand constantValues) { + OperationBuilder opBuilder = scope.env().opBuilder("RiscPad", scope.makeOpName("RiscPad")); + opBuilder.addInput(input.asOutput()); + opBuilder.addInput(paddings.asOutput()); + opBuilder.addInput(constantValues.asOutput()); + opBuilder = scope.apply(opBuilder); + return new RiscPad<>(opBuilder.build()); + } + + /** + * Gets output. + * + * @return output. + */ + public Output output() { + return output; + } + + @Override + public Output asOutput() { + return output; + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscPool.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscPool.java new file mode 100644 index 00000000000..83762058d15 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscPool.java @@ -0,0 +1,134 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.risc; + +import java.util.List; +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.types.family.TNumber; + +/** + * The RiscPool operation + * + * @param data type for {@code output} output + */ +public final class RiscPool extends RawOp implements Operand { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "RiscPool"; + + private Output output; + + private RiscPool(Operation operation) { + super(operation); + int outputIdx = 0; + output = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new RiscPool operation. + * + * @param scope current scope + * @param value the value value + * @param ksize the value of the ksize property + * @param strides the value of the strides property + * @param poolingType the value of the poolingType property + * @param options carries optional attribute values + * @param data type for {@code RiscPool} output and operands + * @return a new instance of RiscPool + */ + @Endpoint( + describeByClass = true + ) + public static RiscPool create(Scope scope, Operand value, + List ksize, List strides, String poolingType, Options... options) { + OperationBuilder opBuilder = scope.env().opBuilder("RiscPool", scope.makeOpName("RiscPool")); + opBuilder.addInput(value.asOutput()); + opBuilder = scope.apply(opBuilder); + long[] ksizeArray = new long[ksize.size()]; + for (int i = 0 ; i < ksizeArray.length ; i++) { + ksizeArray[i] = ksize.get(i); + } + opBuilder.setAttr("ksize", ksizeArray); + long[] stridesArray = new long[strides.size()]; + for (int i = 0 ; i < stridesArray.length ; i++) { + stridesArray[i] = strides.get(i); + } + opBuilder.setAttr("strides", stridesArray); + opBuilder.setAttr("pooling_type", poolingType); + if (options != null) { + for (Options opts : options) { + if (opts.dataFormat != null) { + opBuilder.setAttr("data_format", opts.dataFormat); + } + } + } + return new RiscPool<>(opBuilder.build()); + } + + /** + * Sets the dataFormat option. + * + * @param dataFormat the dataFormat option + * @return this Options instance. + */ + public static Options dataFormat(String dataFormat) { + return new Options().dataFormat(dataFormat); + } + + /** + * Gets output. + * + * @return output. + */ + public Output output() { + return output; + } + + @Override + public Output asOutput() { + return output; + } + + /** + * Optional attributes for {@link org.tensorflow.op.risc.RiscPool} + */ + public static class Options { + private String dataFormat; + + private Options() { + } + + /** + * Sets the dataFormat option. + * + * @param dataFormat the dataFormat option + * @return this Options instance. + */ + public Options dataFormat(String dataFormat) { + this.dataFormat = dataFormat; + return this; + } + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscPow.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscPow.java new file mode 100644 index 00000000000..657dc0dd80a --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscPow.java @@ -0,0 +1,81 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.risc; + +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.types.family.TNumber; + +/** + * The RiscPow operation + * + * @param data type for {@code z} output + */ +public final class RiscPow extends RawOp implements Operand { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "RiscPow"; + + private Output z; + + private RiscPow(Operation operation) { + super(operation); + int outputIdx = 0; + z = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new RiscPow operation. + * + * @param scope current scope + * @param x the x value + * @param y the y value + * @param data type for {@code RiscPow} output and operands + * @return a new instance of RiscPow + */ + @Endpoint( + describeByClass = true + ) + public static RiscPow create(Scope scope, Operand x, Operand y) { + OperationBuilder opBuilder = scope.env().opBuilder("RiscPow", scope.makeOpName("RiscPow")); + opBuilder.addInput(x.asOutput()); + opBuilder.addInput(y.asOutput()); + opBuilder = scope.apply(opBuilder); + return new RiscPow<>(opBuilder.build()); + } + + /** + * Gets z. + * + * @return z. + */ + public Output z() { + return z; + } + + @Override + public Output asOutput() { + return z; + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscRandomUniform.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscRandomUniform.java new file mode 100644 index 00000000000..af8f26b7802 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscRandomUniform.java @@ -0,0 +1,117 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.risc; + +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.types.TFloat32; +import org.tensorflow.types.family.TNumber; + +/** + * The RiscRandomUniform operation + */ +public final class RiscRandomUniform extends RawOp implements Operand { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "RiscRandomUniform"; + + private Output output; + + private RiscRandomUniform(Operation operation) { + super(operation); + int outputIdx = 0; + output = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new RiscRandomUniform operation. + * + * @param scope current scope + * @param shape the shape value + * @param options carries optional attribute values + * @return a new instance of RiscRandomUniform + */ + @Endpoint( + describeByClass = true + ) + public static RiscRandomUniform create(Scope scope, Operand shape, + Options... options) { + OperationBuilder opBuilder = scope.env().opBuilder("RiscRandomUniform", scope.makeOpName("RiscRandomUniform")); + opBuilder.addInput(shape.asOutput()); + opBuilder = scope.apply(opBuilder); + if (options != null) { + for (Options opts : options) { + if (opts.seed != null) { + opBuilder.setAttr("seed", opts.seed); + } + } + } + return new RiscRandomUniform(opBuilder.build()); + } + + /** + * Sets the seed option. + * + * @param seed the seed option + * @return this Options instance. + */ + public static Options seed(Long seed) { + return new Options().seed(seed); + } + + /** + * Gets output. + * + * @return output. + */ + public Output output() { + return output; + } + + @Override + public Output asOutput() { + return output; + } + + /** + * Optional attributes for {@link org.tensorflow.op.risc.RiscRandomUniform} + */ + public static class Options { + private Long seed; + + private Options() { + } + + /** + * Sets the seed option. + * + * @param seed the seed option + * @return this Options instance. + */ + public Options seed(Long seed) { + this.seed = seed; + return this; + } + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscReal.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscReal.java new file mode 100644 index 00000000000..962dde9f7c2 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscReal.java @@ -0,0 +1,99 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.risc; + +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.op.Operands; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.types.TFloat32; +import org.tensorflow.types.family.TNumber; +import org.tensorflow.types.family.TType; + +/** + * The RiscReal operation + * + * @param data type for {@code output} output + */ +public final class RiscReal extends RawOp implements Operand { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "RiscReal"; + + private Output output; + + private RiscReal(Operation operation) { + super(operation); + int outputIdx = 0; + output = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new RiscReal operation. + * + * @param scope current scope + * @param input the input value + * @param Tout the value of the Tout property + * @param data type for {@code RiscReal} output and operands + * @return a new instance of RiscReal + */ + @Endpoint( + describeByClass = true + ) + public static RiscReal create(Scope scope, Operand input, + Class Tout) { + OperationBuilder opBuilder = scope.env().opBuilder("RiscReal", scope.makeOpName("RiscReal")); + opBuilder.addInput(input.asOutput()); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("Tout", Operands.toDataType(Tout)); + return new RiscReal<>(opBuilder.build()); + } + + /** + * Factory method to create a class wrapping a new RiscReal operation, with the default output types. + * + * @param scope current scope + * @param input the input value + * @return a new instance of RiscReal, with default output types + */ + @Endpoint( + describeByClass = true + ) + public static RiscReal create(Scope scope, Operand input) { + return create(scope, input, TFloat32.class); + } + + /** + * Gets output. + * + * @return output. + */ + public Output output() { + return output; + } + + @Override + public Output asOutput() { + return output; + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscReduce.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscReduce.java new file mode 100644 index 00000000000..f8a66eff454 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscReduce.java @@ -0,0 +1,84 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.risc; + +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.types.family.TNumber; + +/** + * The RiscReduce operation + * + * @param data type for {@code output} output + */ +public final class RiscReduce extends RawOp implements Operand { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "RiscReduce"; + + private Output output; + + private RiscReduce(Operation operation) { + super(operation); + int outputIdx = 0; + output = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new RiscReduce operation. + * + * @param scope current scope + * @param tensor the tensor value + * @param axis the axis value + * @param reduceType the value of the reduceType property + * @param data type for {@code RiscReduce} output and operands + * @return a new instance of RiscReduce + */ + @Endpoint( + describeByClass = true + ) + public static RiscReduce create(Scope scope, Operand tensor, + Operand axis, String reduceType) { + OperationBuilder opBuilder = scope.env().opBuilder("RiscReduce", scope.makeOpName("RiscReduce")); + opBuilder.addInput(tensor.asOutput()); + opBuilder.addInput(axis.asOutput()); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("reduce_type", reduceType); + return new RiscReduce<>(opBuilder.build()); + } + + /** + * Gets output. + * + * @return output. + */ + public Output output() { + return output; + } + + @Override + public Output asOutput() { + return output; + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscRem.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscRem.java new file mode 100644 index 00000000000..3cd94a30933 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscRem.java @@ -0,0 +1,81 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.risc; + +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.types.family.TNumber; + +/** + * The RiscRem operation + * + * @param data type for {@code z} output + */ +public final class RiscRem extends RawOp implements Operand { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "RiscRem"; + + private Output z; + + private RiscRem(Operation operation) { + super(operation); + int outputIdx = 0; + z = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new RiscRem operation. + * + * @param scope current scope + * @param x the x value + * @param y the y value + * @param data type for {@code RiscRem} output and operands + * @return a new instance of RiscRem + */ + @Endpoint( + describeByClass = true + ) + public static RiscRem create(Scope scope, Operand x, Operand y) { + OperationBuilder opBuilder = scope.env().opBuilder("RiscRem", scope.makeOpName("RiscRem")); + opBuilder.addInput(x.asOutput()); + opBuilder.addInput(y.asOutput()); + opBuilder = scope.apply(opBuilder); + return new RiscRem<>(opBuilder.build()); + } + + /** + * Gets z. + * + * @return z. + */ + public Output z() { + return z; + } + + @Override + public Output asOutput() { + return z; + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscReshape.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscReshape.java new file mode 100644 index 00000000000..8e0690bf7c1 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscReshape.java @@ -0,0 +1,82 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.risc; + +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.types.family.TNumber; + +/** + * The RiscReshape operation + * + * @param data type for {@code output} output + */ +public final class RiscReshape extends RawOp implements Operand { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "RiscReshape"; + + private Output output; + + private RiscReshape(Operation operation) { + super(operation); + int outputIdx = 0; + output = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new RiscReshape operation. + * + * @param scope current scope + * @param tensor the tensor value + * @param shape the shape value + * @param data type for {@code RiscReshape} output and operands + * @return a new instance of RiscReshape + */ + @Endpoint( + describeByClass = true + ) + public static RiscReshape create(Scope scope, Operand tensor, + Operand shape) { + OperationBuilder opBuilder = scope.env().opBuilder("RiscReshape", scope.makeOpName("RiscReshape")); + opBuilder.addInput(tensor.asOutput()); + opBuilder.addInput(shape.asOutput()); + opBuilder = scope.apply(opBuilder); + return new RiscReshape<>(opBuilder.build()); + } + + /** + * Gets output. + * + * @return output. + */ + public Output output() { + return output; + } + + @Override + public Output asOutput() { + return output; + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscReverse.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscReverse.java new file mode 100644 index 00000000000..faacbbc2e0d --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscReverse.java @@ -0,0 +1,82 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.risc; + +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.types.family.TNumber; + +/** + * The RiscReverse operation + * + * @param data type for {@code output} output + */ +public final class RiscReverse extends RawOp implements Operand { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "RiscReverse"; + + private Output output; + + private RiscReverse(Operation operation) { + super(operation); + int outputIdx = 0; + output = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new RiscReverse operation. + * + * @param scope current scope + * @param tensor the tensor value + * @param axis the axis value + * @param data type for {@code RiscReverse} output and operands + * @return a new instance of RiscReverse + */ + @Endpoint( + describeByClass = true + ) + public static RiscReverse create(Scope scope, Operand tensor, + Operand axis) { + OperationBuilder opBuilder = scope.env().opBuilder("RiscReverse", scope.makeOpName("RiscReverse")); + opBuilder.addInput(tensor.asOutput()); + opBuilder.addInput(axis.asOutput()); + opBuilder = scope.apply(opBuilder); + return new RiscReverse<>(opBuilder.build()); + } + + /** + * Gets output. + * + * @return output. + */ + public Output output() { + return output; + } + + @Override + public Output asOutput() { + return output; + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscScatter.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscScatter.java new file mode 100644 index 00000000000..6b412dc25d4 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscScatter.java @@ -0,0 +1,85 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.risc; + +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.types.family.TNumber; + +/** + * The RiscScatter operation + * + * @param data type for {@code output} output + */ +public final class RiscScatter extends RawOp implements Operand { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "RiscScatter"; + + private Output output; + + private RiscScatter(Operation operation) { + super(operation); + int outputIdx = 0; + output = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new RiscScatter operation. + * + * @param scope current scope + * @param indices the indices value + * @param updates the updates value + * @param shape the shape value + * @param data type for {@code RiscScatter} output and operands + * @param data type for {@code RiscScatter} output and operands + * @return a new instance of RiscScatter + */ + @Endpoint( + describeByClass = true + ) + public static RiscScatter create(Scope scope, + Operand indices, Operand updates, Operand shape) { + OperationBuilder opBuilder = scope.env().opBuilder("RiscScatter", scope.makeOpName("RiscScatter")); + opBuilder.addInput(indices.asOutput()); + opBuilder.addInput(updates.asOutput()); + opBuilder.addInput(shape.asOutput()); + opBuilder = scope.apply(opBuilder); + return new RiscScatter<>(opBuilder.build()); + } + + /** + * Gets output. + * + * @return output. + */ + public Output output() { + return output; + } + + @Override + public Output asOutput() { + return output; + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscShape.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscShape.java new file mode 100644 index 00000000000..0075fbabc2e --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscShape.java @@ -0,0 +1,98 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.risc; + +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.op.Operands; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.types.TInt32; +import org.tensorflow.types.family.TNumber; + +/** + * The RiscShape operation + * + * @param data type for {@code output} output + */ +public final class RiscShape extends RawOp implements Operand { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "RiscShape"; + + private Output output; + + private RiscShape(Operation operation) { + super(operation); + int outputIdx = 0; + output = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new RiscShape operation. + * + * @param scope current scope + * @param input the input value + * @param outType the value of the outType property + * @param data type for {@code RiscShape} output and operands + * @return a new instance of RiscShape + */ + @Endpoint( + describeByClass = true + ) + public static RiscShape create(Scope scope, + Operand input, Class outType) { + OperationBuilder opBuilder = scope.env().opBuilder("RiscShape", scope.makeOpName("RiscShape")); + opBuilder.addInput(input.asOutput()); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("out_type", Operands.toDataType(outType)); + return new RiscShape<>(opBuilder.build()); + } + + /** + * Factory method to create a class wrapping a new RiscShape operation, with the default output types. + * + * @param scope current scope + * @param input the input value + * @return a new instance of RiscShape, with default output types + */ + @Endpoint( + describeByClass = true + ) + public static RiscShape create(Scope scope, Operand input) { + return create(scope, input, TInt32.class); + } + + /** + * Gets output. + * + * @return output. + */ + public Output output() { + return output; + } + + @Override + public Output asOutput() { + return output; + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscSign.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscSign.java new file mode 100644 index 00000000000..c4fbabe08ff --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscSign.java @@ -0,0 +1,79 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.risc; + +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.types.family.TNumber; + +/** + * The RiscSign operation + * + * @param data type for {@code y} output + */ +public final class RiscSign extends RawOp implements Operand { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "RiscSign"; + + private Output y; + + private RiscSign(Operation operation) { + super(operation); + int outputIdx = 0; + y = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new RiscSign operation. + * + * @param scope current scope + * @param x the x value + * @param data type for {@code RiscSign} output and operands + * @return a new instance of RiscSign + */ + @Endpoint( + describeByClass = true + ) + public static RiscSign create(Scope scope, Operand x) { + OperationBuilder opBuilder = scope.env().opBuilder("RiscSign", scope.makeOpName("RiscSign")); + opBuilder.addInput(x.asOutput()); + opBuilder = scope.apply(opBuilder); + return new RiscSign<>(opBuilder.build()); + } + + /** + * Gets y. + * + * @return y. + */ + public Output y() { + return y; + } + + @Override + public Output asOutput() { + return y; + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscSlice.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscSlice.java new file mode 100644 index 00000000000..cbeb1e65a9d --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscSlice.java @@ -0,0 +1,85 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.risc; + +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.types.family.TNumber; + +/** + * The RiscSlice operation + * + * @param data type for {@code output} output + */ +public final class RiscSlice extends RawOp implements Operand { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "RiscSlice"; + + private Output output; + + private RiscSlice(Operation operation) { + super(operation); + int outputIdx = 0; + output = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new RiscSlice operation. + * + * @param scope current scope + * @param input the input value + * @param begin the begin value + * @param sizeOutput the sizeOutput value + * @param data type for {@code RiscSlice} output and operands + * @param data type for {@code RiscSlice} output and operands + * @return a new instance of RiscSlice + */ + @Endpoint( + describeByClass = true + ) + public static RiscSlice create(Scope scope, + Operand input, Operand begin, Operand sizeOutput) { + OperationBuilder opBuilder = scope.env().opBuilder("RiscSlice", scope.makeOpName("RiscSlice")); + opBuilder.addInput(input.asOutput()); + opBuilder.addInput(begin.asOutput()); + opBuilder.addInput(sizeOutput.asOutput()); + opBuilder = scope.apply(opBuilder); + return new RiscSlice<>(opBuilder.build()); + } + + /** + * Gets output. + * + * @return output. + */ + public Output output() { + return output; + } + + @Override + public Output asOutput() { + return output; + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscSort.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscSort.java new file mode 100644 index 00000000000..54ed2a79e69 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscSort.java @@ -0,0 +1,84 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.risc; + +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.types.family.TNumber; + +/** + * The RiscSort operation + * + * @param data type for {@code output} output + */ +public final class RiscSort extends RawOp implements Operand { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "RiscSort"; + + private Output output; + + private RiscSort(Operation operation) { + super(operation); + int outputIdx = 0; + output = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new RiscSort operation. + * + * @param scope current scope + * @param input the input value + * @param axis the axis value + * @param direction the value of the direction property + * @param data type for {@code RiscSort} output and operands + * @return a new instance of RiscSort + */ + @Endpoint( + describeByClass = true + ) + public static RiscSort create(Scope scope, Operand input, + Operand axis, String direction) { + OperationBuilder opBuilder = scope.env().opBuilder("RiscSort", scope.makeOpName("RiscSort")); + opBuilder.addInput(input.asOutput()); + opBuilder.addInput(axis.asOutput()); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("direction", direction); + return new RiscSort<>(opBuilder.build()); + } + + /** + * Gets output. + * + * @return output. + */ + public Output output() { + return output; + } + + @Override + public Output asOutput() { + return output; + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscSqueeze.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscSqueeze.java new file mode 100644 index 00000000000..1e14f2ea36d --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscSqueeze.java @@ -0,0 +1,146 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.risc; + +import java.util.Arrays; +import java.util.List; +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.types.family.TType; + +/** + * The RiscSqueeze operation + * + * @param data type for {@code output} output + */ +public final class RiscSqueeze extends RawOp implements Operand { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "RiscSqueeze"; + + private Output output; + + private RiscSqueeze(Operation operation) { + super(operation); + int outputIdx = 0; + output = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new RiscSqueeze operation. + * + * @param scope current scope + * @param input the input value + * @param options carries optional attribute values + * @param data type for {@code RiscSqueeze} output and operands + * @return a new instance of RiscSqueeze + */ + @Endpoint( + describeByClass = true + ) + public static RiscSqueeze create(Scope scope, Operand input, + Options... options) { + OperationBuilder opBuilder = scope.env().opBuilder("RiscSqueeze", scope.makeOpName("RiscSqueeze")); + opBuilder.addInput(input.asOutput()); + opBuilder = scope.apply(opBuilder); + if (options != null) { + for (Options opts : options) { + if (opts.squeezeDims != null) { + long[] squeezeDimsArray = new long[opts.squeezeDims.size()]; + for (int i = 0 ; i < squeezeDimsArray.length ; i++) { + squeezeDimsArray[i] = opts.squeezeDims.get(i); + } + opBuilder.setAttr("squeeze_dims", squeezeDimsArray); + } + } + } + return new RiscSqueeze<>(opBuilder.build()); + } + + /** + * Sets the squeezeDims option. + * + * @param squeezeDims the squeezeDims option + * @return this Options instance. + */ + public static Options squeezeDims(List squeezeDims) { + return new Options().squeezeDims(squeezeDims); + } + + /** + * Sets the squeezeDims option. + * + * @param squeezeDims the squeezeDims option + * @return this Options instance. + */ + public static Options squeezeDims(Long[] squeezeDims) { + return new Options().squeezeDims(squeezeDims); + } + + /** + * Gets output. + * + * @return output. + */ + public Output output() { + return output; + } + + @Override + public Output asOutput() { + return output; + } + + /** + * Optional attributes for {@link org.tensorflow.op.risc.RiscSqueeze} + */ + public static class Options { + private List squeezeDims; + + private Options() { + } + + /** + * Sets the squeezeDims option. + * + * @param squeezeDims the squeezeDims option + * @return this Options instance. + */ + public Options squeezeDims(List squeezeDims) { + this.squeezeDims = squeezeDims; + return this; + } + + /** + * Sets the squeezeDims option. + * + * @param squeezeDims the squeezeDims option + * @return this Options instance. + */ + public Options squeezeDims(Long... squeezeDims) { + this.squeezeDims = Arrays.asList(squeezeDims); + return this; + } + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscSub.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscSub.java new file mode 100644 index 00000000000..4f1a9515914 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscSub.java @@ -0,0 +1,81 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.risc; + +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.types.family.TNumber; + +/** + * The RiscSub operation + * + * @param data type for {@code z} output + */ +public final class RiscSub extends RawOp implements Operand { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "RiscSub"; + + private Output z; + + private RiscSub(Operation operation) { + super(operation); + int outputIdx = 0; + z = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new RiscSub operation. + * + * @param scope current scope + * @param x the x value + * @param y the y value + * @param data type for {@code RiscSub} output and operands + * @return a new instance of RiscSub + */ + @Endpoint( + describeByClass = true + ) + public static RiscSub create(Scope scope, Operand x, Operand y) { + OperationBuilder opBuilder = scope.env().opBuilder("RiscSub", scope.makeOpName("RiscSub")); + opBuilder.addInput(x.asOutput()); + opBuilder.addInput(y.asOutput()); + opBuilder = scope.apply(opBuilder); + return new RiscSub<>(opBuilder.build()); + } + + /** + * Gets z. + * + * @return z. + */ + public Output z() { + return z; + } + + @Override + public Output asOutput() { + return z; + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscTranspose.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscTranspose.java new file mode 100644 index 00000000000..27a0a2879fc --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscTranspose.java @@ -0,0 +1,83 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.risc; + +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.types.family.TNumber; +import org.tensorflow.types.family.TType; + +/** + * The RiscTranspose operation + * + * @param data type for {@code y} output + */ +public final class RiscTranspose extends RawOp implements Operand { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "RiscTranspose"; + + private Output y; + + private RiscTranspose(Operation operation) { + super(operation); + int outputIdx = 0; + y = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new RiscTranspose operation. + * + * @param scope current scope + * @param x the x value + * @param perm the perm value + * @param data type for {@code RiscTranspose} output and operands + * @return a new instance of RiscTranspose + */ + @Endpoint( + describeByClass = true + ) + public static RiscTranspose create(Scope scope, Operand x, + Operand perm) { + OperationBuilder opBuilder = scope.env().opBuilder("RiscTranspose", scope.makeOpName("RiscTranspose")); + opBuilder.addInput(x.asOutput()); + opBuilder.addInput(perm.asOutput()); + opBuilder = scope.apply(opBuilder); + return new RiscTranspose<>(opBuilder.build()); + } + + /** + * Gets y. + * + * @return y. + */ + public Output y() { + return y; + } + + @Override + public Output asOutput() { + return y; + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscTriangularSolve.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscTriangularSolve.java new file mode 100644 index 00000000000..000b5c22b66 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscTriangularSolve.java @@ -0,0 +1,147 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.risc; + +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.types.family.TNumber; + +/** + * The RiscTriangularSolve operation + * + * @param data type for {@code output} output + */ +public final class RiscTriangularSolve extends RawOp implements Operand { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "RiscTriangularSolve"; + + private Output output; + + private RiscTriangularSolve(Operation operation) { + super(operation); + int outputIdx = 0; + output = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new RiscTriangularSolve operation. + * + * @param scope current scope + * @param matrix the matrix value + * @param rhs the rhs value + * @param options carries optional attribute values + * @param data type for {@code RiscTriangularSolve} output and operands + * @return a new instance of RiscTriangularSolve + */ + @Endpoint( + describeByClass = true + ) + public static RiscTriangularSolve create(Scope scope, Operand matrix, + Operand rhs, Options... options) { + OperationBuilder opBuilder = scope.env().opBuilder("RiscTriangularSolve", scope.makeOpName("RiscTriangularSolve")); + opBuilder.addInput(matrix.asOutput()); + opBuilder.addInput(rhs.asOutput()); + opBuilder = scope.apply(opBuilder); + if (options != null) { + for (Options opts : options) { + if (opts.lower != null) { + opBuilder.setAttr("lower", opts.lower); + } + if (opts.adjoint != null) { + opBuilder.setAttr("adjoint", opts.adjoint); + } + } + } + return new RiscTriangularSolve<>(opBuilder.build()); + } + + /** + * Sets the lower option. + * + * @param lower the lower option + * @return this Options instance. + */ + public static Options lower(Boolean lower) { + return new Options().lower(lower); + } + + /** + * Sets the adjoint option. + * + * @param adjoint the adjoint option + * @return this Options instance. + */ + public static Options adjoint(Boolean adjoint) { + return new Options().adjoint(adjoint); + } + + /** + * Gets output. + * + * @return output. + */ + public Output output() { + return output; + } + + @Override + public Output asOutput() { + return output; + } + + /** + * Optional attributes for {@link org.tensorflow.op.risc.RiscTriangularSolve} + */ + public static class Options { + private Boolean lower; + + private Boolean adjoint; + + private Options() { + } + + /** + * Sets the lower option. + * + * @param lower the lower option + * @return this Options instance. + */ + public Options lower(Boolean lower) { + this.lower = lower; + return this; + } + + /** + * Sets the adjoint option. + * + * @param adjoint the adjoint option + * @return this Options instance. + */ + public Options adjoint(Boolean adjoint) { + this.adjoint = adjoint; + return this; + } + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscUnary.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscUnary.java new file mode 100644 index 00000000000..ef530d473a4 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/risc/RiscUnary.java @@ -0,0 +1,81 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.risc; + +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.types.family.TNumber; + +/** + * The RiscUnary operation + * + * @param data type for {@code y} output + */ +public final class RiscUnary extends RawOp implements Operand { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "RiscUnary"; + + private Output y; + + private RiscUnary(Operation operation) { + super(operation); + int outputIdx = 0; + y = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new RiscUnary operation. + * + * @param scope current scope + * @param x the x value + * @param opType the value of the opType property + * @param data type for {@code RiscUnary} output and operands + * @return a new instance of RiscUnary + */ + @Endpoint( + describeByClass = true + ) + public static RiscUnary create(Scope scope, Operand x, String opType) { + OperationBuilder opBuilder = scope.env().opBuilder("RiscUnary", scope.makeOpName("RiscUnary")); + opBuilder.addInput(x.asOutput()); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("op_type", opType); + return new RiscUnary<>(opBuilder.build()); + } + + /** + * Gets y. + * + * @return y. + */ + public Output y() { + return y; + } + + @Override + public Output asOutput() { + return y; + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/EnqueueTPUEmbeddingRaggedTensorBatch.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/EnqueueTPUEmbeddingRaggedTensorBatch.java index d8cff616735..7ad19e303bb 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/EnqueueTPUEmbeddingRaggedTensorBatch.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/EnqueueTPUEmbeddingRaggedTensorBatch.java @@ -113,6 +113,13 @@ public static EnqueueTPUEmbeddingRaggedTensorBatch create(Scope scope, } opBuilder.setAttr("max_sequence_lengths", maxSequenceLengthsArray); } + if (opts.numFeatures != null) { + long[] numFeaturesArray = new long[opts.numFeatures.size()]; + for (int i = 0 ; i < numFeaturesArray.length ; i++) { + numFeaturesArray[i] = opts.numFeatures.get(i); + } + opBuilder.setAttr("num_features", numFeaturesArray); + } } } return new EnqueueTPUEmbeddingRaggedTensorBatch(opBuilder.build()); @@ -179,6 +186,26 @@ public static Options maxSequenceLengths(Long[] maxSequenceLengths) { return new Options().maxSequenceLengths(maxSequenceLengths); } + /** + * Sets the numFeatures option. + * + * @param numFeatures the numFeatures option + * @return this Options instance. + */ + public static Options numFeatures(List numFeatures) { + return new Options().numFeatures(numFeatures); + } + + /** + * Sets the numFeatures option. + * + * @param numFeatures the numFeatures option + * @return this Options instance. + */ + public static Options numFeatures(Long[] numFeatures) { + return new Options().numFeatures(numFeatures); + } + /** * Optional attributes for {@link org.tensorflow.op.tpu.EnqueueTPUEmbeddingRaggedTensorBatch} */ @@ -189,6 +216,8 @@ public static class Options { private List maxSequenceLengths; + private List numFeatures; + private Options() { } @@ -257,5 +286,27 @@ public Options maxSequenceLengths(Long... maxSequenceLengths) { this.maxSequenceLengths = Arrays.asList(maxSequenceLengths); return this; } + + /** + * Sets the numFeatures option. + * + * @param numFeatures the numFeatures option + * @return this Options instance. + */ + public Options numFeatures(List numFeatures) { + this.numFeatures = numFeatures; + return this; + } + + /** + * Sets the numFeatures option. + * + * @param numFeatures the numFeatures option + * @return this Options instance. + */ + public Options numFeatures(Long... numFeatures) { + this.numFeatures = Arrays.asList(numFeatures); + return this; + } } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/EnqueueTPUEmbeddingSparseTensorBatch.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/EnqueueTPUEmbeddingSparseTensorBatch.java index 79226f5998f..42f1a114864 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/EnqueueTPUEmbeddingSparseTensorBatch.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/EnqueueTPUEmbeddingSparseTensorBatch.java @@ -111,6 +111,13 @@ public static EnqueueTPUEmbeddingSparseTensorBatch create(Scope scope, } opBuilder.setAttr("max_sequence_lengths", maxSequenceLengthsArray); } + if (opts.numFeatures != null) { + long[] numFeaturesArray = new long[opts.numFeatures.size()]; + for (int i = 0 ; i < numFeaturesArray.length ; i++) { + numFeaturesArray[i] = opts.numFeatures.get(i); + } + opBuilder.setAttr("num_features", numFeaturesArray); + } } } return new EnqueueTPUEmbeddingSparseTensorBatch(opBuilder.build()); @@ -177,6 +184,26 @@ public static Options maxSequenceLengths(Long[] maxSequenceLengths) { return new Options().maxSequenceLengths(maxSequenceLengths); } + /** + * Sets the numFeatures option. + * + * @param numFeatures the numFeatures option + * @return this Options instance. + */ + public static Options numFeatures(List numFeatures) { + return new Options().numFeatures(numFeatures); + } + + /** + * Sets the numFeatures option. + * + * @param numFeatures the numFeatures option + * @return this Options instance. + */ + public static Options numFeatures(Long[] numFeatures) { + return new Options().numFeatures(numFeatures); + } + /** * Optional attributes for {@link org.tensorflow.op.tpu.EnqueueTPUEmbeddingSparseTensorBatch} */ @@ -187,6 +214,8 @@ public static class Options { private List maxSequenceLengths; + private List numFeatures; + private Options() { } @@ -255,5 +284,27 @@ public Options maxSequenceLengths(Long... maxSequenceLengths) { this.maxSequenceLengths = Arrays.asList(maxSequenceLengths); return this; } + + /** + * Sets the numFeatures option. + * + * @param numFeatures the numFeatures option + * @return this Options instance. + */ + public Options numFeatures(List numFeatures) { + this.numFeatures = numFeatures; + return this; + } + + /** + * Sets the numFeatures option. + * + * @param numFeatures the numFeatures option + * @return this Options instance. + */ + public Options numFeatures(Long... numFeatures) { + this.numFeatures = Arrays.asList(numFeatures); + return this; + } } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/TPUReshardVariables.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/TPUReshardVariables.java new file mode 100644 index 00000000000..55f908d985b --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/TPUReshardVariables.java @@ -0,0 +1,69 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.tpu; + +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.op.Operands; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.types.TString; +import org.tensorflow.types.family.TType; + +/** + * Op that reshards on-device TPU variables to specified state. + * Op that reshards on-device TPU variables to specified state. Internal use only. + *

        The sharding state is represented as the key of the compilation that generated + * the sharding/unsharding programs along with the main program. new_format_key + * specifies the desired state, and format_state_var is the current state of the + * variables. + */ +public final class TPUReshardVariables extends RawOp { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "TPUReshardVariables"; + + private TPUReshardVariables(Operation operation) { + super(operation); + } + + /** + * Factory method to create a class wrapping a new TPUReshardVariables operation. + * + * @param scope current scope + * @param vars the vars value + * @param newFormatKey the newFormatKey value + * @param formatStateVar the formatStateVar value + * @return a new instance of TPUReshardVariables + */ + @Endpoint( + describeByClass = true + ) + public static TPUReshardVariables create(Scope scope, Iterable> vars, + Operand newFormatKey, Operand formatStateVar) { + OperationBuilder opBuilder = scope.env().opBuilder("TPUReshardVariables", scope.makeOpName("TPUReshardVariables")); + opBuilder.addInputList(Operands.asOutputs(vars)); + opBuilder.addInput(newFormatKey.asOutput()); + opBuilder.addInput(formatStateVar.asOutput()); + opBuilder = scope.apply(opBuilder); + return new TPUReshardVariables(opBuilder.build()); + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/Pad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/Pad.java index c801e1fc9c1..78bf07d3a42 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/Pad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/Pad.java @@ -58,9 +58,13 @@ private Pad(Operation operation) { * @param scope current scope * @param input A {@code Tensor} of type T. * @param paddingValue A scalar {@code Tensor} of type T. - * @param paddingLow the padding to apply at the start of each input dimensions - * @param paddingHigh the padding to apply at the end of each input dimension. - * @param paddingInterior the padding to apply between each input element. + * @param paddingLow the padding to apply at the start of each input dimensions. Must + * be a compile-time constant 1D tensor of length equal to rank of input. + * @param paddingHigh the padding to apply at the end of each input dimension. Must + * be a compile-time constant 1D tensor of length equal to rank of input. + * @param paddingInterior the padding to apply between each input element. Must + * be a compile-time constant 1D tensor of length equal to rank of input, + * containing only non-negative values. * @param data type for {@code XlaPad} output and operands * @param data type for {@code XlaPad} output and operands * @return a new instance of Pad diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/Sharding.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/Sharding.java index d62e4741a94..bf5e754d5a7 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/Sharding.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/Sharding.java @@ -54,19 +54,38 @@ private Sharding(Operation operation) { * * @param scope current scope * @param input the input value + * @param options carries optional attribute values * @param data type for {@code XlaSharding} output and operands * @return a new instance of Sharding */ @Endpoint( describeByClass = true ) - public static Sharding create(Scope scope, Operand input) { + public static Sharding create(Scope scope, Operand input, + Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("XlaSharding", scope.makeOpName("Sharding")); opBuilder.addInput(input.asOutput()); opBuilder = scope.apply(opBuilder); + if (options != null) { + for (Options opts : options) { + if (opts.sharding != null) { + opBuilder.setAttr("sharding", opts.sharding); + } + } + } return new Sharding<>(opBuilder.build()); } + /** + * Sets the sharding option. + * + * @param sharding the sharding option + * @return this Options instance. + */ + public static Options sharding(String sharding) { + return new Options().sharding(sharding); + } + /** * Gets output. * @@ -80,4 +99,25 @@ public Output output() { public Output asOutput() { return output; } + + /** + * Optional attributes for {@link org.tensorflow.op.xla.Sharding} + */ + public static class Options { + private String sharding; + + private Options() { + } + + /** + * Sets the sharding option. + * + * @param sharding the sharding option + * @return this Options instance. + */ + public Options sharding(String sharding) { + this.sharding = sharding; + return this; + } + } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/AutoShardPolicy.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/AutoShardPolicy.java new file mode 100644 index 00000000000..a45271b08eb --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/AutoShardPolicy.java @@ -0,0 +1,188 @@ +// Generated by the protocol buffer compiler. DO NOT EDIT! +// source: tensorflow/core/framework/dataset_options.proto + +package org.tensorflow.proto.data; + +/** + *

        + * Represents the type of auto-sharding we enable.
        + * 
        + * + * Protobuf enum {@code tensorflow.data.AutoShardPolicy} + */ +public enum AutoShardPolicy + implements com.google.protobuf.ProtocolMessageEnum { + /** + *
        +   * AUTO: Attempts FILE-based sharding, falling back to DATA-based sharding.
        +   * 
        + * + * AUTO = 0; + */ + AUTO(0), + /** + *
        +   * FILE: Shards by input files (i.e. each worker will get a set of files to
        +   * process). When this option is selected, make sure that there is at least as
        +   * many files as workers. If there are fewer input files than workers, a
        +   * runtime error will be raised.
        +   * 
        + * + * FILE = 1; + */ + FILE(1), + /** + *
        +   * DATA: Shards by elements produced by the dataset. Each worker will process
        +   * the whole dataset and discard the portion that is not for itself. Note that
        +   * for this mode to correctly partitions the dataset elements, the dataset
        +   * needs to produce elements in a deterministic order.
        +   * 
        + * + * DATA = 2; + */ + DATA(2), + /** + *
        +   * HINT: Looks for the presence of `shard(SHARD_HINT, ...)` which is treated
        +   * as a placeholder to replace with `shard(num_workers, worker_index)`.
        +   * 
        + * + * HINT = 3; + */ + HINT(3), + /** + *
        +   * OFF: No sharding will be performed.
        +   * 
        + * + * OFF = -1; + */ + OFF(-1), + UNRECOGNIZED(-1), + ; + + /** + *
        +   * AUTO: Attempts FILE-based sharding, falling back to DATA-based sharding.
        +   * 
        + * + * AUTO = 0; + */ + public static final int AUTO_VALUE = 0; + /** + *
        +   * FILE: Shards by input files (i.e. each worker will get a set of files to
        +   * process). When this option is selected, make sure that there is at least as
        +   * many files as workers. If there are fewer input files than workers, a
        +   * runtime error will be raised.
        +   * 
        + * + * FILE = 1; + */ + public static final int FILE_VALUE = 1; + /** + *
        +   * DATA: Shards by elements produced by the dataset. Each worker will process
        +   * the whole dataset and discard the portion that is not for itself. Note that
        +   * for this mode to correctly partitions the dataset elements, the dataset
        +   * needs to produce elements in a deterministic order.
        +   * 
        + * + * DATA = 2; + */ + public static final int DATA_VALUE = 2; + /** + *
        +   * HINT: Looks for the presence of `shard(SHARD_HINT, ...)` which is treated
        +   * as a placeholder to replace with `shard(num_workers, worker_index)`.
        +   * 
        + * + * HINT = 3; + */ + public static final int HINT_VALUE = 3; + /** + *
        +   * OFF: No sharding will be performed.
        +   * 
        + * + * OFF = -1; + */ + public static final int OFF_VALUE = -1; + + + public final int getNumber() { + if (this == UNRECOGNIZED) { + throw new java.lang.IllegalArgumentException( + "Can't get the number of an unknown enum value."); + } + return value; + } + + /** + * @deprecated Use {@link #forNumber(int)} instead. + */ + @java.lang.Deprecated + public static AutoShardPolicy valueOf(int value) { + return forNumber(value); + } + + public static AutoShardPolicy forNumber(int value) { + switch (value) { + case 0: return AUTO; + case 1: return FILE; + case 2: return DATA; + case 3: return HINT; + case -1: return OFF; + default: return null; + } + } + + public static com.google.protobuf.Internal.EnumLiteMap + internalGetValueMap() { + return internalValueMap; + } + private static final com.google.protobuf.Internal.EnumLiteMap< + AutoShardPolicy> internalValueMap = + new com.google.protobuf.Internal.EnumLiteMap() { + public AutoShardPolicy findValueByNumber(int number) { + return AutoShardPolicy.forNumber(number); + } + }; + + public final com.google.protobuf.Descriptors.EnumValueDescriptor + getValueDescriptor() { + return getDescriptor().getValues().get(ordinal()); + } + public final com.google.protobuf.Descriptors.EnumDescriptor + getDescriptorForType() { + return getDescriptor(); + } + public static final com.google.protobuf.Descriptors.EnumDescriptor + getDescriptor() { + return org.tensorflow.proto.data.DatasetOptionsProtos.getDescriptor().getEnumTypes().get(0); + } + + private static final AutoShardPolicy[] VALUES = values(); + + public static AutoShardPolicy valueOf( + com.google.protobuf.Descriptors.EnumValueDescriptor desc) { + if (desc.getType() != getDescriptor()) { + throw new java.lang.IllegalArgumentException( + "EnumValueDescriptor is not for this type."); + } + if (desc.getIndex() == -1) { + return UNRECOGNIZED; + } + return VALUES[desc.getIndex()]; + } + + private final int value; + + private AutoShardPolicy(int value) { + this.value = value; + } + + // @@protoc_insertion_point(enum_scope:tensorflow.data.AutoShardPolicy) +} + diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/DatasetOptionsProtos.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/DatasetOptionsProtos.java new file mode 100644 index 00000000000..4426fbe9187 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/DatasetOptionsProtos.java @@ -0,0 +1,144 @@ +// Generated by the protocol buffer compiler. DO NOT EDIT! +// source: tensorflow/core/framework/dataset_options.proto + +package org.tensorflow.proto.data; + +public final class DatasetOptionsProtos { + private DatasetOptionsProtos() {} + public static void registerAllExtensions( + com.google.protobuf.ExtensionRegistryLite registry) { + } + + public static void registerAllExtensions( + com.google.protobuf.ExtensionRegistry registry) { + registerAllExtensions( + (com.google.protobuf.ExtensionRegistryLite) registry); + } + static final com.google.protobuf.Descriptors.Descriptor + internal_static_tensorflow_data_DistributeOptions_descriptor; + static final + com.google.protobuf.GeneratedMessageV3.FieldAccessorTable + internal_static_tensorflow_data_DistributeOptions_fieldAccessorTable; + static final com.google.protobuf.Descriptors.Descriptor + internal_static_tensorflow_data_MapVectorization_descriptor; + static final + com.google.protobuf.GeneratedMessageV3.FieldAccessorTable + internal_static_tensorflow_data_MapVectorization_fieldAccessorTable; + static final com.google.protobuf.Descriptors.Descriptor + internal_static_tensorflow_data_OptimizationOptions_descriptor; + static final + com.google.protobuf.GeneratedMessageV3.FieldAccessorTable + internal_static_tensorflow_data_OptimizationOptions_fieldAccessorTable; + static final com.google.protobuf.Descriptors.Descriptor + internal_static_tensorflow_data_ThreadingOptions_descriptor; + static final + com.google.protobuf.GeneratedMessageV3.FieldAccessorTable + internal_static_tensorflow_data_ThreadingOptions_fieldAccessorTable; + static final com.google.protobuf.Descriptors.Descriptor + internal_static_tensorflow_data_Options_descriptor; + static final + com.google.protobuf.GeneratedMessageV3.FieldAccessorTable + internal_static_tensorflow_data_Options_fieldAccessorTable; + + public static com.google.protobuf.Descriptors.FileDescriptor + getDescriptor() { + return descriptor; + } + private static com.google.protobuf.Descriptors.FileDescriptor + descriptor; + static { + java.lang.String[] descriptorData = { + "\n/tensorflow/core/framework/dataset_opti" + + "ons.proto\022\017tensorflow.data\"\177\n\021Distribute" + + "Options\022;\n\021auto_shard_policy\030\001 \001(\0162 .ten" + + "sorflow.data.AutoShardPolicy\022\025\n\013num_devi" + + "ces\030\002 \001(\005H\000B\026\n\024optional_num_devices\"v\n\020M" + + "apVectorization\022\021\n\007enabled\030\001 \001(\010H\000\022\034\n\022us" + + "e_choose_fastest\030\002 \001(\010H\001B\022\n\020optional_ena" + + "bledB\035\n\033optional_use_choose_fastest\"\311\010\n\023" + + "OptimizationOptions\022%\n\033apply_default_opt" + + "imizations\030\001 \001(\010H\000\022\022\n\010autotune\030\002 \001(\010H\001\022\032" + + "\n\020autotune_buffers\030\003 \001(\010H\002\022\035\n\023autotune_c" + + "pu_budget\030\004 \001(\005H\003\022\035\n\023autotune_ram_budget" + + "\030\005 \001(\005H\004\022\027\n\rfilter_fusion\030\006 \001(\010H\005\022+\n!fil" + + "ter_with_random_uniform_fusion\030\007 \001(\010H\006\022\036" + + "\n\024hoist_random_uniform\030\010 \001(\010H\007\022\036\n\024map_an" + + "d_batch_fusion\030\t \001(\010H\010\022\037\n\025map_and_filter" + + "_fusion\030\n \001(\010H\t\022\024\n\nmap_fusion\030\013 \001(\010H\n\022\035\n" + + "\023map_parallelization\030\014 \001(\010H\013\022<\n\021map_vect" + + "orization\030\r \001(\0132!.tensorflow.data.MapVec" + + "torization\022\032\n\020noop_elimination\030\016 \001(\010H\014\022\030" + + "\n\016parallel_batch\030\017 \001(\010H\r\022%\n\033reorder_data" + + "_discarding_ops\030\020 \001(\010H\016\022#\n\031shuffle_and_r" + + "epeat_fusion\030\021 \001(\010H\017B&\n$optional_apply_d" + + "efault_optimizationsB\023\n\021optional_autotun" + + "eB\033\n\031optional_autotune_buffersB\036\n\034option" + + "al_autotune_cpu_budgetB\036\n\034optional_autot" + + "une_ram_budgetB\030\n\026optional_filter_fusion" + + "B,\n*optional_filter_with_random_uniform_" + + "fusionB\037\n\035optional_hoist_random_uniformB" + + "\037\n\035optional_map_and_batch_fusionB \n\036opti" + + "onal_map_and_filter_fusionB\025\n\023optional_m" + + "ap_fusionB\036\n\034optional_map_parallelizatio" + + "nB\033\n\031optional_noop_eliminationB\031\n\027option" + + "al_parallel_batchB&\n$optional_reorder_da" + + "ta_discarding_opsB$\n\"optional_shuffle_an" + + "d_repeat_fusion\"\242\001\n\020ThreadingOptions\022\"\n\030" + + "max_intra_op_parallelism\030\001 \001(\005H\000\022!\n\027priv" + + "ate_threadpool_size\030\002 \001(\005H\001B#\n!optional_" + + "max_intra_op_parallelismB\"\n optional_pri" + + "vate_threadpool_size\"\212\003\n\007Options\022\027\n\rdete" + + "rministic\030\001 \001(\010H\000\022>\n\022distribute_options\030" + + "\002 \001(\0132\".tensorflow.data.DistributeOption" + + "s\022B\n\024optimization_options\030\003 \001(\0132$.tensor" + + "flow.data.OptimizationOptions\022\017\n\005slack\030\004" + + " \001(\010H\001\022<\n\021threading_options\030\005 \001(\0132!.tens" + + "orflow.data.ThreadingOptions\022E\n\025external" + + "_state_policy\030\006 \001(\0162$.tensorflow.data.Ex" + + "ternalStatePolicyH\002B\030\n\026optional_determin" + + "isticB\020\n\016optional_slackB \n\036optional_exte" + + "rnal_state_policy*K\n\017AutoShardPolicy\022\010\n\004" + + "AUTO\020\000\022\010\n\004FILE\020\001\022\010\n\004DATA\020\002\022\010\n\004HINT\020\003\022\020\n\003" + + "OFF\020\377\377\377\377\377\377\377\377\377\001*J\n\023ExternalStatePolicy\022\017\n" + + "\013POLICY_WARN\020\000\022\021\n\rPOLICY_IGNORE\020\001\022\017\n\013POL" + + "ICY_FAIL\020\002B3\n\031org.tensorflow.proto.dataB" + + "\024DatasetOptionsProtosP\001b\006proto3" + }; + descriptor = com.google.protobuf.Descriptors.FileDescriptor + .internalBuildGeneratedFileFrom(descriptorData, + new com.google.protobuf.Descriptors.FileDescriptor[] { + }); + internal_static_tensorflow_data_DistributeOptions_descriptor = + getDescriptor().getMessageTypes().get(0); + internal_static_tensorflow_data_DistributeOptions_fieldAccessorTable = new + com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( + internal_static_tensorflow_data_DistributeOptions_descriptor, + new java.lang.String[] { "AutoShardPolicy", "NumDevices", "OptionalNumDevices", }); + internal_static_tensorflow_data_MapVectorization_descriptor = + getDescriptor().getMessageTypes().get(1); + internal_static_tensorflow_data_MapVectorization_fieldAccessorTable = new + com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( + internal_static_tensorflow_data_MapVectorization_descriptor, + new java.lang.String[] { "Enabled", "UseChooseFastest", "OptionalEnabled", "OptionalUseChooseFastest", }); + internal_static_tensorflow_data_OptimizationOptions_descriptor = + getDescriptor().getMessageTypes().get(2); + internal_static_tensorflow_data_OptimizationOptions_fieldAccessorTable = new + com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( + internal_static_tensorflow_data_OptimizationOptions_descriptor, + new java.lang.String[] { "ApplyDefaultOptimizations", "Autotune", "AutotuneBuffers", "AutotuneCpuBudget", "AutotuneRamBudget", "FilterFusion", "FilterWithRandomUniformFusion", "HoistRandomUniform", "MapAndBatchFusion", "MapAndFilterFusion", "MapFusion", "MapParallelization", "MapVectorization", "NoopElimination", "ParallelBatch", "ReorderDataDiscardingOps", "ShuffleAndRepeatFusion", "OptionalApplyDefaultOptimizations", "OptionalAutotune", "OptionalAutotuneBuffers", "OptionalAutotuneCpuBudget", "OptionalAutotuneRamBudget", "OptionalFilterFusion", "OptionalFilterWithRandomUniformFusion", "OptionalHoistRandomUniform", "OptionalMapAndBatchFusion", "OptionalMapAndFilterFusion", "OptionalMapFusion", "OptionalMapParallelization", "OptionalNoopElimination", "OptionalParallelBatch", "OptionalReorderDataDiscardingOps", "OptionalShuffleAndRepeatFusion", }); + internal_static_tensorflow_data_ThreadingOptions_descriptor = + getDescriptor().getMessageTypes().get(3); + internal_static_tensorflow_data_ThreadingOptions_fieldAccessorTable = new + com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( + internal_static_tensorflow_data_ThreadingOptions_descriptor, + new java.lang.String[] { "MaxIntraOpParallelism", "PrivateThreadpoolSize", "OptionalMaxIntraOpParallelism", "OptionalPrivateThreadpoolSize", }); + internal_static_tensorflow_data_Options_descriptor = + getDescriptor().getMessageTypes().get(4); + internal_static_tensorflow_data_Options_fieldAccessorTable = new + com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( + internal_static_tensorflow_data_Options_descriptor, + new java.lang.String[] { "Deterministic", "DistributeOptions", "OptimizationOptions", "Slack", "ThreadingOptions", "ExternalStatePolicy", "OptionalDeterministic", "OptionalSlack", "OptionalExternalStatePolicy", }); + } + + // @@protoc_insertion_point(outer_class_scope) +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/DistributeOptions.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/DistributeOptions.java new file mode 100644 index 00000000000..dba5ebe1b32 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/DistributeOptions.java @@ -0,0 +1,642 @@ +// Generated by the protocol buffer compiler. DO NOT EDIT! +// source: tensorflow/core/framework/dataset_options.proto + +package org.tensorflow.proto.data; + +/** + * Protobuf type {@code tensorflow.data.DistributeOptions} + */ +public final class DistributeOptions extends + com.google.protobuf.GeneratedMessageV3 implements + // @@protoc_insertion_point(message_implements:tensorflow.data.DistributeOptions) + DistributeOptionsOrBuilder { +private static final long serialVersionUID = 0L; + // Use DistributeOptions.newBuilder() to construct. + private DistributeOptions(com.google.protobuf.GeneratedMessageV3.Builder builder) { + super(builder); + } + private DistributeOptions() { + autoShardPolicy_ = 0; + } + + @java.lang.Override + @SuppressWarnings({"unused"}) + protected java.lang.Object newInstance( + UnusedPrivateParameter unused) { + return new DistributeOptions(); + } + + @java.lang.Override + public final com.google.protobuf.UnknownFieldSet + getUnknownFields() { + return this.unknownFields; + } + private DistributeOptions( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + this(); + if (extensionRegistry == null) { + throw new java.lang.NullPointerException(); + } + com.google.protobuf.UnknownFieldSet.Builder unknownFields = + com.google.protobuf.UnknownFieldSet.newBuilder(); + try { + boolean done = false; + while (!done) { + int tag = input.readTag(); + switch (tag) { + case 0: + done = true; + break; + case 8: { + int rawValue = input.readEnum(); + + autoShardPolicy_ = rawValue; + break; + } + case 16: { + optionalNumDevicesCase_ = 2; + optionalNumDevices_ = input.readInt32(); + break; + } + default: { + if (!parseUnknownField( + input, unknownFields, extensionRegistry, tag)) { + done = true; + } + break; + } + } + } + } catch (com.google.protobuf.InvalidProtocolBufferException e) { + throw e.setUnfinishedMessage(this); + } catch (java.io.IOException e) { + throw new com.google.protobuf.InvalidProtocolBufferException( + e).setUnfinishedMessage(this); + } finally { + this.unknownFields = unknownFields.build(); + makeExtensionsImmutable(); + } + } + public static final com.google.protobuf.Descriptors.Descriptor + getDescriptor() { + return org.tensorflow.proto.data.DatasetOptionsProtos.internal_static_tensorflow_data_DistributeOptions_descriptor; + } + + @java.lang.Override + protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable + internalGetFieldAccessorTable() { + return org.tensorflow.proto.data.DatasetOptionsProtos.internal_static_tensorflow_data_DistributeOptions_fieldAccessorTable + .ensureFieldAccessorsInitialized( + org.tensorflow.proto.data.DistributeOptions.class, org.tensorflow.proto.data.DistributeOptions.Builder.class); + } + + private int optionalNumDevicesCase_ = 0; + private java.lang.Object optionalNumDevices_; + public enum OptionalNumDevicesCase + implements com.google.protobuf.Internal.EnumLite { + NUM_DEVICES(2), + OPTIONALNUMDEVICES_NOT_SET(0); + private final int value; + private OptionalNumDevicesCase(int value) { + this.value = value; + } + /** + * @deprecated Use {@link #forNumber(int)} instead. + */ + @java.lang.Deprecated + public static OptionalNumDevicesCase valueOf(int value) { + return forNumber(value); + } + + public static OptionalNumDevicesCase forNumber(int value) { + switch (value) { + case 2: return NUM_DEVICES; + case 0: return OPTIONALNUMDEVICES_NOT_SET; + default: return null; + } + } + public int getNumber() { + return this.value; + } + }; + + public OptionalNumDevicesCase + getOptionalNumDevicesCase() { + return OptionalNumDevicesCase.forNumber( + optionalNumDevicesCase_); + } + + public static final int AUTO_SHARD_POLICY_FIELD_NUMBER = 1; + private int autoShardPolicy_; + /** + * .tensorflow.data.AutoShardPolicy auto_shard_policy = 1; + */ + public int getAutoShardPolicyValue() { + return autoShardPolicy_; + } + /** + * .tensorflow.data.AutoShardPolicy auto_shard_policy = 1; + */ + public org.tensorflow.proto.data.AutoShardPolicy getAutoShardPolicy() { + @SuppressWarnings("deprecation") + org.tensorflow.proto.data.AutoShardPolicy result = org.tensorflow.proto.data.AutoShardPolicy.valueOf(autoShardPolicy_); + return result == null ? org.tensorflow.proto.data.AutoShardPolicy.UNRECOGNIZED : result; + } + + public static final int NUM_DEVICES_FIELD_NUMBER = 2; + /** + * int32 num_devices = 2; + */ + public int getNumDevices() { + if (optionalNumDevicesCase_ == 2) { + return (java.lang.Integer) optionalNumDevices_; + } + return 0; + } + + private byte memoizedIsInitialized = -1; + @java.lang.Override + public final boolean isInitialized() { + byte isInitialized = memoizedIsInitialized; + if (isInitialized == 1) return true; + if (isInitialized == 0) return false; + + memoizedIsInitialized = 1; + return true; + } + + @java.lang.Override + public void writeTo(com.google.protobuf.CodedOutputStream output) + throws java.io.IOException { + if (autoShardPolicy_ != org.tensorflow.proto.data.AutoShardPolicy.AUTO.getNumber()) { + output.writeEnum(1, autoShardPolicy_); + } + if (optionalNumDevicesCase_ == 2) { + output.writeInt32( + 2, (int)((java.lang.Integer) optionalNumDevices_)); + } + unknownFields.writeTo(output); + } + + @java.lang.Override + public int getSerializedSize() { + int size = memoizedSize; + if (size != -1) return size; + + size = 0; + if (autoShardPolicy_ != org.tensorflow.proto.data.AutoShardPolicy.AUTO.getNumber()) { + size += com.google.protobuf.CodedOutputStream + .computeEnumSize(1, autoShardPolicy_); + } + if (optionalNumDevicesCase_ == 2) { + size += com.google.protobuf.CodedOutputStream + .computeInt32Size( + 2, (int)((java.lang.Integer) optionalNumDevices_)); + } + size += unknownFields.getSerializedSize(); + memoizedSize = size; + return size; + } + + @java.lang.Override + public boolean equals(final java.lang.Object obj) { + if (obj == this) { + return true; + } + if (!(obj instanceof org.tensorflow.proto.data.DistributeOptions)) { + return super.equals(obj); + } + org.tensorflow.proto.data.DistributeOptions other = (org.tensorflow.proto.data.DistributeOptions) obj; + + if (autoShardPolicy_ != other.autoShardPolicy_) return false; + if (!getOptionalNumDevicesCase().equals(other.getOptionalNumDevicesCase())) return false; + switch (optionalNumDevicesCase_) { + case 2: + if (getNumDevices() + != other.getNumDevices()) return false; + break; + case 0: + default: + } + if (!unknownFields.equals(other.unknownFields)) return false; + return true; + } + + @java.lang.Override + public int hashCode() { + if (memoizedHashCode != 0) { + return memoizedHashCode; + } + int hash = 41; + hash = (19 * hash) + getDescriptor().hashCode(); + hash = (37 * hash) + AUTO_SHARD_POLICY_FIELD_NUMBER; + hash = (53 * hash) + autoShardPolicy_; + switch (optionalNumDevicesCase_) { + case 2: + hash = (37 * hash) + NUM_DEVICES_FIELD_NUMBER; + hash = (53 * hash) + getNumDevices(); + break; + case 0: + default: + } + hash = (29 * hash) + unknownFields.hashCode(); + memoizedHashCode = hash; + return hash; + } + + public static org.tensorflow.proto.data.DistributeOptions parseFrom( + java.nio.ByteBuffer data) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data); + } + public static org.tensorflow.proto.data.DistributeOptions parseFrom( + java.nio.ByteBuffer data, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data, extensionRegistry); + } + public static org.tensorflow.proto.data.DistributeOptions parseFrom( + com.google.protobuf.ByteString data) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data); + } + public static org.tensorflow.proto.data.DistributeOptions parseFrom( + com.google.protobuf.ByteString data, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data, extensionRegistry); + } + public static org.tensorflow.proto.data.DistributeOptions parseFrom(byte[] data) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data); + } + public static org.tensorflow.proto.data.DistributeOptions parseFrom( + byte[] data, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data, extensionRegistry); + } + public static org.tensorflow.proto.data.DistributeOptions parseFrom(java.io.InputStream input) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input); + } + public static org.tensorflow.proto.data.DistributeOptions parseFrom( + java.io.InputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input, extensionRegistry); + } + public static org.tensorflow.proto.data.DistributeOptions parseDelimitedFrom(java.io.InputStream input) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseDelimitedWithIOException(PARSER, input); + } + public static org.tensorflow.proto.data.DistributeOptions parseDelimitedFrom( + java.io.InputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseDelimitedWithIOException(PARSER, input, extensionRegistry); + } + public static org.tensorflow.proto.data.DistributeOptions parseFrom( + com.google.protobuf.CodedInputStream input) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input); + } + public static org.tensorflow.proto.data.DistributeOptions parseFrom( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input, extensionRegistry); + } + + @java.lang.Override + public Builder newBuilderForType() { return newBuilder(); } + public static Builder newBuilder() { + return DEFAULT_INSTANCE.toBuilder(); + } + public static Builder newBuilder(org.tensorflow.proto.data.DistributeOptions prototype) { + return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); + } + @java.lang.Override + public Builder toBuilder() { + return this == DEFAULT_INSTANCE + ? new Builder() : new Builder().mergeFrom(this); + } + + @java.lang.Override + protected Builder newBuilderForType( + com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { + Builder builder = new Builder(parent); + return builder; + } + /** + * Protobuf type {@code tensorflow.data.DistributeOptions} + */ + public static final class Builder extends + com.google.protobuf.GeneratedMessageV3.Builder implements + // @@protoc_insertion_point(builder_implements:tensorflow.data.DistributeOptions) + org.tensorflow.proto.data.DistributeOptionsOrBuilder { + public static final com.google.protobuf.Descriptors.Descriptor + getDescriptor() { + return org.tensorflow.proto.data.DatasetOptionsProtos.internal_static_tensorflow_data_DistributeOptions_descriptor; + } + + @java.lang.Override + protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable + internalGetFieldAccessorTable() { + return org.tensorflow.proto.data.DatasetOptionsProtos.internal_static_tensorflow_data_DistributeOptions_fieldAccessorTable + .ensureFieldAccessorsInitialized( + org.tensorflow.proto.data.DistributeOptions.class, org.tensorflow.proto.data.DistributeOptions.Builder.class); + } + + // Construct using org.tensorflow.proto.data.DistributeOptions.newBuilder() + private Builder() { + maybeForceBuilderInitialization(); + } + + private Builder( + com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { + super(parent); + maybeForceBuilderInitialization(); + } + private void maybeForceBuilderInitialization() { + if (com.google.protobuf.GeneratedMessageV3 + .alwaysUseFieldBuilders) { + } + } + @java.lang.Override + public Builder clear() { + super.clear(); + autoShardPolicy_ = 0; + + optionalNumDevicesCase_ = 0; + optionalNumDevices_ = null; + return this; + } + + @java.lang.Override + public com.google.protobuf.Descriptors.Descriptor + getDescriptorForType() { + return org.tensorflow.proto.data.DatasetOptionsProtos.internal_static_tensorflow_data_DistributeOptions_descriptor; + } + + @java.lang.Override + public org.tensorflow.proto.data.DistributeOptions getDefaultInstanceForType() { + return org.tensorflow.proto.data.DistributeOptions.getDefaultInstance(); + } + + @java.lang.Override + public org.tensorflow.proto.data.DistributeOptions build() { + org.tensorflow.proto.data.DistributeOptions result = buildPartial(); + if (!result.isInitialized()) { + throw newUninitializedMessageException(result); + } + return result; + } + + @java.lang.Override + public org.tensorflow.proto.data.DistributeOptions buildPartial() { + org.tensorflow.proto.data.DistributeOptions result = new org.tensorflow.proto.data.DistributeOptions(this); + result.autoShardPolicy_ = autoShardPolicy_; + if (optionalNumDevicesCase_ == 2) { + result.optionalNumDevices_ = optionalNumDevices_; + } + result.optionalNumDevicesCase_ = optionalNumDevicesCase_; + onBuilt(); + return result; + } + + @java.lang.Override + public Builder clone() { + return super.clone(); + } + @java.lang.Override + public Builder setField( + com.google.protobuf.Descriptors.FieldDescriptor field, + java.lang.Object value) { + return super.setField(field, value); + } + @java.lang.Override + public Builder clearField( + com.google.protobuf.Descriptors.FieldDescriptor field) { + return super.clearField(field); + } + @java.lang.Override + public Builder clearOneof( + com.google.protobuf.Descriptors.OneofDescriptor oneof) { + return super.clearOneof(oneof); + } + @java.lang.Override + public Builder setRepeatedField( + com.google.protobuf.Descriptors.FieldDescriptor field, + int index, java.lang.Object value) { + return super.setRepeatedField(field, index, value); + } + @java.lang.Override + public Builder addRepeatedField( + com.google.protobuf.Descriptors.FieldDescriptor field, + java.lang.Object value) { + return super.addRepeatedField(field, value); + } + @java.lang.Override + public Builder mergeFrom(com.google.protobuf.Message other) { + if (other instanceof org.tensorflow.proto.data.DistributeOptions) { + return mergeFrom((org.tensorflow.proto.data.DistributeOptions)other); + } else { + super.mergeFrom(other); + return this; + } + } + + public Builder mergeFrom(org.tensorflow.proto.data.DistributeOptions other) { + if (other == org.tensorflow.proto.data.DistributeOptions.getDefaultInstance()) return this; + if (other.autoShardPolicy_ != 0) { + setAutoShardPolicyValue(other.getAutoShardPolicyValue()); + } + switch (other.getOptionalNumDevicesCase()) { + case NUM_DEVICES: { + setNumDevices(other.getNumDevices()); + break; + } + case OPTIONALNUMDEVICES_NOT_SET: { + break; + } + } + this.mergeUnknownFields(other.unknownFields); + onChanged(); + return this; + } + + @java.lang.Override + public final boolean isInitialized() { + return true; + } + + @java.lang.Override + public Builder mergeFrom( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + org.tensorflow.proto.data.DistributeOptions parsedMessage = null; + try { + parsedMessage = PARSER.parsePartialFrom(input, extensionRegistry); + } catch (com.google.protobuf.InvalidProtocolBufferException e) { + parsedMessage = (org.tensorflow.proto.data.DistributeOptions) e.getUnfinishedMessage(); + throw e.unwrapIOException(); + } finally { + if (parsedMessage != null) { + mergeFrom(parsedMessage); + } + } + return this; + } + private int optionalNumDevicesCase_ = 0; + private java.lang.Object optionalNumDevices_; + public OptionalNumDevicesCase + getOptionalNumDevicesCase() { + return OptionalNumDevicesCase.forNumber( + optionalNumDevicesCase_); + } + + public Builder clearOptionalNumDevices() { + optionalNumDevicesCase_ = 0; + optionalNumDevices_ = null; + onChanged(); + return this; + } + + + private int autoShardPolicy_ = 0; + /** + * .tensorflow.data.AutoShardPolicy auto_shard_policy = 1; + */ + public int getAutoShardPolicyValue() { + return autoShardPolicy_; + } + /** + * .tensorflow.data.AutoShardPolicy auto_shard_policy = 1; + */ + public Builder setAutoShardPolicyValue(int value) { + autoShardPolicy_ = value; + onChanged(); + return this; + } + /** + * .tensorflow.data.AutoShardPolicy auto_shard_policy = 1; + */ + public org.tensorflow.proto.data.AutoShardPolicy getAutoShardPolicy() { + @SuppressWarnings("deprecation") + org.tensorflow.proto.data.AutoShardPolicy result = org.tensorflow.proto.data.AutoShardPolicy.valueOf(autoShardPolicy_); + return result == null ? org.tensorflow.proto.data.AutoShardPolicy.UNRECOGNIZED : result; + } + /** + * .tensorflow.data.AutoShardPolicy auto_shard_policy = 1; + */ + public Builder setAutoShardPolicy(org.tensorflow.proto.data.AutoShardPolicy value) { + if (value == null) { + throw new NullPointerException(); + } + + autoShardPolicy_ = value.getNumber(); + onChanged(); + return this; + } + /** + * .tensorflow.data.AutoShardPolicy auto_shard_policy = 1; + */ + public Builder clearAutoShardPolicy() { + + autoShardPolicy_ = 0; + onChanged(); + return this; + } + + /** + * int32 num_devices = 2; + */ + public int getNumDevices() { + if (optionalNumDevicesCase_ == 2) { + return (java.lang.Integer) optionalNumDevices_; + } + return 0; + } + /** + * int32 num_devices = 2; + */ + public Builder setNumDevices(int value) { + optionalNumDevicesCase_ = 2; + optionalNumDevices_ = value; + onChanged(); + return this; + } + /** + * int32 num_devices = 2; + */ + public Builder clearNumDevices() { + if (optionalNumDevicesCase_ == 2) { + optionalNumDevicesCase_ = 0; + optionalNumDevices_ = null; + onChanged(); + } + return this; + } + @java.lang.Override + public final Builder setUnknownFields( + final com.google.protobuf.UnknownFieldSet unknownFields) { + return super.setUnknownFields(unknownFields); + } + + @java.lang.Override + public final Builder mergeUnknownFields( + final com.google.protobuf.UnknownFieldSet unknownFields) { + return super.mergeUnknownFields(unknownFields); + } + + + // @@protoc_insertion_point(builder_scope:tensorflow.data.DistributeOptions) + } + + // @@protoc_insertion_point(class_scope:tensorflow.data.DistributeOptions) + private static final org.tensorflow.proto.data.DistributeOptions DEFAULT_INSTANCE; + static { + DEFAULT_INSTANCE = new org.tensorflow.proto.data.DistributeOptions(); + } + + public static org.tensorflow.proto.data.DistributeOptions getDefaultInstance() { + return DEFAULT_INSTANCE; + } + + private static final com.google.protobuf.Parser + PARSER = new com.google.protobuf.AbstractParser() { + @java.lang.Override + public DistributeOptions parsePartialFrom( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return new DistributeOptions(input, extensionRegistry); + } + }; + + public static com.google.protobuf.Parser parser() { + return PARSER; + } + + @java.lang.Override + public com.google.protobuf.Parser getParserForType() { + return PARSER; + } + + @java.lang.Override + public org.tensorflow.proto.data.DistributeOptions getDefaultInstanceForType() { + return DEFAULT_INSTANCE; + } + +} + diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/DistributeOptionsOrBuilder.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/DistributeOptionsOrBuilder.java new file mode 100644 index 00000000000..84cd08668e6 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/DistributeOptionsOrBuilder.java @@ -0,0 +1,25 @@ +// Generated by the protocol buffer compiler. DO NOT EDIT! +// source: tensorflow/core/framework/dataset_options.proto + +package org.tensorflow.proto.data; + +public interface DistributeOptionsOrBuilder extends + // @@protoc_insertion_point(interface_extends:tensorflow.data.DistributeOptions) + com.google.protobuf.MessageOrBuilder { + + /** + * .tensorflow.data.AutoShardPolicy auto_shard_policy = 1; + */ + int getAutoShardPolicyValue(); + /** + * .tensorflow.data.AutoShardPolicy auto_shard_policy = 1; + */ + org.tensorflow.proto.data.AutoShardPolicy getAutoShardPolicy(); + + /** + * int32 num_devices = 2; + */ + int getNumDevices(); + + public org.tensorflow.proto.data.DistributeOptions.OptionalNumDevicesCase getOptionalNumDevicesCase(); +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/ExternalStatePolicy.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/ExternalStatePolicy.java new file mode 100644 index 00000000000..2f7375ae00d --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/ExternalStatePolicy.java @@ -0,0 +1,116 @@ +// Generated by the protocol buffer compiler. DO NOT EDIT! +// source: tensorflow/core/framework/dataset_options.proto + +package org.tensorflow.proto.data; + +/** + *
        + * Represents how to handle external state during serialization.
        + * 
        + * + * Protobuf enum {@code tensorflow.data.ExternalStatePolicy} + */ +public enum ExternalStatePolicy + implements com.google.protobuf.ProtocolMessageEnum { + /** + * POLICY_WARN = 0; + */ + POLICY_WARN(0), + /** + * POLICY_IGNORE = 1; + */ + POLICY_IGNORE(1), + /** + * POLICY_FAIL = 2; + */ + POLICY_FAIL(2), + UNRECOGNIZED(-1), + ; + + /** + * POLICY_WARN = 0; + */ + public static final int POLICY_WARN_VALUE = 0; + /** + * POLICY_IGNORE = 1; + */ + public static final int POLICY_IGNORE_VALUE = 1; + /** + * POLICY_FAIL = 2; + */ + public static final int POLICY_FAIL_VALUE = 2; + + + public final int getNumber() { + if (this == UNRECOGNIZED) { + throw new java.lang.IllegalArgumentException( + "Can't get the number of an unknown enum value."); + } + return value; + } + + /** + * @deprecated Use {@link #forNumber(int)} instead. + */ + @java.lang.Deprecated + public static ExternalStatePolicy valueOf(int value) { + return forNumber(value); + } + + public static ExternalStatePolicy forNumber(int value) { + switch (value) { + case 0: return POLICY_WARN; + case 1: return POLICY_IGNORE; + case 2: return POLICY_FAIL; + default: return null; + } + } + + public static com.google.protobuf.Internal.EnumLiteMap + internalGetValueMap() { + return internalValueMap; + } + private static final com.google.protobuf.Internal.EnumLiteMap< + ExternalStatePolicy> internalValueMap = + new com.google.protobuf.Internal.EnumLiteMap() { + public ExternalStatePolicy findValueByNumber(int number) { + return ExternalStatePolicy.forNumber(number); + } + }; + + public final com.google.protobuf.Descriptors.EnumValueDescriptor + getValueDescriptor() { + return getDescriptor().getValues().get(ordinal()); + } + public final com.google.protobuf.Descriptors.EnumDescriptor + getDescriptorForType() { + return getDescriptor(); + } + public static final com.google.protobuf.Descriptors.EnumDescriptor + getDescriptor() { + return org.tensorflow.proto.data.DatasetOptionsProtos.getDescriptor().getEnumTypes().get(1); + } + + private static final ExternalStatePolicy[] VALUES = values(); + + public static ExternalStatePolicy valueOf( + com.google.protobuf.Descriptors.EnumValueDescriptor desc) { + if (desc.getType() != getDescriptor()) { + throw new java.lang.IllegalArgumentException( + "EnumValueDescriptor is not for this type."); + } + if (desc.getIndex() == -1) { + return UNRECOGNIZED; + } + return VALUES[desc.getIndex()]; + } + + private final int value; + + private ExternalStatePolicy(int value) { + this.value = value; + } + + // @@protoc_insertion_point(enum_scope:tensorflow.data.ExternalStatePolicy) +} + diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/MapVectorization.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/MapVectorization.java new file mode 100644 index 00000000000..235c0895047 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/MapVectorization.java @@ -0,0 +1,697 @@ +// Generated by the protocol buffer compiler. DO NOT EDIT! +// source: tensorflow/core/framework/dataset_options.proto + +package org.tensorflow.proto.data; + +/** + * Protobuf type {@code tensorflow.data.MapVectorization} + */ +public final class MapVectorization extends + com.google.protobuf.GeneratedMessageV3 implements + // @@protoc_insertion_point(message_implements:tensorflow.data.MapVectorization) + MapVectorizationOrBuilder { +private static final long serialVersionUID = 0L; + // Use MapVectorization.newBuilder() to construct. + private MapVectorization(com.google.protobuf.GeneratedMessageV3.Builder builder) { + super(builder); + } + private MapVectorization() { + } + + @java.lang.Override + @SuppressWarnings({"unused"}) + protected java.lang.Object newInstance( + UnusedPrivateParameter unused) { + return new MapVectorization(); + } + + @java.lang.Override + public final com.google.protobuf.UnknownFieldSet + getUnknownFields() { + return this.unknownFields; + } + private MapVectorization( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + this(); + if (extensionRegistry == null) { + throw new java.lang.NullPointerException(); + } + com.google.protobuf.UnknownFieldSet.Builder unknownFields = + com.google.protobuf.UnknownFieldSet.newBuilder(); + try { + boolean done = false; + while (!done) { + int tag = input.readTag(); + switch (tag) { + case 0: + done = true; + break; + case 8: { + optionalEnabledCase_ = 1; + optionalEnabled_ = input.readBool(); + break; + } + case 16: { + optionalUseChooseFastestCase_ = 2; + optionalUseChooseFastest_ = input.readBool(); + break; + } + default: { + if (!parseUnknownField( + input, unknownFields, extensionRegistry, tag)) { + done = true; + } + break; + } + } + } + } catch (com.google.protobuf.InvalidProtocolBufferException e) { + throw e.setUnfinishedMessage(this); + } catch (java.io.IOException e) { + throw new com.google.protobuf.InvalidProtocolBufferException( + e).setUnfinishedMessage(this); + } finally { + this.unknownFields = unknownFields.build(); + makeExtensionsImmutable(); + } + } + public static final com.google.protobuf.Descriptors.Descriptor + getDescriptor() { + return org.tensorflow.proto.data.DatasetOptionsProtos.internal_static_tensorflow_data_MapVectorization_descriptor; + } + + @java.lang.Override + protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable + internalGetFieldAccessorTable() { + return org.tensorflow.proto.data.DatasetOptionsProtos.internal_static_tensorflow_data_MapVectorization_fieldAccessorTable + .ensureFieldAccessorsInitialized( + org.tensorflow.proto.data.MapVectorization.class, org.tensorflow.proto.data.MapVectorization.Builder.class); + } + + private int optionalEnabledCase_ = 0; + private java.lang.Object optionalEnabled_; + public enum OptionalEnabledCase + implements com.google.protobuf.Internal.EnumLite { + ENABLED(1), + OPTIONALENABLED_NOT_SET(0); + private final int value; + private OptionalEnabledCase(int value) { + this.value = value; + } + /** + * @deprecated Use {@link #forNumber(int)} instead. + */ + @java.lang.Deprecated + public static OptionalEnabledCase valueOf(int value) { + return forNumber(value); + } + + public static OptionalEnabledCase forNumber(int value) { + switch (value) { + case 1: return ENABLED; + case 0: return OPTIONALENABLED_NOT_SET; + default: return null; + } + } + public int getNumber() { + return this.value; + } + }; + + public OptionalEnabledCase + getOptionalEnabledCase() { + return OptionalEnabledCase.forNumber( + optionalEnabledCase_); + } + + private int optionalUseChooseFastestCase_ = 0; + private java.lang.Object optionalUseChooseFastest_; + public enum OptionalUseChooseFastestCase + implements com.google.protobuf.Internal.EnumLite { + USE_CHOOSE_FASTEST(2), + OPTIONALUSECHOOSEFASTEST_NOT_SET(0); + private final int value; + private OptionalUseChooseFastestCase(int value) { + this.value = value; + } + /** + * @deprecated Use {@link #forNumber(int)} instead. + */ + @java.lang.Deprecated + public static OptionalUseChooseFastestCase valueOf(int value) { + return forNumber(value); + } + + public static OptionalUseChooseFastestCase forNumber(int value) { + switch (value) { + case 2: return USE_CHOOSE_FASTEST; + case 0: return OPTIONALUSECHOOSEFASTEST_NOT_SET; + default: return null; + } + } + public int getNumber() { + return this.value; + } + }; + + public OptionalUseChooseFastestCase + getOptionalUseChooseFastestCase() { + return OptionalUseChooseFastestCase.forNumber( + optionalUseChooseFastestCase_); + } + + public static final int ENABLED_FIELD_NUMBER = 1; + /** + * bool enabled = 1; + */ + public boolean getEnabled() { + if (optionalEnabledCase_ == 1) { + return (java.lang.Boolean) optionalEnabled_; + } + return false; + } + + public static final int USE_CHOOSE_FASTEST_FIELD_NUMBER = 2; + /** + * bool use_choose_fastest = 2; + */ + public boolean getUseChooseFastest() { + if (optionalUseChooseFastestCase_ == 2) { + return (java.lang.Boolean) optionalUseChooseFastest_; + } + return false; + } + + private byte memoizedIsInitialized = -1; + @java.lang.Override + public final boolean isInitialized() { + byte isInitialized = memoizedIsInitialized; + if (isInitialized == 1) return true; + if (isInitialized == 0) return false; + + memoizedIsInitialized = 1; + return true; + } + + @java.lang.Override + public void writeTo(com.google.protobuf.CodedOutputStream output) + throws java.io.IOException { + if (optionalEnabledCase_ == 1) { + output.writeBool( + 1, (boolean)((java.lang.Boolean) optionalEnabled_)); + } + if (optionalUseChooseFastestCase_ == 2) { + output.writeBool( + 2, (boolean)((java.lang.Boolean) optionalUseChooseFastest_)); + } + unknownFields.writeTo(output); + } + + @java.lang.Override + public int getSerializedSize() { + int size = memoizedSize; + if (size != -1) return size; + + size = 0; + if (optionalEnabledCase_ == 1) { + size += com.google.protobuf.CodedOutputStream + .computeBoolSize( + 1, (boolean)((java.lang.Boolean) optionalEnabled_)); + } + if (optionalUseChooseFastestCase_ == 2) { + size += com.google.protobuf.CodedOutputStream + .computeBoolSize( + 2, (boolean)((java.lang.Boolean) optionalUseChooseFastest_)); + } + size += unknownFields.getSerializedSize(); + memoizedSize = size; + return size; + } + + @java.lang.Override + public boolean equals(final java.lang.Object obj) { + if (obj == this) { + return true; + } + if (!(obj instanceof org.tensorflow.proto.data.MapVectorization)) { + return super.equals(obj); + } + org.tensorflow.proto.data.MapVectorization other = (org.tensorflow.proto.data.MapVectorization) obj; + + if (!getOptionalEnabledCase().equals(other.getOptionalEnabledCase())) return false; + switch (optionalEnabledCase_) { + case 1: + if (getEnabled() + != other.getEnabled()) return false; + break; + case 0: + default: + } + if (!getOptionalUseChooseFastestCase().equals(other.getOptionalUseChooseFastestCase())) return false; + switch (optionalUseChooseFastestCase_) { + case 2: + if (getUseChooseFastest() + != other.getUseChooseFastest()) return false; + break; + case 0: + default: + } + if (!unknownFields.equals(other.unknownFields)) return false; + return true; + } + + @java.lang.Override + public int hashCode() { + if (memoizedHashCode != 0) { + return memoizedHashCode; + } + int hash = 41; + hash = (19 * hash) + getDescriptor().hashCode(); + switch (optionalEnabledCase_) { + case 1: + hash = (37 * hash) + ENABLED_FIELD_NUMBER; + hash = (53 * hash) + com.google.protobuf.Internal.hashBoolean( + getEnabled()); + break; + case 0: + default: + } + switch (optionalUseChooseFastestCase_) { + case 2: + hash = (37 * hash) + USE_CHOOSE_FASTEST_FIELD_NUMBER; + hash = (53 * hash) + com.google.protobuf.Internal.hashBoolean( + getUseChooseFastest()); + break; + case 0: + default: + } + hash = (29 * hash) + unknownFields.hashCode(); + memoizedHashCode = hash; + return hash; + } + + public static org.tensorflow.proto.data.MapVectorization parseFrom( + java.nio.ByteBuffer data) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data); + } + public static org.tensorflow.proto.data.MapVectorization parseFrom( + java.nio.ByteBuffer data, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data, extensionRegistry); + } + public static org.tensorflow.proto.data.MapVectorization parseFrom( + com.google.protobuf.ByteString data) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data); + } + public static org.tensorflow.proto.data.MapVectorization parseFrom( + com.google.protobuf.ByteString data, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data, extensionRegistry); + } + public static org.tensorflow.proto.data.MapVectorization parseFrom(byte[] data) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data); + } + public static org.tensorflow.proto.data.MapVectorization parseFrom( + byte[] data, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data, extensionRegistry); + } + public static org.tensorflow.proto.data.MapVectorization parseFrom(java.io.InputStream input) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input); + } + public static org.tensorflow.proto.data.MapVectorization parseFrom( + java.io.InputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input, extensionRegistry); + } + public static org.tensorflow.proto.data.MapVectorization parseDelimitedFrom(java.io.InputStream input) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseDelimitedWithIOException(PARSER, input); + } + public static org.tensorflow.proto.data.MapVectorization parseDelimitedFrom( + java.io.InputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseDelimitedWithIOException(PARSER, input, extensionRegistry); + } + public static org.tensorflow.proto.data.MapVectorization parseFrom( + com.google.protobuf.CodedInputStream input) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input); + } + public static org.tensorflow.proto.data.MapVectorization parseFrom( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input, extensionRegistry); + } + + @java.lang.Override + public Builder newBuilderForType() { return newBuilder(); } + public static Builder newBuilder() { + return DEFAULT_INSTANCE.toBuilder(); + } + public static Builder newBuilder(org.tensorflow.proto.data.MapVectorization prototype) { + return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); + } + @java.lang.Override + public Builder toBuilder() { + return this == DEFAULT_INSTANCE + ? new Builder() : new Builder().mergeFrom(this); + } + + @java.lang.Override + protected Builder newBuilderForType( + com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { + Builder builder = new Builder(parent); + return builder; + } + /** + * Protobuf type {@code tensorflow.data.MapVectorization} + */ + public static final class Builder extends + com.google.protobuf.GeneratedMessageV3.Builder implements + // @@protoc_insertion_point(builder_implements:tensorflow.data.MapVectorization) + org.tensorflow.proto.data.MapVectorizationOrBuilder { + public static final com.google.protobuf.Descriptors.Descriptor + getDescriptor() { + return org.tensorflow.proto.data.DatasetOptionsProtos.internal_static_tensorflow_data_MapVectorization_descriptor; + } + + @java.lang.Override + protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable + internalGetFieldAccessorTable() { + return org.tensorflow.proto.data.DatasetOptionsProtos.internal_static_tensorflow_data_MapVectorization_fieldAccessorTable + .ensureFieldAccessorsInitialized( + org.tensorflow.proto.data.MapVectorization.class, org.tensorflow.proto.data.MapVectorization.Builder.class); + } + + // Construct using org.tensorflow.proto.data.MapVectorization.newBuilder() + private Builder() { + maybeForceBuilderInitialization(); + } + + private Builder( + com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { + super(parent); + maybeForceBuilderInitialization(); + } + private void maybeForceBuilderInitialization() { + if (com.google.protobuf.GeneratedMessageV3 + .alwaysUseFieldBuilders) { + } + } + @java.lang.Override + public Builder clear() { + super.clear(); + optionalEnabledCase_ = 0; + optionalEnabled_ = null; + optionalUseChooseFastestCase_ = 0; + optionalUseChooseFastest_ = null; + return this; + } + + @java.lang.Override + public com.google.protobuf.Descriptors.Descriptor + getDescriptorForType() { + return org.tensorflow.proto.data.DatasetOptionsProtos.internal_static_tensorflow_data_MapVectorization_descriptor; + } + + @java.lang.Override + public org.tensorflow.proto.data.MapVectorization getDefaultInstanceForType() { + return org.tensorflow.proto.data.MapVectorization.getDefaultInstance(); + } + + @java.lang.Override + public org.tensorflow.proto.data.MapVectorization build() { + org.tensorflow.proto.data.MapVectorization result = buildPartial(); + if (!result.isInitialized()) { + throw newUninitializedMessageException(result); + } + return result; + } + + @java.lang.Override + public org.tensorflow.proto.data.MapVectorization buildPartial() { + org.tensorflow.proto.data.MapVectorization result = new org.tensorflow.proto.data.MapVectorization(this); + if (optionalEnabledCase_ == 1) { + result.optionalEnabled_ = optionalEnabled_; + } + if (optionalUseChooseFastestCase_ == 2) { + result.optionalUseChooseFastest_ = optionalUseChooseFastest_; + } + result.optionalEnabledCase_ = optionalEnabledCase_; + result.optionalUseChooseFastestCase_ = optionalUseChooseFastestCase_; + onBuilt(); + return result; + } + + @java.lang.Override + public Builder clone() { + return super.clone(); + } + @java.lang.Override + public Builder setField( + com.google.protobuf.Descriptors.FieldDescriptor field, + java.lang.Object value) { + return super.setField(field, value); + } + @java.lang.Override + public Builder clearField( + com.google.protobuf.Descriptors.FieldDescriptor field) { + return super.clearField(field); + } + @java.lang.Override + public Builder clearOneof( + com.google.protobuf.Descriptors.OneofDescriptor oneof) { + return super.clearOneof(oneof); + } + @java.lang.Override + public Builder setRepeatedField( + com.google.protobuf.Descriptors.FieldDescriptor field, + int index, java.lang.Object value) { + return super.setRepeatedField(field, index, value); + } + @java.lang.Override + public Builder addRepeatedField( + com.google.protobuf.Descriptors.FieldDescriptor field, + java.lang.Object value) { + return super.addRepeatedField(field, value); + } + @java.lang.Override + public Builder mergeFrom(com.google.protobuf.Message other) { + if (other instanceof org.tensorflow.proto.data.MapVectorization) { + return mergeFrom((org.tensorflow.proto.data.MapVectorization)other); + } else { + super.mergeFrom(other); + return this; + } + } + + public Builder mergeFrom(org.tensorflow.proto.data.MapVectorization other) { + if (other == org.tensorflow.proto.data.MapVectorization.getDefaultInstance()) return this; + switch (other.getOptionalEnabledCase()) { + case ENABLED: { + setEnabled(other.getEnabled()); + break; + } + case OPTIONALENABLED_NOT_SET: { + break; + } + } + switch (other.getOptionalUseChooseFastestCase()) { + case USE_CHOOSE_FASTEST: { + setUseChooseFastest(other.getUseChooseFastest()); + break; + } + case OPTIONALUSECHOOSEFASTEST_NOT_SET: { + break; + } + } + this.mergeUnknownFields(other.unknownFields); + onChanged(); + return this; + } + + @java.lang.Override + public final boolean isInitialized() { + return true; + } + + @java.lang.Override + public Builder mergeFrom( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + org.tensorflow.proto.data.MapVectorization parsedMessage = null; + try { + parsedMessage = PARSER.parsePartialFrom(input, extensionRegistry); + } catch (com.google.protobuf.InvalidProtocolBufferException e) { + parsedMessage = (org.tensorflow.proto.data.MapVectorization) e.getUnfinishedMessage(); + throw e.unwrapIOException(); + } finally { + if (parsedMessage != null) { + mergeFrom(parsedMessage); + } + } + return this; + } + private int optionalEnabledCase_ = 0; + private java.lang.Object optionalEnabled_; + public OptionalEnabledCase + getOptionalEnabledCase() { + return OptionalEnabledCase.forNumber( + optionalEnabledCase_); + } + + public Builder clearOptionalEnabled() { + optionalEnabledCase_ = 0; + optionalEnabled_ = null; + onChanged(); + return this; + } + + private int optionalUseChooseFastestCase_ = 0; + private java.lang.Object optionalUseChooseFastest_; + public OptionalUseChooseFastestCase + getOptionalUseChooseFastestCase() { + return OptionalUseChooseFastestCase.forNumber( + optionalUseChooseFastestCase_); + } + + public Builder clearOptionalUseChooseFastest() { + optionalUseChooseFastestCase_ = 0; + optionalUseChooseFastest_ = null; + onChanged(); + return this; + } + + + /** + * bool enabled = 1; + */ + public boolean getEnabled() { + if (optionalEnabledCase_ == 1) { + return (java.lang.Boolean) optionalEnabled_; + } + return false; + } + /** + * bool enabled = 1; + */ + public Builder setEnabled(boolean value) { + optionalEnabledCase_ = 1; + optionalEnabled_ = value; + onChanged(); + return this; + } + /** + * bool enabled = 1; + */ + public Builder clearEnabled() { + if (optionalEnabledCase_ == 1) { + optionalEnabledCase_ = 0; + optionalEnabled_ = null; + onChanged(); + } + return this; + } + + /** + * bool use_choose_fastest = 2; + */ + public boolean getUseChooseFastest() { + if (optionalUseChooseFastestCase_ == 2) { + return (java.lang.Boolean) optionalUseChooseFastest_; + } + return false; + } + /** + * bool use_choose_fastest = 2; + */ + public Builder setUseChooseFastest(boolean value) { + optionalUseChooseFastestCase_ = 2; + optionalUseChooseFastest_ = value; + onChanged(); + return this; + } + /** + * bool use_choose_fastest = 2; + */ + public Builder clearUseChooseFastest() { + if (optionalUseChooseFastestCase_ == 2) { + optionalUseChooseFastestCase_ = 0; + optionalUseChooseFastest_ = null; + onChanged(); + } + return this; + } + @java.lang.Override + public final Builder setUnknownFields( + final com.google.protobuf.UnknownFieldSet unknownFields) { + return super.setUnknownFields(unknownFields); + } + + @java.lang.Override + public final Builder mergeUnknownFields( + final com.google.protobuf.UnknownFieldSet unknownFields) { + return super.mergeUnknownFields(unknownFields); + } + + + // @@protoc_insertion_point(builder_scope:tensorflow.data.MapVectorization) + } + + // @@protoc_insertion_point(class_scope:tensorflow.data.MapVectorization) + private static final org.tensorflow.proto.data.MapVectorization DEFAULT_INSTANCE; + static { + DEFAULT_INSTANCE = new org.tensorflow.proto.data.MapVectorization(); + } + + public static org.tensorflow.proto.data.MapVectorization getDefaultInstance() { + return DEFAULT_INSTANCE; + } + + private static final com.google.protobuf.Parser + PARSER = new com.google.protobuf.AbstractParser() { + @java.lang.Override + public MapVectorization parsePartialFrom( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return new MapVectorization(input, extensionRegistry); + } + }; + + public static com.google.protobuf.Parser parser() { + return PARSER; + } + + @java.lang.Override + public com.google.protobuf.Parser getParserForType() { + return PARSER; + } + + @java.lang.Override + public org.tensorflow.proto.data.MapVectorization getDefaultInstanceForType() { + return DEFAULT_INSTANCE; + } + +} + diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/MapVectorizationOrBuilder.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/MapVectorizationOrBuilder.java new file mode 100644 index 00000000000..0a09b9379c8 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/MapVectorizationOrBuilder.java @@ -0,0 +1,23 @@ +// Generated by the protocol buffer compiler. DO NOT EDIT! +// source: tensorflow/core/framework/dataset_options.proto + +package org.tensorflow.proto.data; + +public interface MapVectorizationOrBuilder extends + // @@protoc_insertion_point(interface_extends:tensorflow.data.MapVectorization) + com.google.protobuf.MessageOrBuilder { + + /** + * bool enabled = 1; + */ + boolean getEnabled(); + + /** + * bool use_choose_fastest = 2; + */ + boolean getUseChooseFastest(); + + public org.tensorflow.proto.data.MapVectorization.OptionalEnabledCase getOptionalEnabledCase(); + + public org.tensorflow.proto.data.MapVectorization.OptionalUseChooseFastestCase getOptionalUseChooseFastestCase(); +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/OptimizationOptions.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/OptimizationOptions.java new file mode 100644 index 00000000000..f470fdd27a4 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/OptimizationOptions.java @@ -0,0 +1,2870 @@ +// Generated by the protocol buffer compiler. DO NOT EDIT! +// source: tensorflow/core/framework/dataset_options.proto + +package org.tensorflow.proto.data; + +/** + * Protobuf type {@code tensorflow.data.OptimizationOptions} + */ +public final class OptimizationOptions extends + com.google.protobuf.GeneratedMessageV3 implements + // @@protoc_insertion_point(message_implements:tensorflow.data.OptimizationOptions) + OptimizationOptionsOrBuilder { +private static final long serialVersionUID = 0L; + // Use OptimizationOptions.newBuilder() to construct. + private OptimizationOptions(com.google.protobuf.GeneratedMessageV3.Builder builder) { + super(builder); + } + private OptimizationOptions() { + } + + @java.lang.Override + @SuppressWarnings({"unused"}) + protected java.lang.Object newInstance( + UnusedPrivateParameter unused) { + return new OptimizationOptions(); + } + + @java.lang.Override + public final com.google.protobuf.UnknownFieldSet + getUnknownFields() { + return this.unknownFields; + } + private OptimizationOptions( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + this(); + if (extensionRegistry == null) { + throw new java.lang.NullPointerException(); + } + com.google.protobuf.UnknownFieldSet.Builder unknownFields = + com.google.protobuf.UnknownFieldSet.newBuilder(); + try { + boolean done = false; + while (!done) { + int tag = input.readTag(); + switch (tag) { + case 0: + done = true; + break; + case 8: { + optionalApplyDefaultOptimizationsCase_ = 1; + optionalApplyDefaultOptimizations_ = input.readBool(); + break; + } + case 16: { + optionalAutotuneCase_ = 2; + optionalAutotune_ = input.readBool(); + break; + } + case 24: { + optionalAutotuneBuffersCase_ = 3; + optionalAutotuneBuffers_ = input.readBool(); + break; + } + case 32: { + optionalAutotuneCpuBudgetCase_ = 4; + optionalAutotuneCpuBudget_ = input.readInt32(); + break; + } + case 40: { + optionalAutotuneRamBudgetCase_ = 5; + optionalAutotuneRamBudget_ = input.readInt32(); + break; + } + case 48: { + optionalFilterFusionCase_ = 6; + optionalFilterFusion_ = input.readBool(); + break; + } + case 56: { + optionalFilterWithRandomUniformFusionCase_ = 7; + optionalFilterWithRandomUniformFusion_ = input.readBool(); + break; + } + case 64: { + optionalHoistRandomUniformCase_ = 8; + optionalHoistRandomUniform_ = input.readBool(); + break; + } + case 72: { + optionalMapAndBatchFusionCase_ = 9; + optionalMapAndBatchFusion_ = input.readBool(); + break; + } + case 80: { + optionalMapAndFilterFusionCase_ = 10; + optionalMapAndFilterFusion_ = input.readBool(); + break; + } + case 88: { + optionalMapFusionCase_ = 11; + optionalMapFusion_ = input.readBool(); + break; + } + case 96: { + optionalMapParallelizationCase_ = 12; + optionalMapParallelization_ = input.readBool(); + break; + } + case 106: { + org.tensorflow.proto.data.MapVectorization.Builder subBuilder = null; + if (mapVectorization_ != null) { + subBuilder = mapVectorization_.toBuilder(); + } + mapVectorization_ = input.readMessage(org.tensorflow.proto.data.MapVectorization.parser(), extensionRegistry); + if (subBuilder != null) { + subBuilder.mergeFrom(mapVectorization_); + mapVectorization_ = subBuilder.buildPartial(); + } + + break; + } + case 112: { + optionalNoopEliminationCase_ = 14; + optionalNoopElimination_ = input.readBool(); + break; + } + case 120: { + optionalParallelBatchCase_ = 15; + optionalParallelBatch_ = input.readBool(); + break; + } + case 128: { + optionalReorderDataDiscardingOpsCase_ = 16; + optionalReorderDataDiscardingOps_ = input.readBool(); + break; + } + case 136: { + optionalShuffleAndRepeatFusionCase_ = 17; + optionalShuffleAndRepeatFusion_ = input.readBool(); + break; + } + default: { + if (!parseUnknownField( + input, unknownFields, extensionRegistry, tag)) { + done = true; + } + break; + } + } + } + } catch (com.google.protobuf.InvalidProtocolBufferException e) { + throw e.setUnfinishedMessage(this); + } catch (java.io.IOException e) { + throw new com.google.protobuf.InvalidProtocolBufferException( + e).setUnfinishedMessage(this); + } finally { + this.unknownFields = unknownFields.build(); + makeExtensionsImmutable(); + } + } + public static final com.google.protobuf.Descriptors.Descriptor + getDescriptor() { + return org.tensorflow.proto.data.DatasetOptionsProtos.internal_static_tensorflow_data_OptimizationOptions_descriptor; + } + + @java.lang.Override + protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable + internalGetFieldAccessorTable() { + return org.tensorflow.proto.data.DatasetOptionsProtos.internal_static_tensorflow_data_OptimizationOptions_fieldAccessorTable + .ensureFieldAccessorsInitialized( + org.tensorflow.proto.data.OptimizationOptions.class, org.tensorflow.proto.data.OptimizationOptions.Builder.class); + } + + private int optionalApplyDefaultOptimizationsCase_ = 0; + private java.lang.Object optionalApplyDefaultOptimizations_; + public enum OptionalApplyDefaultOptimizationsCase + implements com.google.protobuf.Internal.EnumLite { + APPLY_DEFAULT_OPTIMIZATIONS(1), + OPTIONALAPPLYDEFAULTOPTIMIZATIONS_NOT_SET(0); + private final int value; + private OptionalApplyDefaultOptimizationsCase(int value) { + this.value = value; + } + /** + * @deprecated Use {@link #forNumber(int)} instead. + */ + @java.lang.Deprecated + public static OptionalApplyDefaultOptimizationsCase valueOf(int value) { + return forNumber(value); + } + + public static OptionalApplyDefaultOptimizationsCase forNumber(int value) { + switch (value) { + case 1: return APPLY_DEFAULT_OPTIMIZATIONS; + case 0: return OPTIONALAPPLYDEFAULTOPTIMIZATIONS_NOT_SET; + default: return null; + } + } + public int getNumber() { + return this.value; + } + }; + + public OptionalApplyDefaultOptimizationsCase + getOptionalApplyDefaultOptimizationsCase() { + return OptionalApplyDefaultOptimizationsCase.forNumber( + optionalApplyDefaultOptimizationsCase_); + } + + private int optionalAutotuneCase_ = 0; + private java.lang.Object optionalAutotune_; + public enum OptionalAutotuneCase + implements com.google.protobuf.Internal.EnumLite { + AUTOTUNE(2), + OPTIONALAUTOTUNE_NOT_SET(0); + private final int value; + private OptionalAutotuneCase(int value) { + this.value = value; + } + /** + * @deprecated Use {@link #forNumber(int)} instead. + */ + @java.lang.Deprecated + public static OptionalAutotuneCase valueOf(int value) { + return forNumber(value); + } + + public static OptionalAutotuneCase forNumber(int value) { + switch (value) { + case 2: return AUTOTUNE; + case 0: return OPTIONALAUTOTUNE_NOT_SET; + default: return null; + } + } + public int getNumber() { + return this.value; + } + }; + + public OptionalAutotuneCase + getOptionalAutotuneCase() { + return OptionalAutotuneCase.forNumber( + optionalAutotuneCase_); + } + + private int optionalAutotuneBuffersCase_ = 0; + private java.lang.Object optionalAutotuneBuffers_; + public enum OptionalAutotuneBuffersCase + implements com.google.protobuf.Internal.EnumLite { + AUTOTUNE_BUFFERS(3), + OPTIONALAUTOTUNEBUFFERS_NOT_SET(0); + private final int value; + private OptionalAutotuneBuffersCase(int value) { + this.value = value; + } + /** + * @deprecated Use {@link #forNumber(int)} instead. + */ + @java.lang.Deprecated + public static OptionalAutotuneBuffersCase valueOf(int value) { + return forNumber(value); + } + + public static OptionalAutotuneBuffersCase forNumber(int value) { + switch (value) { + case 3: return AUTOTUNE_BUFFERS; + case 0: return OPTIONALAUTOTUNEBUFFERS_NOT_SET; + default: return null; + } + } + public int getNumber() { + return this.value; + } + }; + + public OptionalAutotuneBuffersCase + getOptionalAutotuneBuffersCase() { + return OptionalAutotuneBuffersCase.forNumber( + optionalAutotuneBuffersCase_); + } + + private int optionalAutotuneCpuBudgetCase_ = 0; + private java.lang.Object optionalAutotuneCpuBudget_; + public enum OptionalAutotuneCpuBudgetCase + implements com.google.protobuf.Internal.EnumLite { + AUTOTUNE_CPU_BUDGET(4), + OPTIONALAUTOTUNECPUBUDGET_NOT_SET(0); + private final int value; + private OptionalAutotuneCpuBudgetCase(int value) { + this.value = value; + } + /** + * @deprecated Use {@link #forNumber(int)} instead. + */ + @java.lang.Deprecated + public static OptionalAutotuneCpuBudgetCase valueOf(int value) { + return forNumber(value); + } + + public static OptionalAutotuneCpuBudgetCase forNumber(int value) { + switch (value) { + case 4: return AUTOTUNE_CPU_BUDGET; + case 0: return OPTIONALAUTOTUNECPUBUDGET_NOT_SET; + default: return null; + } + } + public int getNumber() { + return this.value; + } + }; + + public OptionalAutotuneCpuBudgetCase + getOptionalAutotuneCpuBudgetCase() { + return OptionalAutotuneCpuBudgetCase.forNumber( + optionalAutotuneCpuBudgetCase_); + } + + private int optionalAutotuneRamBudgetCase_ = 0; + private java.lang.Object optionalAutotuneRamBudget_; + public enum OptionalAutotuneRamBudgetCase + implements com.google.protobuf.Internal.EnumLite { + AUTOTUNE_RAM_BUDGET(5), + OPTIONALAUTOTUNERAMBUDGET_NOT_SET(0); + private final int value; + private OptionalAutotuneRamBudgetCase(int value) { + this.value = value; + } + /** + * @deprecated Use {@link #forNumber(int)} instead. + */ + @java.lang.Deprecated + public static OptionalAutotuneRamBudgetCase valueOf(int value) { + return forNumber(value); + } + + public static OptionalAutotuneRamBudgetCase forNumber(int value) { + switch (value) { + case 5: return AUTOTUNE_RAM_BUDGET; + case 0: return OPTIONALAUTOTUNERAMBUDGET_NOT_SET; + default: return null; + } + } + public int getNumber() { + return this.value; + } + }; + + public OptionalAutotuneRamBudgetCase + getOptionalAutotuneRamBudgetCase() { + return OptionalAutotuneRamBudgetCase.forNumber( + optionalAutotuneRamBudgetCase_); + } + + private int optionalFilterFusionCase_ = 0; + private java.lang.Object optionalFilterFusion_; + public enum OptionalFilterFusionCase + implements com.google.protobuf.Internal.EnumLite { + FILTER_FUSION(6), + OPTIONALFILTERFUSION_NOT_SET(0); + private final int value; + private OptionalFilterFusionCase(int value) { + this.value = value; + } + /** + * @deprecated Use {@link #forNumber(int)} instead. + */ + @java.lang.Deprecated + public static OptionalFilterFusionCase valueOf(int value) { + return forNumber(value); + } + + public static OptionalFilterFusionCase forNumber(int value) { + switch (value) { + case 6: return FILTER_FUSION; + case 0: return OPTIONALFILTERFUSION_NOT_SET; + default: return null; + } + } + public int getNumber() { + return this.value; + } + }; + + public OptionalFilterFusionCase + getOptionalFilterFusionCase() { + return OptionalFilterFusionCase.forNumber( + optionalFilterFusionCase_); + } + + private int optionalFilterWithRandomUniformFusionCase_ = 0; + private java.lang.Object optionalFilterWithRandomUniformFusion_; + public enum OptionalFilterWithRandomUniformFusionCase + implements com.google.protobuf.Internal.EnumLite { + FILTER_WITH_RANDOM_UNIFORM_FUSION(7), + OPTIONALFILTERWITHRANDOMUNIFORMFUSION_NOT_SET(0); + private final int value; + private OptionalFilterWithRandomUniformFusionCase(int value) { + this.value = value; + } + /** + * @deprecated Use {@link #forNumber(int)} instead. + */ + @java.lang.Deprecated + public static OptionalFilterWithRandomUniformFusionCase valueOf(int value) { + return forNumber(value); + } + + public static OptionalFilterWithRandomUniformFusionCase forNumber(int value) { + switch (value) { + case 7: return FILTER_WITH_RANDOM_UNIFORM_FUSION; + case 0: return OPTIONALFILTERWITHRANDOMUNIFORMFUSION_NOT_SET; + default: return null; + } + } + public int getNumber() { + return this.value; + } + }; + + public OptionalFilterWithRandomUniformFusionCase + getOptionalFilterWithRandomUniformFusionCase() { + return OptionalFilterWithRandomUniformFusionCase.forNumber( + optionalFilterWithRandomUniformFusionCase_); + } + + private int optionalHoistRandomUniformCase_ = 0; + private java.lang.Object optionalHoistRandomUniform_; + public enum OptionalHoistRandomUniformCase + implements com.google.protobuf.Internal.EnumLite { + HOIST_RANDOM_UNIFORM(8), + OPTIONALHOISTRANDOMUNIFORM_NOT_SET(0); + private final int value; + private OptionalHoistRandomUniformCase(int value) { + this.value = value; + } + /** + * @deprecated Use {@link #forNumber(int)} instead. + */ + @java.lang.Deprecated + public static OptionalHoistRandomUniformCase valueOf(int value) { + return forNumber(value); + } + + public static OptionalHoistRandomUniformCase forNumber(int value) { + switch (value) { + case 8: return HOIST_RANDOM_UNIFORM; + case 0: return OPTIONALHOISTRANDOMUNIFORM_NOT_SET; + default: return null; + } + } + public int getNumber() { + return this.value; + } + }; + + public OptionalHoistRandomUniformCase + getOptionalHoistRandomUniformCase() { + return OptionalHoistRandomUniformCase.forNumber( + optionalHoistRandomUniformCase_); + } + + private int optionalMapAndBatchFusionCase_ = 0; + private java.lang.Object optionalMapAndBatchFusion_; + public enum OptionalMapAndBatchFusionCase + implements com.google.protobuf.Internal.EnumLite { + MAP_AND_BATCH_FUSION(9), + OPTIONALMAPANDBATCHFUSION_NOT_SET(0); + private final int value; + private OptionalMapAndBatchFusionCase(int value) { + this.value = value; + } + /** + * @deprecated Use {@link #forNumber(int)} instead. + */ + @java.lang.Deprecated + public static OptionalMapAndBatchFusionCase valueOf(int value) { + return forNumber(value); + } + + public static OptionalMapAndBatchFusionCase forNumber(int value) { + switch (value) { + case 9: return MAP_AND_BATCH_FUSION; + case 0: return OPTIONALMAPANDBATCHFUSION_NOT_SET; + default: return null; + } + } + public int getNumber() { + return this.value; + } + }; + + public OptionalMapAndBatchFusionCase + getOptionalMapAndBatchFusionCase() { + return OptionalMapAndBatchFusionCase.forNumber( + optionalMapAndBatchFusionCase_); + } + + private int optionalMapAndFilterFusionCase_ = 0; + private java.lang.Object optionalMapAndFilterFusion_; + public enum OptionalMapAndFilterFusionCase + implements com.google.protobuf.Internal.EnumLite { + MAP_AND_FILTER_FUSION(10), + OPTIONALMAPANDFILTERFUSION_NOT_SET(0); + private final int value; + private OptionalMapAndFilterFusionCase(int value) { + this.value = value; + } + /** + * @deprecated Use {@link #forNumber(int)} instead. + */ + @java.lang.Deprecated + public static OptionalMapAndFilterFusionCase valueOf(int value) { + return forNumber(value); + } + + public static OptionalMapAndFilterFusionCase forNumber(int value) { + switch (value) { + case 10: return MAP_AND_FILTER_FUSION; + case 0: return OPTIONALMAPANDFILTERFUSION_NOT_SET; + default: return null; + } + } + public int getNumber() { + return this.value; + } + }; + + public OptionalMapAndFilterFusionCase + getOptionalMapAndFilterFusionCase() { + return OptionalMapAndFilterFusionCase.forNumber( + optionalMapAndFilterFusionCase_); + } + + private int optionalMapFusionCase_ = 0; + private java.lang.Object optionalMapFusion_; + public enum OptionalMapFusionCase + implements com.google.protobuf.Internal.EnumLite { + MAP_FUSION(11), + OPTIONALMAPFUSION_NOT_SET(0); + private final int value; + private OptionalMapFusionCase(int value) { + this.value = value; + } + /** + * @deprecated Use {@link #forNumber(int)} instead. + */ + @java.lang.Deprecated + public static OptionalMapFusionCase valueOf(int value) { + return forNumber(value); + } + + public static OptionalMapFusionCase forNumber(int value) { + switch (value) { + case 11: return MAP_FUSION; + case 0: return OPTIONALMAPFUSION_NOT_SET; + default: return null; + } + } + public int getNumber() { + return this.value; + } + }; + + public OptionalMapFusionCase + getOptionalMapFusionCase() { + return OptionalMapFusionCase.forNumber( + optionalMapFusionCase_); + } + + private int optionalMapParallelizationCase_ = 0; + private java.lang.Object optionalMapParallelization_; + public enum OptionalMapParallelizationCase + implements com.google.protobuf.Internal.EnumLite { + MAP_PARALLELIZATION(12), + OPTIONALMAPPARALLELIZATION_NOT_SET(0); + private final int value; + private OptionalMapParallelizationCase(int value) { + this.value = value; + } + /** + * @deprecated Use {@link #forNumber(int)} instead. + */ + @java.lang.Deprecated + public static OptionalMapParallelizationCase valueOf(int value) { + return forNumber(value); + } + + public static OptionalMapParallelizationCase forNumber(int value) { + switch (value) { + case 12: return MAP_PARALLELIZATION; + case 0: return OPTIONALMAPPARALLELIZATION_NOT_SET; + default: return null; + } + } + public int getNumber() { + return this.value; + } + }; + + public OptionalMapParallelizationCase + getOptionalMapParallelizationCase() { + return OptionalMapParallelizationCase.forNumber( + optionalMapParallelizationCase_); + } + + private int optionalNoopEliminationCase_ = 0; + private java.lang.Object optionalNoopElimination_; + public enum OptionalNoopEliminationCase + implements com.google.protobuf.Internal.EnumLite { + NOOP_ELIMINATION(14), + OPTIONALNOOPELIMINATION_NOT_SET(0); + private final int value; + private OptionalNoopEliminationCase(int value) { + this.value = value; + } + /** + * @deprecated Use {@link #forNumber(int)} instead. + */ + @java.lang.Deprecated + public static OptionalNoopEliminationCase valueOf(int value) { + return forNumber(value); + } + + public static OptionalNoopEliminationCase forNumber(int value) { + switch (value) { + case 14: return NOOP_ELIMINATION; + case 0: return OPTIONALNOOPELIMINATION_NOT_SET; + default: return null; + } + } + public int getNumber() { + return this.value; + } + }; + + public OptionalNoopEliminationCase + getOptionalNoopEliminationCase() { + return OptionalNoopEliminationCase.forNumber( + optionalNoopEliminationCase_); + } + + private int optionalParallelBatchCase_ = 0; + private java.lang.Object optionalParallelBatch_; + public enum OptionalParallelBatchCase + implements com.google.protobuf.Internal.EnumLite { + PARALLEL_BATCH(15), + OPTIONALPARALLELBATCH_NOT_SET(0); + private final int value; + private OptionalParallelBatchCase(int value) { + this.value = value; + } + /** + * @deprecated Use {@link #forNumber(int)} instead. + */ + @java.lang.Deprecated + public static OptionalParallelBatchCase valueOf(int value) { + return forNumber(value); + } + + public static OptionalParallelBatchCase forNumber(int value) { + switch (value) { + case 15: return PARALLEL_BATCH; + case 0: return OPTIONALPARALLELBATCH_NOT_SET; + default: return null; + } + } + public int getNumber() { + return this.value; + } + }; + + public OptionalParallelBatchCase + getOptionalParallelBatchCase() { + return OptionalParallelBatchCase.forNumber( + optionalParallelBatchCase_); + } + + private int optionalReorderDataDiscardingOpsCase_ = 0; + private java.lang.Object optionalReorderDataDiscardingOps_; + public enum OptionalReorderDataDiscardingOpsCase + implements com.google.protobuf.Internal.EnumLite { + REORDER_DATA_DISCARDING_OPS(16), + OPTIONALREORDERDATADISCARDINGOPS_NOT_SET(0); + private final int value; + private OptionalReorderDataDiscardingOpsCase(int value) { + this.value = value; + } + /** + * @deprecated Use {@link #forNumber(int)} instead. + */ + @java.lang.Deprecated + public static OptionalReorderDataDiscardingOpsCase valueOf(int value) { + return forNumber(value); + } + + public static OptionalReorderDataDiscardingOpsCase forNumber(int value) { + switch (value) { + case 16: return REORDER_DATA_DISCARDING_OPS; + case 0: return OPTIONALREORDERDATADISCARDINGOPS_NOT_SET; + default: return null; + } + } + public int getNumber() { + return this.value; + } + }; + + public OptionalReorderDataDiscardingOpsCase + getOptionalReorderDataDiscardingOpsCase() { + return OptionalReorderDataDiscardingOpsCase.forNumber( + optionalReorderDataDiscardingOpsCase_); + } + + private int optionalShuffleAndRepeatFusionCase_ = 0; + private java.lang.Object optionalShuffleAndRepeatFusion_; + public enum OptionalShuffleAndRepeatFusionCase + implements com.google.protobuf.Internal.EnumLite { + SHUFFLE_AND_REPEAT_FUSION(17), + OPTIONALSHUFFLEANDREPEATFUSION_NOT_SET(0); + private final int value; + private OptionalShuffleAndRepeatFusionCase(int value) { + this.value = value; + } + /** + * @deprecated Use {@link #forNumber(int)} instead. + */ + @java.lang.Deprecated + public static OptionalShuffleAndRepeatFusionCase valueOf(int value) { + return forNumber(value); + } + + public static OptionalShuffleAndRepeatFusionCase forNumber(int value) { + switch (value) { + case 17: return SHUFFLE_AND_REPEAT_FUSION; + case 0: return OPTIONALSHUFFLEANDREPEATFUSION_NOT_SET; + default: return null; + } + } + public int getNumber() { + return this.value; + } + }; + + public OptionalShuffleAndRepeatFusionCase + getOptionalShuffleAndRepeatFusionCase() { + return OptionalShuffleAndRepeatFusionCase.forNumber( + optionalShuffleAndRepeatFusionCase_); + } + + public static final int APPLY_DEFAULT_OPTIMIZATIONS_FIELD_NUMBER = 1; + /** + * bool apply_default_optimizations = 1; + */ + public boolean getApplyDefaultOptimizations() { + if (optionalApplyDefaultOptimizationsCase_ == 1) { + return (java.lang.Boolean) optionalApplyDefaultOptimizations_; + } + return false; + } + + public static final int AUTOTUNE_FIELD_NUMBER = 2; + /** + * bool autotune = 2; + */ + public boolean getAutotune() { + if (optionalAutotuneCase_ == 2) { + return (java.lang.Boolean) optionalAutotune_; + } + return false; + } + + public static final int AUTOTUNE_BUFFERS_FIELD_NUMBER = 3; + /** + * bool autotune_buffers = 3; + */ + public boolean getAutotuneBuffers() { + if (optionalAutotuneBuffersCase_ == 3) { + return (java.lang.Boolean) optionalAutotuneBuffers_; + } + return false; + } + + public static final int AUTOTUNE_CPU_BUDGET_FIELD_NUMBER = 4; + /** + * int32 autotune_cpu_budget = 4; + */ + public int getAutotuneCpuBudget() { + if (optionalAutotuneCpuBudgetCase_ == 4) { + return (java.lang.Integer) optionalAutotuneCpuBudget_; + } + return 0; + } + + public static final int AUTOTUNE_RAM_BUDGET_FIELD_NUMBER = 5; + /** + * int32 autotune_ram_budget = 5; + */ + public int getAutotuneRamBudget() { + if (optionalAutotuneRamBudgetCase_ == 5) { + return (java.lang.Integer) optionalAutotuneRamBudget_; + } + return 0; + } + + public static final int FILTER_FUSION_FIELD_NUMBER = 6; + /** + * bool filter_fusion = 6; + */ + public boolean getFilterFusion() { + if (optionalFilterFusionCase_ == 6) { + return (java.lang.Boolean) optionalFilterFusion_; + } + return false; + } + + public static final int FILTER_WITH_RANDOM_UNIFORM_FUSION_FIELD_NUMBER = 7; + /** + * bool filter_with_random_uniform_fusion = 7; + */ + public boolean getFilterWithRandomUniformFusion() { + if (optionalFilterWithRandomUniformFusionCase_ == 7) { + return (java.lang.Boolean) optionalFilterWithRandomUniformFusion_; + } + return false; + } + + public static final int HOIST_RANDOM_UNIFORM_FIELD_NUMBER = 8; + /** + * bool hoist_random_uniform = 8; + */ + public boolean getHoistRandomUniform() { + if (optionalHoistRandomUniformCase_ == 8) { + return (java.lang.Boolean) optionalHoistRandomUniform_; + } + return false; + } + + public static final int MAP_AND_BATCH_FUSION_FIELD_NUMBER = 9; + /** + * bool map_and_batch_fusion = 9; + */ + public boolean getMapAndBatchFusion() { + if (optionalMapAndBatchFusionCase_ == 9) { + return (java.lang.Boolean) optionalMapAndBatchFusion_; + } + return false; + } + + public static final int MAP_AND_FILTER_FUSION_FIELD_NUMBER = 10; + /** + * bool map_and_filter_fusion = 10; + */ + public boolean getMapAndFilterFusion() { + if (optionalMapAndFilterFusionCase_ == 10) { + return (java.lang.Boolean) optionalMapAndFilterFusion_; + } + return false; + } + + public static final int MAP_FUSION_FIELD_NUMBER = 11; + /** + * bool map_fusion = 11; + */ + public boolean getMapFusion() { + if (optionalMapFusionCase_ == 11) { + return (java.lang.Boolean) optionalMapFusion_; + } + return false; + } + + public static final int MAP_PARALLELIZATION_FIELD_NUMBER = 12; + /** + * bool map_parallelization = 12; + */ + public boolean getMapParallelization() { + if (optionalMapParallelizationCase_ == 12) { + return (java.lang.Boolean) optionalMapParallelization_; + } + return false; + } + + public static final int MAP_VECTORIZATION_FIELD_NUMBER = 13; + private org.tensorflow.proto.data.MapVectorization mapVectorization_; + /** + *
        +   * The map vectorization options associated with the dataset.
        +   * 
        + * + * .tensorflow.data.MapVectorization map_vectorization = 13; + */ + public boolean hasMapVectorization() { + return mapVectorization_ != null; + } + /** + *
        +   * The map vectorization options associated with the dataset.
        +   * 
        + * + * .tensorflow.data.MapVectorization map_vectorization = 13; + */ + public org.tensorflow.proto.data.MapVectorization getMapVectorization() { + return mapVectorization_ == null ? org.tensorflow.proto.data.MapVectorization.getDefaultInstance() : mapVectorization_; + } + /** + *
        +   * The map vectorization options associated with the dataset.
        +   * 
        + * + * .tensorflow.data.MapVectorization map_vectorization = 13; + */ + public org.tensorflow.proto.data.MapVectorizationOrBuilder getMapVectorizationOrBuilder() { + return getMapVectorization(); + } + + public static final int NOOP_ELIMINATION_FIELD_NUMBER = 14; + /** + * bool noop_elimination = 14; + */ + public boolean getNoopElimination() { + if (optionalNoopEliminationCase_ == 14) { + return (java.lang.Boolean) optionalNoopElimination_; + } + return false; + } + + public static final int PARALLEL_BATCH_FIELD_NUMBER = 15; + /** + * bool parallel_batch = 15; + */ + public boolean getParallelBatch() { + if (optionalParallelBatchCase_ == 15) { + return (java.lang.Boolean) optionalParallelBatch_; + } + return false; + } + + public static final int REORDER_DATA_DISCARDING_OPS_FIELD_NUMBER = 16; + /** + * bool reorder_data_discarding_ops = 16; + */ + public boolean getReorderDataDiscardingOps() { + if (optionalReorderDataDiscardingOpsCase_ == 16) { + return (java.lang.Boolean) optionalReorderDataDiscardingOps_; + } + return false; + } + + public static final int SHUFFLE_AND_REPEAT_FUSION_FIELD_NUMBER = 17; + /** + * bool shuffle_and_repeat_fusion = 17; + */ + public boolean getShuffleAndRepeatFusion() { + if (optionalShuffleAndRepeatFusionCase_ == 17) { + return (java.lang.Boolean) optionalShuffleAndRepeatFusion_; + } + return false; + } + + private byte memoizedIsInitialized = -1; + @java.lang.Override + public final boolean isInitialized() { + byte isInitialized = memoizedIsInitialized; + if (isInitialized == 1) return true; + if (isInitialized == 0) return false; + + memoizedIsInitialized = 1; + return true; + } + + @java.lang.Override + public void writeTo(com.google.protobuf.CodedOutputStream output) + throws java.io.IOException { + if (optionalApplyDefaultOptimizationsCase_ == 1) { + output.writeBool( + 1, (boolean)((java.lang.Boolean) optionalApplyDefaultOptimizations_)); + } + if (optionalAutotuneCase_ == 2) { + output.writeBool( + 2, (boolean)((java.lang.Boolean) optionalAutotune_)); + } + if (optionalAutotuneBuffersCase_ == 3) { + output.writeBool( + 3, (boolean)((java.lang.Boolean) optionalAutotuneBuffers_)); + } + if (optionalAutotuneCpuBudgetCase_ == 4) { + output.writeInt32( + 4, (int)((java.lang.Integer) optionalAutotuneCpuBudget_)); + } + if (optionalAutotuneRamBudgetCase_ == 5) { + output.writeInt32( + 5, (int)((java.lang.Integer) optionalAutotuneRamBudget_)); + } + if (optionalFilterFusionCase_ == 6) { + output.writeBool( + 6, (boolean)((java.lang.Boolean) optionalFilterFusion_)); + } + if (optionalFilterWithRandomUniformFusionCase_ == 7) { + output.writeBool( + 7, (boolean)((java.lang.Boolean) optionalFilterWithRandomUniformFusion_)); + } + if (optionalHoistRandomUniformCase_ == 8) { + output.writeBool( + 8, (boolean)((java.lang.Boolean) optionalHoistRandomUniform_)); + } + if (optionalMapAndBatchFusionCase_ == 9) { + output.writeBool( + 9, (boolean)((java.lang.Boolean) optionalMapAndBatchFusion_)); + } + if (optionalMapAndFilterFusionCase_ == 10) { + output.writeBool( + 10, (boolean)((java.lang.Boolean) optionalMapAndFilterFusion_)); + } + if (optionalMapFusionCase_ == 11) { + output.writeBool( + 11, (boolean)((java.lang.Boolean) optionalMapFusion_)); + } + if (optionalMapParallelizationCase_ == 12) { + output.writeBool( + 12, (boolean)((java.lang.Boolean) optionalMapParallelization_)); + } + if (mapVectorization_ != null) { + output.writeMessage(13, getMapVectorization()); + } + if (optionalNoopEliminationCase_ == 14) { + output.writeBool( + 14, (boolean)((java.lang.Boolean) optionalNoopElimination_)); + } + if (optionalParallelBatchCase_ == 15) { + output.writeBool( + 15, (boolean)((java.lang.Boolean) optionalParallelBatch_)); + } + if (optionalReorderDataDiscardingOpsCase_ == 16) { + output.writeBool( + 16, (boolean)((java.lang.Boolean) optionalReorderDataDiscardingOps_)); + } + if (optionalShuffleAndRepeatFusionCase_ == 17) { + output.writeBool( + 17, (boolean)((java.lang.Boolean) optionalShuffleAndRepeatFusion_)); + } + unknownFields.writeTo(output); + } + + @java.lang.Override + public int getSerializedSize() { + int size = memoizedSize; + if (size != -1) return size; + + size = 0; + if (optionalApplyDefaultOptimizationsCase_ == 1) { + size += com.google.protobuf.CodedOutputStream + .computeBoolSize( + 1, (boolean)((java.lang.Boolean) optionalApplyDefaultOptimizations_)); + } + if (optionalAutotuneCase_ == 2) { + size += com.google.protobuf.CodedOutputStream + .computeBoolSize( + 2, (boolean)((java.lang.Boolean) optionalAutotune_)); + } + if (optionalAutotuneBuffersCase_ == 3) { + size += com.google.protobuf.CodedOutputStream + .computeBoolSize( + 3, (boolean)((java.lang.Boolean) optionalAutotuneBuffers_)); + } + if (optionalAutotuneCpuBudgetCase_ == 4) { + size += com.google.protobuf.CodedOutputStream + .computeInt32Size( + 4, (int)((java.lang.Integer) optionalAutotuneCpuBudget_)); + } + if (optionalAutotuneRamBudgetCase_ == 5) { + size += com.google.protobuf.CodedOutputStream + .computeInt32Size( + 5, (int)((java.lang.Integer) optionalAutotuneRamBudget_)); + } + if (optionalFilterFusionCase_ == 6) { + size += com.google.protobuf.CodedOutputStream + .computeBoolSize( + 6, (boolean)((java.lang.Boolean) optionalFilterFusion_)); + } + if (optionalFilterWithRandomUniformFusionCase_ == 7) { + size += com.google.protobuf.CodedOutputStream + .computeBoolSize( + 7, (boolean)((java.lang.Boolean) optionalFilterWithRandomUniformFusion_)); + } + if (optionalHoistRandomUniformCase_ == 8) { + size += com.google.protobuf.CodedOutputStream + .computeBoolSize( + 8, (boolean)((java.lang.Boolean) optionalHoistRandomUniform_)); + } + if (optionalMapAndBatchFusionCase_ == 9) { + size += com.google.protobuf.CodedOutputStream + .computeBoolSize( + 9, (boolean)((java.lang.Boolean) optionalMapAndBatchFusion_)); + } + if (optionalMapAndFilterFusionCase_ == 10) { + size += com.google.protobuf.CodedOutputStream + .computeBoolSize( + 10, (boolean)((java.lang.Boolean) optionalMapAndFilterFusion_)); + } + if (optionalMapFusionCase_ == 11) { + size += com.google.protobuf.CodedOutputStream + .computeBoolSize( + 11, (boolean)((java.lang.Boolean) optionalMapFusion_)); + } + if (optionalMapParallelizationCase_ == 12) { + size += com.google.protobuf.CodedOutputStream + .computeBoolSize( + 12, (boolean)((java.lang.Boolean) optionalMapParallelization_)); + } + if (mapVectorization_ != null) { + size += com.google.protobuf.CodedOutputStream + .computeMessageSize(13, getMapVectorization()); + } + if (optionalNoopEliminationCase_ == 14) { + size += com.google.protobuf.CodedOutputStream + .computeBoolSize( + 14, (boolean)((java.lang.Boolean) optionalNoopElimination_)); + } + if (optionalParallelBatchCase_ == 15) { + size += com.google.protobuf.CodedOutputStream + .computeBoolSize( + 15, (boolean)((java.lang.Boolean) optionalParallelBatch_)); + } + if (optionalReorderDataDiscardingOpsCase_ == 16) { + size += com.google.protobuf.CodedOutputStream + .computeBoolSize( + 16, (boolean)((java.lang.Boolean) optionalReorderDataDiscardingOps_)); + } + if (optionalShuffleAndRepeatFusionCase_ == 17) { + size += com.google.protobuf.CodedOutputStream + .computeBoolSize( + 17, (boolean)((java.lang.Boolean) optionalShuffleAndRepeatFusion_)); + } + size += unknownFields.getSerializedSize(); + memoizedSize = size; + return size; + } + + @java.lang.Override + public boolean equals(final java.lang.Object obj) { + if (obj == this) { + return true; + } + if (!(obj instanceof org.tensorflow.proto.data.OptimizationOptions)) { + return super.equals(obj); + } + org.tensorflow.proto.data.OptimizationOptions other = (org.tensorflow.proto.data.OptimizationOptions) obj; + + if (hasMapVectorization() != other.hasMapVectorization()) return false; + if (hasMapVectorization()) { + if (!getMapVectorization() + .equals(other.getMapVectorization())) return false; + } + if (!getOptionalApplyDefaultOptimizationsCase().equals(other.getOptionalApplyDefaultOptimizationsCase())) return false; + switch (optionalApplyDefaultOptimizationsCase_) { + case 1: + if (getApplyDefaultOptimizations() + != other.getApplyDefaultOptimizations()) return false; + break; + case 0: + default: + } + if (!getOptionalAutotuneCase().equals(other.getOptionalAutotuneCase())) return false; + switch (optionalAutotuneCase_) { + case 2: + if (getAutotune() + != other.getAutotune()) return false; + break; + case 0: + default: + } + if (!getOptionalAutotuneBuffersCase().equals(other.getOptionalAutotuneBuffersCase())) return false; + switch (optionalAutotuneBuffersCase_) { + case 3: + if (getAutotuneBuffers() + != other.getAutotuneBuffers()) return false; + break; + case 0: + default: + } + if (!getOptionalAutotuneCpuBudgetCase().equals(other.getOptionalAutotuneCpuBudgetCase())) return false; + switch (optionalAutotuneCpuBudgetCase_) { + case 4: + if (getAutotuneCpuBudget() + != other.getAutotuneCpuBudget()) return false; + break; + case 0: + default: + } + if (!getOptionalAutotuneRamBudgetCase().equals(other.getOptionalAutotuneRamBudgetCase())) return false; + switch (optionalAutotuneRamBudgetCase_) { + case 5: + if (getAutotuneRamBudget() + != other.getAutotuneRamBudget()) return false; + break; + case 0: + default: + } + if (!getOptionalFilterFusionCase().equals(other.getOptionalFilterFusionCase())) return false; + switch (optionalFilterFusionCase_) { + case 6: + if (getFilterFusion() + != other.getFilterFusion()) return false; + break; + case 0: + default: + } + if (!getOptionalFilterWithRandomUniformFusionCase().equals(other.getOptionalFilterWithRandomUniformFusionCase())) return false; + switch (optionalFilterWithRandomUniformFusionCase_) { + case 7: + if (getFilterWithRandomUniformFusion() + != other.getFilterWithRandomUniformFusion()) return false; + break; + case 0: + default: + } + if (!getOptionalHoistRandomUniformCase().equals(other.getOptionalHoistRandomUniformCase())) return false; + switch (optionalHoistRandomUniformCase_) { + case 8: + if (getHoistRandomUniform() + != other.getHoistRandomUniform()) return false; + break; + case 0: + default: + } + if (!getOptionalMapAndBatchFusionCase().equals(other.getOptionalMapAndBatchFusionCase())) return false; + switch (optionalMapAndBatchFusionCase_) { + case 9: + if (getMapAndBatchFusion() + != other.getMapAndBatchFusion()) return false; + break; + case 0: + default: + } + if (!getOptionalMapAndFilterFusionCase().equals(other.getOptionalMapAndFilterFusionCase())) return false; + switch (optionalMapAndFilterFusionCase_) { + case 10: + if (getMapAndFilterFusion() + != other.getMapAndFilterFusion()) return false; + break; + case 0: + default: + } + if (!getOptionalMapFusionCase().equals(other.getOptionalMapFusionCase())) return false; + switch (optionalMapFusionCase_) { + case 11: + if (getMapFusion() + != other.getMapFusion()) return false; + break; + case 0: + default: + } + if (!getOptionalMapParallelizationCase().equals(other.getOptionalMapParallelizationCase())) return false; + switch (optionalMapParallelizationCase_) { + case 12: + if (getMapParallelization() + != other.getMapParallelization()) return false; + break; + case 0: + default: + } + if (!getOptionalNoopEliminationCase().equals(other.getOptionalNoopEliminationCase())) return false; + switch (optionalNoopEliminationCase_) { + case 14: + if (getNoopElimination() + != other.getNoopElimination()) return false; + break; + case 0: + default: + } + if (!getOptionalParallelBatchCase().equals(other.getOptionalParallelBatchCase())) return false; + switch (optionalParallelBatchCase_) { + case 15: + if (getParallelBatch() + != other.getParallelBatch()) return false; + break; + case 0: + default: + } + if (!getOptionalReorderDataDiscardingOpsCase().equals(other.getOptionalReorderDataDiscardingOpsCase())) return false; + switch (optionalReorderDataDiscardingOpsCase_) { + case 16: + if (getReorderDataDiscardingOps() + != other.getReorderDataDiscardingOps()) return false; + break; + case 0: + default: + } + if (!getOptionalShuffleAndRepeatFusionCase().equals(other.getOptionalShuffleAndRepeatFusionCase())) return false; + switch (optionalShuffleAndRepeatFusionCase_) { + case 17: + if (getShuffleAndRepeatFusion() + != other.getShuffleAndRepeatFusion()) return false; + break; + case 0: + default: + } + if (!unknownFields.equals(other.unknownFields)) return false; + return true; + } + + @java.lang.Override + public int hashCode() { + if (memoizedHashCode != 0) { + return memoizedHashCode; + } + int hash = 41; + hash = (19 * hash) + getDescriptor().hashCode(); + if (hasMapVectorization()) { + hash = (37 * hash) + MAP_VECTORIZATION_FIELD_NUMBER; + hash = (53 * hash) + getMapVectorization().hashCode(); + } + switch (optionalApplyDefaultOptimizationsCase_) { + case 1: + hash = (37 * hash) + APPLY_DEFAULT_OPTIMIZATIONS_FIELD_NUMBER; + hash = (53 * hash) + com.google.protobuf.Internal.hashBoolean( + getApplyDefaultOptimizations()); + break; + case 0: + default: + } + switch (optionalAutotuneCase_) { + case 2: + hash = (37 * hash) + AUTOTUNE_FIELD_NUMBER; + hash = (53 * hash) + com.google.protobuf.Internal.hashBoolean( + getAutotune()); + break; + case 0: + default: + } + switch (optionalAutotuneBuffersCase_) { + case 3: + hash = (37 * hash) + AUTOTUNE_BUFFERS_FIELD_NUMBER; + hash = (53 * hash) + com.google.protobuf.Internal.hashBoolean( + getAutotuneBuffers()); + break; + case 0: + default: + } + switch (optionalAutotuneCpuBudgetCase_) { + case 4: + hash = (37 * hash) + AUTOTUNE_CPU_BUDGET_FIELD_NUMBER; + hash = (53 * hash) + getAutotuneCpuBudget(); + break; + case 0: + default: + } + switch (optionalAutotuneRamBudgetCase_) { + case 5: + hash = (37 * hash) + AUTOTUNE_RAM_BUDGET_FIELD_NUMBER; + hash = (53 * hash) + getAutotuneRamBudget(); + break; + case 0: + default: + } + switch (optionalFilterFusionCase_) { + case 6: + hash = (37 * hash) + FILTER_FUSION_FIELD_NUMBER; + hash = (53 * hash) + com.google.protobuf.Internal.hashBoolean( + getFilterFusion()); + break; + case 0: + default: + } + switch (optionalFilterWithRandomUniformFusionCase_) { + case 7: + hash = (37 * hash) + FILTER_WITH_RANDOM_UNIFORM_FUSION_FIELD_NUMBER; + hash = (53 * hash) + com.google.protobuf.Internal.hashBoolean( + getFilterWithRandomUniformFusion()); + break; + case 0: + default: + } + switch (optionalHoistRandomUniformCase_) { + case 8: + hash = (37 * hash) + HOIST_RANDOM_UNIFORM_FIELD_NUMBER; + hash = (53 * hash) + com.google.protobuf.Internal.hashBoolean( + getHoistRandomUniform()); + break; + case 0: + default: + } + switch (optionalMapAndBatchFusionCase_) { + case 9: + hash = (37 * hash) + MAP_AND_BATCH_FUSION_FIELD_NUMBER; + hash = (53 * hash) + com.google.protobuf.Internal.hashBoolean( + getMapAndBatchFusion()); + break; + case 0: + default: + } + switch (optionalMapAndFilterFusionCase_) { + case 10: + hash = (37 * hash) + MAP_AND_FILTER_FUSION_FIELD_NUMBER; + hash = (53 * hash) + com.google.protobuf.Internal.hashBoolean( + getMapAndFilterFusion()); + break; + case 0: + default: + } + switch (optionalMapFusionCase_) { + case 11: + hash = (37 * hash) + MAP_FUSION_FIELD_NUMBER; + hash = (53 * hash) + com.google.protobuf.Internal.hashBoolean( + getMapFusion()); + break; + case 0: + default: + } + switch (optionalMapParallelizationCase_) { + case 12: + hash = (37 * hash) + MAP_PARALLELIZATION_FIELD_NUMBER; + hash = (53 * hash) + com.google.protobuf.Internal.hashBoolean( + getMapParallelization()); + break; + case 0: + default: + } + switch (optionalNoopEliminationCase_) { + case 14: + hash = (37 * hash) + NOOP_ELIMINATION_FIELD_NUMBER; + hash = (53 * hash) + com.google.protobuf.Internal.hashBoolean( + getNoopElimination()); + break; + case 0: + default: + } + switch (optionalParallelBatchCase_) { + case 15: + hash = (37 * hash) + PARALLEL_BATCH_FIELD_NUMBER; + hash = (53 * hash) + com.google.protobuf.Internal.hashBoolean( + getParallelBatch()); + break; + case 0: + default: + } + switch (optionalReorderDataDiscardingOpsCase_) { + case 16: + hash = (37 * hash) + REORDER_DATA_DISCARDING_OPS_FIELD_NUMBER; + hash = (53 * hash) + com.google.protobuf.Internal.hashBoolean( + getReorderDataDiscardingOps()); + break; + case 0: + default: + } + switch (optionalShuffleAndRepeatFusionCase_) { + case 17: + hash = (37 * hash) + SHUFFLE_AND_REPEAT_FUSION_FIELD_NUMBER; + hash = (53 * hash) + com.google.protobuf.Internal.hashBoolean( + getShuffleAndRepeatFusion()); + break; + case 0: + default: + } + hash = (29 * hash) + unknownFields.hashCode(); + memoizedHashCode = hash; + return hash; + } + + public static org.tensorflow.proto.data.OptimizationOptions parseFrom( + java.nio.ByteBuffer data) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data); + } + public static org.tensorflow.proto.data.OptimizationOptions parseFrom( + java.nio.ByteBuffer data, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data, extensionRegistry); + } + public static org.tensorflow.proto.data.OptimizationOptions parseFrom( + com.google.protobuf.ByteString data) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data); + } + public static org.tensorflow.proto.data.OptimizationOptions parseFrom( + com.google.protobuf.ByteString data, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data, extensionRegistry); + } + public static org.tensorflow.proto.data.OptimizationOptions parseFrom(byte[] data) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data); + } + public static org.tensorflow.proto.data.OptimizationOptions parseFrom( + byte[] data, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data, extensionRegistry); + } + public static org.tensorflow.proto.data.OptimizationOptions parseFrom(java.io.InputStream input) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input); + } + public static org.tensorflow.proto.data.OptimizationOptions parseFrom( + java.io.InputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input, extensionRegistry); + } + public static org.tensorflow.proto.data.OptimizationOptions parseDelimitedFrom(java.io.InputStream input) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseDelimitedWithIOException(PARSER, input); + } + public static org.tensorflow.proto.data.OptimizationOptions parseDelimitedFrom( + java.io.InputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseDelimitedWithIOException(PARSER, input, extensionRegistry); + } + public static org.tensorflow.proto.data.OptimizationOptions parseFrom( + com.google.protobuf.CodedInputStream input) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input); + } + public static org.tensorflow.proto.data.OptimizationOptions parseFrom( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input, extensionRegistry); + } + + @java.lang.Override + public Builder newBuilderForType() { return newBuilder(); } + public static Builder newBuilder() { + return DEFAULT_INSTANCE.toBuilder(); + } + public static Builder newBuilder(org.tensorflow.proto.data.OptimizationOptions prototype) { + return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); + } + @java.lang.Override + public Builder toBuilder() { + return this == DEFAULT_INSTANCE + ? new Builder() : new Builder().mergeFrom(this); + } + + @java.lang.Override + protected Builder newBuilderForType( + com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { + Builder builder = new Builder(parent); + return builder; + } + /** + * Protobuf type {@code tensorflow.data.OptimizationOptions} + */ + public static final class Builder extends + com.google.protobuf.GeneratedMessageV3.Builder implements + // @@protoc_insertion_point(builder_implements:tensorflow.data.OptimizationOptions) + org.tensorflow.proto.data.OptimizationOptionsOrBuilder { + public static final com.google.protobuf.Descriptors.Descriptor + getDescriptor() { + return org.tensorflow.proto.data.DatasetOptionsProtos.internal_static_tensorflow_data_OptimizationOptions_descriptor; + } + + @java.lang.Override + protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable + internalGetFieldAccessorTable() { + return org.tensorflow.proto.data.DatasetOptionsProtos.internal_static_tensorflow_data_OptimizationOptions_fieldAccessorTable + .ensureFieldAccessorsInitialized( + org.tensorflow.proto.data.OptimizationOptions.class, org.tensorflow.proto.data.OptimizationOptions.Builder.class); + } + + // Construct using org.tensorflow.proto.data.OptimizationOptions.newBuilder() + private Builder() { + maybeForceBuilderInitialization(); + } + + private Builder( + com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { + super(parent); + maybeForceBuilderInitialization(); + } + private void maybeForceBuilderInitialization() { + if (com.google.protobuf.GeneratedMessageV3 + .alwaysUseFieldBuilders) { + } + } + @java.lang.Override + public Builder clear() { + super.clear(); + if (mapVectorizationBuilder_ == null) { + mapVectorization_ = null; + } else { + mapVectorization_ = null; + mapVectorizationBuilder_ = null; + } + optionalApplyDefaultOptimizationsCase_ = 0; + optionalApplyDefaultOptimizations_ = null; + optionalAutotuneCase_ = 0; + optionalAutotune_ = null; + optionalAutotuneBuffersCase_ = 0; + optionalAutotuneBuffers_ = null; + optionalAutotuneCpuBudgetCase_ = 0; + optionalAutotuneCpuBudget_ = null; + optionalAutotuneRamBudgetCase_ = 0; + optionalAutotuneRamBudget_ = null; + optionalFilterFusionCase_ = 0; + optionalFilterFusion_ = null; + optionalFilterWithRandomUniformFusionCase_ = 0; + optionalFilterWithRandomUniformFusion_ = null; + optionalHoistRandomUniformCase_ = 0; + optionalHoistRandomUniform_ = null; + optionalMapAndBatchFusionCase_ = 0; + optionalMapAndBatchFusion_ = null; + optionalMapAndFilterFusionCase_ = 0; + optionalMapAndFilterFusion_ = null; + optionalMapFusionCase_ = 0; + optionalMapFusion_ = null; + optionalMapParallelizationCase_ = 0; + optionalMapParallelization_ = null; + optionalNoopEliminationCase_ = 0; + optionalNoopElimination_ = null; + optionalParallelBatchCase_ = 0; + optionalParallelBatch_ = null; + optionalReorderDataDiscardingOpsCase_ = 0; + optionalReorderDataDiscardingOps_ = null; + optionalShuffleAndRepeatFusionCase_ = 0; + optionalShuffleAndRepeatFusion_ = null; + return this; + } + + @java.lang.Override + public com.google.protobuf.Descriptors.Descriptor + getDescriptorForType() { + return org.tensorflow.proto.data.DatasetOptionsProtos.internal_static_tensorflow_data_OptimizationOptions_descriptor; + } + + @java.lang.Override + public org.tensorflow.proto.data.OptimizationOptions getDefaultInstanceForType() { + return org.tensorflow.proto.data.OptimizationOptions.getDefaultInstance(); + } + + @java.lang.Override + public org.tensorflow.proto.data.OptimizationOptions build() { + org.tensorflow.proto.data.OptimizationOptions result = buildPartial(); + if (!result.isInitialized()) { + throw newUninitializedMessageException(result); + } + return result; + } + + @java.lang.Override + public org.tensorflow.proto.data.OptimizationOptions buildPartial() { + org.tensorflow.proto.data.OptimizationOptions result = new org.tensorflow.proto.data.OptimizationOptions(this); + if (optionalApplyDefaultOptimizationsCase_ == 1) { + result.optionalApplyDefaultOptimizations_ = optionalApplyDefaultOptimizations_; + } + if (optionalAutotuneCase_ == 2) { + result.optionalAutotune_ = optionalAutotune_; + } + if (optionalAutotuneBuffersCase_ == 3) { + result.optionalAutotuneBuffers_ = optionalAutotuneBuffers_; + } + if (optionalAutotuneCpuBudgetCase_ == 4) { + result.optionalAutotuneCpuBudget_ = optionalAutotuneCpuBudget_; + } + if (optionalAutotuneRamBudgetCase_ == 5) { + result.optionalAutotuneRamBudget_ = optionalAutotuneRamBudget_; + } + if (optionalFilterFusionCase_ == 6) { + result.optionalFilterFusion_ = optionalFilterFusion_; + } + if (optionalFilterWithRandomUniformFusionCase_ == 7) { + result.optionalFilterWithRandomUniformFusion_ = optionalFilterWithRandomUniformFusion_; + } + if (optionalHoistRandomUniformCase_ == 8) { + result.optionalHoistRandomUniform_ = optionalHoistRandomUniform_; + } + if (optionalMapAndBatchFusionCase_ == 9) { + result.optionalMapAndBatchFusion_ = optionalMapAndBatchFusion_; + } + if (optionalMapAndFilterFusionCase_ == 10) { + result.optionalMapAndFilterFusion_ = optionalMapAndFilterFusion_; + } + if (optionalMapFusionCase_ == 11) { + result.optionalMapFusion_ = optionalMapFusion_; + } + if (optionalMapParallelizationCase_ == 12) { + result.optionalMapParallelization_ = optionalMapParallelization_; + } + if (mapVectorizationBuilder_ == null) { + result.mapVectorization_ = mapVectorization_; + } else { + result.mapVectorization_ = mapVectorizationBuilder_.build(); + } + if (optionalNoopEliminationCase_ == 14) { + result.optionalNoopElimination_ = optionalNoopElimination_; + } + if (optionalParallelBatchCase_ == 15) { + result.optionalParallelBatch_ = optionalParallelBatch_; + } + if (optionalReorderDataDiscardingOpsCase_ == 16) { + result.optionalReorderDataDiscardingOps_ = optionalReorderDataDiscardingOps_; + } + if (optionalShuffleAndRepeatFusionCase_ == 17) { + result.optionalShuffleAndRepeatFusion_ = optionalShuffleAndRepeatFusion_; + } + result.optionalApplyDefaultOptimizationsCase_ = optionalApplyDefaultOptimizationsCase_; + result.optionalAutotuneCase_ = optionalAutotuneCase_; + result.optionalAutotuneBuffersCase_ = optionalAutotuneBuffersCase_; + result.optionalAutotuneCpuBudgetCase_ = optionalAutotuneCpuBudgetCase_; + result.optionalAutotuneRamBudgetCase_ = optionalAutotuneRamBudgetCase_; + result.optionalFilterFusionCase_ = optionalFilterFusionCase_; + result.optionalFilterWithRandomUniformFusionCase_ = optionalFilterWithRandomUniformFusionCase_; + result.optionalHoistRandomUniformCase_ = optionalHoistRandomUniformCase_; + result.optionalMapAndBatchFusionCase_ = optionalMapAndBatchFusionCase_; + result.optionalMapAndFilterFusionCase_ = optionalMapAndFilterFusionCase_; + result.optionalMapFusionCase_ = optionalMapFusionCase_; + result.optionalMapParallelizationCase_ = optionalMapParallelizationCase_; + result.optionalNoopEliminationCase_ = optionalNoopEliminationCase_; + result.optionalParallelBatchCase_ = optionalParallelBatchCase_; + result.optionalReorderDataDiscardingOpsCase_ = optionalReorderDataDiscardingOpsCase_; + result.optionalShuffleAndRepeatFusionCase_ = optionalShuffleAndRepeatFusionCase_; + onBuilt(); + return result; + } + + @java.lang.Override + public Builder clone() { + return super.clone(); + } + @java.lang.Override + public Builder setField( + com.google.protobuf.Descriptors.FieldDescriptor field, + java.lang.Object value) { + return super.setField(field, value); + } + @java.lang.Override + public Builder clearField( + com.google.protobuf.Descriptors.FieldDescriptor field) { + return super.clearField(field); + } + @java.lang.Override + public Builder clearOneof( + com.google.protobuf.Descriptors.OneofDescriptor oneof) { + return super.clearOneof(oneof); + } + @java.lang.Override + public Builder setRepeatedField( + com.google.protobuf.Descriptors.FieldDescriptor field, + int index, java.lang.Object value) { + return super.setRepeatedField(field, index, value); + } + @java.lang.Override + public Builder addRepeatedField( + com.google.protobuf.Descriptors.FieldDescriptor field, + java.lang.Object value) { + return super.addRepeatedField(field, value); + } + @java.lang.Override + public Builder mergeFrom(com.google.protobuf.Message other) { + if (other instanceof org.tensorflow.proto.data.OptimizationOptions) { + return mergeFrom((org.tensorflow.proto.data.OptimizationOptions)other); + } else { + super.mergeFrom(other); + return this; + } + } + + public Builder mergeFrom(org.tensorflow.proto.data.OptimizationOptions other) { + if (other == org.tensorflow.proto.data.OptimizationOptions.getDefaultInstance()) return this; + if (other.hasMapVectorization()) { + mergeMapVectorization(other.getMapVectorization()); + } + switch (other.getOptionalApplyDefaultOptimizationsCase()) { + case APPLY_DEFAULT_OPTIMIZATIONS: { + setApplyDefaultOptimizations(other.getApplyDefaultOptimizations()); + break; + } + case OPTIONALAPPLYDEFAULTOPTIMIZATIONS_NOT_SET: { + break; + } + } + switch (other.getOptionalAutotuneCase()) { + case AUTOTUNE: { + setAutotune(other.getAutotune()); + break; + } + case OPTIONALAUTOTUNE_NOT_SET: { + break; + } + } + switch (other.getOptionalAutotuneBuffersCase()) { + case AUTOTUNE_BUFFERS: { + setAutotuneBuffers(other.getAutotuneBuffers()); + break; + } + case OPTIONALAUTOTUNEBUFFERS_NOT_SET: { + break; + } + } + switch (other.getOptionalAutotuneCpuBudgetCase()) { + case AUTOTUNE_CPU_BUDGET: { + setAutotuneCpuBudget(other.getAutotuneCpuBudget()); + break; + } + case OPTIONALAUTOTUNECPUBUDGET_NOT_SET: { + break; + } + } + switch (other.getOptionalAutotuneRamBudgetCase()) { + case AUTOTUNE_RAM_BUDGET: { + setAutotuneRamBudget(other.getAutotuneRamBudget()); + break; + } + case OPTIONALAUTOTUNERAMBUDGET_NOT_SET: { + break; + } + } + switch (other.getOptionalFilterFusionCase()) { + case FILTER_FUSION: { + setFilterFusion(other.getFilterFusion()); + break; + } + case OPTIONALFILTERFUSION_NOT_SET: { + break; + } + } + switch (other.getOptionalFilterWithRandomUniformFusionCase()) { + case FILTER_WITH_RANDOM_UNIFORM_FUSION: { + setFilterWithRandomUniformFusion(other.getFilterWithRandomUniformFusion()); + break; + } + case OPTIONALFILTERWITHRANDOMUNIFORMFUSION_NOT_SET: { + break; + } + } + switch (other.getOptionalHoistRandomUniformCase()) { + case HOIST_RANDOM_UNIFORM: { + setHoistRandomUniform(other.getHoistRandomUniform()); + break; + } + case OPTIONALHOISTRANDOMUNIFORM_NOT_SET: { + break; + } + } + switch (other.getOptionalMapAndBatchFusionCase()) { + case MAP_AND_BATCH_FUSION: { + setMapAndBatchFusion(other.getMapAndBatchFusion()); + break; + } + case OPTIONALMAPANDBATCHFUSION_NOT_SET: { + break; + } + } + switch (other.getOptionalMapAndFilterFusionCase()) { + case MAP_AND_FILTER_FUSION: { + setMapAndFilterFusion(other.getMapAndFilterFusion()); + break; + } + case OPTIONALMAPANDFILTERFUSION_NOT_SET: { + break; + } + } + switch (other.getOptionalMapFusionCase()) { + case MAP_FUSION: { + setMapFusion(other.getMapFusion()); + break; + } + case OPTIONALMAPFUSION_NOT_SET: { + break; + } + } + switch (other.getOptionalMapParallelizationCase()) { + case MAP_PARALLELIZATION: { + setMapParallelization(other.getMapParallelization()); + break; + } + case OPTIONALMAPPARALLELIZATION_NOT_SET: { + break; + } + } + switch (other.getOptionalNoopEliminationCase()) { + case NOOP_ELIMINATION: { + setNoopElimination(other.getNoopElimination()); + break; + } + case OPTIONALNOOPELIMINATION_NOT_SET: { + break; + } + } + switch (other.getOptionalParallelBatchCase()) { + case PARALLEL_BATCH: { + setParallelBatch(other.getParallelBatch()); + break; + } + case OPTIONALPARALLELBATCH_NOT_SET: { + break; + } + } + switch (other.getOptionalReorderDataDiscardingOpsCase()) { + case REORDER_DATA_DISCARDING_OPS: { + setReorderDataDiscardingOps(other.getReorderDataDiscardingOps()); + break; + } + case OPTIONALREORDERDATADISCARDINGOPS_NOT_SET: { + break; + } + } + switch (other.getOptionalShuffleAndRepeatFusionCase()) { + case SHUFFLE_AND_REPEAT_FUSION: { + setShuffleAndRepeatFusion(other.getShuffleAndRepeatFusion()); + break; + } + case OPTIONALSHUFFLEANDREPEATFUSION_NOT_SET: { + break; + } + } + this.mergeUnknownFields(other.unknownFields); + onChanged(); + return this; + } + + @java.lang.Override + public final boolean isInitialized() { + return true; + } + + @java.lang.Override + public Builder mergeFrom( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + org.tensorflow.proto.data.OptimizationOptions parsedMessage = null; + try { + parsedMessage = PARSER.parsePartialFrom(input, extensionRegistry); + } catch (com.google.protobuf.InvalidProtocolBufferException e) { + parsedMessage = (org.tensorflow.proto.data.OptimizationOptions) e.getUnfinishedMessage(); + throw e.unwrapIOException(); + } finally { + if (parsedMessage != null) { + mergeFrom(parsedMessage); + } + } + return this; + } + private int optionalApplyDefaultOptimizationsCase_ = 0; + private java.lang.Object optionalApplyDefaultOptimizations_; + public OptionalApplyDefaultOptimizationsCase + getOptionalApplyDefaultOptimizationsCase() { + return OptionalApplyDefaultOptimizationsCase.forNumber( + optionalApplyDefaultOptimizationsCase_); + } + + public Builder clearOptionalApplyDefaultOptimizations() { + optionalApplyDefaultOptimizationsCase_ = 0; + optionalApplyDefaultOptimizations_ = null; + onChanged(); + return this; + } + + private int optionalAutotuneCase_ = 0; + private java.lang.Object optionalAutotune_; + public OptionalAutotuneCase + getOptionalAutotuneCase() { + return OptionalAutotuneCase.forNumber( + optionalAutotuneCase_); + } + + public Builder clearOptionalAutotune() { + optionalAutotuneCase_ = 0; + optionalAutotune_ = null; + onChanged(); + return this; + } + + private int optionalAutotuneBuffersCase_ = 0; + private java.lang.Object optionalAutotuneBuffers_; + public OptionalAutotuneBuffersCase + getOptionalAutotuneBuffersCase() { + return OptionalAutotuneBuffersCase.forNumber( + optionalAutotuneBuffersCase_); + } + + public Builder clearOptionalAutotuneBuffers() { + optionalAutotuneBuffersCase_ = 0; + optionalAutotuneBuffers_ = null; + onChanged(); + return this; + } + + private int optionalAutotuneCpuBudgetCase_ = 0; + private java.lang.Object optionalAutotuneCpuBudget_; + public OptionalAutotuneCpuBudgetCase + getOptionalAutotuneCpuBudgetCase() { + return OptionalAutotuneCpuBudgetCase.forNumber( + optionalAutotuneCpuBudgetCase_); + } + + public Builder clearOptionalAutotuneCpuBudget() { + optionalAutotuneCpuBudgetCase_ = 0; + optionalAutotuneCpuBudget_ = null; + onChanged(); + return this; + } + + private int optionalAutotuneRamBudgetCase_ = 0; + private java.lang.Object optionalAutotuneRamBudget_; + public OptionalAutotuneRamBudgetCase + getOptionalAutotuneRamBudgetCase() { + return OptionalAutotuneRamBudgetCase.forNumber( + optionalAutotuneRamBudgetCase_); + } + + public Builder clearOptionalAutotuneRamBudget() { + optionalAutotuneRamBudgetCase_ = 0; + optionalAutotuneRamBudget_ = null; + onChanged(); + return this; + } + + private int optionalFilterFusionCase_ = 0; + private java.lang.Object optionalFilterFusion_; + public OptionalFilterFusionCase + getOptionalFilterFusionCase() { + return OptionalFilterFusionCase.forNumber( + optionalFilterFusionCase_); + } + + public Builder clearOptionalFilterFusion() { + optionalFilterFusionCase_ = 0; + optionalFilterFusion_ = null; + onChanged(); + return this; + } + + private int optionalFilterWithRandomUniformFusionCase_ = 0; + private java.lang.Object optionalFilterWithRandomUniformFusion_; + public OptionalFilterWithRandomUniformFusionCase + getOptionalFilterWithRandomUniformFusionCase() { + return OptionalFilterWithRandomUniformFusionCase.forNumber( + optionalFilterWithRandomUniformFusionCase_); + } + + public Builder clearOptionalFilterWithRandomUniformFusion() { + optionalFilterWithRandomUniformFusionCase_ = 0; + optionalFilterWithRandomUniformFusion_ = null; + onChanged(); + return this; + } + + private int optionalHoistRandomUniformCase_ = 0; + private java.lang.Object optionalHoistRandomUniform_; + public OptionalHoistRandomUniformCase + getOptionalHoistRandomUniformCase() { + return OptionalHoistRandomUniformCase.forNumber( + optionalHoistRandomUniformCase_); + } + + public Builder clearOptionalHoistRandomUniform() { + optionalHoistRandomUniformCase_ = 0; + optionalHoistRandomUniform_ = null; + onChanged(); + return this; + } + + private int optionalMapAndBatchFusionCase_ = 0; + private java.lang.Object optionalMapAndBatchFusion_; + public OptionalMapAndBatchFusionCase + getOptionalMapAndBatchFusionCase() { + return OptionalMapAndBatchFusionCase.forNumber( + optionalMapAndBatchFusionCase_); + } + + public Builder clearOptionalMapAndBatchFusion() { + optionalMapAndBatchFusionCase_ = 0; + optionalMapAndBatchFusion_ = null; + onChanged(); + return this; + } + + private int optionalMapAndFilterFusionCase_ = 0; + private java.lang.Object optionalMapAndFilterFusion_; + public OptionalMapAndFilterFusionCase + getOptionalMapAndFilterFusionCase() { + return OptionalMapAndFilterFusionCase.forNumber( + optionalMapAndFilterFusionCase_); + } + + public Builder clearOptionalMapAndFilterFusion() { + optionalMapAndFilterFusionCase_ = 0; + optionalMapAndFilterFusion_ = null; + onChanged(); + return this; + } + + private int optionalMapFusionCase_ = 0; + private java.lang.Object optionalMapFusion_; + public OptionalMapFusionCase + getOptionalMapFusionCase() { + return OptionalMapFusionCase.forNumber( + optionalMapFusionCase_); + } + + public Builder clearOptionalMapFusion() { + optionalMapFusionCase_ = 0; + optionalMapFusion_ = null; + onChanged(); + return this; + } + + private int optionalMapParallelizationCase_ = 0; + private java.lang.Object optionalMapParallelization_; + public OptionalMapParallelizationCase + getOptionalMapParallelizationCase() { + return OptionalMapParallelizationCase.forNumber( + optionalMapParallelizationCase_); + } + + public Builder clearOptionalMapParallelization() { + optionalMapParallelizationCase_ = 0; + optionalMapParallelization_ = null; + onChanged(); + return this; + } + + private int optionalNoopEliminationCase_ = 0; + private java.lang.Object optionalNoopElimination_; + public OptionalNoopEliminationCase + getOptionalNoopEliminationCase() { + return OptionalNoopEliminationCase.forNumber( + optionalNoopEliminationCase_); + } + + public Builder clearOptionalNoopElimination() { + optionalNoopEliminationCase_ = 0; + optionalNoopElimination_ = null; + onChanged(); + return this; + } + + private int optionalParallelBatchCase_ = 0; + private java.lang.Object optionalParallelBatch_; + public OptionalParallelBatchCase + getOptionalParallelBatchCase() { + return OptionalParallelBatchCase.forNumber( + optionalParallelBatchCase_); + } + + public Builder clearOptionalParallelBatch() { + optionalParallelBatchCase_ = 0; + optionalParallelBatch_ = null; + onChanged(); + return this; + } + + private int optionalReorderDataDiscardingOpsCase_ = 0; + private java.lang.Object optionalReorderDataDiscardingOps_; + public OptionalReorderDataDiscardingOpsCase + getOptionalReorderDataDiscardingOpsCase() { + return OptionalReorderDataDiscardingOpsCase.forNumber( + optionalReorderDataDiscardingOpsCase_); + } + + public Builder clearOptionalReorderDataDiscardingOps() { + optionalReorderDataDiscardingOpsCase_ = 0; + optionalReorderDataDiscardingOps_ = null; + onChanged(); + return this; + } + + private int optionalShuffleAndRepeatFusionCase_ = 0; + private java.lang.Object optionalShuffleAndRepeatFusion_; + public OptionalShuffleAndRepeatFusionCase + getOptionalShuffleAndRepeatFusionCase() { + return OptionalShuffleAndRepeatFusionCase.forNumber( + optionalShuffleAndRepeatFusionCase_); + } + + public Builder clearOptionalShuffleAndRepeatFusion() { + optionalShuffleAndRepeatFusionCase_ = 0; + optionalShuffleAndRepeatFusion_ = null; + onChanged(); + return this; + } + + + /** + * bool apply_default_optimizations = 1; + */ + public boolean getApplyDefaultOptimizations() { + if (optionalApplyDefaultOptimizationsCase_ == 1) { + return (java.lang.Boolean) optionalApplyDefaultOptimizations_; + } + return false; + } + /** + * bool apply_default_optimizations = 1; + */ + public Builder setApplyDefaultOptimizations(boolean value) { + optionalApplyDefaultOptimizationsCase_ = 1; + optionalApplyDefaultOptimizations_ = value; + onChanged(); + return this; + } + /** + * bool apply_default_optimizations = 1; + */ + public Builder clearApplyDefaultOptimizations() { + if (optionalApplyDefaultOptimizationsCase_ == 1) { + optionalApplyDefaultOptimizationsCase_ = 0; + optionalApplyDefaultOptimizations_ = null; + onChanged(); + } + return this; + } + + /** + * bool autotune = 2; + */ + public boolean getAutotune() { + if (optionalAutotuneCase_ == 2) { + return (java.lang.Boolean) optionalAutotune_; + } + return false; + } + /** + * bool autotune = 2; + */ + public Builder setAutotune(boolean value) { + optionalAutotuneCase_ = 2; + optionalAutotune_ = value; + onChanged(); + return this; + } + /** + * bool autotune = 2; + */ + public Builder clearAutotune() { + if (optionalAutotuneCase_ == 2) { + optionalAutotuneCase_ = 0; + optionalAutotune_ = null; + onChanged(); + } + return this; + } + + /** + * bool autotune_buffers = 3; + */ + public boolean getAutotuneBuffers() { + if (optionalAutotuneBuffersCase_ == 3) { + return (java.lang.Boolean) optionalAutotuneBuffers_; + } + return false; + } + /** + * bool autotune_buffers = 3; + */ + public Builder setAutotuneBuffers(boolean value) { + optionalAutotuneBuffersCase_ = 3; + optionalAutotuneBuffers_ = value; + onChanged(); + return this; + } + /** + * bool autotune_buffers = 3; + */ + public Builder clearAutotuneBuffers() { + if (optionalAutotuneBuffersCase_ == 3) { + optionalAutotuneBuffersCase_ = 0; + optionalAutotuneBuffers_ = null; + onChanged(); + } + return this; + } + + /** + * int32 autotune_cpu_budget = 4; + */ + public int getAutotuneCpuBudget() { + if (optionalAutotuneCpuBudgetCase_ == 4) { + return (java.lang.Integer) optionalAutotuneCpuBudget_; + } + return 0; + } + /** + * int32 autotune_cpu_budget = 4; + */ + public Builder setAutotuneCpuBudget(int value) { + optionalAutotuneCpuBudgetCase_ = 4; + optionalAutotuneCpuBudget_ = value; + onChanged(); + return this; + } + /** + * int32 autotune_cpu_budget = 4; + */ + public Builder clearAutotuneCpuBudget() { + if (optionalAutotuneCpuBudgetCase_ == 4) { + optionalAutotuneCpuBudgetCase_ = 0; + optionalAutotuneCpuBudget_ = null; + onChanged(); + } + return this; + } + + /** + * int32 autotune_ram_budget = 5; + */ + public int getAutotuneRamBudget() { + if (optionalAutotuneRamBudgetCase_ == 5) { + return (java.lang.Integer) optionalAutotuneRamBudget_; + } + return 0; + } + /** + * int32 autotune_ram_budget = 5; + */ + public Builder setAutotuneRamBudget(int value) { + optionalAutotuneRamBudgetCase_ = 5; + optionalAutotuneRamBudget_ = value; + onChanged(); + return this; + } + /** + * int32 autotune_ram_budget = 5; + */ + public Builder clearAutotuneRamBudget() { + if (optionalAutotuneRamBudgetCase_ == 5) { + optionalAutotuneRamBudgetCase_ = 0; + optionalAutotuneRamBudget_ = null; + onChanged(); + } + return this; + } + + /** + * bool filter_fusion = 6; + */ + public boolean getFilterFusion() { + if (optionalFilterFusionCase_ == 6) { + return (java.lang.Boolean) optionalFilterFusion_; + } + return false; + } + /** + * bool filter_fusion = 6; + */ + public Builder setFilterFusion(boolean value) { + optionalFilterFusionCase_ = 6; + optionalFilterFusion_ = value; + onChanged(); + return this; + } + /** + * bool filter_fusion = 6; + */ + public Builder clearFilterFusion() { + if (optionalFilterFusionCase_ == 6) { + optionalFilterFusionCase_ = 0; + optionalFilterFusion_ = null; + onChanged(); + } + return this; + } + + /** + * bool filter_with_random_uniform_fusion = 7; + */ + public boolean getFilterWithRandomUniformFusion() { + if (optionalFilterWithRandomUniformFusionCase_ == 7) { + return (java.lang.Boolean) optionalFilterWithRandomUniformFusion_; + } + return false; + } + /** + * bool filter_with_random_uniform_fusion = 7; + */ + public Builder setFilterWithRandomUniformFusion(boolean value) { + optionalFilterWithRandomUniformFusionCase_ = 7; + optionalFilterWithRandomUniformFusion_ = value; + onChanged(); + return this; + } + /** + * bool filter_with_random_uniform_fusion = 7; + */ + public Builder clearFilterWithRandomUniformFusion() { + if (optionalFilterWithRandomUniformFusionCase_ == 7) { + optionalFilterWithRandomUniformFusionCase_ = 0; + optionalFilterWithRandomUniformFusion_ = null; + onChanged(); + } + return this; + } + + /** + * bool hoist_random_uniform = 8; + */ + public boolean getHoistRandomUniform() { + if (optionalHoistRandomUniformCase_ == 8) { + return (java.lang.Boolean) optionalHoistRandomUniform_; + } + return false; + } + /** + * bool hoist_random_uniform = 8; + */ + public Builder setHoistRandomUniform(boolean value) { + optionalHoistRandomUniformCase_ = 8; + optionalHoistRandomUniform_ = value; + onChanged(); + return this; + } + /** + * bool hoist_random_uniform = 8; + */ + public Builder clearHoistRandomUniform() { + if (optionalHoistRandomUniformCase_ == 8) { + optionalHoistRandomUniformCase_ = 0; + optionalHoistRandomUniform_ = null; + onChanged(); + } + return this; + } + + /** + * bool map_and_batch_fusion = 9; + */ + public boolean getMapAndBatchFusion() { + if (optionalMapAndBatchFusionCase_ == 9) { + return (java.lang.Boolean) optionalMapAndBatchFusion_; + } + return false; + } + /** + * bool map_and_batch_fusion = 9; + */ + public Builder setMapAndBatchFusion(boolean value) { + optionalMapAndBatchFusionCase_ = 9; + optionalMapAndBatchFusion_ = value; + onChanged(); + return this; + } + /** + * bool map_and_batch_fusion = 9; + */ + public Builder clearMapAndBatchFusion() { + if (optionalMapAndBatchFusionCase_ == 9) { + optionalMapAndBatchFusionCase_ = 0; + optionalMapAndBatchFusion_ = null; + onChanged(); + } + return this; + } + + /** + * bool map_and_filter_fusion = 10; + */ + public boolean getMapAndFilterFusion() { + if (optionalMapAndFilterFusionCase_ == 10) { + return (java.lang.Boolean) optionalMapAndFilterFusion_; + } + return false; + } + /** + * bool map_and_filter_fusion = 10; + */ + public Builder setMapAndFilterFusion(boolean value) { + optionalMapAndFilterFusionCase_ = 10; + optionalMapAndFilterFusion_ = value; + onChanged(); + return this; + } + /** + * bool map_and_filter_fusion = 10; + */ + public Builder clearMapAndFilterFusion() { + if (optionalMapAndFilterFusionCase_ == 10) { + optionalMapAndFilterFusionCase_ = 0; + optionalMapAndFilterFusion_ = null; + onChanged(); + } + return this; + } + + /** + * bool map_fusion = 11; + */ + public boolean getMapFusion() { + if (optionalMapFusionCase_ == 11) { + return (java.lang.Boolean) optionalMapFusion_; + } + return false; + } + /** + * bool map_fusion = 11; + */ + public Builder setMapFusion(boolean value) { + optionalMapFusionCase_ = 11; + optionalMapFusion_ = value; + onChanged(); + return this; + } + /** + * bool map_fusion = 11; + */ + public Builder clearMapFusion() { + if (optionalMapFusionCase_ == 11) { + optionalMapFusionCase_ = 0; + optionalMapFusion_ = null; + onChanged(); + } + return this; + } + + /** + * bool map_parallelization = 12; + */ + public boolean getMapParallelization() { + if (optionalMapParallelizationCase_ == 12) { + return (java.lang.Boolean) optionalMapParallelization_; + } + return false; + } + /** + * bool map_parallelization = 12; + */ + public Builder setMapParallelization(boolean value) { + optionalMapParallelizationCase_ = 12; + optionalMapParallelization_ = value; + onChanged(); + return this; + } + /** + * bool map_parallelization = 12; + */ + public Builder clearMapParallelization() { + if (optionalMapParallelizationCase_ == 12) { + optionalMapParallelizationCase_ = 0; + optionalMapParallelization_ = null; + onChanged(); + } + return this; + } + + private org.tensorflow.proto.data.MapVectorization mapVectorization_; + private com.google.protobuf.SingleFieldBuilderV3< + org.tensorflow.proto.data.MapVectorization, org.tensorflow.proto.data.MapVectorization.Builder, org.tensorflow.proto.data.MapVectorizationOrBuilder> mapVectorizationBuilder_; + /** + *
        +     * The map vectorization options associated with the dataset.
        +     * 
        + * + * .tensorflow.data.MapVectorization map_vectorization = 13; + */ + public boolean hasMapVectorization() { + return mapVectorizationBuilder_ != null || mapVectorization_ != null; + } + /** + *
        +     * The map vectorization options associated with the dataset.
        +     * 
        + * + * .tensorflow.data.MapVectorization map_vectorization = 13; + */ + public org.tensorflow.proto.data.MapVectorization getMapVectorization() { + if (mapVectorizationBuilder_ == null) { + return mapVectorization_ == null ? org.tensorflow.proto.data.MapVectorization.getDefaultInstance() : mapVectorization_; + } else { + return mapVectorizationBuilder_.getMessage(); + } + } + /** + *
        +     * The map vectorization options associated with the dataset.
        +     * 
        + * + * .tensorflow.data.MapVectorization map_vectorization = 13; + */ + public Builder setMapVectorization(org.tensorflow.proto.data.MapVectorization value) { + if (mapVectorizationBuilder_ == null) { + if (value == null) { + throw new NullPointerException(); + } + mapVectorization_ = value; + onChanged(); + } else { + mapVectorizationBuilder_.setMessage(value); + } + + return this; + } + /** + *
        +     * The map vectorization options associated with the dataset.
        +     * 
        + * + * .tensorflow.data.MapVectorization map_vectorization = 13; + */ + public Builder setMapVectorization( + org.tensorflow.proto.data.MapVectorization.Builder builderForValue) { + if (mapVectorizationBuilder_ == null) { + mapVectorization_ = builderForValue.build(); + onChanged(); + } else { + mapVectorizationBuilder_.setMessage(builderForValue.build()); + } + + return this; + } + /** + *
        +     * The map vectorization options associated with the dataset.
        +     * 
        + * + * .tensorflow.data.MapVectorization map_vectorization = 13; + */ + public Builder mergeMapVectorization(org.tensorflow.proto.data.MapVectorization value) { + if (mapVectorizationBuilder_ == null) { + if (mapVectorization_ != null) { + mapVectorization_ = + org.tensorflow.proto.data.MapVectorization.newBuilder(mapVectorization_).mergeFrom(value).buildPartial(); + } else { + mapVectorization_ = value; + } + onChanged(); + } else { + mapVectorizationBuilder_.mergeFrom(value); + } + + return this; + } + /** + *
        +     * The map vectorization options associated with the dataset.
        +     * 
        + * + * .tensorflow.data.MapVectorization map_vectorization = 13; + */ + public Builder clearMapVectorization() { + if (mapVectorizationBuilder_ == null) { + mapVectorization_ = null; + onChanged(); + } else { + mapVectorization_ = null; + mapVectorizationBuilder_ = null; + } + + return this; + } + /** + *
        +     * The map vectorization options associated with the dataset.
        +     * 
        + * + * .tensorflow.data.MapVectorization map_vectorization = 13; + */ + public org.tensorflow.proto.data.MapVectorization.Builder getMapVectorizationBuilder() { + + onChanged(); + return getMapVectorizationFieldBuilder().getBuilder(); + } + /** + *
        +     * The map vectorization options associated with the dataset.
        +     * 
        + * + * .tensorflow.data.MapVectorization map_vectorization = 13; + */ + public org.tensorflow.proto.data.MapVectorizationOrBuilder getMapVectorizationOrBuilder() { + if (mapVectorizationBuilder_ != null) { + return mapVectorizationBuilder_.getMessageOrBuilder(); + } else { + return mapVectorization_ == null ? + org.tensorflow.proto.data.MapVectorization.getDefaultInstance() : mapVectorization_; + } + } + /** + *
        +     * The map vectorization options associated with the dataset.
        +     * 
        + * + * .tensorflow.data.MapVectorization map_vectorization = 13; + */ + private com.google.protobuf.SingleFieldBuilderV3< + org.tensorflow.proto.data.MapVectorization, org.tensorflow.proto.data.MapVectorization.Builder, org.tensorflow.proto.data.MapVectorizationOrBuilder> + getMapVectorizationFieldBuilder() { + if (mapVectorizationBuilder_ == null) { + mapVectorizationBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< + org.tensorflow.proto.data.MapVectorization, org.tensorflow.proto.data.MapVectorization.Builder, org.tensorflow.proto.data.MapVectorizationOrBuilder>( + getMapVectorization(), + getParentForChildren(), + isClean()); + mapVectorization_ = null; + } + return mapVectorizationBuilder_; + } + + /** + * bool noop_elimination = 14; + */ + public boolean getNoopElimination() { + if (optionalNoopEliminationCase_ == 14) { + return (java.lang.Boolean) optionalNoopElimination_; + } + return false; + } + /** + * bool noop_elimination = 14; + */ + public Builder setNoopElimination(boolean value) { + optionalNoopEliminationCase_ = 14; + optionalNoopElimination_ = value; + onChanged(); + return this; + } + /** + * bool noop_elimination = 14; + */ + public Builder clearNoopElimination() { + if (optionalNoopEliminationCase_ == 14) { + optionalNoopEliminationCase_ = 0; + optionalNoopElimination_ = null; + onChanged(); + } + return this; + } + + /** + * bool parallel_batch = 15; + */ + public boolean getParallelBatch() { + if (optionalParallelBatchCase_ == 15) { + return (java.lang.Boolean) optionalParallelBatch_; + } + return false; + } + /** + * bool parallel_batch = 15; + */ + public Builder setParallelBatch(boolean value) { + optionalParallelBatchCase_ = 15; + optionalParallelBatch_ = value; + onChanged(); + return this; + } + /** + * bool parallel_batch = 15; + */ + public Builder clearParallelBatch() { + if (optionalParallelBatchCase_ == 15) { + optionalParallelBatchCase_ = 0; + optionalParallelBatch_ = null; + onChanged(); + } + return this; + } + + /** + * bool reorder_data_discarding_ops = 16; + */ + public boolean getReorderDataDiscardingOps() { + if (optionalReorderDataDiscardingOpsCase_ == 16) { + return (java.lang.Boolean) optionalReorderDataDiscardingOps_; + } + return false; + } + /** + * bool reorder_data_discarding_ops = 16; + */ + public Builder setReorderDataDiscardingOps(boolean value) { + optionalReorderDataDiscardingOpsCase_ = 16; + optionalReorderDataDiscardingOps_ = value; + onChanged(); + return this; + } + /** + * bool reorder_data_discarding_ops = 16; + */ + public Builder clearReorderDataDiscardingOps() { + if (optionalReorderDataDiscardingOpsCase_ == 16) { + optionalReorderDataDiscardingOpsCase_ = 0; + optionalReorderDataDiscardingOps_ = null; + onChanged(); + } + return this; + } + + /** + * bool shuffle_and_repeat_fusion = 17; + */ + public boolean getShuffleAndRepeatFusion() { + if (optionalShuffleAndRepeatFusionCase_ == 17) { + return (java.lang.Boolean) optionalShuffleAndRepeatFusion_; + } + return false; + } + /** + * bool shuffle_and_repeat_fusion = 17; + */ + public Builder setShuffleAndRepeatFusion(boolean value) { + optionalShuffleAndRepeatFusionCase_ = 17; + optionalShuffleAndRepeatFusion_ = value; + onChanged(); + return this; + } + /** + * bool shuffle_and_repeat_fusion = 17; + */ + public Builder clearShuffleAndRepeatFusion() { + if (optionalShuffleAndRepeatFusionCase_ == 17) { + optionalShuffleAndRepeatFusionCase_ = 0; + optionalShuffleAndRepeatFusion_ = null; + onChanged(); + } + return this; + } + @java.lang.Override + public final Builder setUnknownFields( + final com.google.protobuf.UnknownFieldSet unknownFields) { + return super.setUnknownFields(unknownFields); + } + + @java.lang.Override + public final Builder mergeUnknownFields( + final com.google.protobuf.UnknownFieldSet unknownFields) { + return super.mergeUnknownFields(unknownFields); + } + + + // @@protoc_insertion_point(builder_scope:tensorflow.data.OptimizationOptions) + } + + // @@protoc_insertion_point(class_scope:tensorflow.data.OptimizationOptions) + private static final org.tensorflow.proto.data.OptimizationOptions DEFAULT_INSTANCE; + static { + DEFAULT_INSTANCE = new org.tensorflow.proto.data.OptimizationOptions(); + } + + public static org.tensorflow.proto.data.OptimizationOptions getDefaultInstance() { + return DEFAULT_INSTANCE; + } + + private static final com.google.protobuf.Parser + PARSER = new com.google.protobuf.AbstractParser() { + @java.lang.Override + public OptimizationOptions parsePartialFrom( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return new OptimizationOptions(input, extensionRegistry); + } + }; + + public static com.google.protobuf.Parser parser() { + return PARSER; + } + + @java.lang.Override + public com.google.protobuf.Parser getParserForType() { + return PARSER; + } + + @java.lang.Override + public org.tensorflow.proto.data.OptimizationOptions getDefaultInstanceForType() { + return DEFAULT_INSTANCE; + } + +} + diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/OptimizationOptionsOrBuilder.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/OptimizationOptionsOrBuilder.java new file mode 100644 index 00000000000..2197a9617fa --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/OptimizationOptionsOrBuilder.java @@ -0,0 +1,146 @@ +// Generated by the protocol buffer compiler. DO NOT EDIT! +// source: tensorflow/core/framework/dataset_options.proto + +package org.tensorflow.proto.data; + +public interface OptimizationOptionsOrBuilder extends + // @@protoc_insertion_point(interface_extends:tensorflow.data.OptimizationOptions) + com.google.protobuf.MessageOrBuilder { + + /** + * bool apply_default_optimizations = 1; + */ + boolean getApplyDefaultOptimizations(); + + /** + * bool autotune = 2; + */ + boolean getAutotune(); + + /** + * bool autotune_buffers = 3; + */ + boolean getAutotuneBuffers(); + + /** + * int32 autotune_cpu_budget = 4; + */ + int getAutotuneCpuBudget(); + + /** + * int32 autotune_ram_budget = 5; + */ + int getAutotuneRamBudget(); + + /** + * bool filter_fusion = 6; + */ + boolean getFilterFusion(); + + /** + * bool filter_with_random_uniform_fusion = 7; + */ + boolean getFilterWithRandomUniformFusion(); + + /** + * bool hoist_random_uniform = 8; + */ + boolean getHoistRandomUniform(); + + /** + * bool map_and_batch_fusion = 9; + */ + boolean getMapAndBatchFusion(); + + /** + * bool map_and_filter_fusion = 10; + */ + boolean getMapAndFilterFusion(); + + /** + * bool map_fusion = 11; + */ + boolean getMapFusion(); + + /** + * bool map_parallelization = 12; + */ + boolean getMapParallelization(); + + /** + *
        +   * The map vectorization options associated with the dataset.
        +   * 
        + * + * .tensorflow.data.MapVectorization map_vectorization = 13; + */ + boolean hasMapVectorization(); + /** + *
        +   * The map vectorization options associated with the dataset.
        +   * 
        + * + * .tensorflow.data.MapVectorization map_vectorization = 13; + */ + org.tensorflow.proto.data.MapVectorization getMapVectorization(); + /** + *
        +   * The map vectorization options associated with the dataset.
        +   * 
        + * + * .tensorflow.data.MapVectorization map_vectorization = 13; + */ + org.tensorflow.proto.data.MapVectorizationOrBuilder getMapVectorizationOrBuilder(); + + /** + * bool noop_elimination = 14; + */ + boolean getNoopElimination(); + + /** + * bool parallel_batch = 15; + */ + boolean getParallelBatch(); + + /** + * bool reorder_data_discarding_ops = 16; + */ + boolean getReorderDataDiscardingOps(); + + /** + * bool shuffle_and_repeat_fusion = 17; + */ + boolean getShuffleAndRepeatFusion(); + + public org.tensorflow.proto.data.OptimizationOptions.OptionalApplyDefaultOptimizationsCase getOptionalApplyDefaultOptimizationsCase(); + + public org.tensorflow.proto.data.OptimizationOptions.OptionalAutotuneCase getOptionalAutotuneCase(); + + public org.tensorflow.proto.data.OptimizationOptions.OptionalAutotuneBuffersCase getOptionalAutotuneBuffersCase(); + + public org.tensorflow.proto.data.OptimizationOptions.OptionalAutotuneCpuBudgetCase getOptionalAutotuneCpuBudgetCase(); + + public org.tensorflow.proto.data.OptimizationOptions.OptionalAutotuneRamBudgetCase getOptionalAutotuneRamBudgetCase(); + + public org.tensorflow.proto.data.OptimizationOptions.OptionalFilterFusionCase getOptionalFilterFusionCase(); + + public org.tensorflow.proto.data.OptimizationOptions.OptionalFilterWithRandomUniformFusionCase getOptionalFilterWithRandomUniformFusionCase(); + + public org.tensorflow.proto.data.OptimizationOptions.OptionalHoistRandomUniformCase getOptionalHoistRandomUniformCase(); + + public org.tensorflow.proto.data.OptimizationOptions.OptionalMapAndBatchFusionCase getOptionalMapAndBatchFusionCase(); + + public org.tensorflow.proto.data.OptimizationOptions.OptionalMapAndFilterFusionCase getOptionalMapAndFilterFusionCase(); + + public org.tensorflow.proto.data.OptimizationOptions.OptionalMapFusionCase getOptionalMapFusionCase(); + + public org.tensorflow.proto.data.OptimizationOptions.OptionalMapParallelizationCase getOptionalMapParallelizationCase(); + + public org.tensorflow.proto.data.OptimizationOptions.OptionalNoopEliminationCase getOptionalNoopEliminationCase(); + + public org.tensorflow.proto.data.OptimizationOptions.OptionalParallelBatchCase getOptionalParallelBatchCase(); + + public org.tensorflow.proto.data.OptimizationOptions.OptionalReorderDataDiscardingOpsCase getOptionalReorderDataDiscardingOpsCase(); + + public org.tensorflow.proto.data.OptimizationOptions.OptionalShuffleAndRepeatFusionCase getOptionalShuffleAndRepeatFusionCase(); +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/Options.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/Options.java new file mode 100644 index 00000000000..b0b8481e67b --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/Options.java @@ -0,0 +1,1567 @@ +// Generated by the protocol buffer compiler. DO NOT EDIT! +// source: tensorflow/core/framework/dataset_options.proto + +package org.tensorflow.proto.data; + +/** + *
        + * Message stored with Dataset objects to control how datasets are processed and
        + * optimized.
        + * 
        + * + * Protobuf type {@code tensorflow.data.Options} + */ +public final class Options extends + com.google.protobuf.GeneratedMessageV3 implements + // @@protoc_insertion_point(message_implements:tensorflow.data.Options) + OptionsOrBuilder { +private static final long serialVersionUID = 0L; + // Use Options.newBuilder() to construct. + private Options(com.google.protobuf.GeneratedMessageV3.Builder builder) { + super(builder); + } + private Options() { + } + + @java.lang.Override + @SuppressWarnings({"unused"}) + protected java.lang.Object newInstance( + UnusedPrivateParameter unused) { + return new Options(); + } + + @java.lang.Override + public final com.google.protobuf.UnknownFieldSet + getUnknownFields() { + return this.unknownFields; + } + private Options( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + this(); + if (extensionRegistry == null) { + throw new java.lang.NullPointerException(); + } + com.google.protobuf.UnknownFieldSet.Builder unknownFields = + com.google.protobuf.UnknownFieldSet.newBuilder(); + try { + boolean done = false; + while (!done) { + int tag = input.readTag(); + switch (tag) { + case 0: + done = true; + break; + case 8: { + optionalDeterministicCase_ = 1; + optionalDeterministic_ = input.readBool(); + break; + } + case 18: { + org.tensorflow.proto.data.DistributeOptions.Builder subBuilder = null; + if (distributeOptions_ != null) { + subBuilder = distributeOptions_.toBuilder(); + } + distributeOptions_ = input.readMessage(org.tensorflow.proto.data.DistributeOptions.parser(), extensionRegistry); + if (subBuilder != null) { + subBuilder.mergeFrom(distributeOptions_); + distributeOptions_ = subBuilder.buildPartial(); + } + + break; + } + case 26: { + org.tensorflow.proto.data.OptimizationOptions.Builder subBuilder = null; + if (optimizationOptions_ != null) { + subBuilder = optimizationOptions_.toBuilder(); + } + optimizationOptions_ = input.readMessage(org.tensorflow.proto.data.OptimizationOptions.parser(), extensionRegistry); + if (subBuilder != null) { + subBuilder.mergeFrom(optimizationOptions_); + optimizationOptions_ = subBuilder.buildPartial(); + } + + break; + } + case 32: { + optionalSlackCase_ = 4; + optionalSlack_ = input.readBool(); + break; + } + case 42: { + org.tensorflow.proto.data.ThreadingOptions.Builder subBuilder = null; + if (threadingOptions_ != null) { + subBuilder = threadingOptions_.toBuilder(); + } + threadingOptions_ = input.readMessage(org.tensorflow.proto.data.ThreadingOptions.parser(), extensionRegistry); + if (subBuilder != null) { + subBuilder.mergeFrom(threadingOptions_); + threadingOptions_ = subBuilder.buildPartial(); + } + + break; + } + case 48: { + int rawValue = input.readEnum(); + optionalExternalStatePolicyCase_ = 6; + optionalExternalStatePolicy_ = rawValue; + break; + } + default: { + if (!parseUnknownField( + input, unknownFields, extensionRegistry, tag)) { + done = true; + } + break; + } + } + } + } catch (com.google.protobuf.InvalidProtocolBufferException e) { + throw e.setUnfinishedMessage(this); + } catch (java.io.IOException e) { + throw new com.google.protobuf.InvalidProtocolBufferException( + e).setUnfinishedMessage(this); + } finally { + this.unknownFields = unknownFields.build(); + makeExtensionsImmutable(); + } + } + public static final com.google.protobuf.Descriptors.Descriptor + getDescriptor() { + return org.tensorflow.proto.data.DatasetOptionsProtos.internal_static_tensorflow_data_Options_descriptor; + } + + @java.lang.Override + protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable + internalGetFieldAccessorTable() { + return org.tensorflow.proto.data.DatasetOptionsProtos.internal_static_tensorflow_data_Options_fieldAccessorTable + .ensureFieldAccessorsInitialized( + org.tensorflow.proto.data.Options.class, org.tensorflow.proto.data.Options.Builder.class); + } + + private int optionalDeterministicCase_ = 0; + private java.lang.Object optionalDeterministic_; + public enum OptionalDeterministicCase + implements com.google.protobuf.Internal.EnumLite { + DETERMINISTIC(1), + OPTIONALDETERMINISTIC_NOT_SET(0); + private final int value; + private OptionalDeterministicCase(int value) { + this.value = value; + } + /** + * @deprecated Use {@link #forNumber(int)} instead. + */ + @java.lang.Deprecated + public static OptionalDeterministicCase valueOf(int value) { + return forNumber(value); + } + + public static OptionalDeterministicCase forNumber(int value) { + switch (value) { + case 1: return DETERMINISTIC; + case 0: return OPTIONALDETERMINISTIC_NOT_SET; + default: return null; + } + } + public int getNumber() { + return this.value; + } + }; + + public OptionalDeterministicCase + getOptionalDeterministicCase() { + return OptionalDeterministicCase.forNumber( + optionalDeterministicCase_); + } + + private int optionalSlackCase_ = 0; + private java.lang.Object optionalSlack_; + public enum OptionalSlackCase + implements com.google.protobuf.Internal.EnumLite { + SLACK(4), + OPTIONALSLACK_NOT_SET(0); + private final int value; + private OptionalSlackCase(int value) { + this.value = value; + } + /** + * @deprecated Use {@link #forNumber(int)} instead. + */ + @java.lang.Deprecated + public static OptionalSlackCase valueOf(int value) { + return forNumber(value); + } + + public static OptionalSlackCase forNumber(int value) { + switch (value) { + case 4: return SLACK; + case 0: return OPTIONALSLACK_NOT_SET; + default: return null; + } + } + public int getNumber() { + return this.value; + } + }; + + public OptionalSlackCase + getOptionalSlackCase() { + return OptionalSlackCase.forNumber( + optionalSlackCase_); + } + + private int optionalExternalStatePolicyCase_ = 0; + private java.lang.Object optionalExternalStatePolicy_; + public enum OptionalExternalStatePolicyCase + implements com.google.protobuf.Internal.EnumLite { + EXTERNAL_STATE_POLICY(6), + OPTIONALEXTERNALSTATEPOLICY_NOT_SET(0); + private final int value; + private OptionalExternalStatePolicyCase(int value) { + this.value = value; + } + /** + * @deprecated Use {@link #forNumber(int)} instead. + */ + @java.lang.Deprecated + public static OptionalExternalStatePolicyCase valueOf(int value) { + return forNumber(value); + } + + public static OptionalExternalStatePolicyCase forNumber(int value) { + switch (value) { + case 6: return EXTERNAL_STATE_POLICY; + case 0: return OPTIONALEXTERNALSTATEPOLICY_NOT_SET; + default: return null; + } + } + public int getNumber() { + return this.value; + } + }; + + public OptionalExternalStatePolicyCase + getOptionalExternalStatePolicyCase() { + return OptionalExternalStatePolicyCase.forNumber( + optionalExternalStatePolicyCase_); + } + + public static final int DETERMINISTIC_FIELD_NUMBER = 1; + /** + * bool deterministic = 1; + */ + public boolean getDeterministic() { + if (optionalDeterministicCase_ == 1) { + return (java.lang.Boolean) optionalDeterministic_; + } + return false; + } + + public static final int DISTRIBUTE_OPTIONS_FIELD_NUMBER = 2; + private org.tensorflow.proto.data.DistributeOptions distributeOptions_; + /** + *
        +   * The distribution strategy options associated with the dataset.
        +   * 
        + * + * .tensorflow.data.DistributeOptions distribute_options = 2; + */ + public boolean hasDistributeOptions() { + return distributeOptions_ != null; + } + /** + *
        +   * The distribution strategy options associated with the dataset.
        +   * 
        + * + * .tensorflow.data.DistributeOptions distribute_options = 2; + */ + public org.tensorflow.proto.data.DistributeOptions getDistributeOptions() { + return distributeOptions_ == null ? org.tensorflow.proto.data.DistributeOptions.getDefaultInstance() : distributeOptions_; + } + /** + *
        +   * The distribution strategy options associated with the dataset.
        +   * 
        + * + * .tensorflow.data.DistributeOptions distribute_options = 2; + */ + public org.tensorflow.proto.data.DistributeOptionsOrBuilder getDistributeOptionsOrBuilder() { + return getDistributeOptions(); + } + + public static final int OPTIMIZATION_OPTIONS_FIELD_NUMBER = 3; + private org.tensorflow.proto.data.OptimizationOptions optimizationOptions_; + /** + *
        +   * The optimization options associated with the dataset.
        +   * 
        + * + * .tensorflow.data.OptimizationOptions optimization_options = 3; + */ + public boolean hasOptimizationOptions() { + return optimizationOptions_ != null; + } + /** + *
        +   * The optimization options associated with the dataset.
        +   * 
        + * + * .tensorflow.data.OptimizationOptions optimization_options = 3; + */ + public org.tensorflow.proto.data.OptimizationOptions getOptimizationOptions() { + return optimizationOptions_ == null ? org.tensorflow.proto.data.OptimizationOptions.getDefaultInstance() : optimizationOptions_; + } + /** + *
        +   * The optimization options associated with the dataset.
        +   * 
        + * + * .tensorflow.data.OptimizationOptions optimization_options = 3; + */ + public org.tensorflow.proto.data.OptimizationOptionsOrBuilder getOptimizationOptionsOrBuilder() { + return getOptimizationOptions(); + } + + public static final int SLACK_FIELD_NUMBER = 4; + /** + * bool slack = 4; + */ + public boolean getSlack() { + if (optionalSlackCase_ == 4) { + return (java.lang.Boolean) optionalSlack_; + } + return false; + } + + public static final int THREADING_OPTIONS_FIELD_NUMBER = 5; + private org.tensorflow.proto.data.ThreadingOptions threadingOptions_; + /** + *
        +   * The threading options associated with the dataset.
        +   * 
        + * + * .tensorflow.data.ThreadingOptions threading_options = 5; + */ + public boolean hasThreadingOptions() { + return threadingOptions_ != null; + } + /** + *
        +   * The threading options associated with the dataset.
        +   * 
        + * + * .tensorflow.data.ThreadingOptions threading_options = 5; + */ + public org.tensorflow.proto.data.ThreadingOptions getThreadingOptions() { + return threadingOptions_ == null ? org.tensorflow.proto.data.ThreadingOptions.getDefaultInstance() : threadingOptions_; + } + /** + *
        +   * The threading options associated with the dataset.
        +   * 
        + * + * .tensorflow.data.ThreadingOptions threading_options = 5; + */ + public org.tensorflow.proto.data.ThreadingOptionsOrBuilder getThreadingOptionsOrBuilder() { + return getThreadingOptions(); + } + + public static final int EXTERNAL_STATE_POLICY_FIELD_NUMBER = 6; + /** + * .tensorflow.data.ExternalStatePolicy external_state_policy = 6; + */ + public int getExternalStatePolicyValue() { + if (optionalExternalStatePolicyCase_ == 6) { + return (java.lang.Integer) optionalExternalStatePolicy_; + } + return 0; + } + /** + * .tensorflow.data.ExternalStatePolicy external_state_policy = 6; + */ + public org.tensorflow.proto.data.ExternalStatePolicy getExternalStatePolicy() { + if (optionalExternalStatePolicyCase_ == 6) { + @SuppressWarnings("deprecation") + org.tensorflow.proto.data.ExternalStatePolicy result = org.tensorflow.proto.data.ExternalStatePolicy.valueOf( + (java.lang.Integer) optionalExternalStatePolicy_); + return result == null ? org.tensorflow.proto.data.ExternalStatePolicy.UNRECOGNIZED : result; + } + return org.tensorflow.proto.data.ExternalStatePolicy.POLICY_WARN; + } + + private byte memoizedIsInitialized = -1; + @java.lang.Override + public final boolean isInitialized() { + byte isInitialized = memoizedIsInitialized; + if (isInitialized == 1) return true; + if (isInitialized == 0) return false; + + memoizedIsInitialized = 1; + return true; + } + + @java.lang.Override + public void writeTo(com.google.protobuf.CodedOutputStream output) + throws java.io.IOException { + if (optionalDeterministicCase_ == 1) { + output.writeBool( + 1, (boolean)((java.lang.Boolean) optionalDeterministic_)); + } + if (distributeOptions_ != null) { + output.writeMessage(2, getDistributeOptions()); + } + if (optimizationOptions_ != null) { + output.writeMessage(3, getOptimizationOptions()); + } + if (optionalSlackCase_ == 4) { + output.writeBool( + 4, (boolean)((java.lang.Boolean) optionalSlack_)); + } + if (threadingOptions_ != null) { + output.writeMessage(5, getThreadingOptions()); + } + if (optionalExternalStatePolicyCase_ == 6) { + output.writeEnum(6, ((java.lang.Integer) optionalExternalStatePolicy_)); + } + unknownFields.writeTo(output); + } + + @java.lang.Override + public int getSerializedSize() { + int size = memoizedSize; + if (size != -1) return size; + + size = 0; + if (optionalDeterministicCase_ == 1) { + size += com.google.protobuf.CodedOutputStream + .computeBoolSize( + 1, (boolean)((java.lang.Boolean) optionalDeterministic_)); + } + if (distributeOptions_ != null) { + size += com.google.protobuf.CodedOutputStream + .computeMessageSize(2, getDistributeOptions()); + } + if (optimizationOptions_ != null) { + size += com.google.protobuf.CodedOutputStream + .computeMessageSize(3, getOptimizationOptions()); + } + if (optionalSlackCase_ == 4) { + size += com.google.protobuf.CodedOutputStream + .computeBoolSize( + 4, (boolean)((java.lang.Boolean) optionalSlack_)); + } + if (threadingOptions_ != null) { + size += com.google.protobuf.CodedOutputStream + .computeMessageSize(5, getThreadingOptions()); + } + if (optionalExternalStatePolicyCase_ == 6) { + size += com.google.protobuf.CodedOutputStream + .computeEnumSize(6, ((java.lang.Integer) optionalExternalStatePolicy_)); + } + size += unknownFields.getSerializedSize(); + memoizedSize = size; + return size; + } + + @java.lang.Override + public boolean equals(final java.lang.Object obj) { + if (obj == this) { + return true; + } + if (!(obj instanceof org.tensorflow.proto.data.Options)) { + return super.equals(obj); + } + org.tensorflow.proto.data.Options other = (org.tensorflow.proto.data.Options) obj; + + if (hasDistributeOptions() != other.hasDistributeOptions()) return false; + if (hasDistributeOptions()) { + if (!getDistributeOptions() + .equals(other.getDistributeOptions())) return false; + } + if (hasOptimizationOptions() != other.hasOptimizationOptions()) return false; + if (hasOptimizationOptions()) { + if (!getOptimizationOptions() + .equals(other.getOptimizationOptions())) return false; + } + if (hasThreadingOptions() != other.hasThreadingOptions()) return false; + if (hasThreadingOptions()) { + if (!getThreadingOptions() + .equals(other.getThreadingOptions())) return false; + } + if (!getOptionalDeterministicCase().equals(other.getOptionalDeterministicCase())) return false; + switch (optionalDeterministicCase_) { + case 1: + if (getDeterministic() + != other.getDeterministic()) return false; + break; + case 0: + default: + } + if (!getOptionalSlackCase().equals(other.getOptionalSlackCase())) return false; + switch (optionalSlackCase_) { + case 4: + if (getSlack() + != other.getSlack()) return false; + break; + case 0: + default: + } + if (!getOptionalExternalStatePolicyCase().equals(other.getOptionalExternalStatePolicyCase())) return false; + switch (optionalExternalStatePolicyCase_) { + case 6: + if (getExternalStatePolicyValue() + != other.getExternalStatePolicyValue()) return false; + break; + case 0: + default: + } + if (!unknownFields.equals(other.unknownFields)) return false; + return true; + } + + @java.lang.Override + public int hashCode() { + if (memoizedHashCode != 0) { + return memoizedHashCode; + } + int hash = 41; + hash = (19 * hash) + getDescriptor().hashCode(); + if (hasDistributeOptions()) { + hash = (37 * hash) + DISTRIBUTE_OPTIONS_FIELD_NUMBER; + hash = (53 * hash) + getDistributeOptions().hashCode(); + } + if (hasOptimizationOptions()) { + hash = (37 * hash) + OPTIMIZATION_OPTIONS_FIELD_NUMBER; + hash = (53 * hash) + getOptimizationOptions().hashCode(); + } + if (hasThreadingOptions()) { + hash = (37 * hash) + THREADING_OPTIONS_FIELD_NUMBER; + hash = (53 * hash) + getThreadingOptions().hashCode(); + } + switch (optionalDeterministicCase_) { + case 1: + hash = (37 * hash) + DETERMINISTIC_FIELD_NUMBER; + hash = (53 * hash) + com.google.protobuf.Internal.hashBoolean( + getDeterministic()); + break; + case 0: + default: + } + switch (optionalSlackCase_) { + case 4: + hash = (37 * hash) + SLACK_FIELD_NUMBER; + hash = (53 * hash) + com.google.protobuf.Internal.hashBoolean( + getSlack()); + break; + case 0: + default: + } + switch (optionalExternalStatePolicyCase_) { + case 6: + hash = (37 * hash) + EXTERNAL_STATE_POLICY_FIELD_NUMBER; + hash = (53 * hash) + getExternalStatePolicyValue(); + break; + case 0: + default: + } + hash = (29 * hash) + unknownFields.hashCode(); + memoizedHashCode = hash; + return hash; + } + + public static org.tensorflow.proto.data.Options parseFrom( + java.nio.ByteBuffer data) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data); + } + public static org.tensorflow.proto.data.Options parseFrom( + java.nio.ByteBuffer data, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data, extensionRegistry); + } + public static org.tensorflow.proto.data.Options parseFrom( + com.google.protobuf.ByteString data) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data); + } + public static org.tensorflow.proto.data.Options parseFrom( + com.google.protobuf.ByteString data, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data, extensionRegistry); + } + public static org.tensorflow.proto.data.Options parseFrom(byte[] data) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data); + } + public static org.tensorflow.proto.data.Options parseFrom( + byte[] data, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data, extensionRegistry); + } + public static org.tensorflow.proto.data.Options parseFrom(java.io.InputStream input) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input); + } + public static org.tensorflow.proto.data.Options parseFrom( + java.io.InputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input, extensionRegistry); + } + public static org.tensorflow.proto.data.Options parseDelimitedFrom(java.io.InputStream input) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseDelimitedWithIOException(PARSER, input); + } + public static org.tensorflow.proto.data.Options parseDelimitedFrom( + java.io.InputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseDelimitedWithIOException(PARSER, input, extensionRegistry); + } + public static org.tensorflow.proto.data.Options parseFrom( + com.google.protobuf.CodedInputStream input) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input); + } + public static org.tensorflow.proto.data.Options parseFrom( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input, extensionRegistry); + } + + @java.lang.Override + public Builder newBuilderForType() { return newBuilder(); } + public static Builder newBuilder() { + return DEFAULT_INSTANCE.toBuilder(); + } + public static Builder newBuilder(org.tensorflow.proto.data.Options prototype) { + return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); + } + @java.lang.Override + public Builder toBuilder() { + return this == DEFAULT_INSTANCE + ? new Builder() : new Builder().mergeFrom(this); + } + + @java.lang.Override + protected Builder newBuilderForType( + com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { + Builder builder = new Builder(parent); + return builder; + } + /** + *
        +   * Message stored with Dataset objects to control how datasets are processed and
        +   * optimized.
        +   * 
        + * + * Protobuf type {@code tensorflow.data.Options} + */ + public static final class Builder extends + com.google.protobuf.GeneratedMessageV3.Builder implements + // @@protoc_insertion_point(builder_implements:tensorflow.data.Options) + org.tensorflow.proto.data.OptionsOrBuilder { + public static final com.google.protobuf.Descriptors.Descriptor + getDescriptor() { + return org.tensorflow.proto.data.DatasetOptionsProtos.internal_static_tensorflow_data_Options_descriptor; + } + + @java.lang.Override + protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable + internalGetFieldAccessorTable() { + return org.tensorflow.proto.data.DatasetOptionsProtos.internal_static_tensorflow_data_Options_fieldAccessorTable + .ensureFieldAccessorsInitialized( + org.tensorflow.proto.data.Options.class, org.tensorflow.proto.data.Options.Builder.class); + } + + // Construct using org.tensorflow.proto.data.Options.newBuilder() + private Builder() { + maybeForceBuilderInitialization(); + } + + private Builder( + com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { + super(parent); + maybeForceBuilderInitialization(); + } + private void maybeForceBuilderInitialization() { + if (com.google.protobuf.GeneratedMessageV3 + .alwaysUseFieldBuilders) { + } + } + @java.lang.Override + public Builder clear() { + super.clear(); + if (distributeOptionsBuilder_ == null) { + distributeOptions_ = null; + } else { + distributeOptions_ = null; + distributeOptionsBuilder_ = null; + } + if (optimizationOptionsBuilder_ == null) { + optimizationOptions_ = null; + } else { + optimizationOptions_ = null; + optimizationOptionsBuilder_ = null; + } + if (threadingOptionsBuilder_ == null) { + threadingOptions_ = null; + } else { + threadingOptions_ = null; + threadingOptionsBuilder_ = null; + } + optionalDeterministicCase_ = 0; + optionalDeterministic_ = null; + optionalSlackCase_ = 0; + optionalSlack_ = null; + optionalExternalStatePolicyCase_ = 0; + optionalExternalStatePolicy_ = null; + return this; + } + + @java.lang.Override + public com.google.protobuf.Descriptors.Descriptor + getDescriptorForType() { + return org.tensorflow.proto.data.DatasetOptionsProtos.internal_static_tensorflow_data_Options_descriptor; + } + + @java.lang.Override + public org.tensorflow.proto.data.Options getDefaultInstanceForType() { + return org.tensorflow.proto.data.Options.getDefaultInstance(); + } + + @java.lang.Override + public org.tensorflow.proto.data.Options build() { + org.tensorflow.proto.data.Options result = buildPartial(); + if (!result.isInitialized()) { + throw newUninitializedMessageException(result); + } + return result; + } + + @java.lang.Override + public org.tensorflow.proto.data.Options buildPartial() { + org.tensorflow.proto.data.Options result = new org.tensorflow.proto.data.Options(this); + if (optionalDeterministicCase_ == 1) { + result.optionalDeterministic_ = optionalDeterministic_; + } + if (distributeOptionsBuilder_ == null) { + result.distributeOptions_ = distributeOptions_; + } else { + result.distributeOptions_ = distributeOptionsBuilder_.build(); + } + if (optimizationOptionsBuilder_ == null) { + result.optimizationOptions_ = optimizationOptions_; + } else { + result.optimizationOptions_ = optimizationOptionsBuilder_.build(); + } + if (optionalSlackCase_ == 4) { + result.optionalSlack_ = optionalSlack_; + } + if (threadingOptionsBuilder_ == null) { + result.threadingOptions_ = threadingOptions_; + } else { + result.threadingOptions_ = threadingOptionsBuilder_.build(); + } + if (optionalExternalStatePolicyCase_ == 6) { + result.optionalExternalStatePolicy_ = optionalExternalStatePolicy_; + } + result.optionalDeterministicCase_ = optionalDeterministicCase_; + result.optionalSlackCase_ = optionalSlackCase_; + result.optionalExternalStatePolicyCase_ = optionalExternalStatePolicyCase_; + onBuilt(); + return result; + } + + @java.lang.Override + public Builder clone() { + return super.clone(); + } + @java.lang.Override + public Builder setField( + com.google.protobuf.Descriptors.FieldDescriptor field, + java.lang.Object value) { + return super.setField(field, value); + } + @java.lang.Override + public Builder clearField( + com.google.protobuf.Descriptors.FieldDescriptor field) { + return super.clearField(field); + } + @java.lang.Override + public Builder clearOneof( + com.google.protobuf.Descriptors.OneofDescriptor oneof) { + return super.clearOneof(oneof); + } + @java.lang.Override + public Builder setRepeatedField( + com.google.protobuf.Descriptors.FieldDescriptor field, + int index, java.lang.Object value) { + return super.setRepeatedField(field, index, value); + } + @java.lang.Override + public Builder addRepeatedField( + com.google.protobuf.Descriptors.FieldDescriptor field, + java.lang.Object value) { + return super.addRepeatedField(field, value); + } + @java.lang.Override + public Builder mergeFrom(com.google.protobuf.Message other) { + if (other instanceof org.tensorflow.proto.data.Options) { + return mergeFrom((org.tensorflow.proto.data.Options)other); + } else { + super.mergeFrom(other); + return this; + } + } + + public Builder mergeFrom(org.tensorflow.proto.data.Options other) { + if (other == org.tensorflow.proto.data.Options.getDefaultInstance()) return this; + if (other.hasDistributeOptions()) { + mergeDistributeOptions(other.getDistributeOptions()); + } + if (other.hasOptimizationOptions()) { + mergeOptimizationOptions(other.getOptimizationOptions()); + } + if (other.hasThreadingOptions()) { + mergeThreadingOptions(other.getThreadingOptions()); + } + switch (other.getOptionalDeterministicCase()) { + case DETERMINISTIC: { + setDeterministic(other.getDeterministic()); + break; + } + case OPTIONALDETERMINISTIC_NOT_SET: { + break; + } + } + switch (other.getOptionalSlackCase()) { + case SLACK: { + setSlack(other.getSlack()); + break; + } + case OPTIONALSLACK_NOT_SET: { + break; + } + } + switch (other.getOptionalExternalStatePolicyCase()) { + case EXTERNAL_STATE_POLICY: { + setExternalStatePolicyValue(other.getExternalStatePolicyValue()); + break; + } + case OPTIONALEXTERNALSTATEPOLICY_NOT_SET: { + break; + } + } + this.mergeUnknownFields(other.unknownFields); + onChanged(); + return this; + } + + @java.lang.Override + public final boolean isInitialized() { + return true; + } + + @java.lang.Override + public Builder mergeFrom( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + org.tensorflow.proto.data.Options parsedMessage = null; + try { + parsedMessage = PARSER.parsePartialFrom(input, extensionRegistry); + } catch (com.google.protobuf.InvalidProtocolBufferException e) { + parsedMessage = (org.tensorflow.proto.data.Options) e.getUnfinishedMessage(); + throw e.unwrapIOException(); + } finally { + if (parsedMessage != null) { + mergeFrom(parsedMessage); + } + } + return this; + } + private int optionalDeterministicCase_ = 0; + private java.lang.Object optionalDeterministic_; + public OptionalDeterministicCase + getOptionalDeterministicCase() { + return OptionalDeterministicCase.forNumber( + optionalDeterministicCase_); + } + + public Builder clearOptionalDeterministic() { + optionalDeterministicCase_ = 0; + optionalDeterministic_ = null; + onChanged(); + return this; + } + + private int optionalSlackCase_ = 0; + private java.lang.Object optionalSlack_; + public OptionalSlackCase + getOptionalSlackCase() { + return OptionalSlackCase.forNumber( + optionalSlackCase_); + } + + public Builder clearOptionalSlack() { + optionalSlackCase_ = 0; + optionalSlack_ = null; + onChanged(); + return this; + } + + private int optionalExternalStatePolicyCase_ = 0; + private java.lang.Object optionalExternalStatePolicy_; + public OptionalExternalStatePolicyCase + getOptionalExternalStatePolicyCase() { + return OptionalExternalStatePolicyCase.forNumber( + optionalExternalStatePolicyCase_); + } + + public Builder clearOptionalExternalStatePolicy() { + optionalExternalStatePolicyCase_ = 0; + optionalExternalStatePolicy_ = null; + onChanged(); + return this; + } + + + /** + * bool deterministic = 1; + */ + public boolean getDeterministic() { + if (optionalDeterministicCase_ == 1) { + return (java.lang.Boolean) optionalDeterministic_; + } + return false; + } + /** + * bool deterministic = 1; + */ + public Builder setDeterministic(boolean value) { + optionalDeterministicCase_ = 1; + optionalDeterministic_ = value; + onChanged(); + return this; + } + /** + * bool deterministic = 1; + */ + public Builder clearDeterministic() { + if (optionalDeterministicCase_ == 1) { + optionalDeterministicCase_ = 0; + optionalDeterministic_ = null; + onChanged(); + } + return this; + } + + private org.tensorflow.proto.data.DistributeOptions distributeOptions_; + private com.google.protobuf.SingleFieldBuilderV3< + org.tensorflow.proto.data.DistributeOptions, org.tensorflow.proto.data.DistributeOptions.Builder, org.tensorflow.proto.data.DistributeOptionsOrBuilder> distributeOptionsBuilder_; + /** + *
        +     * The distribution strategy options associated with the dataset.
        +     * 
        + * + * .tensorflow.data.DistributeOptions distribute_options = 2; + */ + public boolean hasDistributeOptions() { + return distributeOptionsBuilder_ != null || distributeOptions_ != null; + } + /** + *
        +     * The distribution strategy options associated with the dataset.
        +     * 
        + * + * .tensorflow.data.DistributeOptions distribute_options = 2; + */ + public org.tensorflow.proto.data.DistributeOptions getDistributeOptions() { + if (distributeOptionsBuilder_ == null) { + return distributeOptions_ == null ? org.tensorflow.proto.data.DistributeOptions.getDefaultInstance() : distributeOptions_; + } else { + return distributeOptionsBuilder_.getMessage(); + } + } + /** + *
        +     * The distribution strategy options associated with the dataset.
        +     * 
        + * + * .tensorflow.data.DistributeOptions distribute_options = 2; + */ + public Builder setDistributeOptions(org.tensorflow.proto.data.DistributeOptions value) { + if (distributeOptionsBuilder_ == null) { + if (value == null) { + throw new NullPointerException(); + } + distributeOptions_ = value; + onChanged(); + } else { + distributeOptionsBuilder_.setMessage(value); + } + + return this; + } + /** + *
        +     * The distribution strategy options associated with the dataset.
        +     * 
        + * + * .tensorflow.data.DistributeOptions distribute_options = 2; + */ + public Builder setDistributeOptions( + org.tensorflow.proto.data.DistributeOptions.Builder builderForValue) { + if (distributeOptionsBuilder_ == null) { + distributeOptions_ = builderForValue.build(); + onChanged(); + } else { + distributeOptionsBuilder_.setMessage(builderForValue.build()); + } + + return this; + } + /** + *
        +     * The distribution strategy options associated with the dataset.
        +     * 
        + * + * .tensorflow.data.DistributeOptions distribute_options = 2; + */ + public Builder mergeDistributeOptions(org.tensorflow.proto.data.DistributeOptions value) { + if (distributeOptionsBuilder_ == null) { + if (distributeOptions_ != null) { + distributeOptions_ = + org.tensorflow.proto.data.DistributeOptions.newBuilder(distributeOptions_).mergeFrom(value).buildPartial(); + } else { + distributeOptions_ = value; + } + onChanged(); + } else { + distributeOptionsBuilder_.mergeFrom(value); + } + + return this; + } + /** + *
        +     * The distribution strategy options associated with the dataset.
        +     * 
        + * + * .tensorflow.data.DistributeOptions distribute_options = 2; + */ + public Builder clearDistributeOptions() { + if (distributeOptionsBuilder_ == null) { + distributeOptions_ = null; + onChanged(); + } else { + distributeOptions_ = null; + distributeOptionsBuilder_ = null; + } + + return this; + } + /** + *
        +     * The distribution strategy options associated with the dataset.
        +     * 
        + * + * .tensorflow.data.DistributeOptions distribute_options = 2; + */ + public org.tensorflow.proto.data.DistributeOptions.Builder getDistributeOptionsBuilder() { + + onChanged(); + return getDistributeOptionsFieldBuilder().getBuilder(); + } + /** + *
        +     * The distribution strategy options associated with the dataset.
        +     * 
        + * + * .tensorflow.data.DistributeOptions distribute_options = 2; + */ + public org.tensorflow.proto.data.DistributeOptionsOrBuilder getDistributeOptionsOrBuilder() { + if (distributeOptionsBuilder_ != null) { + return distributeOptionsBuilder_.getMessageOrBuilder(); + } else { + return distributeOptions_ == null ? + org.tensorflow.proto.data.DistributeOptions.getDefaultInstance() : distributeOptions_; + } + } + /** + *
        +     * The distribution strategy options associated with the dataset.
        +     * 
        + * + * .tensorflow.data.DistributeOptions distribute_options = 2; + */ + private com.google.protobuf.SingleFieldBuilderV3< + org.tensorflow.proto.data.DistributeOptions, org.tensorflow.proto.data.DistributeOptions.Builder, org.tensorflow.proto.data.DistributeOptionsOrBuilder> + getDistributeOptionsFieldBuilder() { + if (distributeOptionsBuilder_ == null) { + distributeOptionsBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< + org.tensorflow.proto.data.DistributeOptions, org.tensorflow.proto.data.DistributeOptions.Builder, org.tensorflow.proto.data.DistributeOptionsOrBuilder>( + getDistributeOptions(), + getParentForChildren(), + isClean()); + distributeOptions_ = null; + } + return distributeOptionsBuilder_; + } + + private org.tensorflow.proto.data.OptimizationOptions optimizationOptions_; + private com.google.protobuf.SingleFieldBuilderV3< + org.tensorflow.proto.data.OptimizationOptions, org.tensorflow.proto.data.OptimizationOptions.Builder, org.tensorflow.proto.data.OptimizationOptionsOrBuilder> optimizationOptionsBuilder_; + /** + *
        +     * The optimization options associated with the dataset.
        +     * 
        + * + * .tensorflow.data.OptimizationOptions optimization_options = 3; + */ + public boolean hasOptimizationOptions() { + return optimizationOptionsBuilder_ != null || optimizationOptions_ != null; + } + /** + *
        +     * The optimization options associated with the dataset.
        +     * 
        + * + * .tensorflow.data.OptimizationOptions optimization_options = 3; + */ + public org.tensorflow.proto.data.OptimizationOptions getOptimizationOptions() { + if (optimizationOptionsBuilder_ == null) { + return optimizationOptions_ == null ? org.tensorflow.proto.data.OptimizationOptions.getDefaultInstance() : optimizationOptions_; + } else { + return optimizationOptionsBuilder_.getMessage(); + } + } + /** + *
        +     * The optimization options associated with the dataset.
        +     * 
        + * + * .tensorflow.data.OptimizationOptions optimization_options = 3; + */ + public Builder setOptimizationOptions(org.tensorflow.proto.data.OptimizationOptions value) { + if (optimizationOptionsBuilder_ == null) { + if (value == null) { + throw new NullPointerException(); + } + optimizationOptions_ = value; + onChanged(); + } else { + optimizationOptionsBuilder_.setMessage(value); + } + + return this; + } + /** + *
        +     * The optimization options associated with the dataset.
        +     * 
        + * + * .tensorflow.data.OptimizationOptions optimization_options = 3; + */ + public Builder setOptimizationOptions( + org.tensorflow.proto.data.OptimizationOptions.Builder builderForValue) { + if (optimizationOptionsBuilder_ == null) { + optimizationOptions_ = builderForValue.build(); + onChanged(); + } else { + optimizationOptionsBuilder_.setMessage(builderForValue.build()); + } + + return this; + } + /** + *
        +     * The optimization options associated with the dataset.
        +     * 
        + * + * .tensorflow.data.OptimizationOptions optimization_options = 3; + */ + public Builder mergeOptimizationOptions(org.tensorflow.proto.data.OptimizationOptions value) { + if (optimizationOptionsBuilder_ == null) { + if (optimizationOptions_ != null) { + optimizationOptions_ = + org.tensorflow.proto.data.OptimizationOptions.newBuilder(optimizationOptions_).mergeFrom(value).buildPartial(); + } else { + optimizationOptions_ = value; + } + onChanged(); + } else { + optimizationOptionsBuilder_.mergeFrom(value); + } + + return this; + } + /** + *
        +     * The optimization options associated with the dataset.
        +     * 
        + * + * .tensorflow.data.OptimizationOptions optimization_options = 3; + */ + public Builder clearOptimizationOptions() { + if (optimizationOptionsBuilder_ == null) { + optimizationOptions_ = null; + onChanged(); + } else { + optimizationOptions_ = null; + optimizationOptionsBuilder_ = null; + } + + return this; + } + /** + *
        +     * The optimization options associated with the dataset.
        +     * 
        + * + * .tensorflow.data.OptimizationOptions optimization_options = 3; + */ + public org.tensorflow.proto.data.OptimizationOptions.Builder getOptimizationOptionsBuilder() { + + onChanged(); + return getOptimizationOptionsFieldBuilder().getBuilder(); + } + /** + *
        +     * The optimization options associated with the dataset.
        +     * 
        + * + * .tensorflow.data.OptimizationOptions optimization_options = 3; + */ + public org.tensorflow.proto.data.OptimizationOptionsOrBuilder getOptimizationOptionsOrBuilder() { + if (optimizationOptionsBuilder_ != null) { + return optimizationOptionsBuilder_.getMessageOrBuilder(); + } else { + return optimizationOptions_ == null ? + org.tensorflow.proto.data.OptimizationOptions.getDefaultInstance() : optimizationOptions_; + } + } + /** + *
        +     * The optimization options associated with the dataset.
        +     * 
        + * + * .tensorflow.data.OptimizationOptions optimization_options = 3; + */ + private com.google.protobuf.SingleFieldBuilderV3< + org.tensorflow.proto.data.OptimizationOptions, org.tensorflow.proto.data.OptimizationOptions.Builder, org.tensorflow.proto.data.OptimizationOptionsOrBuilder> + getOptimizationOptionsFieldBuilder() { + if (optimizationOptionsBuilder_ == null) { + optimizationOptionsBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< + org.tensorflow.proto.data.OptimizationOptions, org.tensorflow.proto.data.OptimizationOptions.Builder, org.tensorflow.proto.data.OptimizationOptionsOrBuilder>( + getOptimizationOptions(), + getParentForChildren(), + isClean()); + optimizationOptions_ = null; + } + return optimizationOptionsBuilder_; + } + + /** + * bool slack = 4; + */ + public boolean getSlack() { + if (optionalSlackCase_ == 4) { + return (java.lang.Boolean) optionalSlack_; + } + return false; + } + /** + * bool slack = 4; + */ + public Builder setSlack(boolean value) { + optionalSlackCase_ = 4; + optionalSlack_ = value; + onChanged(); + return this; + } + /** + * bool slack = 4; + */ + public Builder clearSlack() { + if (optionalSlackCase_ == 4) { + optionalSlackCase_ = 0; + optionalSlack_ = null; + onChanged(); + } + return this; + } + + private org.tensorflow.proto.data.ThreadingOptions threadingOptions_; + private com.google.protobuf.SingleFieldBuilderV3< + org.tensorflow.proto.data.ThreadingOptions, org.tensorflow.proto.data.ThreadingOptions.Builder, org.tensorflow.proto.data.ThreadingOptionsOrBuilder> threadingOptionsBuilder_; + /** + *
        +     * The threading options associated with the dataset.
        +     * 
        + * + * .tensorflow.data.ThreadingOptions threading_options = 5; + */ + public boolean hasThreadingOptions() { + return threadingOptionsBuilder_ != null || threadingOptions_ != null; + } + /** + *
        +     * The threading options associated with the dataset.
        +     * 
        + * + * .tensorflow.data.ThreadingOptions threading_options = 5; + */ + public org.tensorflow.proto.data.ThreadingOptions getThreadingOptions() { + if (threadingOptionsBuilder_ == null) { + return threadingOptions_ == null ? org.tensorflow.proto.data.ThreadingOptions.getDefaultInstance() : threadingOptions_; + } else { + return threadingOptionsBuilder_.getMessage(); + } + } + /** + *
        +     * The threading options associated with the dataset.
        +     * 
        + * + * .tensorflow.data.ThreadingOptions threading_options = 5; + */ + public Builder setThreadingOptions(org.tensorflow.proto.data.ThreadingOptions value) { + if (threadingOptionsBuilder_ == null) { + if (value == null) { + throw new NullPointerException(); + } + threadingOptions_ = value; + onChanged(); + } else { + threadingOptionsBuilder_.setMessage(value); + } + + return this; + } + /** + *
        +     * The threading options associated with the dataset.
        +     * 
        + * + * .tensorflow.data.ThreadingOptions threading_options = 5; + */ + public Builder setThreadingOptions( + org.tensorflow.proto.data.ThreadingOptions.Builder builderForValue) { + if (threadingOptionsBuilder_ == null) { + threadingOptions_ = builderForValue.build(); + onChanged(); + } else { + threadingOptionsBuilder_.setMessage(builderForValue.build()); + } + + return this; + } + /** + *
        +     * The threading options associated with the dataset.
        +     * 
        + * + * .tensorflow.data.ThreadingOptions threading_options = 5; + */ + public Builder mergeThreadingOptions(org.tensorflow.proto.data.ThreadingOptions value) { + if (threadingOptionsBuilder_ == null) { + if (threadingOptions_ != null) { + threadingOptions_ = + org.tensorflow.proto.data.ThreadingOptions.newBuilder(threadingOptions_).mergeFrom(value).buildPartial(); + } else { + threadingOptions_ = value; + } + onChanged(); + } else { + threadingOptionsBuilder_.mergeFrom(value); + } + + return this; + } + /** + *
        +     * The threading options associated with the dataset.
        +     * 
        + * + * .tensorflow.data.ThreadingOptions threading_options = 5; + */ + public Builder clearThreadingOptions() { + if (threadingOptionsBuilder_ == null) { + threadingOptions_ = null; + onChanged(); + } else { + threadingOptions_ = null; + threadingOptionsBuilder_ = null; + } + + return this; + } + /** + *
        +     * The threading options associated with the dataset.
        +     * 
        + * + * .tensorflow.data.ThreadingOptions threading_options = 5; + */ + public org.tensorflow.proto.data.ThreadingOptions.Builder getThreadingOptionsBuilder() { + + onChanged(); + return getThreadingOptionsFieldBuilder().getBuilder(); + } + /** + *
        +     * The threading options associated with the dataset.
        +     * 
        + * + * .tensorflow.data.ThreadingOptions threading_options = 5; + */ + public org.tensorflow.proto.data.ThreadingOptionsOrBuilder getThreadingOptionsOrBuilder() { + if (threadingOptionsBuilder_ != null) { + return threadingOptionsBuilder_.getMessageOrBuilder(); + } else { + return threadingOptions_ == null ? + org.tensorflow.proto.data.ThreadingOptions.getDefaultInstance() : threadingOptions_; + } + } + /** + *
        +     * The threading options associated with the dataset.
        +     * 
        + * + * .tensorflow.data.ThreadingOptions threading_options = 5; + */ + private com.google.protobuf.SingleFieldBuilderV3< + org.tensorflow.proto.data.ThreadingOptions, org.tensorflow.proto.data.ThreadingOptions.Builder, org.tensorflow.proto.data.ThreadingOptionsOrBuilder> + getThreadingOptionsFieldBuilder() { + if (threadingOptionsBuilder_ == null) { + threadingOptionsBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< + org.tensorflow.proto.data.ThreadingOptions, org.tensorflow.proto.data.ThreadingOptions.Builder, org.tensorflow.proto.data.ThreadingOptionsOrBuilder>( + getThreadingOptions(), + getParentForChildren(), + isClean()); + threadingOptions_ = null; + } + return threadingOptionsBuilder_; + } + + /** + * .tensorflow.data.ExternalStatePolicy external_state_policy = 6; + */ + public int getExternalStatePolicyValue() { + if (optionalExternalStatePolicyCase_ == 6) { + return ((java.lang.Integer) optionalExternalStatePolicy_).intValue(); + } + return 0; + } + /** + * .tensorflow.data.ExternalStatePolicy external_state_policy = 6; + */ + public Builder setExternalStatePolicyValue(int value) { + optionalExternalStatePolicyCase_ = 6; + optionalExternalStatePolicy_ = value; + onChanged(); + return this; + } + /** + * .tensorflow.data.ExternalStatePolicy external_state_policy = 6; + */ + public org.tensorflow.proto.data.ExternalStatePolicy getExternalStatePolicy() { + if (optionalExternalStatePolicyCase_ == 6) { + @SuppressWarnings("deprecation") + org.tensorflow.proto.data.ExternalStatePolicy result = org.tensorflow.proto.data.ExternalStatePolicy.valueOf( + (java.lang.Integer) optionalExternalStatePolicy_); + return result == null ? org.tensorflow.proto.data.ExternalStatePolicy.UNRECOGNIZED : result; + } + return org.tensorflow.proto.data.ExternalStatePolicy.POLICY_WARN; + } + /** + * .tensorflow.data.ExternalStatePolicy external_state_policy = 6; + */ + public Builder setExternalStatePolicy(org.tensorflow.proto.data.ExternalStatePolicy value) { + if (value == null) { + throw new NullPointerException(); + } + optionalExternalStatePolicyCase_ = 6; + optionalExternalStatePolicy_ = value.getNumber(); + onChanged(); + return this; + } + /** + * .tensorflow.data.ExternalStatePolicy external_state_policy = 6; + */ + public Builder clearExternalStatePolicy() { + if (optionalExternalStatePolicyCase_ == 6) { + optionalExternalStatePolicyCase_ = 0; + optionalExternalStatePolicy_ = null; + onChanged(); + } + return this; + } + @java.lang.Override + public final Builder setUnknownFields( + final com.google.protobuf.UnknownFieldSet unknownFields) { + return super.setUnknownFields(unknownFields); + } + + @java.lang.Override + public final Builder mergeUnknownFields( + final com.google.protobuf.UnknownFieldSet unknownFields) { + return super.mergeUnknownFields(unknownFields); + } + + + // @@protoc_insertion_point(builder_scope:tensorflow.data.Options) + } + + // @@protoc_insertion_point(class_scope:tensorflow.data.Options) + private static final org.tensorflow.proto.data.Options DEFAULT_INSTANCE; + static { + DEFAULT_INSTANCE = new org.tensorflow.proto.data.Options(); + } + + public static org.tensorflow.proto.data.Options getDefaultInstance() { + return DEFAULT_INSTANCE; + } + + private static final com.google.protobuf.Parser + PARSER = new com.google.protobuf.AbstractParser() { + @java.lang.Override + public Options parsePartialFrom( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return new Options(input, extensionRegistry); + } + }; + + public static com.google.protobuf.Parser parser() { + return PARSER; + } + + @java.lang.Override + public com.google.protobuf.Parser getParserForType() { + return PARSER; + } + + @java.lang.Override + public org.tensorflow.proto.data.Options getDefaultInstanceForType() { + return DEFAULT_INSTANCE; + } + +} + diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/OptionsOrBuilder.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/OptionsOrBuilder.java new file mode 100644 index 00000000000..b4f2077d1ca --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/OptionsOrBuilder.java @@ -0,0 +1,109 @@ +// Generated by the protocol buffer compiler. DO NOT EDIT! +// source: tensorflow/core/framework/dataset_options.proto + +package org.tensorflow.proto.data; + +public interface OptionsOrBuilder extends + // @@protoc_insertion_point(interface_extends:tensorflow.data.Options) + com.google.protobuf.MessageOrBuilder { + + /** + * bool deterministic = 1; + */ + boolean getDeterministic(); + + /** + *
        +   * The distribution strategy options associated with the dataset.
        +   * 
        + * + * .tensorflow.data.DistributeOptions distribute_options = 2; + */ + boolean hasDistributeOptions(); + /** + *
        +   * The distribution strategy options associated with the dataset.
        +   * 
        + * + * .tensorflow.data.DistributeOptions distribute_options = 2; + */ + org.tensorflow.proto.data.DistributeOptions getDistributeOptions(); + /** + *
        +   * The distribution strategy options associated with the dataset.
        +   * 
        + * + * .tensorflow.data.DistributeOptions distribute_options = 2; + */ + org.tensorflow.proto.data.DistributeOptionsOrBuilder getDistributeOptionsOrBuilder(); + + /** + *
        +   * The optimization options associated with the dataset.
        +   * 
        + * + * .tensorflow.data.OptimizationOptions optimization_options = 3; + */ + boolean hasOptimizationOptions(); + /** + *
        +   * The optimization options associated with the dataset.
        +   * 
        + * + * .tensorflow.data.OptimizationOptions optimization_options = 3; + */ + org.tensorflow.proto.data.OptimizationOptions getOptimizationOptions(); + /** + *
        +   * The optimization options associated with the dataset.
        +   * 
        + * + * .tensorflow.data.OptimizationOptions optimization_options = 3; + */ + org.tensorflow.proto.data.OptimizationOptionsOrBuilder getOptimizationOptionsOrBuilder(); + + /** + * bool slack = 4; + */ + boolean getSlack(); + + /** + *
        +   * The threading options associated with the dataset.
        +   * 
        + * + * .tensorflow.data.ThreadingOptions threading_options = 5; + */ + boolean hasThreadingOptions(); + /** + *
        +   * The threading options associated with the dataset.
        +   * 
        + * + * .tensorflow.data.ThreadingOptions threading_options = 5; + */ + org.tensorflow.proto.data.ThreadingOptions getThreadingOptions(); + /** + *
        +   * The threading options associated with the dataset.
        +   * 
        + * + * .tensorflow.data.ThreadingOptions threading_options = 5; + */ + org.tensorflow.proto.data.ThreadingOptionsOrBuilder getThreadingOptionsOrBuilder(); + + /** + * .tensorflow.data.ExternalStatePolicy external_state_policy = 6; + */ + int getExternalStatePolicyValue(); + /** + * .tensorflow.data.ExternalStatePolicy external_state_policy = 6; + */ + org.tensorflow.proto.data.ExternalStatePolicy getExternalStatePolicy(); + + public org.tensorflow.proto.data.Options.OptionalDeterministicCase getOptionalDeterministicCase(); + + public org.tensorflow.proto.data.Options.OptionalSlackCase getOptionalSlackCase(); + + public org.tensorflow.proto.data.Options.OptionalExternalStatePolicyCase getOptionalExternalStatePolicyCase(); +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/ThreadingOptions.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/ThreadingOptions.java new file mode 100644 index 00000000000..eebc5aaf459 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/ThreadingOptions.java @@ -0,0 +1,695 @@ +// Generated by the protocol buffer compiler. DO NOT EDIT! +// source: tensorflow/core/framework/dataset_options.proto + +package org.tensorflow.proto.data; + +/** + * Protobuf type {@code tensorflow.data.ThreadingOptions} + */ +public final class ThreadingOptions extends + com.google.protobuf.GeneratedMessageV3 implements + // @@protoc_insertion_point(message_implements:tensorflow.data.ThreadingOptions) + ThreadingOptionsOrBuilder { +private static final long serialVersionUID = 0L; + // Use ThreadingOptions.newBuilder() to construct. + private ThreadingOptions(com.google.protobuf.GeneratedMessageV3.Builder builder) { + super(builder); + } + private ThreadingOptions() { + } + + @java.lang.Override + @SuppressWarnings({"unused"}) + protected java.lang.Object newInstance( + UnusedPrivateParameter unused) { + return new ThreadingOptions(); + } + + @java.lang.Override + public final com.google.protobuf.UnknownFieldSet + getUnknownFields() { + return this.unknownFields; + } + private ThreadingOptions( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + this(); + if (extensionRegistry == null) { + throw new java.lang.NullPointerException(); + } + com.google.protobuf.UnknownFieldSet.Builder unknownFields = + com.google.protobuf.UnknownFieldSet.newBuilder(); + try { + boolean done = false; + while (!done) { + int tag = input.readTag(); + switch (tag) { + case 0: + done = true; + break; + case 8: { + optionalMaxIntraOpParallelismCase_ = 1; + optionalMaxIntraOpParallelism_ = input.readInt32(); + break; + } + case 16: { + optionalPrivateThreadpoolSizeCase_ = 2; + optionalPrivateThreadpoolSize_ = input.readInt32(); + break; + } + default: { + if (!parseUnknownField( + input, unknownFields, extensionRegistry, tag)) { + done = true; + } + break; + } + } + } + } catch (com.google.protobuf.InvalidProtocolBufferException e) { + throw e.setUnfinishedMessage(this); + } catch (java.io.IOException e) { + throw new com.google.protobuf.InvalidProtocolBufferException( + e).setUnfinishedMessage(this); + } finally { + this.unknownFields = unknownFields.build(); + makeExtensionsImmutable(); + } + } + public static final com.google.protobuf.Descriptors.Descriptor + getDescriptor() { + return org.tensorflow.proto.data.DatasetOptionsProtos.internal_static_tensorflow_data_ThreadingOptions_descriptor; + } + + @java.lang.Override + protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable + internalGetFieldAccessorTable() { + return org.tensorflow.proto.data.DatasetOptionsProtos.internal_static_tensorflow_data_ThreadingOptions_fieldAccessorTable + .ensureFieldAccessorsInitialized( + org.tensorflow.proto.data.ThreadingOptions.class, org.tensorflow.proto.data.ThreadingOptions.Builder.class); + } + + private int optionalMaxIntraOpParallelismCase_ = 0; + private java.lang.Object optionalMaxIntraOpParallelism_; + public enum OptionalMaxIntraOpParallelismCase + implements com.google.protobuf.Internal.EnumLite { + MAX_INTRA_OP_PARALLELISM(1), + OPTIONALMAXINTRAOPPARALLELISM_NOT_SET(0); + private final int value; + private OptionalMaxIntraOpParallelismCase(int value) { + this.value = value; + } + /** + * @deprecated Use {@link #forNumber(int)} instead. + */ + @java.lang.Deprecated + public static OptionalMaxIntraOpParallelismCase valueOf(int value) { + return forNumber(value); + } + + public static OptionalMaxIntraOpParallelismCase forNumber(int value) { + switch (value) { + case 1: return MAX_INTRA_OP_PARALLELISM; + case 0: return OPTIONALMAXINTRAOPPARALLELISM_NOT_SET; + default: return null; + } + } + public int getNumber() { + return this.value; + } + }; + + public OptionalMaxIntraOpParallelismCase + getOptionalMaxIntraOpParallelismCase() { + return OptionalMaxIntraOpParallelismCase.forNumber( + optionalMaxIntraOpParallelismCase_); + } + + private int optionalPrivateThreadpoolSizeCase_ = 0; + private java.lang.Object optionalPrivateThreadpoolSize_; + public enum OptionalPrivateThreadpoolSizeCase + implements com.google.protobuf.Internal.EnumLite { + PRIVATE_THREADPOOL_SIZE(2), + OPTIONALPRIVATETHREADPOOLSIZE_NOT_SET(0); + private final int value; + private OptionalPrivateThreadpoolSizeCase(int value) { + this.value = value; + } + /** + * @deprecated Use {@link #forNumber(int)} instead. + */ + @java.lang.Deprecated + public static OptionalPrivateThreadpoolSizeCase valueOf(int value) { + return forNumber(value); + } + + public static OptionalPrivateThreadpoolSizeCase forNumber(int value) { + switch (value) { + case 2: return PRIVATE_THREADPOOL_SIZE; + case 0: return OPTIONALPRIVATETHREADPOOLSIZE_NOT_SET; + default: return null; + } + } + public int getNumber() { + return this.value; + } + }; + + public OptionalPrivateThreadpoolSizeCase + getOptionalPrivateThreadpoolSizeCase() { + return OptionalPrivateThreadpoolSizeCase.forNumber( + optionalPrivateThreadpoolSizeCase_); + } + + public static final int MAX_INTRA_OP_PARALLELISM_FIELD_NUMBER = 1; + /** + * int32 max_intra_op_parallelism = 1; + */ + public int getMaxIntraOpParallelism() { + if (optionalMaxIntraOpParallelismCase_ == 1) { + return (java.lang.Integer) optionalMaxIntraOpParallelism_; + } + return 0; + } + + public static final int PRIVATE_THREADPOOL_SIZE_FIELD_NUMBER = 2; + /** + * int32 private_threadpool_size = 2; + */ + public int getPrivateThreadpoolSize() { + if (optionalPrivateThreadpoolSizeCase_ == 2) { + return (java.lang.Integer) optionalPrivateThreadpoolSize_; + } + return 0; + } + + private byte memoizedIsInitialized = -1; + @java.lang.Override + public final boolean isInitialized() { + byte isInitialized = memoizedIsInitialized; + if (isInitialized == 1) return true; + if (isInitialized == 0) return false; + + memoizedIsInitialized = 1; + return true; + } + + @java.lang.Override + public void writeTo(com.google.protobuf.CodedOutputStream output) + throws java.io.IOException { + if (optionalMaxIntraOpParallelismCase_ == 1) { + output.writeInt32( + 1, (int)((java.lang.Integer) optionalMaxIntraOpParallelism_)); + } + if (optionalPrivateThreadpoolSizeCase_ == 2) { + output.writeInt32( + 2, (int)((java.lang.Integer) optionalPrivateThreadpoolSize_)); + } + unknownFields.writeTo(output); + } + + @java.lang.Override + public int getSerializedSize() { + int size = memoizedSize; + if (size != -1) return size; + + size = 0; + if (optionalMaxIntraOpParallelismCase_ == 1) { + size += com.google.protobuf.CodedOutputStream + .computeInt32Size( + 1, (int)((java.lang.Integer) optionalMaxIntraOpParallelism_)); + } + if (optionalPrivateThreadpoolSizeCase_ == 2) { + size += com.google.protobuf.CodedOutputStream + .computeInt32Size( + 2, (int)((java.lang.Integer) optionalPrivateThreadpoolSize_)); + } + size += unknownFields.getSerializedSize(); + memoizedSize = size; + return size; + } + + @java.lang.Override + public boolean equals(final java.lang.Object obj) { + if (obj == this) { + return true; + } + if (!(obj instanceof org.tensorflow.proto.data.ThreadingOptions)) { + return super.equals(obj); + } + org.tensorflow.proto.data.ThreadingOptions other = (org.tensorflow.proto.data.ThreadingOptions) obj; + + if (!getOptionalMaxIntraOpParallelismCase().equals(other.getOptionalMaxIntraOpParallelismCase())) return false; + switch (optionalMaxIntraOpParallelismCase_) { + case 1: + if (getMaxIntraOpParallelism() + != other.getMaxIntraOpParallelism()) return false; + break; + case 0: + default: + } + if (!getOptionalPrivateThreadpoolSizeCase().equals(other.getOptionalPrivateThreadpoolSizeCase())) return false; + switch (optionalPrivateThreadpoolSizeCase_) { + case 2: + if (getPrivateThreadpoolSize() + != other.getPrivateThreadpoolSize()) return false; + break; + case 0: + default: + } + if (!unknownFields.equals(other.unknownFields)) return false; + return true; + } + + @java.lang.Override + public int hashCode() { + if (memoizedHashCode != 0) { + return memoizedHashCode; + } + int hash = 41; + hash = (19 * hash) + getDescriptor().hashCode(); + switch (optionalMaxIntraOpParallelismCase_) { + case 1: + hash = (37 * hash) + MAX_INTRA_OP_PARALLELISM_FIELD_NUMBER; + hash = (53 * hash) + getMaxIntraOpParallelism(); + break; + case 0: + default: + } + switch (optionalPrivateThreadpoolSizeCase_) { + case 2: + hash = (37 * hash) + PRIVATE_THREADPOOL_SIZE_FIELD_NUMBER; + hash = (53 * hash) + getPrivateThreadpoolSize(); + break; + case 0: + default: + } + hash = (29 * hash) + unknownFields.hashCode(); + memoizedHashCode = hash; + return hash; + } + + public static org.tensorflow.proto.data.ThreadingOptions parseFrom( + java.nio.ByteBuffer data) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data); + } + public static org.tensorflow.proto.data.ThreadingOptions parseFrom( + java.nio.ByteBuffer data, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data, extensionRegistry); + } + public static org.tensorflow.proto.data.ThreadingOptions parseFrom( + com.google.protobuf.ByteString data) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data); + } + public static org.tensorflow.proto.data.ThreadingOptions parseFrom( + com.google.protobuf.ByteString data, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data, extensionRegistry); + } + public static org.tensorflow.proto.data.ThreadingOptions parseFrom(byte[] data) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data); + } + public static org.tensorflow.proto.data.ThreadingOptions parseFrom( + byte[] data, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data, extensionRegistry); + } + public static org.tensorflow.proto.data.ThreadingOptions parseFrom(java.io.InputStream input) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input); + } + public static org.tensorflow.proto.data.ThreadingOptions parseFrom( + java.io.InputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input, extensionRegistry); + } + public static org.tensorflow.proto.data.ThreadingOptions parseDelimitedFrom(java.io.InputStream input) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseDelimitedWithIOException(PARSER, input); + } + public static org.tensorflow.proto.data.ThreadingOptions parseDelimitedFrom( + java.io.InputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseDelimitedWithIOException(PARSER, input, extensionRegistry); + } + public static org.tensorflow.proto.data.ThreadingOptions parseFrom( + com.google.protobuf.CodedInputStream input) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input); + } + public static org.tensorflow.proto.data.ThreadingOptions parseFrom( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input, extensionRegistry); + } + + @java.lang.Override + public Builder newBuilderForType() { return newBuilder(); } + public static Builder newBuilder() { + return DEFAULT_INSTANCE.toBuilder(); + } + public static Builder newBuilder(org.tensorflow.proto.data.ThreadingOptions prototype) { + return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); + } + @java.lang.Override + public Builder toBuilder() { + return this == DEFAULT_INSTANCE + ? new Builder() : new Builder().mergeFrom(this); + } + + @java.lang.Override + protected Builder newBuilderForType( + com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { + Builder builder = new Builder(parent); + return builder; + } + /** + * Protobuf type {@code tensorflow.data.ThreadingOptions} + */ + public static final class Builder extends + com.google.protobuf.GeneratedMessageV3.Builder implements + // @@protoc_insertion_point(builder_implements:tensorflow.data.ThreadingOptions) + org.tensorflow.proto.data.ThreadingOptionsOrBuilder { + public static final com.google.protobuf.Descriptors.Descriptor + getDescriptor() { + return org.tensorflow.proto.data.DatasetOptionsProtos.internal_static_tensorflow_data_ThreadingOptions_descriptor; + } + + @java.lang.Override + protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable + internalGetFieldAccessorTable() { + return org.tensorflow.proto.data.DatasetOptionsProtos.internal_static_tensorflow_data_ThreadingOptions_fieldAccessorTable + .ensureFieldAccessorsInitialized( + org.tensorflow.proto.data.ThreadingOptions.class, org.tensorflow.proto.data.ThreadingOptions.Builder.class); + } + + // Construct using org.tensorflow.proto.data.ThreadingOptions.newBuilder() + private Builder() { + maybeForceBuilderInitialization(); + } + + private Builder( + com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { + super(parent); + maybeForceBuilderInitialization(); + } + private void maybeForceBuilderInitialization() { + if (com.google.protobuf.GeneratedMessageV3 + .alwaysUseFieldBuilders) { + } + } + @java.lang.Override + public Builder clear() { + super.clear(); + optionalMaxIntraOpParallelismCase_ = 0; + optionalMaxIntraOpParallelism_ = null; + optionalPrivateThreadpoolSizeCase_ = 0; + optionalPrivateThreadpoolSize_ = null; + return this; + } + + @java.lang.Override + public com.google.protobuf.Descriptors.Descriptor + getDescriptorForType() { + return org.tensorflow.proto.data.DatasetOptionsProtos.internal_static_tensorflow_data_ThreadingOptions_descriptor; + } + + @java.lang.Override + public org.tensorflow.proto.data.ThreadingOptions getDefaultInstanceForType() { + return org.tensorflow.proto.data.ThreadingOptions.getDefaultInstance(); + } + + @java.lang.Override + public org.tensorflow.proto.data.ThreadingOptions build() { + org.tensorflow.proto.data.ThreadingOptions result = buildPartial(); + if (!result.isInitialized()) { + throw newUninitializedMessageException(result); + } + return result; + } + + @java.lang.Override + public org.tensorflow.proto.data.ThreadingOptions buildPartial() { + org.tensorflow.proto.data.ThreadingOptions result = new org.tensorflow.proto.data.ThreadingOptions(this); + if (optionalMaxIntraOpParallelismCase_ == 1) { + result.optionalMaxIntraOpParallelism_ = optionalMaxIntraOpParallelism_; + } + if (optionalPrivateThreadpoolSizeCase_ == 2) { + result.optionalPrivateThreadpoolSize_ = optionalPrivateThreadpoolSize_; + } + result.optionalMaxIntraOpParallelismCase_ = optionalMaxIntraOpParallelismCase_; + result.optionalPrivateThreadpoolSizeCase_ = optionalPrivateThreadpoolSizeCase_; + onBuilt(); + return result; + } + + @java.lang.Override + public Builder clone() { + return super.clone(); + } + @java.lang.Override + public Builder setField( + com.google.protobuf.Descriptors.FieldDescriptor field, + java.lang.Object value) { + return super.setField(field, value); + } + @java.lang.Override + public Builder clearField( + com.google.protobuf.Descriptors.FieldDescriptor field) { + return super.clearField(field); + } + @java.lang.Override + public Builder clearOneof( + com.google.protobuf.Descriptors.OneofDescriptor oneof) { + return super.clearOneof(oneof); + } + @java.lang.Override + public Builder setRepeatedField( + com.google.protobuf.Descriptors.FieldDescriptor field, + int index, java.lang.Object value) { + return super.setRepeatedField(field, index, value); + } + @java.lang.Override + public Builder addRepeatedField( + com.google.protobuf.Descriptors.FieldDescriptor field, + java.lang.Object value) { + return super.addRepeatedField(field, value); + } + @java.lang.Override + public Builder mergeFrom(com.google.protobuf.Message other) { + if (other instanceof org.tensorflow.proto.data.ThreadingOptions) { + return mergeFrom((org.tensorflow.proto.data.ThreadingOptions)other); + } else { + super.mergeFrom(other); + return this; + } + } + + public Builder mergeFrom(org.tensorflow.proto.data.ThreadingOptions other) { + if (other == org.tensorflow.proto.data.ThreadingOptions.getDefaultInstance()) return this; + switch (other.getOptionalMaxIntraOpParallelismCase()) { + case MAX_INTRA_OP_PARALLELISM: { + setMaxIntraOpParallelism(other.getMaxIntraOpParallelism()); + break; + } + case OPTIONALMAXINTRAOPPARALLELISM_NOT_SET: { + break; + } + } + switch (other.getOptionalPrivateThreadpoolSizeCase()) { + case PRIVATE_THREADPOOL_SIZE: { + setPrivateThreadpoolSize(other.getPrivateThreadpoolSize()); + break; + } + case OPTIONALPRIVATETHREADPOOLSIZE_NOT_SET: { + break; + } + } + this.mergeUnknownFields(other.unknownFields); + onChanged(); + return this; + } + + @java.lang.Override + public final boolean isInitialized() { + return true; + } + + @java.lang.Override + public Builder mergeFrom( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + org.tensorflow.proto.data.ThreadingOptions parsedMessage = null; + try { + parsedMessage = PARSER.parsePartialFrom(input, extensionRegistry); + } catch (com.google.protobuf.InvalidProtocolBufferException e) { + parsedMessage = (org.tensorflow.proto.data.ThreadingOptions) e.getUnfinishedMessage(); + throw e.unwrapIOException(); + } finally { + if (parsedMessage != null) { + mergeFrom(parsedMessage); + } + } + return this; + } + private int optionalMaxIntraOpParallelismCase_ = 0; + private java.lang.Object optionalMaxIntraOpParallelism_; + public OptionalMaxIntraOpParallelismCase + getOptionalMaxIntraOpParallelismCase() { + return OptionalMaxIntraOpParallelismCase.forNumber( + optionalMaxIntraOpParallelismCase_); + } + + public Builder clearOptionalMaxIntraOpParallelism() { + optionalMaxIntraOpParallelismCase_ = 0; + optionalMaxIntraOpParallelism_ = null; + onChanged(); + return this; + } + + private int optionalPrivateThreadpoolSizeCase_ = 0; + private java.lang.Object optionalPrivateThreadpoolSize_; + public OptionalPrivateThreadpoolSizeCase + getOptionalPrivateThreadpoolSizeCase() { + return OptionalPrivateThreadpoolSizeCase.forNumber( + optionalPrivateThreadpoolSizeCase_); + } + + public Builder clearOptionalPrivateThreadpoolSize() { + optionalPrivateThreadpoolSizeCase_ = 0; + optionalPrivateThreadpoolSize_ = null; + onChanged(); + return this; + } + + + /** + * int32 max_intra_op_parallelism = 1; + */ + public int getMaxIntraOpParallelism() { + if (optionalMaxIntraOpParallelismCase_ == 1) { + return (java.lang.Integer) optionalMaxIntraOpParallelism_; + } + return 0; + } + /** + * int32 max_intra_op_parallelism = 1; + */ + public Builder setMaxIntraOpParallelism(int value) { + optionalMaxIntraOpParallelismCase_ = 1; + optionalMaxIntraOpParallelism_ = value; + onChanged(); + return this; + } + /** + * int32 max_intra_op_parallelism = 1; + */ + public Builder clearMaxIntraOpParallelism() { + if (optionalMaxIntraOpParallelismCase_ == 1) { + optionalMaxIntraOpParallelismCase_ = 0; + optionalMaxIntraOpParallelism_ = null; + onChanged(); + } + return this; + } + + /** + * int32 private_threadpool_size = 2; + */ + public int getPrivateThreadpoolSize() { + if (optionalPrivateThreadpoolSizeCase_ == 2) { + return (java.lang.Integer) optionalPrivateThreadpoolSize_; + } + return 0; + } + /** + * int32 private_threadpool_size = 2; + */ + public Builder setPrivateThreadpoolSize(int value) { + optionalPrivateThreadpoolSizeCase_ = 2; + optionalPrivateThreadpoolSize_ = value; + onChanged(); + return this; + } + /** + * int32 private_threadpool_size = 2; + */ + public Builder clearPrivateThreadpoolSize() { + if (optionalPrivateThreadpoolSizeCase_ == 2) { + optionalPrivateThreadpoolSizeCase_ = 0; + optionalPrivateThreadpoolSize_ = null; + onChanged(); + } + return this; + } + @java.lang.Override + public final Builder setUnknownFields( + final com.google.protobuf.UnknownFieldSet unknownFields) { + return super.setUnknownFields(unknownFields); + } + + @java.lang.Override + public final Builder mergeUnknownFields( + final com.google.protobuf.UnknownFieldSet unknownFields) { + return super.mergeUnknownFields(unknownFields); + } + + + // @@protoc_insertion_point(builder_scope:tensorflow.data.ThreadingOptions) + } + + // @@protoc_insertion_point(class_scope:tensorflow.data.ThreadingOptions) + private static final org.tensorflow.proto.data.ThreadingOptions DEFAULT_INSTANCE; + static { + DEFAULT_INSTANCE = new org.tensorflow.proto.data.ThreadingOptions(); + } + + public static org.tensorflow.proto.data.ThreadingOptions getDefaultInstance() { + return DEFAULT_INSTANCE; + } + + private static final com.google.protobuf.Parser + PARSER = new com.google.protobuf.AbstractParser() { + @java.lang.Override + public ThreadingOptions parsePartialFrom( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return new ThreadingOptions(input, extensionRegistry); + } + }; + + public static com.google.protobuf.Parser parser() { + return PARSER; + } + + @java.lang.Override + public com.google.protobuf.Parser getParserForType() { + return PARSER; + } + + @java.lang.Override + public org.tensorflow.proto.data.ThreadingOptions getDefaultInstanceForType() { + return DEFAULT_INSTANCE; + } + +} + diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/ThreadingOptionsOrBuilder.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/ThreadingOptionsOrBuilder.java new file mode 100644 index 00000000000..3a4d602db55 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/ThreadingOptionsOrBuilder.java @@ -0,0 +1,23 @@ +// Generated by the protocol buffer compiler. DO NOT EDIT! +// source: tensorflow/core/framework/dataset_options.proto + +package org.tensorflow.proto.data; + +public interface ThreadingOptionsOrBuilder extends + // @@protoc_insertion_point(interface_extends:tensorflow.data.ThreadingOptions) + com.google.protobuf.MessageOrBuilder { + + /** + * int32 max_intra_op_parallelism = 1; + */ + int getMaxIntraOpParallelism(); + + /** + * int32 private_threadpool_size = 2; + */ + int getPrivateThreadpoolSize(); + + public org.tensorflow.proto.data.ThreadingOptions.OptionalMaxIntraOpParallelismCase getOptionalMaxIntraOpParallelismCase(); + + public org.tensorflow.proto.data.ThreadingOptions.OptionalPrivateThreadpoolSizeCase getOptionalPrivateThreadpoolSizeCase(); +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/experimental/ServiceConfig.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/experimental/ServiceConfig.java index 33ea43d5005..94ae5448669 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/experimental/ServiceConfig.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/experimental/ServiceConfig.java @@ -1,5 +1,5 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! -// source: tensorflow/core/protobuf/data/experimental/service_config.proto +// source: tensorflow/core/protobuf/service_config.proto package org.tensorflow.proto.data.experimental; @@ -1232,6 +1232,35 @@ public interface WorkerConfigOrBuilder extends * int64 dispatcher_timeout_ms = 6; */ long getDispatcherTimeoutMs(); + + /** + *
        +     * The protocol for the worker to use when transferring data to clients.
        +     * 
        + * + * string data_transfer_protocol = 7; + */ + java.lang.String getDataTransferProtocol(); + /** + *
        +     * The protocol for the worker to use when transferring data to clients.
        +     * 
        + * + * string data_transfer_protocol = 7; + */ + com.google.protobuf.ByteString + getDataTransferProtocolBytes(); + + /** + *
        +     * When shutting down a worker, how long to wait for the gRPC server to
        +     * process the final requests. This is used to achieve clean shutdown in unit
        +     * tests.
        +     * 
        + * + * int64 shutdown_quiet_period_ms = 9; + */ + long getShutdownQuietPeriodMs(); } /** *
        @@ -1253,6 +1282,7 @@ private WorkerConfig() {
               protocol_ = "";
               dispatcherAddress_ = "";
               workerAddress_ = "";
        +      dataTransferProtocol_ = "";
             }
         
             @java.lang.Override
        @@ -1318,6 +1348,17 @@ private WorkerConfig(
                       dispatcherTimeoutMs_ = input.readInt64();
                       break;
                     }
        +            case 58: {
        +              java.lang.String s = input.readStringRequireUtf8();
        +
        +              dataTransferProtocol_ = s;
        +              break;
        +            }
        +            case 72: {
        +
        +              shutdownQuietPeriodMs_ = input.readInt64();
        +              break;
        +            }
                     default: {
                       if (!parseUnknownField(
                           input, unknownFields, extensionRegistry, tag)) {
        @@ -1521,6 +1562,63 @@ public long getDispatcherTimeoutMs() {
               return dispatcherTimeoutMs_;
             }
         
        +    public static final int DATA_TRANSFER_PROTOCOL_FIELD_NUMBER = 7;
        +    private volatile java.lang.Object dataTransferProtocol_;
        +    /**
        +     * 
        +     * The protocol for the worker to use when transferring data to clients.
        +     * 
        + * + * string data_transfer_protocol = 7; + */ + public java.lang.String getDataTransferProtocol() { + java.lang.Object ref = dataTransferProtocol_; + if (ref instanceof java.lang.String) { + return (java.lang.String) ref; + } else { + com.google.protobuf.ByteString bs = + (com.google.protobuf.ByteString) ref; + java.lang.String s = bs.toStringUtf8(); + dataTransferProtocol_ = s; + return s; + } + } + /** + *
        +     * The protocol for the worker to use when transferring data to clients.
        +     * 
        + * + * string data_transfer_protocol = 7; + */ + public com.google.protobuf.ByteString + getDataTransferProtocolBytes() { + java.lang.Object ref = dataTransferProtocol_; + if (ref instanceof java.lang.String) { + com.google.protobuf.ByteString b = + com.google.protobuf.ByteString.copyFromUtf8( + (java.lang.String) ref); + dataTransferProtocol_ = b; + return b; + } else { + return (com.google.protobuf.ByteString) ref; + } + } + + public static final int SHUTDOWN_QUIET_PERIOD_MS_FIELD_NUMBER = 9; + private long shutdownQuietPeriodMs_; + /** + *
        +     * When shutting down a worker, how long to wait for the gRPC server to
        +     * process the final requests. This is used to achieve clean shutdown in unit
        +     * tests.
        +     * 
        + * + * int64 shutdown_quiet_period_ms = 9; + */ + public long getShutdownQuietPeriodMs() { + return shutdownQuietPeriodMs_; + } + private byte memoizedIsInitialized = -1; @java.lang.Override public final boolean isInitialized() { @@ -1553,6 +1651,12 @@ public void writeTo(com.google.protobuf.CodedOutputStream output) if (dispatcherTimeoutMs_ != 0L) { output.writeInt64(6, dispatcherTimeoutMs_); } + if (!getDataTransferProtocolBytes().isEmpty()) { + com.google.protobuf.GeneratedMessageV3.writeString(output, 7, dataTransferProtocol_); + } + if (shutdownQuietPeriodMs_ != 0L) { + output.writeInt64(9, shutdownQuietPeriodMs_); + } unknownFields.writeTo(output); } @@ -1583,6 +1687,13 @@ public int getSerializedSize() { size += com.google.protobuf.CodedOutputStream .computeInt64Size(6, dispatcherTimeoutMs_); } + if (!getDataTransferProtocolBytes().isEmpty()) { + size += com.google.protobuf.GeneratedMessageV3.computeStringSize(7, dataTransferProtocol_); + } + if (shutdownQuietPeriodMs_ != 0L) { + size += com.google.protobuf.CodedOutputStream + .computeInt64Size(9, shutdownQuietPeriodMs_); + } size += unknownFields.getSerializedSize(); memoizedSize = size; return size; @@ -1610,6 +1721,10 @@ public boolean equals(final java.lang.Object obj) { != other.getHeartbeatIntervalMs()) return false; if (getDispatcherTimeoutMs() != other.getDispatcherTimeoutMs()) return false; + if (!getDataTransferProtocol() + .equals(other.getDataTransferProtocol())) return false; + if (getShutdownQuietPeriodMs() + != other.getShutdownQuietPeriodMs()) return false; if (!unknownFields.equals(other.unknownFields)) return false; return true; } @@ -1636,6 +1751,11 @@ public int hashCode() { hash = (37 * hash) + DISPATCHER_TIMEOUT_MS_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashLong( getDispatcherTimeoutMs()); + hash = (37 * hash) + DATA_TRANSFER_PROTOCOL_FIELD_NUMBER; + hash = (53 * hash) + getDataTransferProtocol().hashCode(); + hash = (37 * hash) + SHUTDOWN_QUIET_PERIOD_MS_FIELD_NUMBER; + hash = (53 * hash) + com.google.protobuf.Internal.hashLong( + getShutdownQuietPeriodMs()); hash = (29 * hash) + unknownFields.hashCode(); memoizedHashCode = hash; return hash; @@ -1785,6 +1905,10 @@ public Builder clear() { dispatcherTimeoutMs_ = 0L; + dataTransferProtocol_ = ""; + + shutdownQuietPeriodMs_ = 0L; + return this; } @@ -1817,6 +1941,8 @@ public org.tensorflow.proto.data.experimental.ServiceConfig.WorkerConfig buildPa result.workerAddress_ = workerAddress_; result.heartbeatIntervalMs_ = heartbeatIntervalMs_; result.dispatcherTimeoutMs_ = dispatcherTimeoutMs_; + result.dataTransferProtocol_ = dataTransferProtocol_; + result.shutdownQuietPeriodMs_ = shutdownQuietPeriodMs_; onBuilt(); return result; } @@ -1886,6 +2012,13 @@ public Builder mergeFrom(org.tensorflow.proto.data.experimental.ServiceConfig.Wo if (other.getDispatcherTimeoutMs() != 0L) { setDispatcherTimeoutMs(other.getDispatcherTimeoutMs()); } + if (!other.getDataTransferProtocol().isEmpty()) { + dataTransferProtocol_ = other.dataTransferProtocol_; + onChanged(); + } + if (other.getShutdownQuietPeriodMs() != 0L) { + setShutdownQuietPeriodMs(other.getShutdownQuietPeriodMs()); + } this.mergeUnknownFields(other.unknownFields); onChanged(); return this; @@ -2311,6 +2444,139 @@ public Builder clearDispatcherTimeoutMs() { onChanged(); return this; } + + private java.lang.Object dataTransferProtocol_ = ""; + /** + *
        +       * The protocol for the worker to use when transferring data to clients.
        +       * 
        + * + * string data_transfer_protocol = 7; + */ + public java.lang.String getDataTransferProtocol() { + java.lang.Object ref = dataTransferProtocol_; + if (!(ref instanceof java.lang.String)) { + com.google.protobuf.ByteString bs = + (com.google.protobuf.ByteString) ref; + java.lang.String s = bs.toStringUtf8(); + dataTransferProtocol_ = s; + return s; + } else { + return (java.lang.String) ref; + } + } + /** + *
        +       * The protocol for the worker to use when transferring data to clients.
        +       * 
        + * + * string data_transfer_protocol = 7; + */ + public com.google.protobuf.ByteString + getDataTransferProtocolBytes() { + java.lang.Object ref = dataTransferProtocol_; + if (ref instanceof String) { + com.google.protobuf.ByteString b = + com.google.protobuf.ByteString.copyFromUtf8( + (java.lang.String) ref); + dataTransferProtocol_ = b; + return b; + } else { + return (com.google.protobuf.ByteString) ref; + } + } + /** + *
        +       * The protocol for the worker to use when transferring data to clients.
        +       * 
        + * + * string data_transfer_protocol = 7; + */ + public Builder setDataTransferProtocol( + java.lang.String value) { + if (value == null) { + throw new NullPointerException(); + } + + dataTransferProtocol_ = value; + onChanged(); + return this; + } + /** + *
        +       * The protocol for the worker to use when transferring data to clients.
        +       * 
        + * + * string data_transfer_protocol = 7; + */ + public Builder clearDataTransferProtocol() { + + dataTransferProtocol_ = getDefaultInstance().getDataTransferProtocol(); + onChanged(); + return this; + } + /** + *
        +       * The protocol for the worker to use when transferring data to clients.
        +       * 
        + * + * string data_transfer_protocol = 7; + */ + public Builder setDataTransferProtocolBytes( + com.google.protobuf.ByteString value) { + if (value == null) { + throw new NullPointerException(); + } + checkByteStringIsUtf8(value); + + dataTransferProtocol_ = value; + onChanged(); + return this; + } + + private long shutdownQuietPeriodMs_ ; + /** + *
        +       * When shutting down a worker, how long to wait for the gRPC server to
        +       * process the final requests. This is used to achieve clean shutdown in unit
        +       * tests.
        +       * 
        + * + * int64 shutdown_quiet_period_ms = 9; + */ + public long getShutdownQuietPeriodMs() { + return shutdownQuietPeriodMs_; + } + /** + *
        +       * When shutting down a worker, how long to wait for the gRPC server to
        +       * process the final requests. This is used to achieve clean shutdown in unit
        +       * tests.
        +       * 
        + * + * int64 shutdown_quiet_period_ms = 9; + */ + public Builder setShutdownQuietPeriodMs(long value) { + + shutdownQuietPeriodMs_ = value; + onChanged(); + return this; + } + /** + *
        +       * When shutting down a worker, how long to wait for the gRPC server to
        +       * process the final requests. This is used to achieve clean shutdown in unit
        +       * tests.
        +       * 
        + * + * int64 shutdown_quiet_period_ms = 9; + */ + public Builder clearShutdownQuietPeriodMs() { + + shutdownQuietPeriodMs_ = 0L; + onChanged(); + return this; + } @java.lang.Override public final Builder setUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { @@ -2383,18 +2649,19 @@ public org.tensorflow.proto.data.experimental.ServiceConfig.WorkerConfig getDefa descriptor; static { java.lang.String[] descriptorData = { - "\n?tensorflow/core/protobuf/data/experime" + - "ntal/service_config.proto\022\034tensorflow.da" + - "ta.experimental\"\236\001\n\020DispatcherConfig\022\014\n\004" + - "port\030\001 \001(\003\022\020\n\010protocol\030\002 \001(\t\022\020\n\010work_dir" + - "\030\003 \001(\t\022\033\n\023fault_tolerant_mode\030\004 \001(\010\022 \n\030j" + - "ob_gc_check_interval_ms\030\005 \001(\003\022\031\n\021job_gc_" + - "timeout_ms\030\006 \001(\003\"\240\001\n\014WorkerConfig\022\014\n\004por" + - "t\030\001 \001(\003\022\020\n\010protocol\030\002 \001(\t\022\032\n\022dispatcher_" + - "address\030\003 \001(\t\022\026\n\016worker_address\030\004 \001(\t\022\035\n" + - "\025heartbeat_interval_ms\030\005 \001(\003\022\035\n\025dispatch" + - "er_timeout_ms\030\006 \001(\003B(\n&org.tensorflow.pr" + - "oto.data.experimentalb\006proto3" + "\n-tensorflow/core/protobuf/service_confi" + + "g.proto\022\034tensorflow.data.experimental\"\236\001" + + "\n\020DispatcherConfig\022\014\n\004port\030\001 \001(\003\022\020\n\010prot" + + "ocol\030\002 \001(\t\022\020\n\010work_dir\030\003 \001(\t\022\033\n\023fault_to" + + "lerant_mode\030\004 \001(\010\022 \n\030job_gc_check_interv" + + "al_ms\030\005 \001(\003\022\031\n\021job_gc_timeout_ms\030\006 \001(\003\"\342" + + "\001\n\014WorkerConfig\022\014\n\004port\030\001 \001(\003\022\020\n\010protoco" + + "l\030\002 \001(\t\022\032\n\022dispatcher_address\030\003 \001(\t\022\026\n\016w" + + "orker_address\030\004 \001(\t\022\035\n\025heartbeat_interva" + + "l_ms\030\005 \001(\003\022\035\n\025dispatcher_timeout_ms\030\006 \001(" + + "\003\022\036\n\026data_transfer_protocol\030\007 \001(\t\022 \n\030shu" + + "tdown_quiet_period_ms\030\t \001(\003B(\n&org.tenso" + + "rflow.proto.data.experimentalb\006proto3" }; descriptor = com.google.protobuf.Descriptors.FileDescriptor .internalBuildGeneratedFileFrom(descriptorData, @@ -2411,7 +2678,7 @@ public org.tensorflow.proto.data.experimental.ServiceConfig.WorkerConfig getDefa internal_static_tensorflow_data_experimental_WorkerConfig_fieldAccessorTable = new com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( internal_static_tensorflow_data_experimental_WorkerConfig_descriptor, - new java.lang.String[] { "Port", "Protocol", "DispatcherAddress", "WorkerAddress", "HeartbeatIntervalMs", "DispatcherTimeoutMs", }); + new java.lang.String[] { "Port", "Protocol", "DispatcherAddress", "WorkerAddress", "HeartbeatIntervalMs", "DispatcherTimeoutMs", "DataTransferProtocol", "ShutdownQuietPeriodMs", }); } // @@protoc_insertion_point(outer_class_scope) diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/experimental/SnapshotMetadataRecord.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/experimental/SnapshotMetadataRecord.java index 696b438c3c8..1ad5e1b6c74 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/experimental/SnapshotMetadataRecord.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/experimental/SnapshotMetadataRecord.java @@ -1,5 +1,5 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! -// source: tensorflow/core/protobuf/data/experimental/snapshot.proto +// source: tensorflow/core/protobuf/snapshot.proto package org.tensorflow.proto.data.experimental; diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/experimental/SnapshotMetadataRecordOrBuilder.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/experimental/SnapshotMetadataRecordOrBuilder.java index 97e3dddd818..5533ed93eb3 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/experimental/SnapshotMetadataRecordOrBuilder.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/experimental/SnapshotMetadataRecordOrBuilder.java @@ -1,5 +1,5 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! -// source: tensorflow/core/protobuf/data/experimental/snapshot.proto +// source: tensorflow/core/protobuf/snapshot.proto package org.tensorflow.proto.data.experimental; diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/experimental/SnapshotProtos.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/experimental/SnapshotProtos.java index b4f4cbceaf4..289d5308ec9 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/experimental/SnapshotProtos.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/experimental/SnapshotProtos.java @@ -1,5 +1,5 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! -// source: tensorflow/core/protobuf/data/experimental/snapshot.proto +// source: tensorflow/core/protobuf/snapshot.proto package org.tensorflow.proto.data.experimental; @@ -43,25 +43,24 @@ public static void registerAllExtensions( descriptor; static { java.lang.String[] descriptorData = { - "\n9tensorflow/core/protobuf/data/experime" + - "ntal/snapshot.proto\022\034tensorflow.data.exp" + - "erimental\032&tensorflow/core/framework/ten" + - "sor.proto\032,tensorflow/core/framework/ten" + - "sor_shape.proto\032%tensorflow/core/framewo" + - "rk/types.proto\"9\n\016SnapshotRecord\022\'\n\006tens" + - "or\030\001 \003(\0132\027.tensorflow.TensorProto\"\270\001\n\026Sn" + - "apshotMetadataRecord\022\022\n\ngraph_hash\030\001 \001(\t" + - "\022\016\n\006run_id\030\002 \001(\t\022\032\n\022creation_timestamp\030\003" + - " \001(\003\022\017\n\007version\030\004 \001(\003\022#\n\005dtype\030\005 \003(\0162\024.t" + - "ensorflow.DataType\022\024\n\014num_elements\030\006 \001(\003" + - "\022\022\n\tfinalized\030\350\007 \001(\010\"_\n\016TensorMetadata\0222" + - "\n\014tensor_shape\030\002 \001(\0132\034.tensorflow.Tensor" + - "ShapeProto\022\031\n\021tensor_size_bytes\030\003 \001(\003\"_\n" + - "\026SnapshotTensorMetadata\022E\n\017tensor_metada" + - "ta\030\001 \003(\0132,.tensorflow.data.experimental." + - "TensorMetadataB:\n&org.tensorflow.proto.d" + - "ata.experimentalB\016SnapshotProtosP\001b\006prot" + - "o3" + "\n\'tensorflow/core/protobuf/snapshot.prot" + + "o\022\034tensorflow.data.experimental\032&tensorf" + + "low/core/framework/tensor.proto\032,tensorf" + + "low/core/framework/tensor_shape.proto\032%t" + + "ensorflow/core/framework/types.proto\"9\n\016" + + "SnapshotRecord\022\'\n\006tensor\030\001 \003(\0132\027.tensorf" + + "low.TensorProto\"\270\001\n\026SnapshotMetadataReco" + + "rd\022\022\n\ngraph_hash\030\001 \001(\t\022\016\n\006run_id\030\002 \001(\t\022\032" + + "\n\022creation_timestamp\030\003 \001(\003\022\017\n\007version\030\004 " + + "\001(\003\022#\n\005dtype\030\005 \003(\0162\024.tensorflow.DataType" + + "\022\024\n\014num_elements\030\006 \001(\003\022\022\n\tfinalized\030\350\007 \001" + + "(\010\"_\n\016TensorMetadata\0222\n\014tensor_shape\030\002 \001" + + "(\0132\034.tensorflow.TensorShapeProto\022\031\n\021tens" + + "or_size_bytes\030\003 \001(\003\"_\n\026SnapshotTensorMet" + + "adata\022E\n\017tensor_metadata\030\001 \003(\0132,.tensorf" + + "low.data.experimental.TensorMetadataB:\n&" + + "org.tensorflow.proto.data.experimentalB\016" + + "SnapshotProtosP\001b\006proto3" }; descriptor = com.google.protobuf.Descriptors.FileDescriptor .internalBuildGeneratedFileFrom(descriptorData, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/experimental/SnapshotRecord.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/experimental/SnapshotRecord.java index e6388b928fc..e81a8b745f9 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/experimental/SnapshotRecord.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/experimental/SnapshotRecord.java @@ -1,5 +1,5 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! -// source: tensorflow/core/protobuf/data/experimental/snapshot.proto +// source: tensorflow/core/protobuf/snapshot.proto package org.tensorflow.proto.data.experimental; diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/experimental/SnapshotRecordOrBuilder.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/experimental/SnapshotRecordOrBuilder.java index 485e1656377..c87321a9074 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/experimental/SnapshotRecordOrBuilder.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/experimental/SnapshotRecordOrBuilder.java @@ -1,5 +1,5 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! -// source: tensorflow/core/protobuf/data/experimental/snapshot.proto +// source: tensorflow/core/protobuf/snapshot.proto package org.tensorflow.proto.data.experimental; diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/experimental/SnapshotTensorMetadata.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/experimental/SnapshotTensorMetadata.java index 59b0fba153d..e2ac61e4dcf 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/experimental/SnapshotTensorMetadata.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/experimental/SnapshotTensorMetadata.java @@ -1,5 +1,5 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! -// source: tensorflow/core/protobuf/data/experimental/snapshot.proto +// source: tensorflow/core/protobuf/snapshot.proto package org.tensorflow.proto.data.experimental; diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/experimental/SnapshotTensorMetadataOrBuilder.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/experimental/SnapshotTensorMetadataOrBuilder.java index 73feb8671a6..d18a1149928 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/experimental/SnapshotTensorMetadataOrBuilder.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/experimental/SnapshotTensorMetadataOrBuilder.java @@ -1,5 +1,5 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! -// source: tensorflow/core/protobuf/data/experimental/snapshot.proto +// source: tensorflow/core/protobuf/snapshot.proto package org.tensorflow.proto.data.experimental; diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/experimental/TensorMetadata.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/experimental/TensorMetadata.java index 87dfbe8bf78..b8b44dff6ed 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/experimental/TensorMetadata.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/experimental/TensorMetadata.java @@ -1,5 +1,5 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! -// source: tensorflow/core/protobuf/data/experimental/snapshot.proto +// source: tensorflow/core/protobuf/snapshot.proto package org.tensorflow.proto.data.experimental; diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/experimental/TensorMetadataOrBuilder.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/experimental/TensorMetadataOrBuilder.java index 0649aabc2ca..3aadfb8de72 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/experimental/TensorMetadataOrBuilder.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/experimental/TensorMetadataOrBuilder.java @@ -1,5 +1,5 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! -// source: tensorflow/core/protobuf/data/experimental/snapshot.proto +// source: tensorflow/core/protobuf/snapshot.proto package org.tensorflow.proto.data.experimental; diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/model/AutotuneAlgorithm.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/model/AutotuneAlgorithm.java new file mode 100644 index 00000000000..773c76aff89 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/model/AutotuneAlgorithm.java @@ -0,0 +1,107 @@ +// Generated by the protocol buffer compiler. DO NOT EDIT! +// source: tensorflow/core/framework/model.proto + +package org.tensorflow.proto.data.model; + +/** + *
        + * Algorithm used for model autotuning optimization.
        + * 
        + * + * Protobuf enum {@code tensorflow.data.model.AutotuneAlgorithm} + */ +public enum AutotuneAlgorithm + implements com.google.protobuf.ProtocolMessageEnum { + /** + * HILL_CLIMB = 0; + */ + HILL_CLIMB(0), + /** + * GRADIENT_DESCENT = 1; + */ + GRADIENT_DESCENT(1), + UNRECOGNIZED(-1), + ; + + /** + * HILL_CLIMB = 0; + */ + public static final int HILL_CLIMB_VALUE = 0; + /** + * GRADIENT_DESCENT = 1; + */ + public static final int GRADIENT_DESCENT_VALUE = 1; + + + public final int getNumber() { + if (this == UNRECOGNIZED) { + throw new java.lang.IllegalArgumentException( + "Can't get the number of an unknown enum value."); + } + return value; + } + + /** + * @deprecated Use {@link #forNumber(int)} instead. + */ + @java.lang.Deprecated + public static AutotuneAlgorithm valueOf(int value) { + return forNumber(value); + } + + public static AutotuneAlgorithm forNumber(int value) { + switch (value) { + case 0: return HILL_CLIMB; + case 1: return GRADIENT_DESCENT; + default: return null; + } + } + + public static com.google.protobuf.Internal.EnumLiteMap + internalGetValueMap() { + return internalValueMap; + } + private static final com.google.protobuf.Internal.EnumLiteMap< + AutotuneAlgorithm> internalValueMap = + new com.google.protobuf.Internal.EnumLiteMap() { + public AutotuneAlgorithm findValueByNumber(int number) { + return AutotuneAlgorithm.forNumber(number); + } + }; + + public final com.google.protobuf.Descriptors.EnumValueDescriptor + getValueDescriptor() { + return getDescriptor().getValues().get(ordinal()); + } + public final com.google.protobuf.Descriptors.EnumDescriptor + getDescriptorForType() { + return getDescriptor(); + } + public static final com.google.protobuf.Descriptors.EnumDescriptor + getDescriptor() { + return org.tensorflow.proto.data.model.ModelProtos.getDescriptor().getEnumTypes().get(1); + } + + private static final AutotuneAlgorithm[] VALUES = values(); + + public static AutotuneAlgorithm valueOf( + com.google.protobuf.Descriptors.EnumValueDescriptor desc) { + if (desc.getType() != getDescriptor()) { + throw new java.lang.IllegalArgumentException( + "EnumValueDescriptor is not for this type."); + } + if (desc.getIndex() == -1) { + return UNRECOGNIZED; + } + return VALUES[desc.getIndex()]; + } + + private final int value; + + private AutotuneAlgorithm(int value) { + this.value = value; + } + + // @@protoc_insertion_point(enum_scope:tensorflow.data.model.AutotuneAlgorithm) +} + diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/model/ModelProto.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/model/ModelProto.java new file mode 100644 index 00000000000..21b0beecfb2 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/model/ModelProto.java @@ -0,0 +1,5592 @@ +// Generated by the protocol buffer compiler. DO NOT EDIT! +// source: tensorflow/core/framework/model.proto + +package org.tensorflow.proto.data.model; + +/** + *
        + * Protocol buffer representing the data used by the autotuning modeling
        + * framework.
        + * 
        + * + * Protobuf type {@code tensorflow.data.model.ModelProto} + */ +public final class ModelProto extends + com.google.protobuf.GeneratedMessageV3 implements + // @@protoc_insertion_point(message_implements:tensorflow.data.model.ModelProto) + ModelProtoOrBuilder { +private static final long serialVersionUID = 0L; + // Use ModelProto.newBuilder() to construct. + private ModelProto(com.google.protobuf.GeneratedMessageV3.Builder builder) { + super(builder); + } + private ModelProto() { + } + + @java.lang.Override + @SuppressWarnings({"unused"}) + protected java.lang.Object newInstance( + UnusedPrivateParameter unused) { + return new ModelProto(); + } + + @java.lang.Override + public final com.google.protobuf.UnknownFieldSet + getUnknownFields() { + return this.unknownFields; + } + private ModelProto( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + this(); + if (extensionRegistry == null) { + throw new java.lang.NullPointerException(); + } + com.google.protobuf.UnknownFieldSet.Builder unknownFields = + com.google.protobuf.UnknownFieldSet.newBuilder(); + try { + boolean done = false; + while (!done) { + int tag = input.readTag(); + switch (tag) { + case 0: + done = true; + break; + case 10: { + org.tensorflow.proto.data.model.ModelProto.Node.Builder subBuilder = null; + if (output_ != null) { + subBuilder = output_.toBuilder(); + } + output_ = input.readMessage(org.tensorflow.proto.data.model.ModelProto.Node.parser(), extensionRegistry); + if (subBuilder != null) { + subBuilder.mergeFrom(output_); + output_ = subBuilder.buildPartial(); + } + + break; + } + case 16: { + + idCounter_ = input.readInt64(); + break; + } + case 24: { + + collectResourceUsage_ = input.readBool(); + break; + } + case 34: { + org.tensorflow.proto.data.model.ModelProto.OptimizationParams.Builder subBuilder = null; + if (optimizationParams_ != null) { + subBuilder = optimizationParams_.toBuilder(); + } + optimizationParams_ = input.readMessage(org.tensorflow.proto.data.model.ModelProto.OptimizationParams.parser(), extensionRegistry); + if (subBuilder != null) { + subBuilder.mergeFrom(optimizationParams_); + optimizationParams_ = subBuilder.buildPartial(); + } + + break; + } + default: { + if (!parseUnknownField( + input, unknownFields, extensionRegistry, tag)) { + done = true; + } + break; + } + } + } + } catch (com.google.protobuf.InvalidProtocolBufferException e) { + throw e.setUnfinishedMessage(this); + } catch (java.io.IOException e) { + throw new com.google.protobuf.InvalidProtocolBufferException( + e).setUnfinishedMessage(this); + } finally { + this.unknownFields = unknownFields.build(); + makeExtensionsImmutable(); + } + } + public static final com.google.protobuf.Descriptors.Descriptor + getDescriptor() { + return org.tensorflow.proto.data.model.ModelProtos.internal_static_tensorflow_data_model_ModelProto_descriptor; + } + + @java.lang.Override + protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable + internalGetFieldAccessorTable() { + return org.tensorflow.proto.data.model.ModelProtos.internal_static_tensorflow_data_model_ModelProto_fieldAccessorTable + .ensureFieldAccessorsInitialized( + org.tensorflow.proto.data.model.ModelProto.class, org.tensorflow.proto.data.model.ModelProto.Builder.class); + } + + public interface NodeOrBuilder extends + // @@protoc_insertion_point(interface_extends:tensorflow.data.model.ModelProto.Node) + com.google.protobuf.MessageOrBuilder { + + /** + *
        +     * Unique node ID.
        +     * 
        + * + * int64 id = 1; + */ + long getId(); + + /** + *
        +     * Human-readable name of the node.
        +     * 
        + * + * string name = 2; + */ + java.lang.String getName(); + /** + *
        +     * Human-readable name of the node.
        +     * 
        + * + * string name = 2; + */ + com.google.protobuf.ByteString + getNameBytes(); + + /** + *
        +     * An indication whether autotuning is enabled for this node.
        +     * 
        + * + * bool autotune = 3; + */ + boolean getAutotune(); + + /** + *
        +     * The number of bytes stored in this node's buffer.
        +     * 
        + * + * int64 buffered_bytes = 4; + */ + long getBufferedBytes(); + + /** + *
        +     * The number of elements stored in this node's buffer.
        +     * 
        + * + * int64 buffered_elements = 5; + */ + long getBufferedElements(); + + /** + *
        +     * The number of bytes consumed by the node.
        +     * 
        + * + * int64 bytes_consumed = 6; + */ + long getBytesConsumed(); + + /** + *
        +     * The number of bytes produced by the node.
        +     * 
        + * + * int64 bytes_produced = 7; + */ + long getBytesProduced(); + + /** + *
        +     * The number of elements produced by the node.
        +     * 
        + * + * int64 num_elements = 8; + */ + long getNumElements(); + + /** + *
        +     * The aggregate processing time spent in this node.
        +     * 
        + * + * int64 processing_time = 9; + */ + long getProcessingTime(); + + /** + *
        +     * An indication whether this node records metrics about produced and
        +     * consumed elements.
        +     * 
        + * + * bool record_metrics = 10; + */ + boolean getRecordMetrics(); + + /** + *
        +     * Parameters of this node.
        +     * 
        + * + * repeated .tensorflow.data.model.ModelProto.Node.Parameter parameters = 11; + */ + java.util.List + getParametersList(); + /** + *
        +     * Parameters of this node.
        +     * 
        + * + * repeated .tensorflow.data.model.ModelProto.Node.Parameter parameters = 11; + */ + org.tensorflow.proto.data.model.ModelProto.Node.Parameter getParameters(int index); + /** + *
        +     * Parameters of this node.
        +     * 
        + * + * repeated .tensorflow.data.model.ModelProto.Node.Parameter parameters = 11; + */ + int getParametersCount(); + /** + *
        +     * Parameters of this node.
        +     * 
        + * + * repeated .tensorflow.data.model.ModelProto.Node.Parameter parameters = 11; + */ + java.util.List + getParametersOrBuilderList(); + /** + *
        +     * Parameters of this node.
        +     * 
        + * + * repeated .tensorflow.data.model.ModelProto.Node.Parameter parameters = 11; + */ + org.tensorflow.proto.data.model.ModelProto.Node.ParameterOrBuilder getParametersOrBuilder( + int index); + + /** + *
        +     * Statistic of inputs processing time history.
        +     * 
        + * + * double input_processing_time_sum = 12; + */ + double getInputProcessingTimeSum(); + + /** + * int64 input_processing_time_count = 13; + */ + long getInputProcessingTimeCount(); + + /** + *
        +     * Inputs of this node.
        +     * 
        + * + * repeated .tensorflow.data.model.ModelProto.Node inputs = 14; + */ + java.util.List + getInputsList(); + /** + *
        +     * Inputs of this node.
        +     * 
        + * + * repeated .tensorflow.data.model.ModelProto.Node inputs = 14; + */ + org.tensorflow.proto.data.model.ModelProto.Node getInputs(int index); + /** + *
        +     * Inputs of this node.
        +     * 
        + * + * repeated .tensorflow.data.model.ModelProto.Node inputs = 14; + */ + int getInputsCount(); + /** + *
        +     * Inputs of this node.
        +     * 
        + * + * repeated .tensorflow.data.model.ModelProto.Node inputs = 14; + */ + java.util.List + getInputsOrBuilderList(); + /** + *
        +     * Inputs of this node.
        +     * 
        + * + * repeated .tensorflow.data.model.ModelProto.Node inputs = 14; + */ + org.tensorflow.proto.data.model.ModelProto.NodeOrBuilder getInputsOrBuilder( + int index); + + /** + *
        +     * Class of this node.
        +     * 
        + * + * .tensorflow.data.model.NodeClass node_class = 15; + */ + int getNodeClassValue(); + /** + *
        +     * Class of this node.
        +     * 
        + * + * .tensorflow.data.model.NodeClass node_class = 15; + */ + org.tensorflow.proto.data.model.NodeClass getNodeClass(); + + /** + *
        +     * Ratio of input to output elements. This is only used by KNOWN_RATIO and
        +     * ASYNC_KNOWN_RATIO nodes.
        +     * 
        + * + * double ratio = 16; + */ + double getRatio(); + + /** + *
        +     * Ratio identifies how many parallelism calls are introduced by one
        +     * buffered element. This is only used by ASYNC_KNOWN_RATIO nodes.
        +     * 
        + * + * double memory_ratio = 17; + */ + double getMemoryRatio(); + } + /** + *
        +   * General representation of a node in the model.
        +   * 
        + * + * Protobuf type {@code tensorflow.data.model.ModelProto.Node} + */ + public static final class Node extends + com.google.protobuf.GeneratedMessageV3 implements + // @@protoc_insertion_point(message_implements:tensorflow.data.model.ModelProto.Node) + NodeOrBuilder { + private static final long serialVersionUID = 0L; + // Use Node.newBuilder() to construct. + private Node(com.google.protobuf.GeneratedMessageV3.Builder builder) { + super(builder); + } + private Node() { + name_ = ""; + parameters_ = java.util.Collections.emptyList(); + inputs_ = java.util.Collections.emptyList(); + nodeClass_ = 0; + } + + @java.lang.Override + @SuppressWarnings({"unused"}) + protected java.lang.Object newInstance( + UnusedPrivateParameter unused) { + return new Node(); + } + + @java.lang.Override + public final com.google.protobuf.UnknownFieldSet + getUnknownFields() { + return this.unknownFields; + } + private Node( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + this(); + if (extensionRegistry == null) { + throw new java.lang.NullPointerException(); + } + int mutable_bitField0_ = 0; + com.google.protobuf.UnknownFieldSet.Builder unknownFields = + com.google.protobuf.UnknownFieldSet.newBuilder(); + try { + boolean done = false; + while (!done) { + int tag = input.readTag(); + switch (tag) { + case 0: + done = true; + break; + case 8: { + + id_ = input.readInt64(); + break; + } + case 18: { + java.lang.String s = input.readStringRequireUtf8(); + + name_ = s; + break; + } + case 24: { + + autotune_ = input.readBool(); + break; + } + case 32: { + + bufferedBytes_ = input.readInt64(); + break; + } + case 40: { + + bufferedElements_ = input.readInt64(); + break; + } + case 48: { + + bytesConsumed_ = input.readInt64(); + break; + } + case 56: { + + bytesProduced_ = input.readInt64(); + break; + } + case 64: { + + numElements_ = input.readInt64(); + break; + } + case 72: { + + processingTime_ = input.readInt64(); + break; + } + case 80: { + + recordMetrics_ = input.readBool(); + break; + } + case 90: { + if (!((mutable_bitField0_ & 0x00000001) != 0)) { + parameters_ = new java.util.ArrayList(); + mutable_bitField0_ |= 0x00000001; + } + parameters_.add( + input.readMessage(org.tensorflow.proto.data.model.ModelProto.Node.Parameter.parser(), extensionRegistry)); + break; + } + case 97: { + + inputProcessingTimeSum_ = input.readDouble(); + break; + } + case 104: { + + inputProcessingTimeCount_ = input.readInt64(); + break; + } + case 114: { + if (!((mutable_bitField0_ & 0x00000002) != 0)) { + inputs_ = new java.util.ArrayList(); + mutable_bitField0_ |= 0x00000002; + } + inputs_.add( + input.readMessage(org.tensorflow.proto.data.model.ModelProto.Node.parser(), extensionRegistry)); + break; + } + case 120: { + int rawValue = input.readEnum(); + + nodeClass_ = rawValue; + break; + } + case 129: { + + ratio_ = input.readDouble(); + break; + } + case 137: { + + memoryRatio_ = input.readDouble(); + break; + } + default: { + if (!parseUnknownField( + input, unknownFields, extensionRegistry, tag)) { + done = true; + } + break; + } + } + } + } catch (com.google.protobuf.InvalidProtocolBufferException e) { + throw e.setUnfinishedMessage(this); + } catch (java.io.IOException e) { + throw new com.google.protobuf.InvalidProtocolBufferException( + e).setUnfinishedMessage(this); + } finally { + if (((mutable_bitField0_ & 0x00000001) != 0)) { + parameters_ = java.util.Collections.unmodifiableList(parameters_); + } + if (((mutable_bitField0_ & 0x00000002) != 0)) { + inputs_ = java.util.Collections.unmodifiableList(inputs_); + } + this.unknownFields = unknownFields.build(); + makeExtensionsImmutable(); + } + } + public static final com.google.protobuf.Descriptors.Descriptor + getDescriptor() { + return org.tensorflow.proto.data.model.ModelProtos.internal_static_tensorflow_data_model_ModelProto_Node_descriptor; + } + + @java.lang.Override + protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable + internalGetFieldAccessorTable() { + return org.tensorflow.proto.data.model.ModelProtos.internal_static_tensorflow_data_model_ModelProto_Node_fieldAccessorTable + .ensureFieldAccessorsInitialized( + org.tensorflow.proto.data.model.ModelProto.Node.class, org.tensorflow.proto.data.model.ModelProto.Node.Builder.class); + } + + public interface ParameterOrBuilder extends + // @@protoc_insertion_point(interface_extends:tensorflow.data.model.ModelProto.Node.Parameter) + com.google.protobuf.MessageOrBuilder { + + /** + *
        +       * Human-readable name of the parameter.
        +       * 
        + * + * string name = 1; + */ + java.lang.String getName(); + /** + *
        +       * Human-readable name of the parameter.
        +       * 
        + * + * string name = 1; + */ + com.google.protobuf.ByteString + getNameBytes(); + + /** + *
        +       * Identifies the model value of the parameter. This can be different from
        +       * the actual value (e.g. during optimization search).
        +       * 
        + * + * double value = 2; + */ + double getValue(); + + /** + *
        +       * The actual value of the parameter.
        +       * 
        + * + * double state_value = 3; + */ + double getStateValue(); + + /** + *
        +       * Minimum value of the parameter.
        +       * 
        + * + * double min = 4; + */ + double getMin(); + + /** + *
        +       * Maximum value of the parameter.
        +       * 
        + * + * double max = 5; + */ + double getMax(); + + /** + *
        +       * Identifies whether the parameter should participate in autotuning.
        +       * 
        + * + * bool tunable = 6; + */ + boolean getTunable(); + } + /** + *
        +     * Represents a node parameter.
        +     * 
        + * + * Protobuf type {@code tensorflow.data.model.ModelProto.Node.Parameter} + */ + public static final class Parameter extends + com.google.protobuf.GeneratedMessageV3 implements + // @@protoc_insertion_point(message_implements:tensorflow.data.model.ModelProto.Node.Parameter) + ParameterOrBuilder { + private static final long serialVersionUID = 0L; + // Use Parameter.newBuilder() to construct. + private Parameter(com.google.protobuf.GeneratedMessageV3.Builder builder) { + super(builder); + } + private Parameter() { + name_ = ""; + } + + @java.lang.Override + @SuppressWarnings({"unused"}) + protected java.lang.Object newInstance( + UnusedPrivateParameter unused) { + return new Parameter(); + } + + @java.lang.Override + public final com.google.protobuf.UnknownFieldSet + getUnknownFields() { + return this.unknownFields; + } + private Parameter( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + this(); + if (extensionRegistry == null) { + throw new java.lang.NullPointerException(); + } + com.google.protobuf.UnknownFieldSet.Builder unknownFields = + com.google.protobuf.UnknownFieldSet.newBuilder(); + try { + boolean done = false; + while (!done) { + int tag = input.readTag(); + switch (tag) { + case 0: + done = true; + break; + case 10: { + java.lang.String s = input.readStringRequireUtf8(); + + name_ = s; + break; + } + case 17: { + + value_ = input.readDouble(); + break; + } + case 25: { + + stateValue_ = input.readDouble(); + break; + } + case 33: { + + min_ = input.readDouble(); + break; + } + case 41: { + + max_ = input.readDouble(); + break; + } + case 48: { + + tunable_ = input.readBool(); + break; + } + default: { + if (!parseUnknownField( + input, unknownFields, extensionRegistry, tag)) { + done = true; + } + break; + } + } + } + } catch (com.google.protobuf.InvalidProtocolBufferException e) { + throw e.setUnfinishedMessage(this); + } catch (java.io.IOException e) { + throw new com.google.protobuf.InvalidProtocolBufferException( + e).setUnfinishedMessage(this); + } finally { + this.unknownFields = unknownFields.build(); + makeExtensionsImmutable(); + } + } + public static final com.google.protobuf.Descriptors.Descriptor + getDescriptor() { + return org.tensorflow.proto.data.model.ModelProtos.internal_static_tensorflow_data_model_ModelProto_Node_Parameter_descriptor; + } + + @java.lang.Override + protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable + internalGetFieldAccessorTable() { + return org.tensorflow.proto.data.model.ModelProtos.internal_static_tensorflow_data_model_ModelProto_Node_Parameter_fieldAccessorTable + .ensureFieldAccessorsInitialized( + org.tensorflow.proto.data.model.ModelProto.Node.Parameter.class, org.tensorflow.proto.data.model.ModelProto.Node.Parameter.Builder.class); + } + + public static final int NAME_FIELD_NUMBER = 1; + private volatile java.lang.Object name_; + /** + *
        +       * Human-readable name of the parameter.
        +       * 
        + * + * string name = 1; + */ + public java.lang.String getName() { + java.lang.Object ref = name_; + if (ref instanceof java.lang.String) { + return (java.lang.String) ref; + } else { + com.google.protobuf.ByteString bs = + (com.google.protobuf.ByteString) ref; + java.lang.String s = bs.toStringUtf8(); + name_ = s; + return s; + } + } + /** + *
        +       * Human-readable name of the parameter.
        +       * 
        + * + * string name = 1; + */ + public com.google.protobuf.ByteString + getNameBytes() { + java.lang.Object ref = name_; + if (ref instanceof java.lang.String) { + com.google.protobuf.ByteString b = + com.google.protobuf.ByteString.copyFromUtf8( + (java.lang.String) ref); + name_ = b; + return b; + } else { + return (com.google.protobuf.ByteString) ref; + } + } + + public static final int VALUE_FIELD_NUMBER = 2; + private double value_; + /** + *
        +       * Identifies the model value of the parameter. This can be different from
        +       * the actual value (e.g. during optimization search).
        +       * 
        + * + * double value = 2; + */ + public double getValue() { + return value_; + } + + public static final int STATE_VALUE_FIELD_NUMBER = 3; + private double stateValue_; + /** + *
        +       * The actual value of the parameter.
        +       * 
        + * + * double state_value = 3; + */ + public double getStateValue() { + return stateValue_; + } + + public static final int MIN_FIELD_NUMBER = 4; + private double min_; + /** + *
        +       * Minimum value of the parameter.
        +       * 
        + * + * double min = 4; + */ + public double getMin() { + return min_; + } + + public static final int MAX_FIELD_NUMBER = 5; + private double max_; + /** + *
        +       * Maximum value of the parameter.
        +       * 
        + * + * double max = 5; + */ + public double getMax() { + return max_; + } + + public static final int TUNABLE_FIELD_NUMBER = 6; + private boolean tunable_; + /** + *
        +       * Identifies whether the parameter should participate in autotuning.
        +       * 
        + * + * bool tunable = 6; + */ + public boolean getTunable() { + return tunable_; + } + + private byte memoizedIsInitialized = -1; + @java.lang.Override + public final boolean isInitialized() { + byte isInitialized = memoizedIsInitialized; + if (isInitialized == 1) return true; + if (isInitialized == 0) return false; + + memoizedIsInitialized = 1; + return true; + } + + @java.lang.Override + public void writeTo(com.google.protobuf.CodedOutputStream output) + throws java.io.IOException { + if (!getNameBytes().isEmpty()) { + com.google.protobuf.GeneratedMessageV3.writeString(output, 1, name_); + } + if (value_ != 0D) { + output.writeDouble(2, value_); + } + if (stateValue_ != 0D) { + output.writeDouble(3, stateValue_); + } + if (min_ != 0D) { + output.writeDouble(4, min_); + } + if (max_ != 0D) { + output.writeDouble(5, max_); + } + if (tunable_ != false) { + output.writeBool(6, tunable_); + } + unknownFields.writeTo(output); + } + + @java.lang.Override + public int getSerializedSize() { + int size = memoizedSize; + if (size != -1) return size; + + size = 0; + if (!getNameBytes().isEmpty()) { + size += com.google.protobuf.GeneratedMessageV3.computeStringSize(1, name_); + } + if (value_ != 0D) { + size += com.google.protobuf.CodedOutputStream + .computeDoubleSize(2, value_); + } + if (stateValue_ != 0D) { + size += com.google.protobuf.CodedOutputStream + .computeDoubleSize(3, stateValue_); + } + if (min_ != 0D) { + size += com.google.protobuf.CodedOutputStream + .computeDoubleSize(4, min_); + } + if (max_ != 0D) { + size += com.google.protobuf.CodedOutputStream + .computeDoubleSize(5, max_); + } + if (tunable_ != false) { + size += com.google.protobuf.CodedOutputStream + .computeBoolSize(6, tunable_); + } + size += unknownFields.getSerializedSize(); + memoizedSize = size; + return size; + } + + @java.lang.Override + public boolean equals(final java.lang.Object obj) { + if (obj == this) { + return true; + } + if (!(obj instanceof org.tensorflow.proto.data.model.ModelProto.Node.Parameter)) { + return super.equals(obj); + } + org.tensorflow.proto.data.model.ModelProto.Node.Parameter other = (org.tensorflow.proto.data.model.ModelProto.Node.Parameter) obj; + + if (!getName() + .equals(other.getName())) return false; + if (java.lang.Double.doubleToLongBits(getValue()) + != java.lang.Double.doubleToLongBits( + other.getValue())) return false; + if (java.lang.Double.doubleToLongBits(getStateValue()) + != java.lang.Double.doubleToLongBits( + other.getStateValue())) return false; + if (java.lang.Double.doubleToLongBits(getMin()) + != java.lang.Double.doubleToLongBits( + other.getMin())) return false; + if (java.lang.Double.doubleToLongBits(getMax()) + != java.lang.Double.doubleToLongBits( + other.getMax())) return false; + if (getTunable() + != other.getTunable()) return false; + if (!unknownFields.equals(other.unknownFields)) return false; + return true; + } + + @java.lang.Override + public int hashCode() { + if (memoizedHashCode != 0) { + return memoizedHashCode; + } + int hash = 41; + hash = (19 * hash) + getDescriptor().hashCode(); + hash = (37 * hash) + NAME_FIELD_NUMBER; + hash = (53 * hash) + getName().hashCode(); + hash = (37 * hash) + VALUE_FIELD_NUMBER; + hash = (53 * hash) + com.google.protobuf.Internal.hashLong( + java.lang.Double.doubleToLongBits(getValue())); + hash = (37 * hash) + STATE_VALUE_FIELD_NUMBER; + hash = (53 * hash) + com.google.protobuf.Internal.hashLong( + java.lang.Double.doubleToLongBits(getStateValue())); + hash = (37 * hash) + MIN_FIELD_NUMBER; + hash = (53 * hash) + com.google.protobuf.Internal.hashLong( + java.lang.Double.doubleToLongBits(getMin())); + hash = (37 * hash) + MAX_FIELD_NUMBER; + hash = (53 * hash) + com.google.protobuf.Internal.hashLong( + java.lang.Double.doubleToLongBits(getMax())); + hash = (37 * hash) + TUNABLE_FIELD_NUMBER; + hash = (53 * hash) + com.google.protobuf.Internal.hashBoolean( + getTunable()); + hash = (29 * hash) + unknownFields.hashCode(); + memoizedHashCode = hash; + return hash; + } + + public static org.tensorflow.proto.data.model.ModelProto.Node.Parameter parseFrom( + java.nio.ByteBuffer data) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data); + } + public static org.tensorflow.proto.data.model.ModelProto.Node.Parameter parseFrom( + java.nio.ByteBuffer data, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data, extensionRegistry); + } + public static org.tensorflow.proto.data.model.ModelProto.Node.Parameter parseFrom( + com.google.protobuf.ByteString data) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data); + } + public static org.tensorflow.proto.data.model.ModelProto.Node.Parameter parseFrom( + com.google.protobuf.ByteString data, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data, extensionRegistry); + } + public static org.tensorflow.proto.data.model.ModelProto.Node.Parameter parseFrom(byte[] data) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data); + } + public static org.tensorflow.proto.data.model.ModelProto.Node.Parameter parseFrom( + byte[] data, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data, extensionRegistry); + } + public static org.tensorflow.proto.data.model.ModelProto.Node.Parameter parseFrom(java.io.InputStream input) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input); + } + public static org.tensorflow.proto.data.model.ModelProto.Node.Parameter parseFrom( + java.io.InputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input, extensionRegistry); + } + public static org.tensorflow.proto.data.model.ModelProto.Node.Parameter parseDelimitedFrom(java.io.InputStream input) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseDelimitedWithIOException(PARSER, input); + } + public static org.tensorflow.proto.data.model.ModelProto.Node.Parameter parseDelimitedFrom( + java.io.InputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseDelimitedWithIOException(PARSER, input, extensionRegistry); + } + public static org.tensorflow.proto.data.model.ModelProto.Node.Parameter parseFrom( + com.google.protobuf.CodedInputStream input) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input); + } + public static org.tensorflow.proto.data.model.ModelProto.Node.Parameter parseFrom( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input, extensionRegistry); + } + + @java.lang.Override + public Builder newBuilderForType() { return newBuilder(); } + public static Builder newBuilder() { + return DEFAULT_INSTANCE.toBuilder(); + } + public static Builder newBuilder(org.tensorflow.proto.data.model.ModelProto.Node.Parameter prototype) { + return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); + } + @java.lang.Override + public Builder toBuilder() { + return this == DEFAULT_INSTANCE + ? new Builder() : new Builder().mergeFrom(this); + } + + @java.lang.Override + protected Builder newBuilderForType( + com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { + Builder builder = new Builder(parent); + return builder; + } + /** + *
        +       * Represents a node parameter.
        +       * 
        + * + * Protobuf type {@code tensorflow.data.model.ModelProto.Node.Parameter} + */ + public static final class Builder extends + com.google.protobuf.GeneratedMessageV3.Builder implements + // @@protoc_insertion_point(builder_implements:tensorflow.data.model.ModelProto.Node.Parameter) + org.tensorflow.proto.data.model.ModelProto.Node.ParameterOrBuilder { + public static final com.google.protobuf.Descriptors.Descriptor + getDescriptor() { + return org.tensorflow.proto.data.model.ModelProtos.internal_static_tensorflow_data_model_ModelProto_Node_Parameter_descriptor; + } + + @java.lang.Override + protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable + internalGetFieldAccessorTable() { + return org.tensorflow.proto.data.model.ModelProtos.internal_static_tensorflow_data_model_ModelProto_Node_Parameter_fieldAccessorTable + .ensureFieldAccessorsInitialized( + org.tensorflow.proto.data.model.ModelProto.Node.Parameter.class, org.tensorflow.proto.data.model.ModelProto.Node.Parameter.Builder.class); + } + + // Construct using org.tensorflow.proto.data.model.ModelProto.Node.Parameter.newBuilder() + private Builder() { + maybeForceBuilderInitialization(); + } + + private Builder( + com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { + super(parent); + maybeForceBuilderInitialization(); + } + private void maybeForceBuilderInitialization() { + if (com.google.protobuf.GeneratedMessageV3 + .alwaysUseFieldBuilders) { + } + } + @java.lang.Override + public Builder clear() { + super.clear(); + name_ = ""; + + value_ = 0D; + + stateValue_ = 0D; + + min_ = 0D; + + max_ = 0D; + + tunable_ = false; + + return this; + } + + @java.lang.Override + public com.google.protobuf.Descriptors.Descriptor + getDescriptorForType() { + return org.tensorflow.proto.data.model.ModelProtos.internal_static_tensorflow_data_model_ModelProto_Node_Parameter_descriptor; + } + + @java.lang.Override + public org.tensorflow.proto.data.model.ModelProto.Node.Parameter getDefaultInstanceForType() { + return org.tensorflow.proto.data.model.ModelProto.Node.Parameter.getDefaultInstance(); + } + + @java.lang.Override + public org.tensorflow.proto.data.model.ModelProto.Node.Parameter build() { + org.tensorflow.proto.data.model.ModelProto.Node.Parameter result = buildPartial(); + if (!result.isInitialized()) { + throw newUninitializedMessageException(result); + } + return result; + } + + @java.lang.Override + public org.tensorflow.proto.data.model.ModelProto.Node.Parameter buildPartial() { + org.tensorflow.proto.data.model.ModelProto.Node.Parameter result = new org.tensorflow.proto.data.model.ModelProto.Node.Parameter(this); + result.name_ = name_; + result.value_ = value_; + result.stateValue_ = stateValue_; + result.min_ = min_; + result.max_ = max_; + result.tunable_ = tunable_; + onBuilt(); + return result; + } + + @java.lang.Override + public Builder clone() { + return super.clone(); + } + @java.lang.Override + public Builder setField( + com.google.protobuf.Descriptors.FieldDescriptor field, + java.lang.Object value) { + return super.setField(field, value); + } + @java.lang.Override + public Builder clearField( + com.google.protobuf.Descriptors.FieldDescriptor field) { + return super.clearField(field); + } + @java.lang.Override + public Builder clearOneof( + com.google.protobuf.Descriptors.OneofDescriptor oneof) { + return super.clearOneof(oneof); + } + @java.lang.Override + public Builder setRepeatedField( + com.google.protobuf.Descriptors.FieldDescriptor field, + int index, java.lang.Object value) { + return super.setRepeatedField(field, index, value); + } + @java.lang.Override + public Builder addRepeatedField( + com.google.protobuf.Descriptors.FieldDescriptor field, + java.lang.Object value) { + return super.addRepeatedField(field, value); + } + @java.lang.Override + public Builder mergeFrom(com.google.protobuf.Message other) { + if (other instanceof org.tensorflow.proto.data.model.ModelProto.Node.Parameter) { + return mergeFrom((org.tensorflow.proto.data.model.ModelProto.Node.Parameter)other); + } else { + super.mergeFrom(other); + return this; + } + } + + public Builder mergeFrom(org.tensorflow.proto.data.model.ModelProto.Node.Parameter other) { + if (other == org.tensorflow.proto.data.model.ModelProto.Node.Parameter.getDefaultInstance()) return this; + if (!other.getName().isEmpty()) { + name_ = other.name_; + onChanged(); + } + if (other.getValue() != 0D) { + setValue(other.getValue()); + } + if (other.getStateValue() != 0D) { + setStateValue(other.getStateValue()); + } + if (other.getMin() != 0D) { + setMin(other.getMin()); + } + if (other.getMax() != 0D) { + setMax(other.getMax()); + } + if (other.getTunable() != false) { + setTunable(other.getTunable()); + } + this.mergeUnknownFields(other.unknownFields); + onChanged(); + return this; + } + + @java.lang.Override + public final boolean isInitialized() { + return true; + } + + @java.lang.Override + public Builder mergeFrom( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + org.tensorflow.proto.data.model.ModelProto.Node.Parameter parsedMessage = null; + try { + parsedMessage = PARSER.parsePartialFrom(input, extensionRegistry); + } catch (com.google.protobuf.InvalidProtocolBufferException e) { + parsedMessage = (org.tensorflow.proto.data.model.ModelProto.Node.Parameter) e.getUnfinishedMessage(); + throw e.unwrapIOException(); + } finally { + if (parsedMessage != null) { + mergeFrom(parsedMessage); + } + } + return this; + } + + private java.lang.Object name_ = ""; + /** + *
        +         * Human-readable name of the parameter.
        +         * 
        + * + * string name = 1; + */ + public java.lang.String getName() { + java.lang.Object ref = name_; + if (!(ref instanceof java.lang.String)) { + com.google.protobuf.ByteString bs = + (com.google.protobuf.ByteString) ref; + java.lang.String s = bs.toStringUtf8(); + name_ = s; + return s; + } else { + return (java.lang.String) ref; + } + } + /** + *
        +         * Human-readable name of the parameter.
        +         * 
        + * + * string name = 1; + */ + public com.google.protobuf.ByteString + getNameBytes() { + java.lang.Object ref = name_; + if (ref instanceof String) { + com.google.protobuf.ByteString b = + com.google.protobuf.ByteString.copyFromUtf8( + (java.lang.String) ref); + name_ = b; + return b; + } else { + return (com.google.protobuf.ByteString) ref; + } + } + /** + *
        +         * Human-readable name of the parameter.
        +         * 
        + * + * string name = 1; + */ + public Builder setName( + java.lang.String value) { + if (value == null) { + throw new NullPointerException(); + } + + name_ = value; + onChanged(); + return this; + } + /** + *
        +         * Human-readable name of the parameter.
        +         * 
        + * + * string name = 1; + */ + public Builder clearName() { + + name_ = getDefaultInstance().getName(); + onChanged(); + return this; + } + /** + *
        +         * Human-readable name of the parameter.
        +         * 
        + * + * string name = 1; + */ + public Builder setNameBytes( + com.google.protobuf.ByteString value) { + if (value == null) { + throw new NullPointerException(); + } + checkByteStringIsUtf8(value); + + name_ = value; + onChanged(); + return this; + } + + private double value_ ; + /** + *
        +         * Identifies the model value of the parameter. This can be different from
        +         * the actual value (e.g. during optimization search).
        +         * 
        + * + * double value = 2; + */ + public double getValue() { + return value_; + } + /** + *
        +         * Identifies the model value of the parameter. This can be different from
        +         * the actual value (e.g. during optimization search).
        +         * 
        + * + * double value = 2; + */ + public Builder setValue(double value) { + + value_ = value; + onChanged(); + return this; + } + /** + *
        +         * Identifies the model value of the parameter. This can be different from
        +         * the actual value (e.g. during optimization search).
        +         * 
        + * + * double value = 2; + */ + public Builder clearValue() { + + value_ = 0D; + onChanged(); + return this; + } + + private double stateValue_ ; + /** + *
        +         * The actual value of the parameter.
        +         * 
        + * + * double state_value = 3; + */ + public double getStateValue() { + return stateValue_; + } + /** + *
        +         * The actual value of the parameter.
        +         * 
        + * + * double state_value = 3; + */ + public Builder setStateValue(double value) { + + stateValue_ = value; + onChanged(); + return this; + } + /** + *
        +         * The actual value of the parameter.
        +         * 
        + * + * double state_value = 3; + */ + public Builder clearStateValue() { + + stateValue_ = 0D; + onChanged(); + return this; + } + + private double min_ ; + /** + *
        +         * Minimum value of the parameter.
        +         * 
        + * + * double min = 4; + */ + public double getMin() { + return min_; + } + /** + *
        +         * Minimum value of the parameter.
        +         * 
        + * + * double min = 4; + */ + public Builder setMin(double value) { + + min_ = value; + onChanged(); + return this; + } + /** + *
        +         * Minimum value of the parameter.
        +         * 
        + * + * double min = 4; + */ + public Builder clearMin() { + + min_ = 0D; + onChanged(); + return this; + } + + private double max_ ; + /** + *
        +         * Maximum value of the parameter.
        +         * 
        + * + * double max = 5; + */ + public double getMax() { + return max_; + } + /** + *
        +         * Maximum value of the parameter.
        +         * 
        + * + * double max = 5; + */ + public Builder setMax(double value) { + + max_ = value; + onChanged(); + return this; + } + /** + *
        +         * Maximum value of the parameter.
        +         * 
        + * + * double max = 5; + */ + public Builder clearMax() { + + max_ = 0D; + onChanged(); + return this; + } + + private boolean tunable_ ; + /** + *
        +         * Identifies whether the parameter should participate in autotuning.
        +         * 
        + * + * bool tunable = 6; + */ + public boolean getTunable() { + return tunable_; + } + /** + *
        +         * Identifies whether the parameter should participate in autotuning.
        +         * 
        + * + * bool tunable = 6; + */ + public Builder setTunable(boolean value) { + + tunable_ = value; + onChanged(); + return this; + } + /** + *
        +         * Identifies whether the parameter should participate in autotuning.
        +         * 
        + * + * bool tunable = 6; + */ + public Builder clearTunable() { + + tunable_ = false; + onChanged(); + return this; + } + @java.lang.Override + public final Builder setUnknownFields( + final com.google.protobuf.UnknownFieldSet unknownFields) { + return super.setUnknownFields(unknownFields); + } + + @java.lang.Override + public final Builder mergeUnknownFields( + final com.google.protobuf.UnknownFieldSet unknownFields) { + return super.mergeUnknownFields(unknownFields); + } + + + // @@protoc_insertion_point(builder_scope:tensorflow.data.model.ModelProto.Node.Parameter) + } + + // @@protoc_insertion_point(class_scope:tensorflow.data.model.ModelProto.Node.Parameter) + private static final org.tensorflow.proto.data.model.ModelProto.Node.Parameter DEFAULT_INSTANCE; + static { + DEFAULT_INSTANCE = new org.tensorflow.proto.data.model.ModelProto.Node.Parameter(); + } + + public static org.tensorflow.proto.data.model.ModelProto.Node.Parameter getDefaultInstance() { + return DEFAULT_INSTANCE; + } + + private static final com.google.protobuf.Parser + PARSER = new com.google.protobuf.AbstractParser() { + @java.lang.Override + public Parameter parsePartialFrom( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return new Parameter(input, extensionRegistry); + } + }; + + public static com.google.protobuf.Parser parser() { + return PARSER; + } + + @java.lang.Override + public com.google.protobuf.Parser getParserForType() { + return PARSER; + } + + @java.lang.Override + public org.tensorflow.proto.data.model.ModelProto.Node.Parameter getDefaultInstanceForType() { + return DEFAULT_INSTANCE; + } + + } + + public static final int ID_FIELD_NUMBER = 1; + private long id_; + /** + *
        +     * Unique node ID.
        +     * 
        + * + * int64 id = 1; + */ + public long getId() { + return id_; + } + + public static final int NAME_FIELD_NUMBER = 2; + private volatile java.lang.Object name_; + /** + *
        +     * Human-readable name of the node.
        +     * 
        + * + * string name = 2; + */ + public java.lang.String getName() { + java.lang.Object ref = name_; + if (ref instanceof java.lang.String) { + return (java.lang.String) ref; + } else { + com.google.protobuf.ByteString bs = + (com.google.protobuf.ByteString) ref; + java.lang.String s = bs.toStringUtf8(); + name_ = s; + return s; + } + } + /** + *
        +     * Human-readable name of the node.
        +     * 
        + * + * string name = 2; + */ + public com.google.protobuf.ByteString + getNameBytes() { + java.lang.Object ref = name_; + if (ref instanceof java.lang.String) { + com.google.protobuf.ByteString b = + com.google.protobuf.ByteString.copyFromUtf8( + (java.lang.String) ref); + name_ = b; + return b; + } else { + return (com.google.protobuf.ByteString) ref; + } + } + + public static final int AUTOTUNE_FIELD_NUMBER = 3; + private boolean autotune_; + /** + *
        +     * An indication whether autotuning is enabled for this node.
        +     * 
        + * + * bool autotune = 3; + */ + public boolean getAutotune() { + return autotune_; + } + + public static final int BUFFERED_BYTES_FIELD_NUMBER = 4; + private long bufferedBytes_; + /** + *
        +     * The number of bytes stored in this node's buffer.
        +     * 
        + * + * int64 buffered_bytes = 4; + */ + public long getBufferedBytes() { + return bufferedBytes_; + } + + public static final int BUFFERED_ELEMENTS_FIELD_NUMBER = 5; + private long bufferedElements_; + /** + *
        +     * The number of elements stored in this node's buffer.
        +     * 
        + * + * int64 buffered_elements = 5; + */ + public long getBufferedElements() { + return bufferedElements_; + } + + public static final int BYTES_CONSUMED_FIELD_NUMBER = 6; + private long bytesConsumed_; + /** + *
        +     * The number of bytes consumed by the node.
        +     * 
        + * + * int64 bytes_consumed = 6; + */ + public long getBytesConsumed() { + return bytesConsumed_; + } + + public static final int BYTES_PRODUCED_FIELD_NUMBER = 7; + private long bytesProduced_; + /** + *
        +     * The number of bytes produced by the node.
        +     * 
        + * + * int64 bytes_produced = 7; + */ + public long getBytesProduced() { + return bytesProduced_; + } + + public static final int NUM_ELEMENTS_FIELD_NUMBER = 8; + private long numElements_; + /** + *
        +     * The number of elements produced by the node.
        +     * 
        + * + * int64 num_elements = 8; + */ + public long getNumElements() { + return numElements_; + } + + public static final int PROCESSING_TIME_FIELD_NUMBER = 9; + private long processingTime_; + /** + *
        +     * The aggregate processing time spent in this node.
        +     * 
        + * + * int64 processing_time = 9; + */ + public long getProcessingTime() { + return processingTime_; + } + + public static final int RECORD_METRICS_FIELD_NUMBER = 10; + private boolean recordMetrics_; + /** + *
        +     * An indication whether this node records metrics about produced and
        +     * consumed elements.
        +     * 
        + * + * bool record_metrics = 10; + */ + public boolean getRecordMetrics() { + return recordMetrics_; + } + + public static final int PARAMETERS_FIELD_NUMBER = 11; + private java.util.List parameters_; + /** + *
        +     * Parameters of this node.
        +     * 
        + * + * repeated .tensorflow.data.model.ModelProto.Node.Parameter parameters = 11; + */ + public java.util.List getParametersList() { + return parameters_; + } + /** + *
        +     * Parameters of this node.
        +     * 
        + * + * repeated .tensorflow.data.model.ModelProto.Node.Parameter parameters = 11; + */ + public java.util.List + getParametersOrBuilderList() { + return parameters_; + } + /** + *
        +     * Parameters of this node.
        +     * 
        + * + * repeated .tensorflow.data.model.ModelProto.Node.Parameter parameters = 11; + */ + public int getParametersCount() { + return parameters_.size(); + } + /** + *
        +     * Parameters of this node.
        +     * 
        + * + * repeated .tensorflow.data.model.ModelProto.Node.Parameter parameters = 11; + */ + public org.tensorflow.proto.data.model.ModelProto.Node.Parameter getParameters(int index) { + return parameters_.get(index); + } + /** + *
        +     * Parameters of this node.
        +     * 
        + * + * repeated .tensorflow.data.model.ModelProto.Node.Parameter parameters = 11; + */ + public org.tensorflow.proto.data.model.ModelProto.Node.ParameterOrBuilder getParametersOrBuilder( + int index) { + return parameters_.get(index); + } + + public static final int INPUT_PROCESSING_TIME_SUM_FIELD_NUMBER = 12; + private double inputProcessingTimeSum_; + /** + *
        +     * Statistic of inputs processing time history.
        +     * 
        + * + * double input_processing_time_sum = 12; + */ + public double getInputProcessingTimeSum() { + return inputProcessingTimeSum_; + } + + public static final int INPUT_PROCESSING_TIME_COUNT_FIELD_NUMBER = 13; + private long inputProcessingTimeCount_; + /** + * int64 input_processing_time_count = 13; + */ + public long getInputProcessingTimeCount() { + return inputProcessingTimeCount_; + } + + public static final int INPUTS_FIELD_NUMBER = 14; + private java.util.List inputs_; + /** + *
        +     * Inputs of this node.
        +     * 
        + * + * repeated .tensorflow.data.model.ModelProto.Node inputs = 14; + */ + public java.util.List getInputsList() { + return inputs_; + } + /** + *
        +     * Inputs of this node.
        +     * 
        + * + * repeated .tensorflow.data.model.ModelProto.Node inputs = 14; + */ + public java.util.List + getInputsOrBuilderList() { + return inputs_; + } + /** + *
        +     * Inputs of this node.
        +     * 
        + * + * repeated .tensorflow.data.model.ModelProto.Node inputs = 14; + */ + public int getInputsCount() { + return inputs_.size(); + } + /** + *
        +     * Inputs of this node.
        +     * 
        + * + * repeated .tensorflow.data.model.ModelProto.Node inputs = 14; + */ + public org.tensorflow.proto.data.model.ModelProto.Node getInputs(int index) { + return inputs_.get(index); + } + /** + *
        +     * Inputs of this node.
        +     * 
        + * + * repeated .tensorflow.data.model.ModelProto.Node inputs = 14; + */ + public org.tensorflow.proto.data.model.ModelProto.NodeOrBuilder getInputsOrBuilder( + int index) { + return inputs_.get(index); + } + + public static final int NODE_CLASS_FIELD_NUMBER = 15; + private int nodeClass_; + /** + *
        +     * Class of this node.
        +     * 
        + * + * .tensorflow.data.model.NodeClass node_class = 15; + */ + public int getNodeClassValue() { + return nodeClass_; + } + /** + *
        +     * Class of this node.
        +     * 
        + * + * .tensorflow.data.model.NodeClass node_class = 15; + */ + public org.tensorflow.proto.data.model.NodeClass getNodeClass() { + @SuppressWarnings("deprecation") + org.tensorflow.proto.data.model.NodeClass result = org.tensorflow.proto.data.model.NodeClass.valueOf(nodeClass_); + return result == null ? org.tensorflow.proto.data.model.NodeClass.UNRECOGNIZED : result; + } + + public static final int RATIO_FIELD_NUMBER = 16; + private double ratio_; + /** + *
        +     * Ratio of input to output elements. This is only used by KNOWN_RATIO and
        +     * ASYNC_KNOWN_RATIO nodes.
        +     * 
        + * + * double ratio = 16; + */ + public double getRatio() { + return ratio_; + } + + public static final int MEMORY_RATIO_FIELD_NUMBER = 17; + private double memoryRatio_; + /** + *
        +     * Ratio identifies how many parallelism calls are introduced by one
        +     * buffered element. This is only used by ASYNC_KNOWN_RATIO nodes.
        +     * 
        + * + * double memory_ratio = 17; + */ + public double getMemoryRatio() { + return memoryRatio_; + } + + private byte memoizedIsInitialized = -1; + @java.lang.Override + public final boolean isInitialized() { + byte isInitialized = memoizedIsInitialized; + if (isInitialized == 1) return true; + if (isInitialized == 0) return false; + + memoizedIsInitialized = 1; + return true; + } + + @java.lang.Override + public void writeTo(com.google.protobuf.CodedOutputStream output) + throws java.io.IOException { + if (id_ != 0L) { + output.writeInt64(1, id_); + } + if (!getNameBytes().isEmpty()) { + com.google.protobuf.GeneratedMessageV3.writeString(output, 2, name_); + } + if (autotune_ != false) { + output.writeBool(3, autotune_); + } + if (bufferedBytes_ != 0L) { + output.writeInt64(4, bufferedBytes_); + } + if (bufferedElements_ != 0L) { + output.writeInt64(5, bufferedElements_); + } + if (bytesConsumed_ != 0L) { + output.writeInt64(6, bytesConsumed_); + } + if (bytesProduced_ != 0L) { + output.writeInt64(7, bytesProduced_); + } + if (numElements_ != 0L) { + output.writeInt64(8, numElements_); + } + if (processingTime_ != 0L) { + output.writeInt64(9, processingTime_); + } + if (recordMetrics_ != false) { + output.writeBool(10, recordMetrics_); + } + for (int i = 0; i < parameters_.size(); i++) { + output.writeMessage(11, parameters_.get(i)); + } + if (inputProcessingTimeSum_ != 0D) { + output.writeDouble(12, inputProcessingTimeSum_); + } + if (inputProcessingTimeCount_ != 0L) { + output.writeInt64(13, inputProcessingTimeCount_); + } + for (int i = 0; i < inputs_.size(); i++) { + output.writeMessage(14, inputs_.get(i)); + } + if (nodeClass_ != org.tensorflow.proto.data.model.NodeClass.UNKNOWN.getNumber()) { + output.writeEnum(15, nodeClass_); + } + if (ratio_ != 0D) { + output.writeDouble(16, ratio_); + } + if (memoryRatio_ != 0D) { + output.writeDouble(17, memoryRatio_); + } + unknownFields.writeTo(output); + } + + @java.lang.Override + public int getSerializedSize() { + int size = memoizedSize; + if (size != -1) return size; + + size = 0; + if (id_ != 0L) { + size += com.google.protobuf.CodedOutputStream + .computeInt64Size(1, id_); + } + if (!getNameBytes().isEmpty()) { + size += com.google.protobuf.GeneratedMessageV3.computeStringSize(2, name_); + } + if (autotune_ != false) { + size += com.google.protobuf.CodedOutputStream + .computeBoolSize(3, autotune_); + } + if (bufferedBytes_ != 0L) { + size += com.google.protobuf.CodedOutputStream + .computeInt64Size(4, bufferedBytes_); + } + if (bufferedElements_ != 0L) { + size += com.google.protobuf.CodedOutputStream + .computeInt64Size(5, bufferedElements_); + } + if (bytesConsumed_ != 0L) { + size += com.google.protobuf.CodedOutputStream + .computeInt64Size(6, bytesConsumed_); + } + if (bytesProduced_ != 0L) { + size += com.google.protobuf.CodedOutputStream + .computeInt64Size(7, bytesProduced_); + } + if (numElements_ != 0L) { + size += com.google.protobuf.CodedOutputStream + .computeInt64Size(8, numElements_); + } + if (processingTime_ != 0L) { + size += com.google.protobuf.CodedOutputStream + .computeInt64Size(9, processingTime_); + } + if (recordMetrics_ != false) { + size += com.google.protobuf.CodedOutputStream + .computeBoolSize(10, recordMetrics_); + } + for (int i = 0; i < parameters_.size(); i++) { + size += com.google.protobuf.CodedOutputStream + .computeMessageSize(11, parameters_.get(i)); + } + if (inputProcessingTimeSum_ != 0D) { + size += com.google.protobuf.CodedOutputStream + .computeDoubleSize(12, inputProcessingTimeSum_); + } + if (inputProcessingTimeCount_ != 0L) { + size += com.google.protobuf.CodedOutputStream + .computeInt64Size(13, inputProcessingTimeCount_); + } + for (int i = 0; i < inputs_.size(); i++) { + size += com.google.protobuf.CodedOutputStream + .computeMessageSize(14, inputs_.get(i)); + } + if (nodeClass_ != org.tensorflow.proto.data.model.NodeClass.UNKNOWN.getNumber()) { + size += com.google.protobuf.CodedOutputStream + .computeEnumSize(15, nodeClass_); + } + if (ratio_ != 0D) { + size += com.google.protobuf.CodedOutputStream + .computeDoubleSize(16, ratio_); + } + if (memoryRatio_ != 0D) { + size += com.google.protobuf.CodedOutputStream + .computeDoubleSize(17, memoryRatio_); + } + size += unknownFields.getSerializedSize(); + memoizedSize = size; + return size; + } + + @java.lang.Override + public boolean equals(final java.lang.Object obj) { + if (obj == this) { + return true; + } + if (!(obj instanceof org.tensorflow.proto.data.model.ModelProto.Node)) { + return super.equals(obj); + } + org.tensorflow.proto.data.model.ModelProto.Node other = (org.tensorflow.proto.data.model.ModelProto.Node) obj; + + if (getId() + != other.getId()) return false; + if (!getName() + .equals(other.getName())) return false; + if (getAutotune() + != other.getAutotune()) return false; + if (getBufferedBytes() + != other.getBufferedBytes()) return false; + if (getBufferedElements() + != other.getBufferedElements()) return false; + if (getBytesConsumed() + != other.getBytesConsumed()) return false; + if (getBytesProduced() + != other.getBytesProduced()) return false; + if (getNumElements() + != other.getNumElements()) return false; + if (getProcessingTime() + != other.getProcessingTime()) return false; + if (getRecordMetrics() + != other.getRecordMetrics()) return false; + if (!getParametersList() + .equals(other.getParametersList())) return false; + if (java.lang.Double.doubleToLongBits(getInputProcessingTimeSum()) + != java.lang.Double.doubleToLongBits( + other.getInputProcessingTimeSum())) return false; + if (getInputProcessingTimeCount() + != other.getInputProcessingTimeCount()) return false; + if (!getInputsList() + .equals(other.getInputsList())) return false; + if (nodeClass_ != other.nodeClass_) return false; + if (java.lang.Double.doubleToLongBits(getRatio()) + != java.lang.Double.doubleToLongBits( + other.getRatio())) return false; + if (java.lang.Double.doubleToLongBits(getMemoryRatio()) + != java.lang.Double.doubleToLongBits( + other.getMemoryRatio())) return false; + if (!unknownFields.equals(other.unknownFields)) return false; + return true; + } + + @java.lang.Override + public int hashCode() { + if (memoizedHashCode != 0) { + return memoizedHashCode; + } + int hash = 41; + hash = (19 * hash) + getDescriptor().hashCode(); + hash = (37 * hash) + ID_FIELD_NUMBER; + hash = (53 * hash) + com.google.protobuf.Internal.hashLong( + getId()); + hash = (37 * hash) + NAME_FIELD_NUMBER; + hash = (53 * hash) + getName().hashCode(); + hash = (37 * hash) + AUTOTUNE_FIELD_NUMBER; + hash = (53 * hash) + com.google.protobuf.Internal.hashBoolean( + getAutotune()); + hash = (37 * hash) + BUFFERED_BYTES_FIELD_NUMBER; + hash = (53 * hash) + com.google.protobuf.Internal.hashLong( + getBufferedBytes()); + hash = (37 * hash) + BUFFERED_ELEMENTS_FIELD_NUMBER; + hash = (53 * hash) + com.google.protobuf.Internal.hashLong( + getBufferedElements()); + hash = (37 * hash) + BYTES_CONSUMED_FIELD_NUMBER; + hash = (53 * hash) + com.google.protobuf.Internal.hashLong( + getBytesConsumed()); + hash = (37 * hash) + BYTES_PRODUCED_FIELD_NUMBER; + hash = (53 * hash) + com.google.protobuf.Internal.hashLong( + getBytesProduced()); + hash = (37 * hash) + NUM_ELEMENTS_FIELD_NUMBER; + hash = (53 * hash) + com.google.protobuf.Internal.hashLong( + getNumElements()); + hash = (37 * hash) + PROCESSING_TIME_FIELD_NUMBER; + hash = (53 * hash) + com.google.protobuf.Internal.hashLong( + getProcessingTime()); + hash = (37 * hash) + RECORD_METRICS_FIELD_NUMBER; + hash = (53 * hash) + com.google.protobuf.Internal.hashBoolean( + getRecordMetrics()); + if (getParametersCount() > 0) { + hash = (37 * hash) + PARAMETERS_FIELD_NUMBER; + hash = (53 * hash) + getParametersList().hashCode(); + } + hash = (37 * hash) + INPUT_PROCESSING_TIME_SUM_FIELD_NUMBER; + hash = (53 * hash) + com.google.protobuf.Internal.hashLong( + java.lang.Double.doubleToLongBits(getInputProcessingTimeSum())); + hash = (37 * hash) + INPUT_PROCESSING_TIME_COUNT_FIELD_NUMBER; + hash = (53 * hash) + com.google.protobuf.Internal.hashLong( + getInputProcessingTimeCount()); + if (getInputsCount() > 0) { + hash = (37 * hash) + INPUTS_FIELD_NUMBER; + hash = (53 * hash) + getInputsList().hashCode(); + } + hash = (37 * hash) + NODE_CLASS_FIELD_NUMBER; + hash = (53 * hash) + nodeClass_; + hash = (37 * hash) + RATIO_FIELD_NUMBER; + hash = (53 * hash) + com.google.protobuf.Internal.hashLong( + java.lang.Double.doubleToLongBits(getRatio())); + hash = (37 * hash) + MEMORY_RATIO_FIELD_NUMBER; + hash = (53 * hash) + com.google.protobuf.Internal.hashLong( + java.lang.Double.doubleToLongBits(getMemoryRatio())); + hash = (29 * hash) + unknownFields.hashCode(); + memoizedHashCode = hash; + return hash; + } + + public static org.tensorflow.proto.data.model.ModelProto.Node parseFrom( + java.nio.ByteBuffer data) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data); + } + public static org.tensorflow.proto.data.model.ModelProto.Node parseFrom( + java.nio.ByteBuffer data, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data, extensionRegistry); + } + public static org.tensorflow.proto.data.model.ModelProto.Node parseFrom( + com.google.protobuf.ByteString data) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data); + } + public static org.tensorflow.proto.data.model.ModelProto.Node parseFrom( + com.google.protobuf.ByteString data, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data, extensionRegistry); + } + public static org.tensorflow.proto.data.model.ModelProto.Node parseFrom(byte[] data) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data); + } + public static org.tensorflow.proto.data.model.ModelProto.Node parseFrom( + byte[] data, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data, extensionRegistry); + } + public static org.tensorflow.proto.data.model.ModelProto.Node parseFrom(java.io.InputStream input) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input); + } + public static org.tensorflow.proto.data.model.ModelProto.Node parseFrom( + java.io.InputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input, extensionRegistry); + } + public static org.tensorflow.proto.data.model.ModelProto.Node parseDelimitedFrom(java.io.InputStream input) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseDelimitedWithIOException(PARSER, input); + } + public static org.tensorflow.proto.data.model.ModelProto.Node parseDelimitedFrom( + java.io.InputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseDelimitedWithIOException(PARSER, input, extensionRegistry); + } + public static org.tensorflow.proto.data.model.ModelProto.Node parseFrom( + com.google.protobuf.CodedInputStream input) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input); + } + public static org.tensorflow.proto.data.model.ModelProto.Node parseFrom( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input, extensionRegistry); + } + + @java.lang.Override + public Builder newBuilderForType() { return newBuilder(); } + public static Builder newBuilder() { + return DEFAULT_INSTANCE.toBuilder(); + } + public static Builder newBuilder(org.tensorflow.proto.data.model.ModelProto.Node prototype) { + return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); + } + @java.lang.Override + public Builder toBuilder() { + return this == DEFAULT_INSTANCE + ? new Builder() : new Builder().mergeFrom(this); + } + + @java.lang.Override + protected Builder newBuilderForType( + com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { + Builder builder = new Builder(parent); + return builder; + } + /** + *
        +     * General representation of a node in the model.
        +     * 
        + * + * Protobuf type {@code tensorflow.data.model.ModelProto.Node} + */ + public static final class Builder extends + com.google.protobuf.GeneratedMessageV3.Builder implements + // @@protoc_insertion_point(builder_implements:tensorflow.data.model.ModelProto.Node) + org.tensorflow.proto.data.model.ModelProto.NodeOrBuilder { + public static final com.google.protobuf.Descriptors.Descriptor + getDescriptor() { + return org.tensorflow.proto.data.model.ModelProtos.internal_static_tensorflow_data_model_ModelProto_Node_descriptor; + } + + @java.lang.Override + protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable + internalGetFieldAccessorTable() { + return org.tensorflow.proto.data.model.ModelProtos.internal_static_tensorflow_data_model_ModelProto_Node_fieldAccessorTable + .ensureFieldAccessorsInitialized( + org.tensorflow.proto.data.model.ModelProto.Node.class, org.tensorflow.proto.data.model.ModelProto.Node.Builder.class); + } + + // Construct using org.tensorflow.proto.data.model.ModelProto.Node.newBuilder() + private Builder() { + maybeForceBuilderInitialization(); + } + + private Builder( + com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { + super(parent); + maybeForceBuilderInitialization(); + } + private void maybeForceBuilderInitialization() { + if (com.google.protobuf.GeneratedMessageV3 + .alwaysUseFieldBuilders) { + getParametersFieldBuilder(); + getInputsFieldBuilder(); + } + } + @java.lang.Override + public Builder clear() { + super.clear(); + id_ = 0L; + + name_ = ""; + + autotune_ = false; + + bufferedBytes_ = 0L; + + bufferedElements_ = 0L; + + bytesConsumed_ = 0L; + + bytesProduced_ = 0L; + + numElements_ = 0L; + + processingTime_ = 0L; + + recordMetrics_ = false; + + if (parametersBuilder_ == null) { + parameters_ = java.util.Collections.emptyList(); + bitField0_ = (bitField0_ & ~0x00000001); + } else { + parametersBuilder_.clear(); + } + inputProcessingTimeSum_ = 0D; + + inputProcessingTimeCount_ = 0L; + + if (inputsBuilder_ == null) { + inputs_ = java.util.Collections.emptyList(); + bitField0_ = (bitField0_ & ~0x00000002); + } else { + inputsBuilder_.clear(); + } + nodeClass_ = 0; + + ratio_ = 0D; + + memoryRatio_ = 0D; + + return this; + } + + @java.lang.Override + public com.google.protobuf.Descriptors.Descriptor + getDescriptorForType() { + return org.tensorflow.proto.data.model.ModelProtos.internal_static_tensorflow_data_model_ModelProto_Node_descriptor; + } + + @java.lang.Override + public org.tensorflow.proto.data.model.ModelProto.Node getDefaultInstanceForType() { + return org.tensorflow.proto.data.model.ModelProto.Node.getDefaultInstance(); + } + + @java.lang.Override + public org.tensorflow.proto.data.model.ModelProto.Node build() { + org.tensorflow.proto.data.model.ModelProto.Node result = buildPartial(); + if (!result.isInitialized()) { + throw newUninitializedMessageException(result); + } + return result; + } + + @java.lang.Override + public org.tensorflow.proto.data.model.ModelProto.Node buildPartial() { + org.tensorflow.proto.data.model.ModelProto.Node result = new org.tensorflow.proto.data.model.ModelProto.Node(this); + int from_bitField0_ = bitField0_; + result.id_ = id_; + result.name_ = name_; + result.autotune_ = autotune_; + result.bufferedBytes_ = bufferedBytes_; + result.bufferedElements_ = bufferedElements_; + result.bytesConsumed_ = bytesConsumed_; + result.bytesProduced_ = bytesProduced_; + result.numElements_ = numElements_; + result.processingTime_ = processingTime_; + result.recordMetrics_ = recordMetrics_; + if (parametersBuilder_ == null) { + if (((bitField0_ & 0x00000001) != 0)) { + parameters_ = java.util.Collections.unmodifiableList(parameters_); + bitField0_ = (bitField0_ & ~0x00000001); + } + result.parameters_ = parameters_; + } else { + result.parameters_ = parametersBuilder_.build(); + } + result.inputProcessingTimeSum_ = inputProcessingTimeSum_; + result.inputProcessingTimeCount_ = inputProcessingTimeCount_; + if (inputsBuilder_ == null) { + if (((bitField0_ & 0x00000002) != 0)) { + inputs_ = java.util.Collections.unmodifiableList(inputs_); + bitField0_ = (bitField0_ & ~0x00000002); + } + result.inputs_ = inputs_; + } else { + result.inputs_ = inputsBuilder_.build(); + } + result.nodeClass_ = nodeClass_; + result.ratio_ = ratio_; + result.memoryRatio_ = memoryRatio_; + onBuilt(); + return result; + } + + @java.lang.Override + public Builder clone() { + return super.clone(); + } + @java.lang.Override + public Builder setField( + com.google.protobuf.Descriptors.FieldDescriptor field, + java.lang.Object value) { + return super.setField(field, value); + } + @java.lang.Override + public Builder clearField( + com.google.protobuf.Descriptors.FieldDescriptor field) { + return super.clearField(field); + } + @java.lang.Override + public Builder clearOneof( + com.google.protobuf.Descriptors.OneofDescriptor oneof) { + return super.clearOneof(oneof); + } + @java.lang.Override + public Builder setRepeatedField( + com.google.protobuf.Descriptors.FieldDescriptor field, + int index, java.lang.Object value) { + return super.setRepeatedField(field, index, value); + } + @java.lang.Override + public Builder addRepeatedField( + com.google.protobuf.Descriptors.FieldDescriptor field, + java.lang.Object value) { + return super.addRepeatedField(field, value); + } + @java.lang.Override + public Builder mergeFrom(com.google.protobuf.Message other) { + if (other instanceof org.tensorflow.proto.data.model.ModelProto.Node) { + return mergeFrom((org.tensorflow.proto.data.model.ModelProto.Node)other); + } else { + super.mergeFrom(other); + return this; + } + } + + public Builder mergeFrom(org.tensorflow.proto.data.model.ModelProto.Node other) { + if (other == org.tensorflow.proto.data.model.ModelProto.Node.getDefaultInstance()) return this; + if (other.getId() != 0L) { + setId(other.getId()); + } + if (!other.getName().isEmpty()) { + name_ = other.name_; + onChanged(); + } + if (other.getAutotune() != false) { + setAutotune(other.getAutotune()); + } + if (other.getBufferedBytes() != 0L) { + setBufferedBytes(other.getBufferedBytes()); + } + if (other.getBufferedElements() != 0L) { + setBufferedElements(other.getBufferedElements()); + } + if (other.getBytesConsumed() != 0L) { + setBytesConsumed(other.getBytesConsumed()); + } + if (other.getBytesProduced() != 0L) { + setBytesProduced(other.getBytesProduced()); + } + if (other.getNumElements() != 0L) { + setNumElements(other.getNumElements()); + } + if (other.getProcessingTime() != 0L) { + setProcessingTime(other.getProcessingTime()); + } + if (other.getRecordMetrics() != false) { + setRecordMetrics(other.getRecordMetrics()); + } + if (parametersBuilder_ == null) { + if (!other.parameters_.isEmpty()) { + if (parameters_.isEmpty()) { + parameters_ = other.parameters_; + bitField0_ = (bitField0_ & ~0x00000001); + } else { + ensureParametersIsMutable(); + parameters_.addAll(other.parameters_); + } + onChanged(); + } + } else { + if (!other.parameters_.isEmpty()) { + if (parametersBuilder_.isEmpty()) { + parametersBuilder_.dispose(); + parametersBuilder_ = null; + parameters_ = other.parameters_; + bitField0_ = (bitField0_ & ~0x00000001); + parametersBuilder_ = + com.google.protobuf.GeneratedMessageV3.alwaysUseFieldBuilders ? + getParametersFieldBuilder() : null; + } else { + parametersBuilder_.addAllMessages(other.parameters_); + } + } + } + if (other.getInputProcessingTimeSum() != 0D) { + setInputProcessingTimeSum(other.getInputProcessingTimeSum()); + } + if (other.getInputProcessingTimeCount() != 0L) { + setInputProcessingTimeCount(other.getInputProcessingTimeCount()); + } + if (inputsBuilder_ == null) { + if (!other.inputs_.isEmpty()) { + if (inputs_.isEmpty()) { + inputs_ = other.inputs_; + bitField0_ = (bitField0_ & ~0x00000002); + } else { + ensureInputsIsMutable(); + inputs_.addAll(other.inputs_); + } + onChanged(); + } + } else { + if (!other.inputs_.isEmpty()) { + if (inputsBuilder_.isEmpty()) { + inputsBuilder_.dispose(); + inputsBuilder_ = null; + inputs_ = other.inputs_; + bitField0_ = (bitField0_ & ~0x00000002); + inputsBuilder_ = + com.google.protobuf.GeneratedMessageV3.alwaysUseFieldBuilders ? + getInputsFieldBuilder() : null; + } else { + inputsBuilder_.addAllMessages(other.inputs_); + } + } + } + if (other.nodeClass_ != 0) { + setNodeClassValue(other.getNodeClassValue()); + } + if (other.getRatio() != 0D) { + setRatio(other.getRatio()); + } + if (other.getMemoryRatio() != 0D) { + setMemoryRatio(other.getMemoryRatio()); + } + this.mergeUnknownFields(other.unknownFields); + onChanged(); + return this; + } + + @java.lang.Override + public final boolean isInitialized() { + return true; + } + + @java.lang.Override + public Builder mergeFrom( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + org.tensorflow.proto.data.model.ModelProto.Node parsedMessage = null; + try { + parsedMessage = PARSER.parsePartialFrom(input, extensionRegistry); + } catch (com.google.protobuf.InvalidProtocolBufferException e) { + parsedMessage = (org.tensorflow.proto.data.model.ModelProto.Node) e.getUnfinishedMessage(); + throw e.unwrapIOException(); + } finally { + if (parsedMessage != null) { + mergeFrom(parsedMessage); + } + } + return this; + } + private int bitField0_; + + private long id_ ; + /** + *
        +       * Unique node ID.
        +       * 
        + * + * int64 id = 1; + */ + public long getId() { + return id_; + } + /** + *
        +       * Unique node ID.
        +       * 
        + * + * int64 id = 1; + */ + public Builder setId(long value) { + + id_ = value; + onChanged(); + return this; + } + /** + *
        +       * Unique node ID.
        +       * 
        + * + * int64 id = 1; + */ + public Builder clearId() { + + id_ = 0L; + onChanged(); + return this; + } + + private java.lang.Object name_ = ""; + /** + *
        +       * Human-readable name of the node.
        +       * 
        + * + * string name = 2; + */ + public java.lang.String getName() { + java.lang.Object ref = name_; + if (!(ref instanceof java.lang.String)) { + com.google.protobuf.ByteString bs = + (com.google.protobuf.ByteString) ref; + java.lang.String s = bs.toStringUtf8(); + name_ = s; + return s; + } else { + return (java.lang.String) ref; + } + } + /** + *
        +       * Human-readable name of the node.
        +       * 
        + * + * string name = 2; + */ + public com.google.protobuf.ByteString + getNameBytes() { + java.lang.Object ref = name_; + if (ref instanceof String) { + com.google.protobuf.ByteString b = + com.google.protobuf.ByteString.copyFromUtf8( + (java.lang.String) ref); + name_ = b; + return b; + } else { + return (com.google.protobuf.ByteString) ref; + } + } + /** + *
        +       * Human-readable name of the node.
        +       * 
        + * + * string name = 2; + */ + public Builder setName( + java.lang.String value) { + if (value == null) { + throw new NullPointerException(); + } + + name_ = value; + onChanged(); + return this; + } + /** + *
        +       * Human-readable name of the node.
        +       * 
        + * + * string name = 2; + */ + public Builder clearName() { + + name_ = getDefaultInstance().getName(); + onChanged(); + return this; + } + /** + *
        +       * Human-readable name of the node.
        +       * 
        + * + * string name = 2; + */ + public Builder setNameBytes( + com.google.protobuf.ByteString value) { + if (value == null) { + throw new NullPointerException(); + } + checkByteStringIsUtf8(value); + + name_ = value; + onChanged(); + return this; + } + + private boolean autotune_ ; + /** + *
        +       * An indication whether autotuning is enabled for this node.
        +       * 
        + * + * bool autotune = 3; + */ + public boolean getAutotune() { + return autotune_; + } + /** + *
        +       * An indication whether autotuning is enabled for this node.
        +       * 
        + * + * bool autotune = 3; + */ + public Builder setAutotune(boolean value) { + + autotune_ = value; + onChanged(); + return this; + } + /** + *
        +       * An indication whether autotuning is enabled for this node.
        +       * 
        + * + * bool autotune = 3; + */ + public Builder clearAutotune() { + + autotune_ = false; + onChanged(); + return this; + } + + private long bufferedBytes_ ; + /** + *
        +       * The number of bytes stored in this node's buffer.
        +       * 
        + * + * int64 buffered_bytes = 4; + */ + public long getBufferedBytes() { + return bufferedBytes_; + } + /** + *
        +       * The number of bytes stored in this node's buffer.
        +       * 
        + * + * int64 buffered_bytes = 4; + */ + public Builder setBufferedBytes(long value) { + + bufferedBytes_ = value; + onChanged(); + return this; + } + /** + *
        +       * The number of bytes stored in this node's buffer.
        +       * 
        + * + * int64 buffered_bytes = 4; + */ + public Builder clearBufferedBytes() { + + bufferedBytes_ = 0L; + onChanged(); + return this; + } + + private long bufferedElements_ ; + /** + *
        +       * The number of elements stored in this node's buffer.
        +       * 
        + * + * int64 buffered_elements = 5; + */ + public long getBufferedElements() { + return bufferedElements_; + } + /** + *
        +       * The number of elements stored in this node's buffer.
        +       * 
        + * + * int64 buffered_elements = 5; + */ + public Builder setBufferedElements(long value) { + + bufferedElements_ = value; + onChanged(); + return this; + } + /** + *
        +       * The number of elements stored in this node's buffer.
        +       * 
        + * + * int64 buffered_elements = 5; + */ + public Builder clearBufferedElements() { + + bufferedElements_ = 0L; + onChanged(); + return this; + } + + private long bytesConsumed_ ; + /** + *
        +       * The number of bytes consumed by the node.
        +       * 
        + * + * int64 bytes_consumed = 6; + */ + public long getBytesConsumed() { + return bytesConsumed_; + } + /** + *
        +       * The number of bytes consumed by the node.
        +       * 
        + * + * int64 bytes_consumed = 6; + */ + public Builder setBytesConsumed(long value) { + + bytesConsumed_ = value; + onChanged(); + return this; + } + /** + *
        +       * The number of bytes consumed by the node.
        +       * 
        + * + * int64 bytes_consumed = 6; + */ + public Builder clearBytesConsumed() { + + bytesConsumed_ = 0L; + onChanged(); + return this; + } + + private long bytesProduced_ ; + /** + *
        +       * The number of bytes produced by the node.
        +       * 
        + * + * int64 bytes_produced = 7; + */ + public long getBytesProduced() { + return bytesProduced_; + } + /** + *
        +       * The number of bytes produced by the node.
        +       * 
        + * + * int64 bytes_produced = 7; + */ + public Builder setBytesProduced(long value) { + + bytesProduced_ = value; + onChanged(); + return this; + } + /** + *
        +       * The number of bytes produced by the node.
        +       * 
        + * + * int64 bytes_produced = 7; + */ + public Builder clearBytesProduced() { + + bytesProduced_ = 0L; + onChanged(); + return this; + } + + private long numElements_ ; + /** + *
        +       * The number of elements produced by the node.
        +       * 
        + * + * int64 num_elements = 8; + */ + public long getNumElements() { + return numElements_; + } + /** + *
        +       * The number of elements produced by the node.
        +       * 
        + * + * int64 num_elements = 8; + */ + public Builder setNumElements(long value) { + + numElements_ = value; + onChanged(); + return this; + } + /** + *
        +       * The number of elements produced by the node.
        +       * 
        + * + * int64 num_elements = 8; + */ + public Builder clearNumElements() { + + numElements_ = 0L; + onChanged(); + return this; + } + + private long processingTime_ ; + /** + *
        +       * The aggregate processing time spent in this node.
        +       * 
        + * + * int64 processing_time = 9; + */ + public long getProcessingTime() { + return processingTime_; + } + /** + *
        +       * The aggregate processing time spent in this node.
        +       * 
        + * + * int64 processing_time = 9; + */ + public Builder setProcessingTime(long value) { + + processingTime_ = value; + onChanged(); + return this; + } + /** + *
        +       * The aggregate processing time spent in this node.
        +       * 
        + * + * int64 processing_time = 9; + */ + public Builder clearProcessingTime() { + + processingTime_ = 0L; + onChanged(); + return this; + } + + private boolean recordMetrics_ ; + /** + *
        +       * An indication whether this node records metrics about produced and
        +       * consumed elements.
        +       * 
        + * + * bool record_metrics = 10; + */ + public boolean getRecordMetrics() { + return recordMetrics_; + } + /** + *
        +       * An indication whether this node records metrics about produced and
        +       * consumed elements.
        +       * 
        + * + * bool record_metrics = 10; + */ + public Builder setRecordMetrics(boolean value) { + + recordMetrics_ = value; + onChanged(); + return this; + } + /** + *
        +       * An indication whether this node records metrics about produced and
        +       * consumed elements.
        +       * 
        + * + * bool record_metrics = 10; + */ + public Builder clearRecordMetrics() { + + recordMetrics_ = false; + onChanged(); + return this; + } + + private java.util.List parameters_ = + java.util.Collections.emptyList(); + private void ensureParametersIsMutable() { + if (!((bitField0_ & 0x00000001) != 0)) { + parameters_ = new java.util.ArrayList(parameters_); + bitField0_ |= 0x00000001; + } + } + + private com.google.protobuf.RepeatedFieldBuilderV3< + org.tensorflow.proto.data.model.ModelProto.Node.Parameter, org.tensorflow.proto.data.model.ModelProto.Node.Parameter.Builder, org.tensorflow.proto.data.model.ModelProto.Node.ParameterOrBuilder> parametersBuilder_; + + /** + *
        +       * Parameters of this node.
        +       * 
        + * + * repeated .tensorflow.data.model.ModelProto.Node.Parameter parameters = 11; + */ + public java.util.List getParametersList() { + if (parametersBuilder_ == null) { + return java.util.Collections.unmodifiableList(parameters_); + } else { + return parametersBuilder_.getMessageList(); + } + } + /** + *
        +       * Parameters of this node.
        +       * 
        + * + * repeated .tensorflow.data.model.ModelProto.Node.Parameter parameters = 11; + */ + public int getParametersCount() { + if (parametersBuilder_ == null) { + return parameters_.size(); + } else { + return parametersBuilder_.getCount(); + } + } + /** + *
        +       * Parameters of this node.
        +       * 
        + * + * repeated .tensorflow.data.model.ModelProto.Node.Parameter parameters = 11; + */ + public org.tensorflow.proto.data.model.ModelProto.Node.Parameter getParameters(int index) { + if (parametersBuilder_ == null) { + return parameters_.get(index); + } else { + return parametersBuilder_.getMessage(index); + } + } + /** + *
        +       * Parameters of this node.
        +       * 
        + * + * repeated .tensorflow.data.model.ModelProto.Node.Parameter parameters = 11; + */ + public Builder setParameters( + int index, org.tensorflow.proto.data.model.ModelProto.Node.Parameter value) { + if (parametersBuilder_ == null) { + if (value == null) { + throw new NullPointerException(); + } + ensureParametersIsMutable(); + parameters_.set(index, value); + onChanged(); + } else { + parametersBuilder_.setMessage(index, value); + } + return this; + } + /** + *
        +       * Parameters of this node.
        +       * 
        + * + * repeated .tensorflow.data.model.ModelProto.Node.Parameter parameters = 11; + */ + public Builder setParameters( + int index, org.tensorflow.proto.data.model.ModelProto.Node.Parameter.Builder builderForValue) { + if (parametersBuilder_ == null) { + ensureParametersIsMutable(); + parameters_.set(index, builderForValue.build()); + onChanged(); + } else { + parametersBuilder_.setMessage(index, builderForValue.build()); + } + return this; + } + /** + *
        +       * Parameters of this node.
        +       * 
        + * + * repeated .tensorflow.data.model.ModelProto.Node.Parameter parameters = 11; + */ + public Builder addParameters(org.tensorflow.proto.data.model.ModelProto.Node.Parameter value) { + if (parametersBuilder_ == null) { + if (value == null) { + throw new NullPointerException(); + } + ensureParametersIsMutable(); + parameters_.add(value); + onChanged(); + } else { + parametersBuilder_.addMessage(value); + } + return this; + } + /** + *
        +       * Parameters of this node.
        +       * 
        + * + * repeated .tensorflow.data.model.ModelProto.Node.Parameter parameters = 11; + */ + public Builder addParameters( + int index, org.tensorflow.proto.data.model.ModelProto.Node.Parameter value) { + if (parametersBuilder_ == null) { + if (value == null) { + throw new NullPointerException(); + } + ensureParametersIsMutable(); + parameters_.add(index, value); + onChanged(); + } else { + parametersBuilder_.addMessage(index, value); + } + return this; + } + /** + *
        +       * Parameters of this node.
        +       * 
        + * + * repeated .tensorflow.data.model.ModelProto.Node.Parameter parameters = 11; + */ + public Builder addParameters( + org.tensorflow.proto.data.model.ModelProto.Node.Parameter.Builder builderForValue) { + if (parametersBuilder_ == null) { + ensureParametersIsMutable(); + parameters_.add(builderForValue.build()); + onChanged(); + } else { + parametersBuilder_.addMessage(builderForValue.build()); + } + return this; + } + /** + *
        +       * Parameters of this node.
        +       * 
        + * + * repeated .tensorflow.data.model.ModelProto.Node.Parameter parameters = 11; + */ + public Builder addParameters( + int index, org.tensorflow.proto.data.model.ModelProto.Node.Parameter.Builder builderForValue) { + if (parametersBuilder_ == null) { + ensureParametersIsMutable(); + parameters_.add(index, builderForValue.build()); + onChanged(); + } else { + parametersBuilder_.addMessage(index, builderForValue.build()); + } + return this; + } + /** + *
        +       * Parameters of this node.
        +       * 
        + * + * repeated .tensorflow.data.model.ModelProto.Node.Parameter parameters = 11; + */ + public Builder addAllParameters( + java.lang.Iterable values) { + if (parametersBuilder_ == null) { + ensureParametersIsMutable(); + com.google.protobuf.AbstractMessageLite.Builder.addAll( + values, parameters_); + onChanged(); + } else { + parametersBuilder_.addAllMessages(values); + } + return this; + } + /** + *
        +       * Parameters of this node.
        +       * 
        + * + * repeated .tensorflow.data.model.ModelProto.Node.Parameter parameters = 11; + */ + public Builder clearParameters() { + if (parametersBuilder_ == null) { + parameters_ = java.util.Collections.emptyList(); + bitField0_ = (bitField0_ & ~0x00000001); + onChanged(); + } else { + parametersBuilder_.clear(); + } + return this; + } + /** + *
        +       * Parameters of this node.
        +       * 
        + * + * repeated .tensorflow.data.model.ModelProto.Node.Parameter parameters = 11; + */ + public Builder removeParameters(int index) { + if (parametersBuilder_ == null) { + ensureParametersIsMutable(); + parameters_.remove(index); + onChanged(); + } else { + parametersBuilder_.remove(index); + } + return this; + } + /** + *
        +       * Parameters of this node.
        +       * 
        + * + * repeated .tensorflow.data.model.ModelProto.Node.Parameter parameters = 11; + */ + public org.tensorflow.proto.data.model.ModelProto.Node.Parameter.Builder getParametersBuilder( + int index) { + return getParametersFieldBuilder().getBuilder(index); + } + /** + *
        +       * Parameters of this node.
        +       * 
        + * + * repeated .tensorflow.data.model.ModelProto.Node.Parameter parameters = 11; + */ + public org.tensorflow.proto.data.model.ModelProto.Node.ParameterOrBuilder getParametersOrBuilder( + int index) { + if (parametersBuilder_ == null) { + return parameters_.get(index); } else { + return parametersBuilder_.getMessageOrBuilder(index); + } + } + /** + *
        +       * Parameters of this node.
        +       * 
        + * + * repeated .tensorflow.data.model.ModelProto.Node.Parameter parameters = 11; + */ + public java.util.List + getParametersOrBuilderList() { + if (parametersBuilder_ != null) { + return parametersBuilder_.getMessageOrBuilderList(); + } else { + return java.util.Collections.unmodifiableList(parameters_); + } + } + /** + *
        +       * Parameters of this node.
        +       * 
        + * + * repeated .tensorflow.data.model.ModelProto.Node.Parameter parameters = 11; + */ + public org.tensorflow.proto.data.model.ModelProto.Node.Parameter.Builder addParametersBuilder() { + return getParametersFieldBuilder().addBuilder( + org.tensorflow.proto.data.model.ModelProto.Node.Parameter.getDefaultInstance()); + } + /** + *
        +       * Parameters of this node.
        +       * 
        + * + * repeated .tensorflow.data.model.ModelProto.Node.Parameter parameters = 11; + */ + public org.tensorflow.proto.data.model.ModelProto.Node.Parameter.Builder addParametersBuilder( + int index) { + return getParametersFieldBuilder().addBuilder( + index, org.tensorflow.proto.data.model.ModelProto.Node.Parameter.getDefaultInstance()); + } + /** + *
        +       * Parameters of this node.
        +       * 
        + * + * repeated .tensorflow.data.model.ModelProto.Node.Parameter parameters = 11; + */ + public java.util.List + getParametersBuilderList() { + return getParametersFieldBuilder().getBuilderList(); + } + private com.google.protobuf.RepeatedFieldBuilderV3< + org.tensorflow.proto.data.model.ModelProto.Node.Parameter, org.tensorflow.proto.data.model.ModelProto.Node.Parameter.Builder, org.tensorflow.proto.data.model.ModelProto.Node.ParameterOrBuilder> + getParametersFieldBuilder() { + if (parametersBuilder_ == null) { + parametersBuilder_ = new com.google.protobuf.RepeatedFieldBuilderV3< + org.tensorflow.proto.data.model.ModelProto.Node.Parameter, org.tensorflow.proto.data.model.ModelProto.Node.Parameter.Builder, org.tensorflow.proto.data.model.ModelProto.Node.ParameterOrBuilder>( + parameters_, + ((bitField0_ & 0x00000001) != 0), + getParentForChildren(), + isClean()); + parameters_ = null; + } + return parametersBuilder_; + } + + private double inputProcessingTimeSum_ ; + /** + *
        +       * Statistic of inputs processing time history.
        +       * 
        + * + * double input_processing_time_sum = 12; + */ + public double getInputProcessingTimeSum() { + return inputProcessingTimeSum_; + } + /** + *
        +       * Statistic of inputs processing time history.
        +       * 
        + * + * double input_processing_time_sum = 12; + */ + public Builder setInputProcessingTimeSum(double value) { + + inputProcessingTimeSum_ = value; + onChanged(); + return this; + } + /** + *
        +       * Statistic of inputs processing time history.
        +       * 
        + * + * double input_processing_time_sum = 12; + */ + public Builder clearInputProcessingTimeSum() { + + inputProcessingTimeSum_ = 0D; + onChanged(); + return this; + } + + private long inputProcessingTimeCount_ ; + /** + * int64 input_processing_time_count = 13; + */ + public long getInputProcessingTimeCount() { + return inputProcessingTimeCount_; + } + /** + * int64 input_processing_time_count = 13; + */ + public Builder setInputProcessingTimeCount(long value) { + + inputProcessingTimeCount_ = value; + onChanged(); + return this; + } + /** + * int64 input_processing_time_count = 13; + */ + public Builder clearInputProcessingTimeCount() { + + inputProcessingTimeCount_ = 0L; + onChanged(); + return this; + } + + private java.util.List inputs_ = + java.util.Collections.emptyList(); + private void ensureInputsIsMutable() { + if (!((bitField0_ & 0x00000002) != 0)) { + inputs_ = new java.util.ArrayList(inputs_); + bitField0_ |= 0x00000002; + } + } + + private com.google.protobuf.RepeatedFieldBuilderV3< + org.tensorflow.proto.data.model.ModelProto.Node, org.tensorflow.proto.data.model.ModelProto.Node.Builder, org.tensorflow.proto.data.model.ModelProto.NodeOrBuilder> inputsBuilder_; + + /** + *
        +       * Inputs of this node.
        +       * 
        + * + * repeated .tensorflow.data.model.ModelProto.Node inputs = 14; + */ + public java.util.List getInputsList() { + if (inputsBuilder_ == null) { + return java.util.Collections.unmodifiableList(inputs_); + } else { + return inputsBuilder_.getMessageList(); + } + } + /** + *
        +       * Inputs of this node.
        +       * 
        + * + * repeated .tensorflow.data.model.ModelProto.Node inputs = 14; + */ + public int getInputsCount() { + if (inputsBuilder_ == null) { + return inputs_.size(); + } else { + return inputsBuilder_.getCount(); + } + } + /** + *
        +       * Inputs of this node.
        +       * 
        + * + * repeated .tensorflow.data.model.ModelProto.Node inputs = 14; + */ + public org.tensorflow.proto.data.model.ModelProto.Node getInputs(int index) { + if (inputsBuilder_ == null) { + return inputs_.get(index); + } else { + return inputsBuilder_.getMessage(index); + } + } + /** + *
        +       * Inputs of this node.
        +       * 
        + * + * repeated .tensorflow.data.model.ModelProto.Node inputs = 14; + */ + public Builder setInputs( + int index, org.tensorflow.proto.data.model.ModelProto.Node value) { + if (inputsBuilder_ == null) { + if (value == null) { + throw new NullPointerException(); + } + ensureInputsIsMutable(); + inputs_.set(index, value); + onChanged(); + } else { + inputsBuilder_.setMessage(index, value); + } + return this; + } + /** + *
        +       * Inputs of this node.
        +       * 
        + * + * repeated .tensorflow.data.model.ModelProto.Node inputs = 14; + */ + public Builder setInputs( + int index, org.tensorflow.proto.data.model.ModelProto.Node.Builder builderForValue) { + if (inputsBuilder_ == null) { + ensureInputsIsMutable(); + inputs_.set(index, builderForValue.build()); + onChanged(); + } else { + inputsBuilder_.setMessage(index, builderForValue.build()); + } + return this; + } + /** + *
        +       * Inputs of this node.
        +       * 
        + * + * repeated .tensorflow.data.model.ModelProto.Node inputs = 14; + */ + public Builder addInputs(org.tensorflow.proto.data.model.ModelProto.Node value) { + if (inputsBuilder_ == null) { + if (value == null) { + throw new NullPointerException(); + } + ensureInputsIsMutable(); + inputs_.add(value); + onChanged(); + } else { + inputsBuilder_.addMessage(value); + } + return this; + } + /** + *
        +       * Inputs of this node.
        +       * 
        + * + * repeated .tensorflow.data.model.ModelProto.Node inputs = 14; + */ + public Builder addInputs( + int index, org.tensorflow.proto.data.model.ModelProto.Node value) { + if (inputsBuilder_ == null) { + if (value == null) { + throw new NullPointerException(); + } + ensureInputsIsMutable(); + inputs_.add(index, value); + onChanged(); + } else { + inputsBuilder_.addMessage(index, value); + } + return this; + } + /** + *
        +       * Inputs of this node.
        +       * 
        + * + * repeated .tensorflow.data.model.ModelProto.Node inputs = 14; + */ + public Builder addInputs( + org.tensorflow.proto.data.model.ModelProto.Node.Builder builderForValue) { + if (inputsBuilder_ == null) { + ensureInputsIsMutable(); + inputs_.add(builderForValue.build()); + onChanged(); + } else { + inputsBuilder_.addMessage(builderForValue.build()); + } + return this; + } + /** + *
        +       * Inputs of this node.
        +       * 
        + * + * repeated .tensorflow.data.model.ModelProto.Node inputs = 14; + */ + public Builder addInputs( + int index, org.tensorflow.proto.data.model.ModelProto.Node.Builder builderForValue) { + if (inputsBuilder_ == null) { + ensureInputsIsMutable(); + inputs_.add(index, builderForValue.build()); + onChanged(); + } else { + inputsBuilder_.addMessage(index, builderForValue.build()); + } + return this; + } + /** + *
        +       * Inputs of this node.
        +       * 
        + * + * repeated .tensorflow.data.model.ModelProto.Node inputs = 14; + */ + public Builder addAllInputs( + java.lang.Iterable values) { + if (inputsBuilder_ == null) { + ensureInputsIsMutable(); + com.google.protobuf.AbstractMessageLite.Builder.addAll( + values, inputs_); + onChanged(); + } else { + inputsBuilder_.addAllMessages(values); + } + return this; + } + /** + *
        +       * Inputs of this node.
        +       * 
        + * + * repeated .tensorflow.data.model.ModelProto.Node inputs = 14; + */ + public Builder clearInputs() { + if (inputsBuilder_ == null) { + inputs_ = java.util.Collections.emptyList(); + bitField0_ = (bitField0_ & ~0x00000002); + onChanged(); + } else { + inputsBuilder_.clear(); + } + return this; + } + /** + *
        +       * Inputs of this node.
        +       * 
        + * + * repeated .tensorflow.data.model.ModelProto.Node inputs = 14; + */ + public Builder removeInputs(int index) { + if (inputsBuilder_ == null) { + ensureInputsIsMutable(); + inputs_.remove(index); + onChanged(); + } else { + inputsBuilder_.remove(index); + } + return this; + } + /** + *
        +       * Inputs of this node.
        +       * 
        + * + * repeated .tensorflow.data.model.ModelProto.Node inputs = 14; + */ + public org.tensorflow.proto.data.model.ModelProto.Node.Builder getInputsBuilder( + int index) { + return getInputsFieldBuilder().getBuilder(index); + } + /** + *
        +       * Inputs of this node.
        +       * 
        + * + * repeated .tensorflow.data.model.ModelProto.Node inputs = 14; + */ + public org.tensorflow.proto.data.model.ModelProto.NodeOrBuilder getInputsOrBuilder( + int index) { + if (inputsBuilder_ == null) { + return inputs_.get(index); } else { + return inputsBuilder_.getMessageOrBuilder(index); + } + } + /** + *
        +       * Inputs of this node.
        +       * 
        + * + * repeated .tensorflow.data.model.ModelProto.Node inputs = 14; + */ + public java.util.List + getInputsOrBuilderList() { + if (inputsBuilder_ != null) { + return inputsBuilder_.getMessageOrBuilderList(); + } else { + return java.util.Collections.unmodifiableList(inputs_); + } + } + /** + *
        +       * Inputs of this node.
        +       * 
        + * + * repeated .tensorflow.data.model.ModelProto.Node inputs = 14; + */ + public org.tensorflow.proto.data.model.ModelProto.Node.Builder addInputsBuilder() { + return getInputsFieldBuilder().addBuilder( + org.tensorflow.proto.data.model.ModelProto.Node.getDefaultInstance()); + } + /** + *
        +       * Inputs of this node.
        +       * 
        + * + * repeated .tensorflow.data.model.ModelProto.Node inputs = 14; + */ + public org.tensorflow.proto.data.model.ModelProto.Node.Builder addInputsBuilder( + int index) { + return getInputsFieldBuilder().addBuilder( + index, org.tensorflow.proto.data.model.ModelProto.Node.getDefaultInstance()); + } + /** + *
        +       * Inputs of this node.
        +       * 
        + * + * repeated .tensorflow.data.model.ModelProto.Node inputs = 14; + */ + public java.util.List + getInputsBuilderList() { + return getInputsFieldBuilder().getBuilderList(); + } + private com.google.protobuf.RepeatedFieldBuilderV3< + org.tensorflow.proto.data.model.ModelProto.Node, org.tensorflow.proto.data.model.ModelProto.Node.Builder, org.tensorflow.proto.data.model.ModelProto.NodeOrBuilder> + getInputsFieldBuilder() { + if (inputsBuilder_ == null) { + inputsBuilder_ = new com.google.protobuf.RepeatedFieldBuilderV3< + org.tensorflow.proto.data.model.ModelProto.Node, org.tensorflow.proto.data.model.ModelProto.Node.Builder, org.tensorflow.proto.data.model.ModelProto.NodeOrBuilder>( + inputs_, + ((bitField0_ & 0x00000002) != 0), + getParentForChildren(), + isClean()); + inputs_ = null; + } + return inputsBuilder_; + } + + private int nodeClass_ = 0; + /** + *
        +       * Class of this node.
        +       * 
        + * + * .tensorflow.data.model.NodeClass node_class = 15; + */ + public int getNodeClassValue() { + return nodeClass_; + } + /** + *
        +       * Class of this node.
        +       * 
        + * + * .tensorflow.data.model.NodeClass node_class = 15; + */ + public Builder setNodeClassValue(int value) { + nodeClass_ = value; + onChanged(); + return this; + } + /** + *
        +       * Class of this node.
        +       * 
        + * + * .tensorflow.data.model.NodeClass node_class = 15; + */ + public org.tensorflow.proto.data.model.NodeClass getNodeClass() { + @SuppressWarnings("deprecation") + org.tensorflow.proto.data.model.NodeClass result = org.tensorflow.proto.data.model.NodeClass.valueOf(nodeClass_); + return result == null ? org.tensorflow.proto.data.model.NodeClass.UNRECOGNIZED : result; + } + /** + *
        +       * Class of this node.
        +       * 
        + * + * .tensorflow.data.model.NodeClass node_class = 15; + */ + public Builder setNodeClass(org.tensorflow.proto.data.model.NodeClass value) { + if (value == null) { + throw new NullPointerException(); + } + + nodeClass_ = value.getNumber(); + onChanged(); + return this; + } + /** + *
        +       * Class of this node.
        +       * 
        + * + * .tensorflow.data.model.NodeClass node_class = 15; + */ + public Builder clearNodeClass() { + + nodeClass_ = 0; + onChanged(); + return this; + } + + private double ratio_ ; + /** + *
        +       * Ratio of input to output elements. This is only used by KNOWN_RATIO and
        +       * ASYNC_KNOWN_RATIO nodes.
        +       * 
        + * + * double ratio = 16; + */ + public double getRatio() { + return ratio_; + } + /** + *
        +       * Ratio of input to output elements. This is only used by KNOWN_RATIO and
        +       * ASYNC_KNOWN_RATIO nodes.
        +       * 
        + * + * double ratio = 16; + */ + public Builder setRatio(double value) { + + ratio_ = value; + onChanged(); + return this; + } + /** + *
        +       * Ratio of input to output elements. This is only used by KNOWN_RATIO and
        +       * ASYNC_KNOWN_RATIO nodes.
        +       * 
        + * + * double ratio = 16; + */ + public Builder clearRatio() { + + ratio_ = 0D; + onChanged(); + return this; + } + + private double memoryRatio_ ; + /** + *
        +       * Ratio identifies how many parallelism calls are introduced by one
        +       * buffered element. This is only used by ASYNC_KNOWN_RATIO nodes.
        +       * 
        + * + * double memory_ratio = 17; + */ + public double getMemoryRatio() { + return memoryRatio_; + } + /** + *
        +       * Ratio identifies how many parallelism calls are introduced by one
        +       * buffered element. This is only used by ASYNC_KNOWN_RATIO nodes.
        +       * 
        + * + * double memory_ratio = 17; + */ + public Builder setMemoryRatio(double value) { + + memoryRatio_ = value; + onChanged(); + return this; + } + /** + *
        +       * Ratio identifies how many parallelism calls are introduced by one
        +       * buffered element. This is only used by ASYNC_KNOWN_RATIO nodes.
        +       * 
        + * + * double memory_ratio = 17; + */ + public Builder clearMemoryRatio() { + + memoryRatio_ = 0D; + onChanged(); + return this; + } + @java.lang.Override + public final Builder setUnknownFields( + final com.google.protobuf.UnknownFieldSet unknownFields) { + return super.setUnknownFields(unknownFields); + } + + @java.lang.Override + public final Builder mergeUnknownFields( + final com.google.protobuf.UnknownFieldSet unknownFields) { + return super.mergeUnknownFields(unknownFields); + } + + + // @@protoc_insertion_point(builder_scope:tensorflow.data.model.ModelProto.Node) + } + + // @@protoc_insertion_point(class_scope:tensorflow.data.model.ModelProto.Node) + private static final org.tensorflow.proto.data.model.ModelProto.Node DEFAULT_INSTANCE; + static { + DEFAULT_INSTANCE = new org.tensorflow.proto.data.model.ModelProto.Node(); + } + + public static org.tensorflow.proto.data.model.ModelProto.Node getDefaultInstance() { + return DEFAULT_INSTANCE; + } + + private static final com.google.protobuf.Parser + PARSER = new com.google.protobuf.AbstractParser() { + @java.lang.Override + public Node parsePartialFrom( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return new Node(input, extensionRegistry); + } + }; + + public static com.google.protobuf.Parser parser() { + return PARSER; + } + + @java.lang.Override + public com.google.protobuf.Parser getParserForType() { + return PARSER; + } + + @java.lang.Override + public org.tensorflow.proto.data.model.ModelProto.Node getDefaultInstanceForType() { + return DEFAULT_INSTANCE; + } + + } + + public interface OptimizationParamsOrBuilder extends + // @@protoc_insertion_point(interface_extends:tensorflow.data.model.ModelProto.OptimizationParams) + com.google.protobuf.MessageOrBuilder { + + /** + *
        +     * Algorithm used for autotuning optimization.
        +     * 
        + * + * .tensorflow.data.model.AutotuneAlgorithm algorithm = 1; + */ + int getAlgorithmValue(); + /** + *
        +     * Algorithm used for autotuning optimization.
        +     * 
        + * + * .tensorflow.data.model.AutotuneAlgorithm algorithm = 1; + */ + org.tensorflow.proto.data.model.AutotuneAlgorithm getAlgorithm(); + + /** + *
        +     * Number of available logical threads.
        +     * 
        + * + * int64 cpu_budget = 2; + */ + long getCpuBudget(); + + /** + *
        +     * Amount of available memory in bytes.
        +     * 
        + * + * int64 ram_budget = 3; + */ + long getRamBudget(); + + /** + *
        +     * Time between two consecutive `GetNext` calls to the iterator represented
        +     * by the output node.
        +     * 
        + * + * double model_input_time = 4; + */ + double getModelInputTime(); + } + /** + *
        +   * Contains parameters of the model autotuning optimization.
        +   * 
        + * + * Protobuf type {@code tensorflow.data.model.ModelProto.OptimizationParams} + */ + public static final class OptimizationParams extends + com.google.protobuf.GeneratedMessageV3 implements + // @@protoc_insertion_point(message_implements:tensorflow.data.model.ModelProto.OptimizationParams) + OptimizationParamsOrBuilder { + private static final long serialVersionUID = 0L; + // Use OptimizationParams.newBuilder() to construct. + private OptimizationParams(com.google.protobuf.GeneratedMessageV3.Builder builder) { + super(builder); + } + private OptimizationParams() { + algorithm_ = 0; + } + + @java.lang.Override + @SuppressWarnings({"unused"}) + protected java.lang.Object newInstance( + UnusedPrivateParameter unused) { + return new OptimizationParams(); + } + + @java.lang.Override + public final com.google.protobuf.UnknownFieldSet + getUnknownFields() { + return this.unknownFields; + } + private OptimizationParams( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + this(); + if (extensionRegistry == null) { + throw new java.lang.NullPointerException(); + } + com.google.protobuf.UnknownFieldSet.Builder unknownFields = + com.google.protobuf.UnknownFieldSet.newBuilder(); + try { + boolean done = false; + while (!done) { + int tag = input.readTag(); + switch (tag) { + case 0: + done = true; + break; + case 8: { + int rawValue = input.readEnum(); + + algorithm_ = rawValue; + break; + } + case 16: { + + cpuBudget_ = input.readInt64(); + break; + } + case 24: { + + ramBudget_ = input.readInt64(); + break; + } + case 33: { + + modelInputTime_ = input.readDouble(); + break; + } + default: { + if (!parseUnknownField( + input, unknownFields, extensionRegistry, tag)) { + done = true; + } + break; + } + } + } + } catch (com.google.protobuf.InvalidProtocolBufferException e) { + throw e.setUnfinishedMessage(this); + } catch (java.io.IOException e) { + throw new com.google.protobuf.InvalidProtocolBufferException( + e).setUnfinishedMessage(this); + } finally { + this.unknownFields = unknownFields.build(); + makeExtensionsImmutable(); + } + } + public static final com.google.protobuf.Descriptors.Descriptor + getDescriptor() { + return org.tensorflow.proto.data.model.ModelProtos.internal_static_tensorflow_data_model_ModelProto_OptimizationParams_descriptor; + } + + @java.lang.Override + protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable + internalGetFieldAccessorTable() { + return org.tensorflow.proto.data.model.ModelProtos.internal_static_tensorflow_data_model_ModelProto_OptimizationParams_fieldAccessorTable + .ensureFieldAccessorsInitialized( + org.tensorflow.proto.data.model.ModelProto.OptimizationParams.class, org.tensorflow.proto.data.model.ModelProto.OptimizationParams.Builder.class); + } + + public static final int ALGORITHM_FIELD_NUMBER = 1; + private int algorithm_; + /** + *
        +     * Algorithm used for autotuning optimization.
        +     * 
        + * + * .tensorflow.data.model.AutotuneAlgorithm algorithm = 1; + */ + public int getAlgorithmValue() { + return algorithm_; + } + /** + *
        +     * Algorithm used for autotuning optimization.
        +     * 
        + * + * .tensorflow.data.model.AutotuneAlgorithm algorithm = 1; + */ + public org.tensorflow.proto.data.model.AutotuneAlgorithm getAlgorithm() { + @SuppressWarnings("deprecation") + org.tensorflow.proto.data.model.AutotuneAlgorithm result = org.tensorflow.proto.data.model.AutotuneAlgorithm.valueOf(algorithm_); + return result == null ? org.tensorflow.proto.data.model.AutotuneAlgorithm.UNRECOGNIZED : result; + } + + public static final int CPU_BUDGET_FIELD_NUMBER = 2; + private long cpuBudget_; + /** + *
        +     * Number of available logical threads.
        +     * 
        + * + * int64 cpu_budget = 2; + */ + public long getCpuBudget() { + return cpuBudget_; + } + + public static final int RAM_BUDGET_FIELD_NUMBER = 3; + private long ramBudget_; + /** + *
        +     * Amount of available memory in bytes.
        +     * 
        + * + * int64 ram_budget = 3; + */ + public long getRamBudget() { + return ramBudget_; + } + + public static final int MODEL_INPUT_TIME_FIELD_NUMBER = 4; + private double modelInputTime_; + /** + *
        +     * Time between two consecutive `GetNext` calls to the iterator represented
        +     * by the output node.
        +     * 
        + * + * double model_input_time = 4; + */ + public double getModelInputTime() { + return modelInputTime_; + } + + private byte memoizedIsInitialized = -1; + @java.lang.Override + public final boolean isInitialized() { + byte isInitialized = memoizedIsInitialized; + if (isInitialized == 1) return true; + if (isInitialized == 0) return false; + + memoizedIsInitialized = 1; + return true; + } + + @java.lang.Override + public void writeTo(com.google.protobuf.CodedOutputStream output) + throws java.io.IOException { + if (algorithm_ != org.tensorflow.proto.data.model.AutotuneAlgorithm.HILL_CLIMB.getNumber()) { + output.writeEnum(1, algorithm_); + } + if (cpuBudget_ != 0L) { + output.writeInt64(2, cpuBudget_); + } + if (ramBudget_ != 0L) { + output.writeInt64(3, ramBudget_); + } + if (modelInputTime_ != 0D) { + output.writeDouble(4, modelInputTime_); + } + unknownFields.writeTo(output); + } + + @java.lang.Override + public int getSerializedSize() { + int size = memoizedSize; + if (size != -1) return size; + + size = 0; + if (algorithm_ != org.tensorflow.proto.data.model.AutotuneAlgorithm.HILL_CLIMB.getNumber()) { + size += com.google.protobuf.CodedOutputStream + .computeEnumSize(1, algorithm_); + } + if (cpuBudget_ != 0L) { + size += com.google.protobuf.CodedOutputStream + .computeInt64Size(2, cpuBudget_); + } + if (ramBudget_ != 0L) { + size += com.google.protobuf.CodedOutputStream + .computeInt64Size(3, ramBudget_); + } + if (modelInputTime_ != 0D) { + size += com.google.protobuf.CodedOutputStream + .computeDoubleSize(4, modelInputTime_); + } + size += unknownFields.getSerializedSize(); + memoizedSize = size; + return size; + } + + @java.lang.Override + public boolean equals(final java.lang.Object obj) { + if (obj == this) { + return true; + } + if (!(obj instanceof org.tensorflow.proto.data.model.ModelProto.OptimizationParams)) { + return super.equals(obj); + } + org.tensorflow.proto.data.model.ModelProto.OptimizationParams other = (org.tensorflow.proto.data.model.ModelProto.OptimizationParams) obj; + + if (algorithm_ != other.algorithm_) return false; + if (getCpuBudget() + != other.getCpuBudget()) return false; + if (getRamBudget() + != other.getRamBudget()) return false; + if (java.lang.Double.doubleToLongBits(getModelInputTime()) + != java.lang.Double.doubleToLongBits( + other.getModelInputTime())) return false; + if (!unknownFields.equals(other.unknownFields)) return false; + return true; + } + + @java.lang.Override + public int hashCode() { + if (memoizedHashCode != 0) { + return memoizedHashCode; + } + int hash = 41; + hash = (19 * hash) + getDescriptor().hashCode(); + hash = (37 * hash) + ALGORITHM_FIELD_NUMBER; + hash = (53 * hash) + algorithm_; + hash = (37 * hash) + CPU_BUDGET_FIELD_NUMBER; + hash = (53 * hash) + com.google.protobuf.Internal.hashLong( + getCpuBudget()); + hash = (37 * hash) + RAM_BUDGET_FIELD_NUMBER; + hash = (53 * hash) + com.google.protobuf.Internal.hashLong( + getRamBudget()); + hash = (37 * hash) + MODEL_INPUT_TIME_FIELD_NUMBER; + hash = (53 * hash) + com.google.protobuf.Internal.hashLong( + java.lang.Double.doubleToLongBits(getModelInputTime())); + hash = (29 * hash) + unknownFields.hashCode(); + memoizedHashCode = hash; + return hash; + } + + public static org.tensorflow.proto.data.model.ModelProto.OptimizationParams parseFrom( + java.nio.ByteBuffer data) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data); + } + public static org.tensorflow.proto.data.model.ModelProto.OptimizationParams parseFrom( + java.nio.ByteBuffer data, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data, extensionRegistry); + } + public static org.tensorflow.proto.data.model.ModelProto.OptimizationParams parseFrom( + com.google.protobuf.ByteString data) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data); + } + public static org.tensorflow.proto.data.model.ModelProto.OptimizationParams parseFrom( + com.google.protobuf.ByteString data, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data, extensionRegistry); + } + public static org.tensorflow.proto.data.model.ModelProto.OptimizationParams parseFrom(byte[] data) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data); + } + public static org.tensorflow.proto.data.model.ModelProto.OptimizationParams parseFrom( + byte[] data, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data, extensionRegistry); + } + public static org.tensorflow.proto.data.model.ModelProto.OptimizationParams parseFrom(java.io.InputStream input) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input); + } + public static org.tensorflow.proto.data.model.ModelProto.OptimizationParams parseFrom( + java.io.InputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input, extensionRegistry); + } + public static org.tensorflow.proto.data.model.ModelProto.OptimizationParams parseDelimitedFrom(java.io.InputStream input) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseDelimitedWithIOException(PARSER, input); + } + public static org.tensorflow.proto.data.model.ModelProto.OptimizationParams parseDelimitedFrom( + java.io.InputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseDelimitedWithIOException(PARSER, input, extensionRegistry); + } + public static org.tensorflow.proto.data.model.ModelProto.OptimizationParams parseFrom( + com.google.protobuf.CodedInputStream input) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input); + } + public static org.tensorflow.proto.data.model.ModelProto.OptimizationParams parseFrom( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input, extensionRegistry); + } + + @java.lang.Override + public Builder newBuilderForType() { return newBuilder(); } + public static Builder newBuilder() { + return DEFAULT_INSTANCE.toBuilder(); + } + public static Builder newBuilder(org.tensorflow.proto.data.model.ModelProto.OptimizationParams prototype) { + return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); + } + @java.lang.Override + public Builder toBuilder() { + return this == DEFAULT_INSTANCE + ? new Builder() : new Builder().mergeFrom(this); + } + + @java.lang.Override + protected Builder newBuilderForType( + com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { + Builder builder = new Builder(parent); + return builder; + } + /** + *
        +     * Contains parameters of the model autotuning optimization.
        +     * 
        + * + * Protobuf type {@code tensorflow.data.model.ModelProto.OptimizationParams} + */ + public static final class Builder extends + com.google.protobuf.GeneratedMessageV3.Builder implements + // @@protoc_insertion_point(builder_implements:tensorflow.data.model.ModelProto.OptimizationParams) + org.tensorflow.proto.data.model.ModelProto.OptimizationParamsOrBuilder { + public static final com.google.protobuf.Descriptors.Descriptor + getDescriptor() { + return org.tensorflow.proto.data.model.ModelProtos.internal_static_tensorflow_data_model_ModelProto_OptimizationParams_descriptor; + } + + @java.lang.Override + protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable + internalGetFieldAccessorTable() { + return org.tensorflow.proto.data.model.ModelProtos.internal_static_tensorflow_data_model_ModelProto_OptimizationParams_fieldAccessorTable + .ensureFieldAccessorsInitialized( + org.tensorflow.proto.data.model.ModelProto.OptimizationParams.class, org.tensorflow.proto.data.model.ModelProto.OptimizationParams.Builder.class); + } + + // Construct using org.tensorflow.proto.data.model.ModelProto.OptimizationParams.newBuilder() + private Builder() { + maybeForceBuilderInitialization(); + } + + private Builder( + com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { + super(parent); + maybeForceBuilderInitialization(); + } + private void maybeForceBuilderInitialization() { + if (com.google.protobuf.GeneratedMessageV3 + .alwaysUseFieldBuilders) { + } + } + @java.lang.Override + public Builder clear() { + super.clear(); + algorithm_ = 0; + + cpuBudget_ = 0L; + + ramBudget_ = 0L; + + modelInputTime_ = 0D; + + return this; + } + + @java.lang.Override + public com.google.protobuf.Descriptors.Descriptor + getDescriptorForType() { + return org.tensorflow.proto.data.model.ModelProtos.internal_static_tensorflow_data_model_ModelProto_OptimizationParams_descriptor; + } + + @java.lang.Override + public org.tensorflow.proto.data.model.ModelProto.OptimizationParams getDefaultInstanceForType() { + return org.tensorflow.proto.data.model.ModelProto.OptimizationParams.getDefaultInstance(); + } + + @java.lang.Override + public org.tensorflow.proto.data.model.ModelProto.OptimizationParams build() { + org.tensorflow.proto.data.model.ModelProto.OptimizationParams result = buildPartial(); + if (!result.isInitialized()) { + throw newUninitializedMessageException(result); + } + return result; + } + + @java.lang.Override + public org.tensorflow.proto.data.model.ModelProto.OptimizationParams buildPartial() { + org.tensorflow.proto.data.model.ModelProto.OptimizationParams result = new org.tensorflow.proto.data.model.ModelProto.OptimizationParams(this); + result.algorithm_ = algorithm_; + result.cpuBudget_ = cpuBudget_; + result.ramBudget_ = ramBudget_; + result.modelInputTime_ = modelInputTime_; + onBuilt(); + return result; + } + + @java.lang.Override + public Builder clone() { + return super.clone(); + } + @java.lang.Override + public Builder setField( + com.google.protobuf.Descriptors.FieldDescriptor field, + java.lang.Object value) { + return super.setField(field, value); + } + @java.lang.Override + public Builder clearField( + com.google.protobuf.Descriptors.FieldDescriptor field) { + return super.clearField(field); + } + @java.lang.Override + public Builder clearOneof( + com.google.protobuf.Descriptors.OneofDescriptor oneof) { + return super.clearOneof(oneof); + } + @java.lang.Override + public Builder setRepeatedField( + com.google.protobuf.Descriptors.FieldDescriptor field, + int index, java.lang.Object value) { + return super.setRepeatedField(field, index, value); + } + @java.lang.Override + public Builder addRepeatedField( + com.google.protobuf.Descriptors.FieldDescriptor field, + java.lang.Object value) { + return super.addRepeatedField(field, value); + } + @java.lang.Override + public Builder mergeFrom(com.google.protobuf.Message other) { + if (other instanceof org.tensorflow.proto.data.model.ModelProto.OptimizationParams) { + return mergeFrom((org.tensorflow.proto.data.model.ModelProto.OptimizationParams)other); + } else { + super.mergeFrom(other); + return this; + } + } + + public Builder mergeFrom(org.tensorflow.proto.data.model.ModelProto.OptimizationParams other) { + if (other == org.tensorflow.proto.data.model.ModelProto.OptimizationParams.getDefaultInstance()) return this; + if (other.algorithm_ != 0) { + setAlgorithmValue(other.getAlgorithmValue()); + } + if (other.getCpuBudget() != 0L) { + setCpuBudget(other.getCpuBudget()); + } + if (other.getRamBudget() != 0L) { + setRamBudget(other.getRamBudget()); + } + if (other.getModelInputTime() != 0D) { + setModelInputTime(other.getModelInputTime()); + } + this.mergeUnknownFields(other.unknownFields); + onChanged(); + return this; + } + + @java.lang.Override + public final boolean isInitialized() { + return true; + } + + @java.lang.Override + public Builder mergeFrom( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + org.tensorflow.proto.data.model.ModelProto.OptimizationParams parsedMessage = null; + try { + parsedMessage = PARSER.parsePartialFrom(input, extensionRegistry); + } catch (com.google.protobuf.InvalidProtocolBufferException e) { + parsedMessage = (org.tensorflow.proto.data.model.ModelProto.OptimizationParams) e.getUnfinishedMessage(); + throw e.unwrapIOException(); + } finally { + if (parsedMessage != null) { + mergeFrom(parsedMessage); + } + } + return this; + } + + private int algorithm_ = 0; + /** + *
        +       * Algorithm used for autotuning optimization.
        +       * 
        + * + * .tensorflow.data.model.AutotuneAlgorithm algorithm = 1; + */ + public int getAlgorithmValue() { + return algorithm_; + } + /** + *
        +       * Algorithm used for autotuning optimization.
        +       * 
        + * + * .tensorflow.data.model.AutotuneAlgorithm algorithm = 1; + */ + public Builder setAlgorithmValue(int value) { + algorithm_ = value; + onChanged(); + return this; + } + /** + *
        +       * Algorithm used for autotuning optimization.
        +       * 
        + * + * .tensorflow.data.model.AutotuneAlgorithm algorithm = 1; + */ + public org.tensorflow.proto.data.model.AutotuneAlgorithm getAlgorithm() { + @SuppressWarnings("deprecation") + org.tensorflow.proto.data.model.AutotuneAlgorithm result = org.tensorflow.proto.data.model.AutotuneAlgorithm.valueOf(algorithm_); + return result == null ? org.tensorflow.proto.data.model.AutotuneAlgorithm.UNRECOGNIZED : result; + } + /** + *
        +       * Algorithm used for autotuning optimization.
        +       * 
        + * + * .tensorflow.data.model.AutotuneAlgorithm algorithm = 1; + */ + public Builder setAlgorithm(org.tensorflow.proto.data.model.AutotuneAlgorithm value) { + if (value == null) { + throw new NullPointerException(); + } + + algorithm_ = value.getNumber(); + onChanged(); + return this; + } + /** + *
        +       * Algorithm used for autotuning optimization.
        +       * 
        + * + * .tensorflow.data.model.AutotuneAlgorithm algorithm = 1; + */ + public Builder clearAlgorithm() { + + algorithm_ = 0; + onChanged(); + return this; + } + + private long cpuBudget_ ; + /** + *
        +       * Number of available logical threads.
        +       * 
        + * + * int64 cpu_budget = 2; + */ + public long getCpuBudget() { + return cpuBudget_; + } + /** + *
        +       * Number of available logical threads.
        +       * 
        + * + * int64 cpu_budget = 2; + */ + public Builder setCpuBudget(long value) { + + cpuBudget_ = value; + onChanged(); + return this; + } + /** + *
        +       * Number of available logical threads.
        +       * 
        + * + * int64 cpu_budget = 2; + */ + public Builder clearCpuBudget() { + + cpuBudget_ = 0L; + onChanged(); + return this; + } + + private long ramBudget_ ; + /** + *
        +       * Amount of available memory in bytes.
        +       * 
        + * + * int64 ram_budget = 3; + */ + public long getRamBudget() { + return ramBudget_; + } + /** + *
        +       * Amount of available memory in bytes.
        +       * 
        + * + * int64 ram_budget = 3; + */ + public Builder setRamBudget(long value) { + + ramBudget_ = value; + onChanged(); + return this; + } + /** + *
        +       * Amount of available memory in bytes.
        +       * 
        + * + * int64 ram_budget = 3; + */ + public Builder clearRamBudget() { + + ramBudget_ = 0L; + onChanged(); + return this; + } + + private double modelInputTime_ ; + /** + *
        +       * Time between two consecutive `GetNext` calls to the iterator represented
        +       * by the output node.
        +       * 
        + * + * double model_input_time = 4; + */ + public double getModelInputTime() { + return modelInputTime_; + } + /** + *
        +       * Time between two consecutive `GetNext` calls to the iterator represented
        +       * by the output node.
        +       * 
        + * + * double model_input_time = 4; + */ + public Builder setModelInputTime(double value) { + + modelInputTime_ = value; + onChanged(); + return this; + } + /** + *
        +       * Time between two consecutive `GetNext` calls to the iterator represented
        +       * by the output node.
        +       * 
        + * + * double model_input_time = 4; + */ + public Builder clearModelInputTime() { + + modelInputTime_ = 0D; + onChanged(); + return this; + } + @java.lang.Override + public final Builder setUnknownFields( + final com.google.protobuf.UnknownFieldSet unknownFields) { + return super.setUnknownFields(unknownFields); + } + + @java.lang.Override + public final Builder mergeUnknownFields( + final com.google.protobuf.UnknownFieldSet unknownFields) { + return super.mergeUnknownFields(unknownFields); + } + + + // @@protoc_insertion_point(builder_scope:tensorflow.data.model.ModelProto.OptimizationParams) + } + + // @@protoc_insertion_point(class_scope:tensorflow.data.model.ModelProto.OptimizationParams) + private static final org.tensorflow.proto.data.model.ModelProto.OptimizationParams DEFAULT_INSTANCE; + static { + DEFAULT_INSTANCE = new org.tensorflow.proto.data.model.ModelProto.OptimizationParams(); + } + + public static org.tensorflow.proto.data.model.ModelProto.OptimizationParams getDefaultInstance() { + return DEFAULT_INSTANCE; + } + + private static final com.google.protobuf.Parser + PARSER = new com.google.protobuf.AbstractParser() { + @java.lang.Override + public OptimizationParams parsePartialFrom( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return new OptimizationParams(input, extensionRegistry); + } + }; + + public static com.google.protobuf.Parser parser() { + return PARSER; + } + + @java.lang.Override + public com.google.protobuf.Parser getParserForType() { + return PARSER; + } + + @java.lang.Override + public org.tensorflow.proto.data.model.ModelProto.OptimizationParams getDefaultInstanceForType() { + return DEFAULT_INSTANCE; + } + + } + + public static final int OUTPUT_FIELD_NUMBER = 1; + private org.tensorflow.proto.data.model.ModelProto.Node output_; + /** + *
        +   * Output node of this model.
        +   * 
        + * + * .tensorflow.data.model.ModelProto.Node output = 1; + */ + public boolean hasOutput() { + return output_ != null; + } + /** + *
        +   * Output node of this model.
        +   * 
        + * + * .tensorflow.data.model.ModelProto.Node output = 1; + */ + public org.tensorflow.proto.data.model.ModelProto.Node getOutput() { + return output_ == null ? org.tensorflow.proto.data.model.ModelProto.Node.getDefaultInstance() : output_; + } + /** + *
        +   * Output node of this model.
        +   * 
        + * + * .tensorflow.data.model.ModelProto.Node output = 1; + */ + public org.tensorflow.proto.data.model.ModelProto.NodeOrBuilder getOutputOrBuilder() { + return getOutput(); + } + + public static final int ID_COUNTER_FIELD_NUMBER = 2; + private long idCounter_; + /** + *
        +   * Counter for node IDs of this model.
        +   * 
        + * + * int64 id_counter = 2; + */ + public long getIdCounter() { + return idCounter_; + } + + public static final int COLLECT_RESOURCE_USAGE_FIELD_NUMBER = 3; + private boolean collectResourceUsage_; + /** + *
        +   * Indicates whether the modeling framework should collect resource usage,
        +   * e.g. CPU, memory.
        +   * 
        + * + * bool collect_resource_usage = 3; + */ + public boolean getCollectResourceUsage() { + return collectResourceUsage_; + } + + public static final int OPTIMIZATION_PARAMS_FIELD_NUMBER = 4; + private org.tensorflow.proto.data.model.ModelProto.OptimizationParams optimizationParams_; + /** + * .tensorflow.data.model.ModelProto.OptimizationParams optimization_params = 4; + */ + public boolean hasOptimizationParams() { + return optimizationParams_ != null; + } + /** + * .tensorflow.data.model.ModelProto.OptimizationParams optimization_params = 4; + */ + public org.tensorflow.proto.data.model.ModelProto.OptimizationParams getOptimizationParams() { + return optimizationParams_ == null ? org.tensorflow.proto.data.model.ModelProto.OptimizationParams.getDefaultInstance() : optimizationParams_; + } + /** + * .tensorflow.data.model.ModelProto.OptimizationParams optimization_params = 4; + */ + public org.tensorflow.proto.data.model.ModelProto.OptimizationParamsOrBuilder getOptimizationParamsOrBuilder() { + return getOptimizationParams(); + } + + private byte memoizedIsInitialized = -1; + @java.lang.Override + public final boolean isInitialized() { + byte isInitialized = memoizedIsInitialized; + if (isInitialized == 1) return true; + if (isInitialized == 0) return false; + + memoizedIsInitialized = 1; + return true; + } + + @java.lang.Override + public void writeTo(com.google.protobuf.CodedOutputStream output) + throws java.io.IOException { + if (output_ != null) { + output.writeMessage(1, getOutput()); + } + if (idCounter_ != 0L) { + output.writeInt64(2, idCounter_); + } + if (collectResourceUsage_ != false) { + output.writeBool(3, collectResourceUsage_); + } + if (optimizationParams_ != null) { + output.writeMessage(4, getOptimizationParams()); + } + unknownFields.writeTo(output); + } + + @java.lang.Override + public int getSerializedSize() { + int size = memoizedSize; + if (size != -1) return size; + + size = 0; + if (output_ != null) { + size += com.google.protobuf.CodedOutputStream + .computeMessageSize(1, getOutput()); + } + if (idCounter_ != 0L) { + size += com.google.protobuf.CodedOutputStream + .computeInt64Size(2, idCounter_); + } + if (collectResourceUsage_ != false) { + size += com.google.protobuf.CodedOutputStream + .computeBoolSize(3, collectResourceUsage_); + } + if (optimizationParams_ != null) { + size += com.google.protobuf.CodedOutputStream + .computeMessageSize(4, getOptimizationParams()); + } + size += unknownFields.getSerializedSize(); + memoizedSize = size; + return size; + } + + @java.lang.Override + public boolean equals(final java.lang.Object obj) { + if (obj == this) { + return true; + } + if (!(obj instanceof org.tensorflow.proto.data.model.ModelProto)) { + return super.equals(obj); + } + org.tensorflow.proto.data.model.ModelProto other = (org.tensorflow.proto.data.model.ModelProto) obj; + + if (hasOutput() != other.hasOutput()) return false; + if (hasOutput()) { + if (!getOutput() + .equals(other.getOutput())) return false; + } + if (getIdCounter() + != other.getIdCounter()) return false; + if (getCollectResourceUsage() + != other.getCollectResourceUsage()) return false; + if (hasOptimizationParams() != other.hasOptimizationParams()) return false; + if (hasOptimizationParams()) { + if (!getOptimizationParams() + .equals(other.getOptimizationParams())) return false; + } + if (!unknownFields.equals(other.unknownFields)) return false; + return true; + } + + @java.lang.Override + public int hashCode() { + if (memoizedHashCode != 0) { + return memoizedHashCode; + } + int hash = 41; + hash = (19 * hash) + getDescriptor().hashCode(); + if (hasOutput()) { + hash = (37 * hash) + OUTPUT_FIELD_NUMBER; + hash = (53 * hash) + getOutput().hashCode(); + } + hash = (37 * hash) + ID_COUNTER_FIELD_NUMBER; + hash = (53 * hash) + com.google.protobuf.Internal.hashLong( + getIdCounter()); + hash = (37 * hash) + COLLECT_RESOURCE_USAGE_FIELD_NUMBER; + hash = (53 * hash) + com.google.protobuf.Internal.hashBoolean( + getCollectResourceUsage()); + if (hasOptimizationParams()) { + hash = (37 * hash) + OPTIMIZATION_PARAMS_FIELD_NUMBER; + hash = (53 * hash) + getOptimizationParams().hashCode(); + } + hash = (29 * hash) + unknownFields.hashCode(); + memoizedHashCode = hash; + return hash; + } + + public static org.tensorflow.proto.data.model.ModelProto parseFrom( + java.nio.ByteBuffer data) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data); + } + public static org.tensorflow.proto.data.model.ModelProto parseFrom( + java.nio.ByteBuffer data, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data, extensionRegistry); + } + public static org.tensorflow.proto.data.model.ModelProto parseFrom( + com.google.protobuf.ByteString data) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data); + } + public static org.tensorflow.proto.data.model.ModelProto parseFrom( + com.google.protobuf.ByteString data, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data, extensionRegistry); + } + public static org.tensorflow.proto.data.model.ModelProto parseFrom(byte[] data) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data); + } + public static org.tensorflow.proto.data.model.ModelProto parseFrom( + byte[] data, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data, extensionRegistry); + } + public static org.tensorflow.proto.data.model.ModelProto parseFrom(java.io.InputStream input) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input); + } + public static org.tensorflow.proto.data.model.ModelProto parseFrom( + java.io.InputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input, extensionRegistry); + } + public static org.tensorflow.proto.data.model.ModelProto parseDelimitedFrom(java.io.InputStream input) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseDelimitedWithIOException(PARSER, input); + } + public static org.tensorflow.proto.data.model.ModelProto parseDelimitedFrom( + java.io.InputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseDelimitedWithIOException(PARSER, input, extensionRegistry); + } + public static org.tensorflow.proto.data.model.ModelProto parseFrom( + com.google.protobuf.CodedInputStream input) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input); + } + public static org.tensorflow.proto.data.model.ModelProto parseFrom( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input, extensionRegistry); + } + + @java.lang.Override + public Builder newBuilderForType() { return newBuilder(); } + public static Builder newBuilder() { + return DEFAULT_INSTANCE.toBuilder(); + } + public static Builder newBuilder(org.tensorflow.proto.data.model.ModelProto prototype) { + return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); + } + @java.lang.Override + public Builder toBuilder() { + return this == DEFAULT_INSTANCE + ? new Builder() : new Builder().mergeFrom(this); + } + + @java.lang.Override + protected Builder newBuilderForType( + com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { + Builder builder = new Builder(parent); + return builder; + } + /** + *
        +   * Protocol buffer representing the data used by the autotuning modeling
        +   * framework.
        +   * 
        + * + * Protobuf type {@code tensorflow.data.model.ModelProto} + */ + public static final class Builder extends + com.google.protobuf.GeneratedMessageV3.Builder implements + // @@protoc_insertion_point(builder_implements:tensorflow.data.model.ModelProto) + org.tensorflow.proto.data.model.ModelProtoOrBuilder { + public static final com.google.protobuf.Descriptors.Descriptor + getDescriptor() { + return org.tensorflow.proto.data.model.ModelProtos.internal_static_tensorflow_data_model_ModelProto_descriptor; + } + + @java.lang.Override + protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable + internalGetFieldAccessorTable() { + return org.tensorflow.proto.data.model.ModelProtos.internal_static_tensorflow_data_model_ModelProto_fieldAccessorTable + .ensureFieldAccessorsInitialized( + org.tensorflow.proto.data.model.ModelProto.class, org.tensorflow.proto.data.model.ModelProto.Builder.class); + } + + // Construct using org.tensorflow.proto.data.model.ModelProto.newBuilder() + private Builder() { + maybeForceBuilderInitialization(); + } + + private Builder( + com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { + super(parent); + maybeForceBuilderInitialization(); + } + private void maybeForceBuilderInitialization() { + if (com.google.protobuf.GeneratedMessageV3 + .alwaysUseFieldBuilders) { + } + } + @java.lang.Override + public Builder clear() { + super.clear(); + if (outputBuilder_ == null) { + output_ = null; + } else { + output_ = null; + outputBuilder_ = null; + } + idCounter_ = 0L; + + collectResourceUsage_ = false; + + if (optimizationParamsBuilder_ == null) { + optimizationParams_ = null; + } else { + optimizationParams_ = null; + optimizationParamsBuilder_ = null; + } + return this; + } + + @java.lang.Override + public com.google.protobuf.Descriptors.Descriptor + getDescriptorForType() { + return org.tensorflow.proto.data.model.ModelProtos.internal_static_tensorflow_data_model_ModelProto_descriptor; + } + + @java.lang.Override + public org.tensorflow.proto.data.model.ModelProto getDefaultInstanceForType() { + return org.tensorflow.proto.data.model.ModelProto.getDefaultInstance(); + } + + @java.lang.Override + public org.tensorflow.proto.data.model.ModelProto build() { + org.tensorflow.proto.data.model.ModelProto result = buildPartial(); + if (!result.isInitialized()) { + throw newUninitializedMessageException(result); + } + return result; + } + + @java.lang.Override + public org.tensorflow.proto.data.model.ModelProto buildPartial() { + org.tensorflow.proto.data.model.ModelProto result = new org.tensorflow.proto.data.model.ModelProto(this); + if (outputBuilder_ == null) { + result.output_ = output_; + } else { + result.output_ = outputBuilder_.build(); + } + result.idCounter_ = idCounter_; + result.collectResourceUsage_ = collectResourceUsage_; + if (optimizationParamsBuilder_ == null) { + result.optimizationParams_ = optimizationParams_; + } else { + result.optimizationParams_ = optimizationParamsBuilder_.build(); + } + onBuilt(); + return result; + } + + @java.lang.Override + public Builder clone() { + return super.clone(); + } + @java.lang.Override + public Builder setField( + com.google.protobuf.Descriptors.FieldDescriptor field, + java.lang.Object value) { + return super.setField(field, value); + } + @java.lang.Override + public Builder clearField( + com.google.protobuf.Descriptors.FieldDescriptor field) { + return super.clearField(field); + } + @java.lang.Override + public Builder clearOneof( + com.google.protobuf.Descriptors.OneofDescriptor oneof) { + return super.clearOneof(oneof); + } + @java.lang.Override + public Builder setRepeatedField( + com.google.protobuf.Descriptors.FieldDescriptor field, + int index, java.lang.Object value) { + return super.setRepeatedField(field, index, value); + } + @java.lang.Override + public Builder addRepeatedField( + com.google.protobuf.Descriptors.FieldDescriptor field, + java.lang.Object value) { + return super.addRepeatedField(field, value); + } + @java.lang.Override + public Builder mergeFrom(com.google.protobuf.Message other) { + if (other instanceof org.tensorflow.proto.data.model.ModelProto) { + return mergeFrom((org.tensorflow.proto.data.model.ModelProto)other); + } else { + super.mergeFrom(other); + return this; + } + } + + public Builder mergeFrom(org.tensorflow.proto.data.model.ModelProto other) { + if (other == org.tensorflow.proto.data.model.ModelProto.getDefaultInstance()) return this; + if (other.hasOutput()) { + mergeOutput(other.getOutput()); + } + if (other.getIdCounter() != 0L) { + setIdCounter(other.getIdCounter()); + } + if (other.getCollectResourceUsage() != false) { + setCollectResourceUsage(other.getCollectResourceUsage()); + } + if (other.hasOptimizationParams()) { + mergeOptimizationParams(other.getOptimizationParams()); + } + this.mergeUnknownFields(other.unknownFields); + onChanged(); + return this; + } + + @java.lang.Override + public final boolean isInitialized() { + return true; + } + + @java.lang.Override + public Builder mergeFrom( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + org.tensorflow.proto.data.model.ModelProto parsedMessage = null; + try { + parsedMessage = PARSER.parsePartialFrom(input, extensionRegistry); + } catch (com.google.protobuf.InvalidProtocolBufferException e) { + parsedMessage = (org.tensorflow.proto.data.model.ModelProto) e.getUnfinishedMessage(); + throw e.unwrapIOException(); + } finally { + if (parsedMessage != null) { + mergeFrom(parsedMessage); + } + } + return this; + } + + private org.tensorflow.proto.data.model.ModelProto.Node output_; + private com.google.protobuf.SingleFieldBuilderV3< + org.tensorflow.proto.data.model.ModelProto.Node, org.tensorflow.proto.data.model.ModelProto.Node.Builder, org.tensorflow.proto.data.model.ModelProto.NodeOrBuilder> outputBuilder_; + /** + *
        +     * Output node of this model.
        +     * 
        + * + * .tensorflow.data.model.ModelProto.Node output = 1; + */ + public boolean hasOutput() { + return outputBuilder_ != null || output_ != null; + } + /** + *
        +     * Output node of this model.
        +     * 
        + * + * .tensorflow.data.model.ModelProto.Node output = 1; + */ + public org.tensorflow.proto.data.model.ModelProto.Node getOutput() { + if (outputBuilder_ == null) { + return output_ == null ? org.tensorflow.proto.data.model.ModelProto.Node.getDefaultInstance() : output_; + } else { + return outputBuilder_.getMessage(); + } + } + /** + *
        +     * Output node of this model.
        +     * 
        + * + * .tensorflow.data.model.ModelProto.Node output = 1; + */ + public Builder setOutput(org.tensorflow.proto.data.model.ModelProto.Node value) { + if (outputBuilder_ == null) { + if (value == null) { + throw new NullPointerException(); + } + output_ = value; + onChanged(); + } else { + outputBuilder_.setMessage(value); + } + + return this; + } + /** + *
        +     * Output node of this model.
        +     * 
        + * + * .tensorflow.data.model.ModelProto.Node output = 1; + */ + public Builder setOutput( + org.tensorflow.proto.data.model.ModelProto.Node.Builder builderForValue) { + if (outputBuilder_ == null) { + output_ = builderForValue.build(); + onChanged(); + } else { + outputBuilder_.setMessage(builderForValue.build()); + } + + return this; + } + /** + *
        +     * Output node of this model.
        +     * 
        + * + * .tensorflow.data.model.ModelProto.Node output = 1; + */ + public Builder mergeOutput(org.tensorflow.proto.data.model.ModelProto.Node value) { + if (outputBuilder_ == null) { + if (output_ != null) { + output_ = + org.tensorflow.proto.data.model.ModelProto.Node.newBuilder(output_).mergeFrom(value).buildPartial(); + } else { + output_ = value; + } + onChanged(); + } else { + outputBuilder_.mergeFrom(value); + } + + return this; + } + /** + *
        +     * Output node of this model.
        +     * 
        + * + * .tensorflow.data.model.ModelProto.Node output = 1; + */ + public Builder clearOutput() { + if (outputBuilder_ == null) { + output_ = null; + onChanged(); + } else { + output_ = null; + outputBuilder_ = null; + } + + return this; + } + /** + *
        +     * Output node of this model.
        +     * 
        + * + * .tensorflow.data.model.ModelProto.Node output = 1; + */ + public org.tensorflow.proto.data.model.ModelProto.Node.Builder getOutputBuilder() { + + onChanged(); + return getOutputFieldBuilder().getBuilder(); + } + /** + *
        +     * Output node of this model.
        +     * 
        + * + * .tensorflow.data.model.ModelProto.Node output = 1; + */ + public org.tensorflow.proto.data.model.ModelProto.NodeOrBuilder getOutputOrBuilder() { + if (outputBuilder_ != null) { + return outputBuilder_.getMessageOrBuilder(); + } else { + return output_ == null ? + org.tensorflow.proto.data.model.ModelProto.Node.getDefaultInstance() : output_; + } + } + /** + *
        +     * Output node of this model.
        +     * 
        + * + * .tensorflow.data.model.ModelProto.Node output = 1; + */ + private com.google.protobuf.SingleFieldBuilderV3< + org.tensorflow.proto.data.model.ModelProto.Node, org.tensorflow.proto.data.model.ModelProto.Node.Builder, org.tensorflow.proto.data.model.ModelProto.NodeOrBuilder> + getOutputFieldBuilder() { + if (outputBuilder_ == null) { + outputBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< + org.tensorflow.proto.data.model.ModelProto.Node, org.tensorflow.proto.data.model.ModelProto.Node.Builder, org.tensorflow.proto.data.model.ModelProto.NodeOrBuilder>( + getOutput(), + getParentForChildren(), + isClean()); + output_ = null; + } + return outputBuilder_; + } + + private long idCounter_ ; + /** + *
        +     * Counter for node IDs of this model.
        +     * 
        + * + * int64 id_counter = 2; + */ + public long getIdCounter() { + return idCounter_; + } + /** + *
        +     * Counter for node IDs of this model.
        +     * 
        + * + * int64 id_counter = 2; + */ + public Builder setIdCounter(long value) { + + idCounter_ = value; + onChanged(); + return this; + } + /** + *
        +     * Counter for node IDs of this model.
        +     * 
        + * + * int64 id_counter = 2; + */ + public Builder clearIdCounter() { + + idCounter_ = 0L; + onChanged(); + return this; + } + + private boolean collectResourceUsage_ ; + /** + *
        +     * Indicates whether the modeling framework should collect resource usage,
        +     * e.g. CPU, memory.
        +     * 
        + * + * bool collect_resource_usage = 3; + */ + public boolean getCollectResourceUsage() { + return collectResourceUsage_; + } + /** + *
        +     * Indicates whether the modeling framework should collect resource usage,
        +     * e.g. CPU, memory.
        +     * 
        + * + * bool collect_resource_usage = 3; + */ + public Builder setCollectResourceUsage(boolean value) { + + collectResourceUsage_ = value; + onChanged(); + return this; + } + /** + *
        +     * Indicates whether the modeling framework should collect resource usage,
        +     * e.g. CPU, memory.
        +     * 
        + * + * bool collect_resource_usage = 3; + */ + public Builder clearCollectResourceUsage() { + + collectResourceUsage_ = false; + onChanged(); + return this; + } + + private org.tensorflow.proto.data.model.ModelProto.OptimizationParams optimizationParams_; + private com.google.protobuf.SingleFieldBuilderV3< + org.tensorflow.proto.data.model.ModelProto.OptimizationParams, org.tensorflow.proto.data.model.ModelProto.OptimizationParams.Builder, org.tensorflow.proto.data.model.ModelProto.OptimizationParamsOrBuilder> optimizationParamsBuilder_; + /** + * .tensorflow.data.model.ModelProto.OptimizationParams optimization_params = 4; + */ + public boolean hasOptimizationParams() { + return optimizationParamsBuilder_ != null || optimizationParams_ != null; + } + /** + * .tensorflow.data.model.ModelProto.OptimizationParams optimization_params = 4; + */ + public org.tensorflow.proto.data.model.ModelProto.OptimizationParams getOptimizationParams() { + if (optimizationParamsBuilder_ == null) { + return optimizationParams_ == null ? org.tensorflow.proto.data.model.ModelProto.OptimizationParams.getDefaultInstance() : optimizationParams_; + } else { + return optimizationParamsBuilder_.getMessage(); + } + } + /** + * .tensorflow.data.model.ModelProto.OptimizationParams optimization_params = 4; + */ + public Builder setOptimizationParams(org.tensorflow.proto.data.model.ModelProto.OptimizationParams value) { + if (optimizationParamsBuilder_ == null) { + if (value == null) { + throw new NullPointerException(); + } + optimizationParams_ = value; + onChanged(); + } else { + optimizationParamsBuilder_.setMessage(value); + } + + return this; + } + /** + * .tensorflow.data.model.ModelProto.OptimizationParams optimization_params = 4; + */ + public Builder setOptimizationParams( + org.tensorflow.proto.data.model.ModelProto.OptimizationParams.Builder builderForValue) { + if (optimizationParamsBuilder_ == null) { + optimizationParams_ = builderForValue.build(); + onChanged(); + } else { + optimizationParamsBuilder_.setMessage(builderForValue.build()); + } + + return this; + } + /** + * .tensorflow.data.model.ModelProto.OptimizationParams optimization_params = 4; + */ + public Builder mergeOptimizationParams(org.tensorflow.proto.data.model.ModelProto.OptimizationParams value) { + if (optimizationParamsBuilder_ == null) { + if (optimizationParams_ != null) { + optimizationParams_ = + org.tensorflow.proto.data.model.ModelProto.OptimizationParams.newBuilder(optimizationParams_).mergeFrom(value).buildPartial(); + } else { + optimizationParams_ = value; + } + onChanged(); + } else { + optimizationParamsBuilder_.mergeFrom(value); + } + + return this; + } + /** + * .tensorflow.data.model.ModelProto.OptimizationParams optimization_params = 4; + */ + public Builder clearOptimizationParams() { + if (optimizationParamsBuilder_ == null) { + optimizationParams_ = null; + onChanged(); + } else { + optimizationParams_ = null; + optimizationParamsBuilder_ = null; + } + + return this; + } + /** + * .tensorflow.data.model.ModelProto.OptimizationParams optimization_params = 4; + */ + public org.tensorflow.proto.data.model.ModelProto.OptimizationParams.Builder getOptimizationParamsBuilder() { + + onChanged(); + return getOptimizationParamsFieldBuilder().getBuilder(); + } + /** + * .tensorflow.data.model.ModelProto.OptimizationParams optimization_params = 4; + */ + public org.tensorflow.proto.data.model.ModelProto.OptimizationParamsOrBuilder getOptimizationParamsOrBuilder() { + if (optimizationParamsBuilder_ != null) { + return optimizationParamsBuilder_.getMessageOrBuilder(); + } else { + return optimizationParams_ == null ? + org.tensorflow.proto.data.model.ModelProto.OptimizationParams.getDefaultInstance() : optimizationParams_; + } + } + /** + * .tensorflow.data.model.ModelProto.OptimizationParams optimization_params = 4; + */ + private com.google.protobuf.SingleFieldBuilderV3< + org.tensorflow.proto.data.model.ModelProto.OptimizationParams, org.tensorflow.proto.data.model.ModelProto.OptimizationParams.Builder, org.tensorflow.proto.data.model.ModelProto.OptimizationParamsOrBuilder> + getOptimizationParamsFieldBuilder() { + if (optimizationParamsBuilder_ == null) { + optimizationParamsBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< + org.tensorflow.proto.data.model.ModelProto.OptimizationParams, org.tensorflow.proto.data.model.ModelProto.OptimizationParams.Builder, org.tensorflow.proto.data.model.ModelProto.OptimizationParamsOrBuilder>( + getOptimizationParams(), + getParentForChildren(), + isClean()); + optimizationParams_ = null; + } + return optimizationParamsBuilder_; + } + @java.lang.Override + public final Builder setUnknownFields( + final com.google.protobuf.UnknownFieldSet unknownFields) { + return super.setUnknownFields(unknownFields); + } + + @java.lang.Override + public final Builder mergeUnknownFields( + final com.google.protobuf.UnknownFieldSet unknownFields) { + return super.mergeUnknownFields(unknownFields); + } + + + // @@protoc_insertion_point(builder_scope:tensorflow.data.model.ModelProto) + } + + // @@protoc_insertion_point(class_scope:tensorflow.data.model.ModelProto) + private static final org.tensorflow.proto.data.model.ModelProto DEFAULT_INSTANCE; + static { + DEFAULT_INSTANCE = new org.tensorflow.proto.data.model.ModelProto(); + } + + public static org.tensorflow.proto.data.model.ModelProto getDefaultInstance() { + return DEFAULT_INSTANCE; + } + + private static final com.google.protobuf.Parser + PARSER = new com.google.protobuf.AbstractParser() { + @java.lang.Override + public ModelProto parsePartialFrom( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return new ModelProto(input, extensionRegistry); + } + }; + + public static com.google.protobuf.Parser parser() { + return PARSER; + } + + @java.lang.Override + public com.google.protobuf.Parser getParserForType() { + return PARSER; + } + + @java.lang.Override + public org.tensorflow.proto.data.model.ModelProto getDefaultInstanceForType() { + return DEFAULT_INSTANCE; + } + +} + diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/model/ModelProtoOrBuilder.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/model/ModelProtoOrBuilder.java new file mode 100644 index 00000000000..956471c72a0 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/model/ModelProtoOrBuilder.java @@ -0,0 +1,66 @@ +// Generated by the protocol buffer compiler. DO NOT EDIT! +// source: tensorflow/core/framework/model.proto + +package org.tensorflow.proto.data.model; + +public interface ModelProtoOrBuilder extends + // @@protoc_insertion_point(interface_extends:tensorflow.data.model.ModelProto) + com.google.protobuf.MessageOrBuilder { + + /** + *
        +   * Output node of this model.
        +   * 
        + * + * .tensorflow.data.model.ModelProto.Node output = 1; + */ + boolean hasOutput(); + /** + *
        +   * Output node of this model.
        +   * 
        + * + * .tensorflow.data.model.ModelProto.Node output = 1; + */ + org.tensorflow.proto.data.model.ModelProto.Node getOutput(); + /** + *
        +   * Output node of this model.
        +   * 
        + * + * .tensorflow.data.model.ModelProto.Node output = 1; + */ + org.tensorflow.proto.data.model.ModelProto.NodeOrBuilder getOutputOrBuilder(); + + /** + *
        +   * Counter for node IDs of this model.
        +   * 
        + * + * int64 id_counter = 2; + */ + long getIdCounter(); + + /** + *
        +   * Indicates whether the modeling framework should collect resource usage,
        +   * e.g. CPU, memory.
        +   * 
        + * + * bool collect_resource_usage = 3; + */ + boolean getCollectResourceUsage(); + + /** + * .tensorflow.data.model.ModelProto.OptimizationParams optimization_params = 4; + */ + boolean hasOptimizationParams(); + /** + * .tensorflow.data.model.ModelProto.OptimizationParams optimization_params = 4; + */ + org.tensorflow.proto.data.model.ModelProto.OptimizationParams getOptimizationParams(); + /** + * .tensorflow.data.model.ModelProto.OptimizationParams optimization_params = 4; + */ + org.tensorflow.proto.data.model.ModelProto.OptimizationParamsOrBuilder getOptimizationParamsOrBuilder(); +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/model/ModelProtos.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/model/ModelProtos.java new file mode 100644 index 00000000000..61b8c103012 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/model/ModelProtos.java @@ -0,0 +1,111 @@ +// Generated by the protocol buffer compiler. DO NOT EDIT! +// source: tensorflow/core/framework/model.proto + +package org.tensorflow.proto.data.model; + +public final class ModelProtos { + private ModelProtos() {} + public static void registerAllExtensions( + com.google.protobuf.ExtensionRegistryLite registry) { + } + + public static void registerAllExtensions( + com.google.protobuf.ExtensionRegistry registry) { + registerAllExtensions( + (com.google.protobuf.ExtensionRegistryLite) registry); + } + static final com.google.protobuf.Descriptors.Descriptor + internal_static_tensorflow_data_model_ModelProto_descriptor; + static final + com.google.protobuf.GeneratedMessageV3.FieldAccessorTable + internal_static_tensorflow_data_model_ModelProto_fieldAccessorTable; + static final com.google.protobuf.Descriptors.Descriptor + internal_static_tensorflow_data_model_ModelProto_Node_descriptor; + static final + com.google.protobuf.GeneratedMessageV3.FieldAccessorTable + internal_static_tensorflow_data_model_ModelProto_Node_fieldAccessorTable; + static final com.google.protobuf.Descriptors.Descriptor + internal_static_tensorflow_data_model_ModelProto_Node_Parameter_descriptor; + static final + com.google.protobuf.GeneratedMessageV3.FieldAccessorTable + internal_static_tensorflow_data_model_ModelProto_Node_Parameter_fieldAccessorTable; + static final com.google.protobuf.Descriptors.Descriptor + internal_static_tensorflow_data_model_ModelProto_OptimizationParams_descriptor; + static final + com.google.protobuf.GeneratedMessageV3.FieldAccessorTable + internal_static_tensorflow_data_model_ModelProto_OptimizationParams_fieldAccessorTable; + + public static com.google.protobuf.Descriptors.FileDescriptor + getDescriptor() { + return descriptor; + } + private static com.google.protobuf.Descriptors.FileDescriptor + descriptor; + static { + java.lang.String[] descriptorData = { + "\n%tensorflow/core/framework/model.proto\022" + + "\025tensorflow.data.model\"\313\007\n\nModelProto\0226\n" + + "\006output\030\001 \001(\0132&.tensorflow.data.model.Mo" + + "delProto.Node\022\022\n\nid_counter\030\002 \001(\003\022\036\n\026col" + + "lect_resource_usage\030\003 \001(\010\022Q\n\023optimizatio" + + "n_params\030\004 \001(\01324.tensorflow.data.model.M" + + "odelProto.OptimizationParams\032\347\004\n\004Node\022\n\n" + + "\002id\030\001 \001(\003\022\014\n\004name\030\002 \001(\t\022\020\n\010autotune\030\003 \001(" + + "\010\022\026\n\016buffered_bytes\030\004 \001(\003\022\031\n\021buffered_el" + + "ements\030\005 \001(\003\022\026\n\016bytes_consumed\030\006 \001(\003\022\026\n\016" + + "bytes_produced\030\007 \001(\003\022\024\n\014num_elements\030\010 \001" + + "(\003\022\027\n\017processing_time\030\t \001(\003\022\026\n\016record_me" + + "trics\030\n \001(\010\022D\n\nparameters\030\013 \003(\01320.tensor" + + "flow.data.model.ModelProto.Node.Paramete" + + "r\022!\n\031input_processing_time_sum\030\014 \001(\001\022#\n\033" + + "input_processing_time_count\030\r \001(\003\0226\n\006inp" + + "uts\030\016 \003(\0132&.tensorflow.data.model.ModelP" + + "roto.Node\0224\n\nnode_class\030\017 \001(\0162 .tensorfl" + + "ow.data.model.NodeClass\022\r\n\005ratio\030\020 \001(\001\022\024" + + "\n\014memory_ratio\030\021 \001(\001\032h\n\tParameter\022\014\n\004nam" + + "e\030\001 \001(\t\022\r\n\005value\030\002 \001(\001\022\023\n\013state_value\030\003 " + + "\001(\001\022\013\n\003min\030\004 \001(\001\022\013\n\003max\030\005 \001(\001\022\017\n\007tunable" + + "\030\006 \001(\010\032\223\001\n\022OptimizationParams\022;\n\talgorit" + + "hm\030\001 \001(\0162(.tensorflow.data.model.Autotun" + + "eAlgorithm\022\022\n\ncpu_budget\030\002 \001(\003\022\022\n\nram_bu" + + "dget\030\003 \001(\003\022\030\n\020model_input_time\030\004 \001(\001*\203\001\n" + + "\tNodeClass\022\013\n\007UNKNOWN\020\000\022\023\n\017INTERLEAVE_MA" + + "NY\020\001\022\031\n\025ASYNC_INTERLEAVE_MANY\020\002\022\017\n\013KNOWN" + + "_RATIO\020\003\022\025\n\021ASYNC_KNOWN_RATIO\020\004\022\021\n\rUNKNO" + + "WN_RATIO\020\005*9\n\021AutotuneAlgorithm\022\016\n\nHILL_" + + "CLIMB\020\000\022\024\n\020GRADIENT_DESCENT\020\001B3\n\037org.ten" + + "sorflow.proto.data.modelB\013ModelProtosP\001\370" + + "\001\001b\006proto3" + }; + descriptor = com.google.protobuf.Descriptors.FileDescriptor + .internalBuildGeneratedFileFrom(descriptorData, + new com.google.protobuf.Descriptors.FileDescriptor[] { + }); + internal_static_tensorflow_data_model_ModelProto_descriptor = + getDescriptor().getMessageTypes().get(0); + internal_static_tensorflow_data_model_ModelProto_fieldAccessorTable = new + com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( + internal_static_tensorflow_data_model_ModelProto_descriptor, + new java.lang.String[] { "Output", "IdCounter", "CollectResourceUsage", "OptimizationParams", }); + internal_static_tensorflow_data_model_ModelProto_Node_descriptor = + internal_static_tensorflow_data_model_ModelProto_descriptor.getNestedTypes().get(0); + internal_static_tensorflow_data_model_ModelProto_Node_fieldAccessorTable = new + com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( + internal_static_tensorflow_data_model_ModelProto_Node_descriptor, + new java.lang.String[] { "Id", "Name", "Autotune", "BufferedBytes", "BufferedElements", "BytesConsumed", "BytesProduced", "NumElements", "ProcessingTime", "RecordMetrics", "Parameters", "InputProcessingTimeSum", "InputProcessingTimeCount", "Inputs", "NodeClass", "Ratio", "MemoryRatio", }); + internal_static_tensorflow_data_model_ModelProto_Node_Parameter_descriptor = + internal_static_tensorflow_data_model_ModelProto_Node_descriptor.getNestedTypes().get(0); + internal_static_tensorflow_data_model_ModelProto_Node_Parameter_fieldAccessorTable = new + com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( + internal_static_tensorflow_data_model_ModelProto_Node_Parameter_descriptor, + new java.lang.String[] { "Name", "Value", "StateValue", "Min", "Max", "Tunable", }); + internal_static_tensorflow_data_model_ModelProto_OptimizationParams_descriptor = + internal_static_tensorflow_data_model_ModelProto_descriptor.getNestedTypes().get(1); + internal_static_tensorflow_data_model_ModelProto_OptimizationParams_fieldAccessorTable = new + com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( + internal_static_tensorflow_data_model_ModelProto_OptimizationParams_descriptor, + new java.lang.String[] { "Algorithm", "CpuBudget", "RamBudget", "ModelInputTime", }); + } + + // @@protoc_insertion_point(outer_class_scope) +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/model/NodeClass.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/model/NodeClass.java new file mode 100644 index 00000000000..951013a27a7 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/data/model/NodeClass.java @@ -0,0 +1,143 @@ +// Generated by the protocol buffer compiler. DO NOT EDIT! +// source: tensorflow/core/framework/model.proto + +package org.tensorflow.proto.data.model; + +/** + *
        + * Class of a node in the performance model.
        + * 
        + * + * Protobuf enum {@code tensorflow.data.model.NodeClass} + */ +public enum NodeClass + implements com.google.protobuf.ProtocolMessageEnum { + /** + * UNKNOWN = 0; + */ + UNKNOWN(0), + /** + * INTERLEAVE_MANY = 1; + */ + INTERLEAVE_MANY(1), + /** + * ASYNC_INTERLEAVE_MANY = 2; + */ + ASYNC_INTERLEAVE_MANY(2), + /** + * KNOWN_RATIO = 3; + */ + KNOWN_RATIO(3), + /** + * ASYNC_KNOWN_RATIO = 4; + */ + ASYNC_KNOWN_RATIO(4), + /** + * UNKNOWN_RATIO = 5; + */ + UNKNOWN_RATIO(5), + UNRECOGNIZED(-1), + ; + + /** + * UNKNOWN = 0; + */ + public static final int UNKNOWN_VALUE = 0; + /** + * INTERLEAVE_MANY = 1; + */ + public static final int INTERLEAVE_MANY_VALUE = 1; + /** + * ASYNC_INTERLEAVE_MANY = 2; + */ + public static final int ASYNC_INTERLEAVE_MANY_VALUE = 2; + /** + * KNOWN_RATIO = 3; + */ + public static final int KNOWN_RATIO_VALUE = 3; + /** + * ASYNC_KNOWN_RATIO = 4; + */ + public static final int ASYNC_KNOWN_RATIO_VALUE = 4; + /** + * UNKNOWN_RATIO = 5; + */ + public static final int UNKNOWN_RATIO_VALUE = 5; + + + public final int getNumber() { + if (this == UNRECOGNIZED) { + throw new java.lang.IllegalArgumentException( + "Can't get the number of an unknown enum value."); + } + return value; + } + + /** + * @deprecated Use {@link #forNumber(int)} instead. + */ + @java.lang.Deprecated + public static NodeClass valueOf(int value) { + return forNumber(value); + } + + public static NodeClass forNumber(int value) { + switch (value) { + case 0: return UNKNOWN; + case 1: return INTERLEAVE_MANY; + case 2: return ASYNC_INTERLEAVE_MANY; + case 3: return KNOWN_RATIO; + case 4: return ASYNC_KNOWN_RATIO; + case 5: return UNKNOWN_RATIO; + default: return null; + } + } + + public static com.google.protobuf.Internal.EnumLiteMap + internalGetValueMap() { + return internalValueMap; + } + private static final com.google.protobuf.Internal.EnumLiteMap< + NodeClass> internalValueMap = + new com.google.protobuf.Internal.EnumLiteMap() { + public NodeClass findValueByNumber(int number) { + return NodeClass.forNumber(number); + } + }; + + public final com.google.protobuf.Descriptors.EnumValueDescriptor + getValueDescriptor() { + return getDescriptor().getValues().get(ordinal()); + } + public final com.google.protobuf.Descriptors.EnumDescriptor + getDescriptorForType() { + return getDescriptor(); + } + public static final com.google.protobuf.Descriptors.EnumDescriptor + getDescriptor() { + return org.tensorflow.proto.data.model.ModelProtos.getDescriptor().getEnumTypes().get(0); + } + + private static final NodeClass[] VALUES = values(); + + public static NodeClass valueOf( + com.google.protobuf.Descriptors.EnumValueDescriptor desc) { + if (desc.getType() != getDescriptor()) { + throw new java.lang.IllegalArgumentException( + "EnumValueDescriptor is not for this type."); + } + if (desc.getIndex() == -1) { + return UNRECOGNIZED; + } + return VALUES[desc.getIndex()]; + } + + private final int value; + + private NodeClass(int value) { + this.value = value; + } + + // @@protoc_insertion_point(enum_scope:tensorflow.data.model.NodeClass) +} + diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/example/BytesList.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/example/BytesList.java index d8158b11f38..e172470df1c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/example/BytesList.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/example/BytesList.java @@ -5,6 +5,7 @@ /** *
        + * LINT.IfChange
          * Containers to hold repeated fundamental values.
          * 
        * @@ -283,6 +284,7 @@ protected Builder newBuilderForType( } /** *
        +   * LINT.IfChange
            * Containers to hold repeated fundamental values.
            * 
        * diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/ConfigProto.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/ConfigProto.java index c756a6ef126..0688a5ad541 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/ConfigProto.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/ConfigProto.java @@ -501,6 +501,15 @@ public interface ExperimentalOrBuilder extends * int64 xla_fusion_autotuner_thresh = 15; */ long getXlaFusionAutotunerThresh(); + + /** + *
        +     * Whether runtime execution uses TFRT.
        +     * 
        + * + * bool use_tfrt = 18; + */ + boolean getUseTfrt(); } /** *
        @@ -647,6 +656,11 @@ private Experimental(
                       mlirBridgeRollout_ = rawValue;
                       break;
                     }
        +            case 144: {
        +
        +              useTfrt_ = input.readBool();
        +              break;
        +            }
                     default: {
                       if (!parseUnknownField(
                           input, unknownFields, extensionRegistry, tag)) {
        @@ -713,6 +727,30 @@ public enum MlirBridgeRollout
                * MLIR_BRIDGE_ROLLOUT_DISABLED = 2;
                */
               MLIR_BRIDGE_ROLLOUT_DISABLED(2),
        +      /**
        +       * 
        +       * Enable the MLIR bridge on a per graph basis based on an analysis of
        +       * the features used in the graph. If the features used by the graph are
        +       * supported by the MLIR bridge, the MLIR bridge will be used to run the
        +       * graph.
        +       * 
        + * + * MLIR_BRIDGE_ROLLOUT_SAFE_MODE_ENABLED = 3; + */ + MLIR_BRIDGE_ROLLOUT_SAFE_MODE_ENABLED(3), + /** + *
        +       * Enable the MLIR bridge in a fallback mode on a per graph basis based
        +       * on an analysis of the features used in the graph.
        +       * Running the MLIR bridge in the fallback mode means that it is
        +       * executed and it commits all the changes to the TF graph in case
        +       * of success. And it does not in case of failures and let the old bridge
        +       * to process the TF graph.
        +       * 
        + * + * MLIR_BRIDGE_ROLLOUT_SAFE_MODE_FALLBACK_ENABLED = 4; + */ + MLIR_BRIDGE_ROLLOUT_SAFE_MODE_FALLBACK_ENABLED(4), UNRECOGNIZED(-1), ; @@ -741,6 +779,30 @@ public enum MlirBridgeRollout * MLIR_BRIDGE_ROLLOUT_DISABLED = 2; */ public static final int MLIR_BRIDGE_ROLLOUT_DISABLED_VALUE = 2; + /** + *
        +       * Enable the MLIR bridge on a per graph basis based on an analysis of
        +       * the features used in the graph. If the features used by the graph are
        +       * supported by the MLIR bridge, the MLIR bridge will be used to run the
        +       * graph.
        +       * 
        + * + * MLIR_BRIDGE_ROLLOUT_SAFE_MODE_ENABLED = 3; + */ + public static final int MLIR_BRIDGE_ROLLOUT_SAFE_MODE_ENABLED_VALUE = 3; + /** + *
        +       * Enable the MLIR bridge in a fallback mode on a per graph basis based
        +       * on an analysis of the features used in the graph.
        +       * Running the MLIR bridge in the fallback mode means that it is
        +       * executed and it commits all the changes to the TF graph in case
        +       * of success. And it does not in case of failures and let the old bridge
        +       * to process the TF graph.
        +       * 
        + * + * MLIR_BRIDGE_ROLLOUT_SAFE_MODE_FALLBACK_ENABLED = 4; + */ + public static final int MLIR_BRIDGE_ROLLOUT_SAFE_MODE_FALLBACK_ENABLED_VALUE = 4; public final int getNumber() { @@ -764,6 +826,8 @@ public static MlirBridgeRollout forNumber(int value) { case 0: return MLIR_BRIDGE_ROLLOUT_UNSPECIFIED; case 1: return MLIR_BRIDGE_ROLLOUT_ENABLED; case 2: return MLIR_BRIDGE_ROLLOUT_DISABLED; + case 3: return MLIR_BRIDGE_ROLLOUT_SAFE_MODE_ENABLED; + case 4: return MLIR_BRIDGE_ROLLOUT_SAFE_MODE_FALLBACK_ENABLED; default: return null; } } @@ -1179,6 +1243,19 @@ public long getXlaFusionAutotunerThresh() { return xlaFusionAutotunerThresh_; } + public static final int USE_TFRT_FIELD_NUMBER = 18; + private boolean useTfrt_; + /** + *
        +     * Whether runtime execution uses TFRT.
        +     * 
        + * + * bool use_tfrt = 18; + */ + public boolean getUseTfrt() { + return useTfrt_; + } + private byte memoizedIsInitialized = -1; @java.lang.Override public final boolean isInitialized() { @@ -1241,6 +1318,9 @@ public void writeTo(com.google.protobuf.CodedOutputStream output) if (mlirBridgeRollout_ != org.tensorflow.proto.framework.ConfigProto.Experimental.MlirBridgeRollout.MLIR_BRIDGE_ROLLOUT_UNSPECIFIED.getNumber()) { output.writeEnum(17, mlirBridgeRollout_); } + if (useTfrt_ != false) { + output.writeBool(18, useTfrt_); + } unknownFields.writeTo(output); } @@ -1312,6 +1392,10 @@ public int getSerializedSize() { size += com.google.protobuf.CodedOutputStream .computeEnumSize(17, mlirBridgeRollout_); } + if (useTfrt_ != false) { + size += com.google.protobuf.CodedOutputStream + .computeBoolSize(18, useTfrt_); + } size += unknownFields.getSerializedSize(); memoizedSize = size; return size; @@ -1361,6 +1445,8 @@ public boolean equals(final java.lang.Object obj) { != other.getDisableOutputPartitionGraphs()) return false; if (getXlaFusionAutotunerThresh() != other.getXlaFusionAutotunerThresh()) return false; + if (getUseTfrt() + != other.getUseTfrt()) return false; if (!unknownFields.equals(other.unknownFields)) return false; return true; } @@ -1417,6 +1503,9 @@ public int hashCode() { hash = (37 * hash) + XLA_FUSION_AUTOTUNER_THRESH_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashLong( getXlaFusionAutotunerThresh()); + hash = (37 * hash) + USE_TFRT_FIELD_NUMBER; + hash = (53 * hash) + com.google.protobuf.Internal.hashBoolean( + getUseTfrt()); hash = (29 * hash) + unknownFields.hashCode(); memoizedHashCode = hash; return hash; @@ -1592,6 +1681,8 @@ public Builder clear() { xlaFusionAutotunerThresh_ = 0L; + useTfrt_ = false; + return this; } @@ -1638,6 +1729,7 @@ public org.tensorflow.proto.framework.ConfigProto.Experimental buildPartial() { result.enableMlirGraphOptimization_ = enableMlirGraphOptimization_; result.disableOutputPartitionGraphs_ = disableOutputPartitionGraphs_; result.xlaFusionAutotunerThresh_ = xlaFusionAutotunerThresh_; + result.useTfrt_ = useTfrt_; onBuilt(); return result; } @@ -1736,6 +1828,9 @@ public Builder mergeFrom(org.tensorflow.proto.framework.ConfigProto.Experimental if (other.getXlaFusionAutotunerThresh() != 0L) { setXlaFusionAutotunerThresh(other.getXlaFusionAutotunerThresh()); } + if (other.getUseTfrt() != false) { + setUseTfrt(other.getUseTfrt()); + } this.mergeUnknownFields(other.unknownFields); onChanged(); return this; @@ -2808,6 +2903,44 @@ public Builder clearXlaFusionAutotunerThresh() { onChanged(); return this; } + + private boolean useTfrt_ ; + /** + *
        +       * Whether runtime execution uses TFRT.
        +       * 
        + * + * bool use_tfrt = 18; + */ + public boolean getUseTfrt() { + return useTfrt_; + } + /** + *
        +       * Whether runtime execution uses TFRT.
        +       * 
        + * + * bool use_tfrt = 18; + */ + public Builder setUseTfrt(boolean value) { + + useTfrt_ = value; + onChanged(); + return this; + } + /** + *
        +       * Whether runtime execution uses TFRT.
        +       * 
        + * + * bool use_tfrt = 18; + */ + public Builder clearUseTfrt() { + + useTfrt_ = false; + onChanged(); + return this; + } @java.lang.Override public final Builder setUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/ConfigProtos.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/ConfigProtos.java index 83eabfe7d8d..2479ebdc921 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/ConfigProtos.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/ConfigProtos.java @@ -175,7 +175,7 @@ public static void registerAllExtensions( "\032\n\022cache_rpc_response\030\004 \001(\010\022*\n\"disable_s" + "ession_connection_sharing\030\005 \001(\010\"0\n\017Sessi" + "onMetadata\022\014\n\004name\030\001 \001(\t\022\017\n\007version\030\002 \001(" + - "\003\"\232\014\n\013ConfigProto\022>\n\014device_count\030\001 \003(\0132" + + "\003\"\214\r\n\013ConfigProto\022>\n\014device_count\030\001 \003(\0132" + "(.tensorflow.ConfigProto.DeviceCountEntr" + "y\022$\n\034intra_op_parallelism_threads\030\002 \001(\005\022" + "$\n\034inter_op_parallelism_threads\030\005 \001(\005\022\037\n" + @@ -194,7 +194,7 @@ public static void registerAllExtensions( "evices_in_session\030\021 \001(\010\022:\n\014experimental\030" + "\020 \001(\0132$.tensorflow.ConfigProto.Experimen" + "tal\0322\n\020DeviceCountEntry\022\013\n\003key\030\001 \001(\t\022\r\n\005" + - "value\030\002 \001(\005:\0028\001\032\224\006\n\014Experimental\022\037\n\027coll" + + "value\030\002 \001(\005:\0028\001\032\206\007\n\014Experimental\022\037\n\027coll" + "ective_group_leader\030\001 \001(\t\022\025\n\rexecutor_ty" + "pe\030\003 \001(\t\022\032\n\022recv_buf_max_chunk\030\004 \001(\005\022\031\n\021" + "use_numa_affinity\030\005 \001(\010\0225\n-collective_de" + @@ -210,52 +210,55 @@ public static void registerAllExtensions( "gProto.Experimental.MlirBridgeRollout\022&\n" + "\036enable_mlir_graph_optimization\030\020 \001(\010\022\'\n" + "\037disable_output_partition_graphs\030\016 \001(\010\022#" + - "\n\033xla_fusion_autotuner_thresh\030\017 \001(\003\"{\n\021M" + - "lirBridgeRollout\022#\n\037MLIR_BRIDGE_ROLLOUT_" + - "UNSPECIFIED\020\000\022\037\n\033MLIR_BRIDGE_ROLLOUT_ENA" + - "BLED\020\001\022 \n\034MLIR_BRIDGE_ROLLOUT_DISABLED\020\002" + - "J\004\010\002\020\003\"\341\004\n\nRunOptions\0226\n\013trace_level\030\001 \001" + - "(\0162!.tensorflow.RunOptions.TraceLevel\022\025\n" + - "\rtimeout_in_ms\030\002 \001(\003\022\034\n\024inter_op_thread_" + - "pool\030\003 \001(\005\022\037\n\027output_partition_graphs\030\005 " + - "\001(\010\022/\n\rdebug_options\030\006 \001(\0132\030.tensorflow." + - "DebugOptions\022*\n\"report_tensor_allocation" + - "s_upon_oom\030\007 \001(\010\0229\n\014experimental\030\010 \001(\0132#" + - ".tensorflow.RunOptions.Experimental\032\322\001\n\014" + - "Experimental\022\034\n\024collective_graph_key\030\001 \001" + - "(\003\022\034\n\024use_run_handler_pool\030\002 \001(\010\022[\n\030run_" + - "handler_pool_options\030\003 \001(\01329.tensorflow." + - "RunOptions.Experimental.RunHandlerPoolOp" + - "tions\032)\n\025RunHandlerPoolOptions\022\020\n\010priori" + - "ty\030\001 \001(\003\"R\n\nTraceLevel\022\014\n\010NO_TRACE\020\000\022\022\n\016" + - "SOFTWARE_TRACE\020\001\022\022\n\016HARDWARE_TRACE\020\002\022\016\n\n" + - "FULL_TRACE\020\003J\004\010\004\020\005\"\207\003\n\013RunMetadata\022)\n\nst" + - "ep_stats\030\001 \001(\0132\025.tensorflow.StepStats\022,\n" + - "\ncost_graph\030\002 \001(\0132\030.tensorflow.CostGraph" + - "Def\022.\n\020partition_graphs\030\003 \003(\0132\024.tensorfl" + - "ow.GraphDef\022?\n\017function_graphs\030\004 \003(\0132&.t" + - "ensorflow.RunMetadata.FunctionGraphs\032\255\001\n" + - "\016FunctionGraphs\022.\n\020partition_graphs\030\001 \003(" + - "\0132\024.tensorflow.GraphDef\0224\n\026pre_optimizat" + - "ion_graph\030\002 \001(\0132\024.tensorflow.GraphDef\0225\n" + - "\027post_optimization_graph\030\003 \001(\0132\024.tensorf" + - "low.GraphDef\":\n\020TensorConnection\022\023\n\013from" + - "_tensor\030\001 \001(\t\022\021\n\tto_tensor\030\002 \001(\t\"\260\003\n\017Cal" + - "lableOptions\022\014\n\004feed\030\001 \003(\t\022\r\n\005fetch\030\002 \003(" + - "\t\022\016\n\006target\030\003 \003(\t\022+\n\013run_options\030\004 \001(\0132\026" + - ".tensorflow.RunOptions\0227\n\021tensor_connect" + - "ion\030\005 \003(\0132\034.tensorflow.TensorConnection\022" + - "B\n\014feed_devices\030\006 \003(\0132,.tensorflow.Calla" + - "bleOptions.FeedDevicesEntry\022D\n\rfetch_dev" + - "ices\030\007 \003(\0132-.tensorflow.CallableOptions." + - "FetchDevicesEntry\022\027\n\017fetch_skip_sync\030\010 \001" + - "(\010\0322\n\020FeedDevicesEntry\022\013\n\003key\030\001 \001(\t\022\r\n\005v" + - "alue\030\002 \001(\t:\0028\001\0323\n\021FetchDevicesEntry\022\013\n\003k" + - "ey\030\001 \001(\t\022\r\n\005value\030\002 \001(\t:\0028\001B\212\001\n\036org.tens" + - "orflow.proto.frameworkB\014ConfigProtosP\001ZU" + - "github.com/tensorflow/tensorflow/tensorf" + - "low/go/core/protobuf/for_core_protos_go_" + - "proto\370\001\001b\006proto3" + "\n\033xla_fusion_autotuner_thresh\030\017 \001(\003\022\020\n\010u" + + "se_tfrt\030\022 \001(\010\"\332\001\n\021MlirBridgeRollout\022#\n\037M" + + "LIR_BRIDGE_ROLLOUT_UNSPECIFIED\020\000\022\037\n\033MLIR" + + "_BRIDGE_ROLLOUT_ENABLED\020\001\022 \n\034MLIR_BRIDGE" + + "_ROLLOUT_DISABLED\020\002\022)\n%MLIR_BRIDGE_ROLLO" + + "UT_SAFE_MODE_ENABLED\020\003\0222\n.MLIR_BRIDGE_RO" + + "LLOUT_SAFE_MODE_FALLBACK_ENABLED\020\004J\004\010\002\020\003" + + "\"\341\004\n\nRunOptions\0226\n\013trace_level\030\001 \001(\0162!.t" + + "ensorflow.RunOptions.TraceLevel\022\025\n\rtimeo" + + "ut_in_ms\030\002 \001(\003\022\034\n\024inter_op_thread_pool\030\003" + + " \001(\005\022\037\n\027output_partition_graphs\030\005 \001(\010\022/\n" + + "\rdebug_options\030\006 \001(\0132\030.tensorflow.DebugO" + + "ptions\022*\n\"report_tensor_allocations_upon" + + "_oom\030\007 \001(\010\0229\n\014experimental\030\010 \001(\0132#.tenso" + + "rflow.RunOptions.Experimental\032\322\001\n\014Experi" + + "mental\022\034\n\024collective_graph_key\030\001 \001(\003\022\034\n\024" + + "use_run_handler_pool\030\002 \001(\010\022[\n\030run_handle" + + "r_pool_options\030\003 \001(\01329.tensorflow.RunOpt" + + "ions.Experimental.RunHandlerPoolOptions\032" + + ")\n\025RunHandlerPoolOptions\022\020\n\010priority\030\001 \001" + + "(\003\"R\n\nTraceLevel\022\014\n\010NO_TRACE\020\000\022\022\n\016SOFTWA" + + "RE_TRACE\020\001\022\022\n\016HARDWARE_TRACE\020\002\022\016\n\nFULL_T" + + "RACE\020\003J\004\010\004\020\005\"\207\003\n\013RunMetadata\022)\n\nstep_sta" + + "ts\030\001 \001(\0132\025.tensorflow.StepStats\022,\n\ncost_" + + "graph\030\002 \001(\0132\030.tensorflow.CostGraphDef\022.\n" + + "\020partition_graphs\030\003 \003(\0132\024.tensorflow.Gra" + + "phDef\022?\n\017function_graphs\030\004 \003(\0132&.tensorf" + + "low.RunMetadata.FunctionGraphs\032\255\001\n\016Funct" + + "ionGraphs\022.\n\020partition_graphs\030\001 \003(\0132\024.te" + + "nsorflow.GraphDef\0224\n\026pre_optimization_gr" + + "aph\030\002 \001(\0132\024.tensorflow.GraphDef\0225\n\027post_" + + "optimization_graph\030\003 \001(\0132\024.tensorflow.Gr" + + "aphDef\":\n\020TensorConnection\022\023\n\013from_tenso" + + "r\030\001 \001(\t\022\021\n\tto_tensor\030\002 \001(\t\"\260\003\n\017CallableO" + + "ptions\022\014\n\004feed\030\001 \003(\t\022\r\n\005fetch\030\002 \003(\t\022\016\n\006t" + + "arget\030\003 \003(\t\022+\n\013run_options\030\004 \001(\0132\026.tenso" + + "rflow.RunOptions\0227\n\021tensor_connection\030\005 " + + "\003(\0132\034.tensorflow.TensorConnection\022B\n\014fee" + + "d_devices\030\006 \003(\0132,.tensorflow.CallableOpt" + + "ions.FeedDevicesEntry\022D\n\rfetch_devices\030\007" + + " \003(\0132-.tensorflow.CallableOptions.FetchD" + + "evicesEntry\022\027\n\017fetch_skip_sync\030\010 \001(\010\0322\n\020" + + "FeedDevicesEntry\022\013\n\003key\030\001 \001(\t\022\r\n\005value\030\002" + + " \001(\t:\0028\001\0323\n\021FetchDevicesEntry\022\013\n\003key\030\001 \001" + + "(\t\022\r\n\005value\030\002 \001(\t:\0028\001B\212\001\n\036org.tensorflow" + + ".proto.frameworkB\014ConfigProtosP\001ZUgithub" + + ".com/tensorflow/tensorflow/tensorflow/go" + + "/core/protobuf/for_core_protos_go_proto\370" + + "\001\001b\006proto3" }; descriptor = com.google.protobuf.Descriptors.FileDescriptor .internalBuildGeneratedFileFrom(descriptorData, @@ -332,7 +335,7 @@ public static void registerAllExtensions( internal_static_tensorflow_ConfigProto_Experimental_fieldAccessorTable = new com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( internal_static_tensorflow_ConfigProto_Experimental_descriptor, - new java.lang.String[] { "CollectiveGroupLeader", "ExecutorType", "RecvBufMaxChunk", "UseNumaAffinity", "CollectiveDeterministicSequentialExecution", "CollectiveNccl", "ShareSessionStateInClusterspecPropagation", "DisableThreadSpinning", "ShareClusterDevicesInSession", "SessionMetadata", "OptimizeForStaticGraph", "EnableMlirBridge", "MlirBridgeRollout", "EnableMlirGraphOptimization", "DisableOutputPartitionGraphs", "XlaFusionAutotunerThresh", }); + new java.lang.String[] { "CollectiveGroupLeader", "ExecutorType", "RecvBufMaxChunk", "UseNumaAffinity", "CollectiveDeterministicSequentialExecution", "CollectiveNccl", "ShareSessionStateInClusterspecPropagation", "DisableThreadSpinning", "ShareClusterDevicesInSession", "SessionMetadata", "OptimizeForStaticGraph", "EnableMlirBridge", "MlirBridgeRollout", "EnableMlirGraphOptimization", "DisableOutputPartitionGraphs", "XlaFusionAutotunerThresh", "UseTfrt", }); internal_static_tensorflow_RunOptions_descriptor = getDescriptor().getMessageTypes().get(7); internal_static_tensorflow_RunOptions_fieldAccessorTable = new diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/DataClass.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/DataClass.java index 895366e817c..eb7123c795d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/DataClass.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/DataClass.java @@ -20,8 +20,7 @@ public enum DataClass /** *
            * Scalar time series. Each `Value` for the corresponding tag must have
        -   * `tensor` set to a rank-0 tensor of floating-point dtype, which will be
        -   * converted to float64.
        +   * `tensor` set to a rank-0 tensor of type `DT_FLOAT` (float32).
            * 
        * * DATA_CLASS_SCALAR = 1; @@ -62,8 +61,7 @@ public enum DataClass /** *
            * Scalar time series. Each `Value` for the corresponding tag must have
        -   * `tensor` set to a rank-0 tensor of floating-point dtype, which will be
        -   * converted to float64.
        +   * `tensor` set to a rank-0 tensor of type `DT_FLOAT` (float32).
            * 
        * * DATA_CLASS_SCALAR = 1; diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/ExtensionTypeVariant.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/ExtensionTypeVariant.java new file mode 100644 index 00000000000..1afaca12ca1 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/ExtensionTypeVariant.java @@ -0,0 +1,679 @@ +// Generated by the protocol buffer compiler. DO NOT EDIT! +// source: tensorflow/core/protobuf/extension_type_variant.proto + +package org.tensorflow.proto.framework; + +public final class ExtensionTypeVariant { + private ExtensionTypeVariant() {} + public static void registerAllExtensions( + com.google.protobuf.ExtensionRegistryLite registry) { + } + + public static void registerAllExtensions( + com.google.protobuf.ExtensionRegistry registry) { + registerAllExtensions( + (com.google.protobuf.ExtensionRegistryLite) registry); + } + public interface ExtensionTypeVariantMetadataOrBuilder extends + // @@protoc_insertion_point(interface_extends:tensorflow.ExtensionTypeVariantMetadata) + com.google.protobuf.MessageOrBuilder { + + /** + * .tensorflow.TypeSpecProto type_spec_proto = 1; + */ + boolean hasTypeSpecProto(); + /** + * .tensorflow.TypeSpecProto type_spec_proto = 1; + */ + org.tensorflow.proto.framework.TypeSpecProto getTypeSpecProto(); + /** + * .tensorflow.TypeSpecProto type_spec_proto = 1; + */ + org.tensorflow.proto.framework.TypeSpecProtoOrBuilder getTypeSpecProtoOrBuilder(); + } + /** + *
        +   * Metadata for ExtensionTypeVariant, used when serializing as Variant.
        +   * We define a new message here (rather than directly using TypeSpecProto for
        +   * the metadata string) to retain flexibility to change the metadata encoding
        +   * to support additional features.
        +   * 
        + * + * Protobuf type {@code tensorflow.ExtensionTypeVariantMetadata} + */ + public static final class ExtensionTypeVariantMetadata extends + com.google.protobuf.GeneratedMessageV3 implements + // @@protoc_insertion_point(message_implements:tensorflow.ExtensionTypeVariantMetadata) + ExtensionTypeVariantMetadataOrBuilder { + private static final long serialVersionUID = 0L; + // Use ExtensionTypeVariantMetadata.newBuilder() to construct. + private ExtensionTypeVariantMetadata(com.google.protobuf.GeneratedMessageV3.Builder builder) { + super(builder); + } + private ExtensionTypeVariantMetadata() { + } + + @java.lang.Override + @SuppressWarnings({"unused"}) + protected java.lang.Object newInstance( + UnusedPrivateParameter unused) { + return new ExtensionTypeVariantMetadata(); + } + + @java.lang.Override + public final com.google.protobuf.UnknownFieldSet + getUnknownFields() { + return this.unknownFields; + } + private ExtensionTypeVariantMetadata( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + this(); + if (extensionRegistry == null) { + throw new java.lang.NullPointerException(); + } + com.google.protobuf.UnknownFieldSet.Builder unknownFields = + com.google.protobuf.UnknownFieldSet.newBuilder(); + try { + boolean done = false; + while (!done) { + int tag = input.readTag(); + switch (tag) { + case 0: + done = true; + break; + case 10: { + org.tensorflow.proto.framework.TypeSpecProto.Builder subBuilder = null; + if (typeSpecProto_ != null) { + subBuilder = typeSpecProto_.toBuilder(); + } + typeSpecProto_ = input.readMessage(org.tensorflow.proto.framework.TypeSpecProto.parser(), extensionRegistry); + if (subBuilder != null) { + subBuilder.mergeFrom(typeSpecProto_); + typeSpecProto_ = subBuilder.buildPartial(); + } + + break; + } + default: { + if (!parseUnknownField( + input, unknownFields, extensionRegistry, tag)) { + done = true; + } + break; + } + } + } + } catch (com.google.protobuf.InvalidProtocolBufferException e) { + throw e.setUnfinishedMessage(this); + } catch (java.io.IOException e) { + throw new com.google.protobuf.InvalidProtocolBufferException( + e).setUnfinishedMessage(this); + } finally { + this.unknownFields = unknownFields.build(); + makeExtensionsImmutable(); + } + } + public static final com.google.protobuf.Descriptors.Descriptor + getDescriptor() { + return org.tensorflow.proto.framework.ExtensionTypeVariant.internal_static_tensorflow_ExtensionTypeVariantMetadata_descriptor; + } + + @java.lang.Override + protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable + internalGetFieldAccessorTable() { + return org.tensorflow.proto.framework.ExtensionTypeVariant.internal_static_tensorflow_ExtensionTypeVariantMetadata_fieldAccessorTable + .ensureFieldAccessorsInitialized( + org.tensorflow.proto.framework.ExtensionTypeVariant.ExtensionTypeVariantMetadata.class, org.tensorflow.proto.framework.ExtensionTypeVariant.ExtensionTypeVariantMetadata.Builder.class); + } + + public static final int TYPE_SPEC_PROTO_FIELD_NUMBER = 1; + private org.tensorflow.proto.framework.TypeSpecProto typeSpecProto_; + /** + * .tensorflow.TypeSpecProto type_spec_proto = 1; + */ + public boolean hasTypeSpecProto() { + return typeSpecProto_ != null; + } + /** + * .tensorflow.TypeSpecProto type_spec_proto = 1; + */ + public org.tensorflow.proto.framework.TypeSpecProto getTypeSpecProto() { + return typeSpecProto_ == null ? org.tensorflow.proto.framework.TypeSpecProto.getDefaultInstance() : typeSpecProto_; + } + /** + * .tensorflow.TypeSpecProto type_spec_proto = 1; + */ + public org.tensorflow.proto.framework.TypeSpecProtoOrBuilder getTypeSpecProtoOrBuilder() { + return getTypeSpecProto(); + } + + private byte memoizedIsInitialized = -1; + @java.lang.Override + public final boolean isInitialized() { + byte isInitialized = memoizedIsInitialized; + if (isInitialized == 1) return true; + if (isInitialized == 0) return false; + + memoizedIsInitialized = 1; + return true; + } + + @java.lang.Override + public void writeTo(com.google.protobuf.CodedOutputStream output) + throws java.io.IOException { + if (typeSpecProto_ != null) { + output.writeMessage(1, getTypeSpecProto()); + } + unknownFields.writeTo(output); + } + + @java.lang.Override + public int getSerializedSize() { + int size = memoizedSize; + if (size != -1) return size; + + size = 0; + if (typeSpecProto_ != null) { + size += com.google.protobuf.CodedOutputStream + .computeMessageSize(1, getTypeSpecProto()); + } + size += unknownFields.getSerializedSize(); + memoizedSize = size; + return size; + } + + @java.lang.Override + public boolean equals(final java.lang.Object obj) { + if (obj == this) { + return true; + } + if (!(obj instanceof org.tensorflow.proto.framework.ExtensionTypeVariant.ExtensionTypeVariantMetadata)) { + return super.equals(obj); + } + org.tensorflow.proto.framework.ExtensionTypeVariant.ExtensionTypeVariantMetadata other = (org.tensorflow.proto.framework.ExtensionTypeVariant.ExtensionTypeVariantMetadata) obj; + + if (hasTypeSpecProto() != other.hasTypeSpecProto()) return false; + if (hasTypeSpecProto()) { + if (!getTypeSpecProto() + .equals(other.getTypeSpecProto())) return false; + } + if (!unknownFields.equals(other.unknownFields)) return false; + return true; + } + + @java.lang.Override + public int hashCode() { + if (memoizedHashCode != 0) { + return memoizedHashCode; + } + int hash = 41; + hash = (19 * hash) + getDescriptor().hashCode(); + if (hasTypeSpecProto()) { + hash = (37 * hash) + TYPE_SPEC_PROTO_FIELD_NUMBER; + hash = (53 * hash) + getTypeSpecProto().hashCode(); + } + hash = (29 * hash) + unknownFields.hashCode(); + memoizedHashCode = hash; + return hash; + } + + public static org.tensorflow.proto.framework.ExtensionTypeVariant.ExtensionTypeVariantMetadata parseFrom( + java.nio.ByteBuffer data) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data); + } + public static org.tensorflow.proto.framework.ExtensionTypeVariant.ExtensionTypeVariantMetadata parseFrom( + java.nio.ByteBuffer data, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data, extensionRegistry); + } + public static org.tensorflow.proto.framework.ExtensionTypeVariant.ExtensionTypeVariantMetadata parseFrom( + com.google.protobuf.ByteString data) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data); + } + public static org.tensorflow.proto.framework.ExtensionTypeVariant.ExtensionTypeVariantMetadata parseFrom( + com.google.protobuf.ByteString data, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data, extensionRegistry); + } + public static org.tensorflow.proto.framework.ExtensionTypeVariant.ExtensionTypeVariantMetadata parseFrom(byte[] data) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data); + } + public static org.tensorflow.proto.framework.ExtensionTypeVariant.ExtensionTypeVariantMetadata parseFrom( + byte[] data, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data, extensionRegistry); + } + public static org.tensorflow.proto.framework.ExtensionTypeVariant.ExtensionTypeVariantMetadata parseFrom(java.io.InputStream input) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input); + } + public static org.tensorflow.proto.framework.ExtensionTypeVariant.ExtensionTypeVariantMetadata parseFrom( + java.io.InputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input, extensionRegistry); + } + public static org.tensorflow.proto.framework.ExtensionTypeVariant.ExtensionTypeVariantMetadata parseDelimitedFrom(java.io.InputStream input) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseDelimitedWithIOException(PARSER, input); + } + public static org.tensorflow.proto.framework.ExtensionTypeVariant.ExtensionTypeVariantMetadata parseDelimitedFrom( + java.io.InputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseDelimitedWithIOException(PARSER, input, extensionRegistry); + } + public static org.tensorflow.proto.framework.ExtensionTypeVariant.ExtensionTypeVariantMetadata parseFrom( + com.google.protobuf.CodedInputStream input) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input); + } + public static org.tensorflow.proto.framework.ExtensionTypeVariant.ExtensionTypeVariantMetadata parseFrom( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input, extensionRegistry); + } + + @java.lang.Override + public Builder newBuilderForType() { return newBuilder(); } + public static Builder newBuilder() { + return DEFAULT_INSTANCE.toBuilder(); + } + public static Builder newBuilder(org.tensorflow.proto.framework.ExtensionTypeVariant.ExtensionTypeVariantMetadata prototype) { + return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); + } + @java.lang.Override + public Builder toBuilder() { + return this == DEFAULT_INSTANCE + ? new Builder() : new Builder().mergeFrom(this); + } + + @java.lang.Override + protected Builder newBuilderForType( + com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { + Builder builder = new Builder(parent); + return builder; + } + /** + *
        +     * Metadata for ExtensionTypeVariant, used when serializing as Variant.
        +     * We define a new message here (rather than directly using TypeSpecProto for
        +     * the metadata string) to retain flexibility to change the metadata encoding
        +     * to support additional features.
        +     * 
        + * + * Protobuf type {@code tensorflow.ExtensionTypeVariantMetadata} + */ + public static final class Builder extends + com.google.protobuf.GeneratedMessageV3.Builder implements + // @@protoc_insertion_point(builder_implements:tensorflow.ExtensionTypeVariantMetadata) + org.tensorflow.proto.framework.ExtensionTypeVariant.ExtensionTypeVariantMetadataOrBuilder { + public static final com.google.protobuf.Descriptors.Descriptor + getDescriptor() { + return org.tensorflow.proto.framework.ExtensionTypeVariant.internal_static_tensorflow_ExtensionTypeVariantMetadata_descriptor; + } + + @java.lang.Override + protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable + internalGetFieldAccessorTable() { + return org.tensorflow.proto.framework.ExtensionTypeVariant.internal_static_tensorflow_ExtensionTypeVariantMetadata_fieldAccessorTable + .ensureFieldAccessorsInitialized( + org.tensorflow.proto.framework.ExtensionTypeVariant.ExtensionTypeVariantMetadata.class, org.tensorflow.proto.framework.ExtensionTypeVariant.ExtensionTypeVariantMetadata.Builder.class); + } + + // Construct using org.tensorflow.proto.framework.ExtensionTypeVariant.ExtensionTypeVariantMetadata.newBuilder() + private Builder() { + maybeForceBuilderInitialization(); + } + + private Builder( + com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { + super(parent); + maybeForceBuilderInitialization(); + } + private void maybeForceBuilderInitialization() { + if (com.google.protobuf.GeneratedMessageV3 + .alwaysUseFieldBuilders) { + } + } + @java.lang.Override + public Builder clear() { + super.clear(); + if (typeSpecProtoBuilder_ == null) { + typeSpecProto_ = null; + } else { + typeSpecProto_ = null; + typeSpecProtoBuilder_ = null; + } + return this; + } + + @java.lang.Override + public com.google.protobuf.Descriptors.Descriptor + getDescriptorForType() { + return org.tensorflow.proto.framework.ExtensionTypeVariant.internal_static_tensorflow_ExtensionTypeVariantMetadata_descriptor; + } + + @java.lang.Override + public org.tensorflow.proto.framework.ExtensionTypeVariant.ExtensionTypeVariantMetadata getDefaultInstanceForType() { + return org.tensorflow.proto.framework.ExtensionTypeVariant.ExtensionTypeVariantMetadata.getDefaultInstance(); + } + + @java.lang.Override + public org.tensorflow.proto.framework.ExtensionTypeVariant.ExtensionTypeVariantMetadata build() { + org.tensorflow.proto.framework.ExtensionTypeVariant.ExtensionTypeVariantMetadata result = buildPartial(); + if (!result.isInitialized()) { + throw newUninitializedMessageException(result); + } + return result; + } + + @java.lang.Override + public org.tensorflow.proto.framework.ExtensionTypeVariant.ExtensionTypeVariantMetadata buildPartial() { + org.tensorflow.proto.framework.ExtensionTypeVariant.ExtensionTypeVariantMetadata result = new org.tensorflow.proto.framework.ExtensionTypeVariant.ExtensionTypeVariantMetadata(this); + if (typeSpecProtoBuilder_ == null) { + result.typeSpecProto_ = typeSpecProto_; + } else { + result.typeSpecProto_ = typeSpecProtoBuilder_.build(); + } + onBuilt(); + return result; + } + + @java.lang.Override + public Builder clone() { + return super.clone(); + } + @java.lang.Override + public Builder setField( + com.google.protobuf.Descriptors.FieldDescriptor field, + java.lang.Object value) { + return super.setField(field, value); + } + @java.lang.Override + public Builder clearField( + com.google.protobuf.Descriptors.FieldDescriptor field) { + return super.clearField(field); + } + @java.lang.Override + public Builder clearOneof( + com.google.protobuf.Descriptors.OneofDescriptor oneof) { + return super.clearOneof(oneof); + } + @java.lang.Override + public Builder setRepeatedField( + com.google.protobuf.Descriptors.FieldDescriptor field, + int index, java.lang.Object value) { + return super.setRepeatedField(field, index, value); + } + @java.lang.Override + public Builder addRepeatedField( + com.google.protobuf.Descriptors.FieldDescriptor field, + java.lang.Object value) { + return super.addRepeatedField(field, value); + } + @java.lang.Override + public Builder mergeFrom(com.google.protobuf.Message other) { + if (other instanceof org.tensorflow.proto.framework.ExtensionTypeVariant.ExtensionTypeVariantMetadata) { + return mergeFrom((org.tensorflow.proto.framework.ExtensionTypeVariant.ExtensionTypeVariantMetadata)other); + } else { + super.mergeFrom(other); + return this; + } + } + + public Builder mergeFrom(org.tensorflow.proto.framework.ExtensionTypeVariant.ExtensionTypeVariantMetadata other) { + if (other == org.tensorflow.proto.framework.ExtensionTypeVariant.ExtensionTypeVariantMetadata.getDefaultInstance()) return this; + if (other.hasTypeSpecProto()) { + mergeTypeSpecProto(other.getTypeSpecProto()); + } + this.mergeUnknownFields(other.unknownFields); + onChanged(); + return this; + } + + @java.lang.Override + public final boolean isInitialized() { + return true; + } + + @java.lang.Override + public Builder mergeFrom( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + org.tensorflow.proto.framework.ExtensionTypeVariant.ExtensionTypeVariantMetadata parsedMessage = null; + try { + parsedMessage = PARSER.parsePartialFrom(input, extensionRegistry); + } catch (com.google.protobuf.InvalidProtocolBufferException e) { + parsedMessage = (org.tensorflow.proto.framework.ExtensionTypeVariant.ExtensionTypeVariantMetadata) e.getUnfinishedMessage(); + throw e.unwrapIOException(); + } finally { + if (parsedMessage != null) { + mergeFrom(parsedMessage); + } + } + return this; + } + + private org.tensorflow.proto.framework.TypeSpecProto typeSpecProto_; + private com.google.protobuf.SingleFieldBuilderV3< + org.tensorflow.proto.framework.TypeSpecProto, org.tensorflow.proto.framework.TypeSpecProto.Builder, org.tensorflow.proto.framework.TypeSpecProtoOrBuilder> typeSpecProtoBuilder_; + /** + * .tensorflow.TypeSpecProto type_spec_proto = 1; + */ + public boolean hasTypeSpecProto() { + return typeSpecProtoBuilder_ != null || typeSpecProto_ != null; + } + /** + * .tensorflow.TypeSpecProto type_spec_proto = 1; + */ + public org.tensorflow.proto.framework.TypeSpecProto getTypeSpecProto() { + if (typeSpecProtoBuilder_ == null) { + return typeSpecProto_ == null ? org.tensorflow.proto.framework.TypeSpecProto.getDefaultInstance() : typeSpecProto_; + } else { + return typeSpecProtoBuilder_.getMessage(); + } + } + /** + * .tensorflow.TypeSpecProto type_spec_proto = 1; + */ + public Builder setTypeSpecProto(org.tensorflow.proto.framework.TypeSpecProto value) { + if (typeSpecProtoBuilder_ == null) { + if (value == null) { + throw new NullPointerException(); + } + typeSpecProto_ = value; + onChanged(); + } else { + typeSpecProtoBuilder_.setMessage(value); + } + + return this; + } + /** + * .tensorflow.TypeSpecProto type_spec_proto = 1; + */ + public Builder setTypeSpecProto( + org.tensorflow.proto.framework.TypeSpecProto.Builder builderForValue) { + if (typeSpecProtoBuilder_ == null) { + typeSpecProto_ = builderForValue.build(); + onChanged(); + } else { + typeSpecProtoBuilder_.setMessage(builderForValue.build()); + } + + return this; + } + /** + * .tensorflow.TypeSpecProto type_spec_proto = 1; + */ + public Builder mergeTypeSpecProto(org.tensorflow.proto.framework.TypeSpecProto value) { + if (typeSpecProtoBuilder_ == null) { + if (typeSpecProto_ != null) { + typeSpecProto_ = + org.tensorflow.proto.framework.TypeSpecProto.newBuilder(typeSpecProto_).mergeFrom(value).buildPartial(); + } else { + typeSpecProto_ = value; + } + onChanged(); + } else { + typeSpecProtoBuilder_.mergeFrom(value); + } + + return this; + } + /** + * .tensorflow.TypeSpecProto type_spec_proto = 1; + */ + public Builder clearTypeSpecProto() { + if (typeSpecProtoBuilder_ == null) { + typeSpecProto_ = null; + onChanged(); + } else { + typeSpecProto_ = null; + typeSpecProtoBuilder_ = null; + } + + return this; + } + /** + * .tensorflow.TypeSpecProto type_spec_proto = 1; + */ + public org.tensorflow.proto.framework.TypeSpecProto.Builder getTypeSpecProtoBuilder() { + + onChanged(); + return getTypeSpecProtoFieldBuilder().getBuilder(); + } + /** + * .tensorflow.TypeSpecProto type_spec_proto = 1; + */ + public org.tensorflow.proto.framework.TypeSpecProtoOrBuilder getTypeSpecProtoOrBuilder() { + if (typeSpecProtoBuilder_ != null) { + return typeSpecProtoBuilder_.getMessageOrBuilder(); + } else { + return typeSpecProto_ == null ? + org.tensorflow.proto.framework.TypeSpecProto.getDefaultInstance() : typeSpecProto_; + } + } + /** + * .tensorflow.TypeSpecProto type_spec_proto = 1; + */ + private com.google.protobuf.SingleFieldBuilderV3< + org.tensorflow.proto.framework.TypeSpecProto, org.tensorflow.proto.framework.TypeSpecProto.Builder, org.tensorflow.proto.framework.TypeSpecProtoOrBuilder> + getTypeSpecProtoFieldBuilder() { + if (typeSpecProtoBuilder_ == null) { + typeSpecProtoBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< + org.tensorflow.proto.framework.TypeSpecProto, org.tensorflow.proto.framework.TypeSpecProto.Builder, org.tensorflow.proto.framework.TypeSpecProtoOrBuilder>( + getTypeSpecProto(), + getParentForChildren(), + isClean()); + typeSpecProto_ = null; + } + return typeSpecProtoBuilder_; + } + @java.lang.Override + public final Builder setUnknownFields( + final com.google.protobuf.UnknownFieldSet unknownFields) { + return super.setUnknownFields(unknownFields); + } + + @java.lang.Override + public final Builder mergeUnknownFields( + final com.google.protobuf.UnknownFieldSet unknownFields) { + return super.mergeUnknownFields(unknownFields); + } + + + // @@protoc_insertion_point(builder_scope:tensorflow.ExtensionTypeVariantMetadata) + } + + // @@protoc_insertion_point(class_scope:tensorflow.ExtensionTypeVariantMetadata) + private static final org.tensorflow.proto.framework.ExtensionTypeVariant.ExtensionTypeVariantMetadata DEFAULT_INSTANCE; + static { + DEFAULT_INSTANCE = new org.tensorflow.proto.framework.ExtensionTypeVariant.ExtensionTypeVariantMetadata(); + } + + public static org.tensorflow.proto.framework.ExtensionTypeVariant.ExtensionTypeVariantMetadata getDefaultInstance() { + return DEFAULT_INSTANCE; + } + + private static final com.google.protobuf.Parser + PARSER = new com.google.protobuf.AbstractParser() { + @java.lang.Override + public ExtensionTypeVariantMetadata parsePartialFrom( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return new ExtensionTypeVariantMetadata(input, extensionRegistry); + } + }; + + public static com.google.protobuf.Parser parser() { + return PARSER; + } + + @java.lang.Override + public com.google.protobuf.Parser getParserForType() { + return PARSER; + } + + @java.lang.Override + public org.tensorflow.proto.framework.ExtensionTypeVariant.ExtensionTypeVariantMetadata getDefaultInstanceForType() { + return DEFAULT_INSTANCE; + } + + } + + private static final com.google.protobuf.Descriptors.Descriptor + internal_static_tensorflow_ExtensionTypeVariantMetadata_descriptor; + private static final + com.google.protobuf.GeneratedMessageV3.FieldAccessorTable + internal_static_tensorflow_ExtensionTypeVariantMetadata_fieldAccessorTable; + + public static com.google.protobuf.Descriptors.FileDescriptor + getDescriptor() { + return descriptor; + } + private static com.google.protobuf.Descriptors.FileDescriptor + descriptor; + static { + java.lang.String[] descriptorData = { + "\n5tensorflow/core/protobuf/extension_typ" + + "e_variant.proto\022\ntensorflow\032%tensorflow/" + + "core/protobuf/struct.proto\"R\n\034ExtensionT" + + "ypeVariantMetadata\0222\n\017type_spec_proto\030\001 " + + "\001(\0132\031.tensorflow.TypeSpecProtoB \n\036org.te" + + "nsorflow.proto.frameworkb\006proto3" + }; + descriptor = com.google.protobuf.Descriptors.FileDescriptor + .internalBuildGeneratedFileFrom(descriptorData, + new com.google.protobuf.Descriptors.FileDescriptor[] { + org.tensorflow.proto.framework.StructProtos.getDescriptor(), + }); + internal_static_tensorflow_ExtensionTypeVariantMetadata_descriptor = + getDescriptor().getMessageTypes().get(0); + internal_static_tensorflow_ExtensionTypeVariantMetadata_fieldAccessorTable = new + com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( + internal_static_tensorflow_ExtensionTypeVariantMetadata_descriptor, + new java.lang.String[] { "TypeSpecProto", }); + org.tensorflow.proto.framework.StructProtos.getDescriptor(); + } + + // @@protoc_insertion_point(outer_class_scope) +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/FunctionSpec.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/FunctionSpec.java index 08549e9715c..d71706dad58 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/FunctionSpec.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/FunctionSpec.java @@ -21,7 +21,7 @@ private FunctionSpec(com.google.protobuf.GeneratedMessageV3.Builder builder) super(builder); } private FunctionSpec() { - experimentalCompile_ = 0; + jitCompile_ = 0; } @java.lang.Override @@ -88,7 +88,7 @@ private FunctionSpec( case 48: { int rawValue = input.readEnum(); - experimentalCompile_ = rawValue; + jitCompile_ = rawValue; break; } default: { @@ -133,9 +133,9 @@ private FunctionSpec( * See `tf.function` for details. *
        * - * Protobuf enum {@code tensorflow.FunctionSpec.ExperimentalCompile} + * Protobuf enum {@code tensorflow.FunctionSpec.JitCompile} */ - public enum ExperimentalCompile + public enum JitCompile implements com.google.protobuf.ProtocolMessageEnum { /** * DEFAULT = 0; @@ -178,11 +178,11 @@ public final int getNumber() { * @deprecated Use {@link #forNumber(int)} instead. */ @java.lang.Deprecated - public static ExperimentalCompile valueOf(int value) { + public static JitCompile valueOf(int value) { return forNumber(value); } - public static ExperimentalCompile forNumber(int value) { + public static JitCompile forNumber(int value) { switch (value) { case 0: return DEFAULT; case 1: return ON; @@ -191,15 +191,15 @@ public static ExperimentalCompile forNumber(int value) { } } - public static com.google.protobuf.Internal.EnumLiteMap + public static com.google.protobuf.Internal.EnumLiteMap internalGetValueMap() { return internalValueMap; } private static final com.google.protobuf.Internal.EnumLiteMap< - ExperimentalCompile> internalValueMap = - new com.google.protobuf.Internal.EnumLiteMap() { - public ExperimentalCompile findValueByNumber(int number) { - return ExperimentalCompile.forNumber(number); + JitCompile> internalValueMap = + new com.google.protobuf.Internal.EnumLiteMap() { + public JitCompile findValueByNumber(int number) { + return JitCompile.forNumber(number); } }; @@ -216,9 +216,9 @@ public ExperimentalCompile findValueByNumber(int number) { return org.tensorflow.proto.framework.FunctionSpec.getDescriptor().getEnumTypes().get(0); } - private static final ExperimentalCompile[] VALUES = values(); + private static final JitCompile[] VALUES = values(); - public static ExperimentalCompile valueOf( + public static JitCompile valueOf( com.google.protobuf.Descriptors.EnumValueDescriptor desc) { if (desc.getType() != getDescriptor()) { throw new java.lang.IllegalArgumentException( @@ -232,11 +232,11 @@ public static ExperimentalCompile valueOf( private final int value; - private ExperimentalCompile(int value) { + private JitCompile(int value) { this.value = value; } - // @@protoc_insertion_point(enum_scope:tensorflow.FunctionSpec.ExperimentalCompile) + // @@protoc_insertion_point(enum_scope:tensorflow.FunctionSpec.JitCompile) } public static final int FULLARGSPEC_FIELD_NUMBER = 1; @@ -318,21 +318,21 @@ public org.tensorflow.proto.framework.StructuredValueOrBuilder getInputSignature return getInputSignature(); } - public static final int EXPERIMENTAL_COMPILE_FIELD_NUMBER = 6; - private int experimentalCompile_; + public static final int JIT_COMPILE_FIELD_NUMBER = 6; + private int jitCompile_; /** - * .tensorflow.FunctionSpec.ExperimentalCompile experimental_compile = 6; + * .tensorflow.FunctionSpec.JitCompile jit_compile = 6; */ - public int getExperimentalCompileValue() { - return experimentalCompile_; + public int getJitCompileValue() { + return jitCompile_; } /** - * .tensorflow.FunctionSpec.ExperimentalCompile experimental_compile = 6; + * .tensorflow.FunctionSpec.JitCompile jit_compile = 6; */ - public org.tensorflow.proto.framework.FunctionSpec.ExperimentalCompile getExperimentalCompile() { + public org.tensorflow.proto.framework.FunctionSpec.JitCompile getJitCompile() { @SuppressWarnings("deprecation") - org.tensorflow.proto.framework.FunctionSpec.ExperimentalCompile result = org.tensorflow.proto.framework.FunctionSpec.ExperimentalCompile.valueOf(experimentalCompile_); - return result == null ? org.tensorflow.proto.framework.FunctionSpec.ExperimentalCompile.UNRECOGNIZED : result; + org.tensorflow.proto.framework.FunctionSpec.JitCompile result = org.tensorflow.proto.framework.FunctionSpec.JitCompile.valueOf(jitCompile_); + return result == null ? org.tensorflow.proto.framework.FunctionSpec.JitCompile.UNRECOGNIZED : result; } private byte memoizedIsInitialized = -1; @@ -358,8 +358,8 @@ public void writeTo(com.google.protobuf.CodedOutputStream output) if (inputSignature_ != null) { output.writeMessage(5, getInputSignature()); } - if (experimentalCompile_ != org.tensorflow.proto.framework.FunctionSpec.ExperimentalCompile.DEFAULT.getNumber()) { - output.writeEnum(6, experimentalCompile_); + if (jitCompile_ != org.tensorflow.proto.framework.FunctionSpec.JitCompile.DEFAULT.getNumber()) { + output.writeEnum(6, jitCompile_); } unknownFields.writeTo(output); } @@ -382,9 +382,9 @@ public int getSerializedSize() { size += com.google.protobuf.CodedOutputStream .computeMessageSize(5, getInputSignature()); } - if (experimentalCompile_ != org.tensorflow.proto.framework.FunctionSpec.ExperimentalCompile.DEFAULT.getNumber()) { + if (jitCompile_ != org.tensorflow.proto.framework.FunctionSpec.JitCompile.DEFAULT.getNumber()) { size += com.google.protobuf.CodedOutputStream - .computeEnumSize(6, experimentalCompile_); + .computeEnumSize(6, jitCompile_); } size += unknownFields.getSerializedSize(); memoizedSize = size; @@ -413,7 +413,7 @@ public boolean equals(final java.lang.Object obj) { if (!getInputSignature() .equals(other.getInputSignature())) return false; } - if (experimentalCompile_ != other.experimentalCompile_) return false; + if (jitCompile_ != other.jitCompile_) return false; if (!unknownFields.equals(other.unknownFields)) return false; return true; } @@ -436,8 +436,8 @@ public int hashCode() { hash = (37 * hash) + INPUT_SIGNATURE_FIELD_NUMBER; hash = (53 * hash) + getInputSignature().hashCode(); } - hash = (37 * hash) + EXPERIMENTAL_COMPILE_FIELD_NUMBER; - hash = (53 * hash) + experimentalCompile_; + hash = (37 * hash) + JIT_COMPILE_FIELD_NUMBER; + hash = (53 * hash) + jitCompile_; hash = (29 * hash) + unknownFields.hashCode(); memoizedHashCode = hash; return hash; @@ -590,7 +590,7 @@ public Builder clear() { inputSignature_ = null; inputSignatureBuilder_ = null; } - experimentalCompile_ = 0; + jitCompile_ = 0; return this; } @@ -629,7 +629,7 @@ public org.tensorflow.proto.framework.FunctionSpec buildPartial() { } else { result.inputSignature_ = inputSignatureBuilder_.build(); } - result.experimentalCompile_ = experimentalCompile_; + result.jitCompile_ = jitCompile_; onBuilt(); return result; } @@ -687,8 +687,8 @@ public Builder mergeFrom(org.tensorflow.proto.framework.FunctionSpec other) { if (other.hasInputSignature()) { mergeInputSignature(other.getInputSignature()); } - if (other.experimentalCompile_ != 0) { - setExperimentalCompileValue(other.getExperimentalCompileValue()); + if (other.jitCompile_ != 0) { + setJitCompileValue(other.getJitCompileValue()); } this.mergeUnknownFields(other.unknownFields); onChanged(); @@ -1063,47 +1063,47 @@ public org.tensorflow.proto.framework.StructuredValueOrBuilder getInputSignature return inputSignatureBuilder_; } - private int experimentalCompile_ = 0; + private int jitCompile_ = 0; /** - * .tensorflow.FunctionSpec.ExperimentalCompile experimental_compile = 6; + * .tensorflow.FunctionSpec.JitCompile jit_compile = 6; */ - public int getExperimentalCompileValue() { - return experimentalCompile_; + public int getJitCompileValue() { + return jitCompile_; } /** - * .tensorflow.FunctionSpec.ExperimentalCompile experimental_compile = 6; + * .tensorflow.FunctionSpec.JitCompile jit_compile = 6; */ - public Builder setExperimentalCompileValue(int value) { - experimentalCompile_ = value; + public Builder setJitCompileValue(int value) { + jitCompile_ = value; onChanged(); return this; } /** - * .tensorflow.FunctionSpec.ExperimentalCompile experimental_compile = 6; + * .tensorflow.FunctionSpec.JitCompile jit_compile = 6; */ - public org.tensorflow.proto.framework.FunctionSpec.ExperimentalCompile getExperimentalCompile() { + public org.tensorflow.proto.framework.FunctionSpec.JitCompile getJitCompile() { @SuppressWarnings("deprecation") - org.tensorflow.proto.framework.FunctionSpec.ExperimentalCompile result = org.tensorflow.proto.framework.FunctionSpec.ExperimentalCompile.valueOf(experimentalCompile_); - return result == null ? org.tensorflow.proto.framework.FunctionSpec.ExperimentalCompile.UNRECOGNIZED : result; + org.tensorflow.proto.framework.FunctionSpec.JitCompile result = org.tensorflow.proto.framework.FunctionSpec.JitCompile.valueOf(jitCompile_); + return result == null ? org.tensorflow.proto.framework.FunctionSpec.JitCompile.UNRECOGNIZED : result; } /** - * .tensorflow.FunctionSpec.ExperimentalCompile experimental_compile = 6; + * .tensorflow.FunctionSpec.JitCompile jit_compile = 6; */ - public Builder setExperimentalCompile(org.tensorflow.proto.framework.FunctionSpec.ExperimentalCompile value) { + public Builder setJitCompile(org.tensorflow.proto.framework.FunctionSpec.JitCompile value) { if (value == null) { throw new NullPointerException(); } - experimentalCompile_ = value.getNumber(); + jitCompile_ = value.getNumber(); onChanged(); return this; } /** - * .tensorflow.FunctionSpec.ExperimentalCompile experimental_compile = 6; + * .tensorflow.FunctionSpec.JitCompile jit_compile = 6; */ - public Builder clearExperimentalCompile() { + public Builder clearJitCompile() { - experimentalCompile_ = 0; + jitCompile_ = 0; onChanged(); return this; } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/FunctionSpecOrBuilder.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/FunctionSpecOrBuilder.java index 09ebc013bdc..8f2536c86b9 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/FunctionSpecOrBuilder.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/FunctionSpecOrBuilder.java @@ -67,11 +67,11 @@ public interface FunctionSpecOrBuilder extends org.tensorflow.proto.framework.StructuredValueOrBuilder getInputSignatureOrBuilder(); /** - * .tensorflow.FunctionSpec.ExperimentalCompile experimental_compile = 6; + * .tensorflow.FunctionSpec.JitCompile jit_compile = 6; */ - int getExperimentalCompileValue(); + int getJitCompileValue(); /** - * .tensorflow.FunctionSpec.ExperimentalCompile experimental_compile = 6; + * .tensorflow.FunctionSpec.JitCompile jit_compile = 6; */ - org.tensorflow.proto.framework.FunctionSpec.ExperimentalCompile getExperimentalCompile(); + org.tensorflow.proto.framework.FunctionSpec.JitCompile getJitCompile(); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/GraphDef.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/GraphDef.java index 18e75b5e768..0d67353ab03 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/GraphDef.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/GraphDef.java @@ -222,7 +222,6 @@ public org.tensorflow.proto.framework.VersionDefOrBuilder getVersionsOrBuilder() private org.tensorflow.proto.framework.FunctionDefLibrary library_; /** *
        -   * EXPERIMENTAL. DO NOT USE OR DEPEND ON THIS YET.
            * "library" provides user-defined functions.
            * Naming:
            *   * library.function.name are in a flat namespace.
        @@ -253,7 +252,6 @@ public boolean hasLibrary() {
           }
           /**
            * 
        -   * EXPERIMENTAL. DO NOT USE OR DEPEND ON THIS YET.
            * "library" provides user-defined functions.
            * Naming:
            *   * library.function.name are in a flat namespace.
        @@ -284,7 +282,6 @@ public org.tensorflow.proto.framework.FunctionDefLibrary getLibrary() {
           }
           /**
            * 
        -   * EXPERIMENTAL. DO NOT USE OR DEPEND ON THIS YET.
            * "library" provides user-defined functions.
            * Naming:
            *   * library.function.name are in a flat namespace.
        @@ -1197,7 +1194,6 @@ public org.tensorflow.proto.framework.VersionDefOrBuilder getVersionsOrBuilder()
                 org.tensorflow.proto.framework.FunctionDefLibrary, org.tensorflow.proto.framework.FunctionDefLibrary.Builder, org.tensorflow.proto.framework.FunctionDefLibraryOrBuilder> libraryBuilder_;
             /**
              * 
        -     * EXPERIMENTAL. DO NOT USE OR DEPEND ON THIS YET.
              * "library" provides user-defined functions.
              * Naming:
              *   * library.function.name are in a flat namespace.
        @@ -1228,7 +1224,6 @@ public boolean hasLibrary() {
             }
             /**
              * 
        -     * EXPERIMENTAL. DO NOT USE OR DEPEND ON THIS YET.
              * "library" provides user-defined functions.
              * Naming:
              *   * library.function.name are in a flat namespace.
        @@ -1263,7 +1258,6 @@ public org.tensorflow.proto.framework.FunctionDefLibrary getLibrary() {
             }
             /**
              * 
        -     * EXPERIMENTAL. DO NOT USE OR DEPEND ON THIS YET.
              * "library" provides user-defined functions.
              * Naming:
              *   * library.function.name are in a flat namespace.
        @@ -1304,7 +1298,6 @@ public Builder setLibrary(org.tensorflow.proto.framework.FunctionDefLibrary valu
             }
             /**
              * 
        -     * EXPERIMENTAL. DO NOT USE OR DEPEND ON THIS YET.
              * "library" provides user-defined functions.
              * Naming:
              *   * library.function.name are in a flat namespace.
        @@ -1343,7 +1336,6 @@ public Builder setLibrary(
             }
             /**
              * 
        -     * EXPERIMENTAL. DO NOT USE OR DEPEND ON THIS YET.
              * "library" provides user-defined functions.
              * Naming:
              *   * library.function.name are in a flat namespace.
        @@ -1386,7 +1378,6 @@ public Builder mergeLibrary(org.tensorflow.proto.framework.FunctionDefLibrary va
             }
             /**
              * 
        -     * EXPERIMENTAL. DO NOT USE OR DEPEND ON THIS YET.
              * "library" provides user-defined functions.
              * Naming:
              *   * library.function.name are in a flat namespace.
        @@ -1425,7 +1416,6 @@ public Builder clearLibrary() {
             }
             /**
              * 
        -     * EXPERIMENTAL. DO NOT USE OR DEPEND ON THIS YET.
              * "library" provides user-defined functions.
              * Naming:
              *   * library.function.name are in a flat namespace.
        @@ -1458,7 +1448,6 @@ public org.tensorflow.proto.framework.FunctionDefLibrary.Builder getLibraryBuild
             }
             /**
              * 
        -     * EXPERIMENTAL. DO NOT USE OR DEPEND ON THIS YET.
              * "library" provides user-defined functions.
              * Naming:
              *   * library.function.name are in a flat namespace.
        @@ -1494,7 +1483,6 @@ public org.tensorflow.proto.framework.FunctionDefLibraryOrBuilder getLibraryOrBu
             }
             /**
              * 
        -     * EXPERIMENTAL. DO NOT USE OR DEPEND ON THIS YET.
              * "library" provides user-defined functions.
              * Naming:
              *   * library.function.name are in a flat namespace.
        diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/GraphDefOrBuilder.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/GraphDefOrBuilder.java
        index 0e4ac4dca6e..9aa0a0deb22 100644
        --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/GraphDefOrBuilder.java
        +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/GraphDefOrBuilder.java
        @@ -75,7 +75,6 @@ org.tensorflow.proto.framework.NodeDefOrBuilder getNodeOrBuilder(
         
           /**
            * 
        -   * EXPERIMENTAL. DO NOT USE OR DEPEND ON THIS YET.
            * "library" provides user-defined functions.
            * Naming:
            *   * library.function.name are in a flat namespace.
        @@ -104,7 +103,6 @@ org.tensorflow.proto.framework.NodeDefOrBuilder getNodeOrBuilder(
           boolean hasLibrary();
           /**
            * 
        -   * EXPERIMENTAL. DO NOT USE OR DEPEND ON THIS YET.
            * "library" provides user-defined functions.
            * Naming:
            *   * library.function.name are in a flat namespace.
        @@ -133,7 +131,6 @@ org.tensorflow.proto.framework.NodeDefOrBuilder getNodeOrBuilder(
           org.tensorflow.proto.framework.FunctionDefLibrary getLibrary();
           /**
            * 
        -   * EXPERIMENTAL. DO NOT USE OR DEPEND ON THIS YET.
            * "library" provides user-defined functions.
            * Naming:
            *   * library.function.name are in a flat namespace.
        diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/LogNormalDistribution.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/LogNormalDistribution.java
        new file mode 100644
        index 00000000000..3164a04e0b7
        --- /dev/null
        +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/LogNormalDistribution.java
        @@ -0,0 +1,537 @@
        +// Generated by the protocol buffer compiler.  DO NOT EDIT!
        +// source: tensorflow/core/grappler/costs/op_performance_data.proto
        +
        +package org.tensorflow.proto.framework;
        +
        +/**
        + * Protobuf type {@code tensorflow.LogNormalDistribution}
        + */
        +public  final class LogNormalDistribution extends
        +    com.google.protobuf.GeneratedMessageV3 implements
        +    // @@protoc_insertion_point(message_implements:tensorflow.LogNormalDistribution)
        +    LogNormalDistributionOrBuilder {
        +private static final long serialVersionUID = 0L;
        +  // Use LogNormalDistribution.newBuilder() to construct.
        +  private LogNormalDistribution(com.google.protobuf.GeneratedMessageV3.Builder builder) {
        +    super(builder);
        +  }
        +  private LogNormalDistribution() {
        +  }
        +
        +  @java.lang.Override
        +  @SuppressWarnings({"unused"})
        +  protected java.lang.Object newInstance(
        +      UnusedPrivateParameter unused) {
        +    return new LogNormalDistribution();
        +  }
        +
        +  @java.lang.Override
        +  public final com.google.protobuf.UnknownFieldSet
        +  getUnknownFields() {
        +    return this.unknownFields;
        +  }
        +  private LogNormalDistribution(
        +      com.google.protobuf.CodedInputStream input,
        +      com.google.protobuf.ExtensionRegistryLite extensionRegistry)
        +      throws com.google.protobuf.InvalidProtocolBufferException {
        +    this();
        +    if (extensionRegistry == null) {
        +      throw new java.lang.NullPointerException();
        +    }
        +    com.google.protobuf.UnknownFieldSet.Builder unknownFields =
        +        com.google.protobuf.UnknownFieldSet.newBuilder();
        +    try {
        +      boolean done = false;
        +      while (!done) {
        +        int tag = input.readTag();
        +        switch (tag) {
        +          case 0:
        +            done = true;
        +            break;
        +          case 9: {
        +
        +            mu_ = input.readDouble();
        +            break;
        +          }
        +          case 17: {
        +
        +            sigma_ = input.readDouble();
        +            break;
        +          }
        +          default: {
        +            if (!parseUnknownField(
        +                input, unknownFields, extensionRegistry, tag)) {
        +              done = true;
        +            }
        +            break;
        +          }
        +        }
        +      }
        +    } catch (com.google.protobuf.InvalidProtocolBufferException e) {
        +      throw e.setUnfinishedMessage(this);
        +    } catch (java.io.IOException e) {
        +      throw new com.google.protobuf.InvalidProtocolBufferException(
        +          e).setUnfinishedMessage(this);
        +    } finally {
        +      this.unknownFields = unknownFields.build();
        +      makeExtensionsImmutable();
        +    }
        +  }
        +  public static final com.google.protobuf.Descriptors.Descriptor
        +      getDescriptor() {
        +    return org.tensorflow.proto.framework.OpPerformanceDataProtos.internal_static_tensorflow_LogNormalDistribution_descriptor;
        +  }
        +
        +  @java.lang.Override
        +  protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable
        +      internalGetFieldAccessorTable() {
        +    return org.tensorflow.proto.framework.OpPerformanceDataProtos.internal_static_tensorflow_LogNormalDistribution_fieldAccessorTable
        +        .ensureFieldAccessorsInitialized(
        +            org.tensorflow.proto.framework.LogNormalDistribution.class, org.tensorflow.proto.framework.LogNormalDistribution.Builder.class);
        +  }
        +
        +  public static final int MU_FIELD_NUMBER = 1;
        +  private double mu_;
        +  /**
        +   * double mu = 1;
        +   */
        +  public double getMu() {
        +    return mu_;
        +  }
        +
        +  public static final int SIGMA_FIELD_NUMBER = 2;
        +  private double sigma_;
        +  /**
        +   * double sigma = 2;
        +   */
        +  public double getSigma() {
        +    return sigma_;
        +  }
        +
        +  private byte memoizedIsInitialized = -1;
        +  @java.lang.Override
        +  public final boolean isInitialized() {
        +    byte isInitialized = memoizedIsInitialized;
        +    if (isInitialized == 1) return true;
        +    if (isInitialized == 0) return false;
        +
        +    memoizedIsInitialized = 1;
        +    return true;
        +  }
        +
        +  @java.lang.Override
        +  public void writeTo(com.google.protobuf.CodedOutputStream output)
        +                      throws java.io.IOException {
        +    if (mu_ != 0D) {
        +      output.writeDouble(1, mu_);
        +    }
        +    if (sigma_ != 0D) {
        +      output.writeDouble(2, sigma_);
        +    }
        +    unknownFields.writeTo(output);
        +  }
        +
        +  @java.lang.Override
        +  public int getSerializedSize() {
        +    int size = memoizedSize;
        +    if (size != -1) return size;
        +
        +    size = 0;
        +    if (mu_ != 0D) {
        +      size += com.google.protobuf.CodedOutputStream
        +        .computeDoubleSize(1, mu_);
        +    }
        +    if (sigma_ != 0D) {
        +      size += com.google.protobuf.CodedOutputStream
        +        .computeDoubleSize(2, sigma_);
        +    }
        +    size += unknownFields.getSerializedSize();
        +    memoizedSize = size;
        +    return size;
        +  }
        +
        +  @java.lang.Override
        +  public boolean equals(final java.lang.Object obj) {
        +    if (obj == this) {
        +     return true;
        +    }
        +    if (!(obj instanceof org.tensorflow.proto.framework.LogNormalDistribution)) {
        +      return super.equals(obj);
        +    }
        +    org.tensorflow.proto.framework.LogNormalDistribution other = (org.tensorflow.proto.framework.LogNormalDistribution) obj;
        +
        +    if (java.lang.Double.doubleToLongBits(getMu())
        +        != java.lang.Double.doubleToLongBits(
        +            other.getMu())) return false;
        +    if (java.lang.Double.doubleToLongBits(getSigma())
        +        != java.lang.Double.doubleToLongBits(
        +            other.getSigma())) return false;
        +    if (!unknownFields.equals(other.unknownFields)) return false;
        +    return true;
        +  }
        +
        +  @java.lang.Override
        +  public int hashCode() {
        +    if (memoizedHashCode != 0) {
        +      return memoizedHashCode;
        +    }
        +    int hash = 41;
        +    hash = (19 * hash) + getDescriptor().hashCode();
        +    hash = (37 * hash) + MU_FIELD_NUMBER;
        +    hash = (53 * hash) + com.google.protobuf.Internal.hashLong(
        +        java.lang.Double.doubleToLongBits(getMu()));
        +    hash = (37 * hash) + SIGMA_FIELD_NUMBER;
        +    hash = (53 * hash) + com.google.protobuf.Internal.hashLong(
        +        java.lang.Double.doubleToLongBits(getSigma()));
        +    hash = (29 * hash) + unknownFields.hashCode();
        +    memoizedHashCode = hash;
        +    return hash;
        +  }
        +
        +  public static org.tensorflow.proto.framework.LogNormalDistribution parseFrom(
        +      java.nio.ByteBuffer data)
        +      throws com.google.protobuf.InvalidProtocolBufferException {
        +    return PARSER.parseFrom(data);
        +  }
        +  public static org.tensorflow.proto.framework.LogNormalDistribution parseFrom(
        +      java.nio.ByteBuffer data,
        +      com.google.protobuf.ExtensionRegistryLite extensionRegistry)
        +      throws com.google.protobuf.InvalidProtocolBufferException {
        +    return PARSER.parseFrom(data, extensionRegistry);
        +  }
        +  public static org.tensorflow.proto.framework.LogNormalDistribution parseFrom(
        +      com.google.protobuf.ByteString data)
        +      throws com.google.protobuf.InvalidProtocolBufferException {
        +    return PARSER.parseFrom(data);
        +  }
        +  public static org.tensorflow.proto.framework.LogNormalDistribution parseFrom(
        +      com.google.protobuf.ByteString data,
        +      com.google.protobuf.ExtensionRegistryLite extensionRegistry)
        +      throws com.google.protobuf.InvalidProtocolBufferException {
        +    return PARSER.parseFrom(data, extensionRegistry);
        +  }
        +  public static org.tensorflow.proto.framework.LogNormalDistribution parseFrom(byte[] data)
        +      throws com.google.protobuf.InvalidProtocolBufferException {
        +    return PARSER.parseFrom(data);
        +  }
        +  public static org.tensorflow.proto.framework.LogNormalDistribution parseFrom(
        +      byte[] data,
        +      com.google.protobuf.ExtensionRegistryLite extensionRegistry)
        +      throws com.google.protobuf.InvalidProtocolBufferException {
        +    return PARSER.parseFrom(data, extensionRegistry);
        +  }
        +  public static org.tensorflow.proto.framework.LogNormalDistribution parseFrom(java.io.InputStream input)
        +      throws java.io.IOException {
        +    return com.google.protobuf.GeneratedMessageV3
        +        .parseWithIOException(PARSER, input);
        +  }
        +  public static org.tensorflow.proto.framework.LogNormalDistribution parseFrom(
        +      java.io.InputStream input,
        +      com.google.protobuf.ExtensionRegistryLite extensionRegistry)
        +      throws java.io.IOException {
        +    return com.google.protobuf.GeneratedMessageV3
        +        .parseWithIOException(PARSER, input, extensionRegistry);
        +  }
        +  public static org.tensorflow.proto.framework.LogNormalDistribution parseDelimitedFrom(java.io.InputStream input)
        +      throws java.io.IOException {
        +    return com.google.protobuf.GeneratedMessageV3
        +        .parseDelimitedWithIOException(PARSER, input);
        +  }
        +  public static org.tensorflow.proto.framework.LogNormalDistribution parseDelimitedFrom(
        +      java.io.InputStream input,
        +      com.google.protobuf.ExtensionRegistryLite extensionRegistry)
        +      throws java.io.IOException {
        +    return com.google.protobuf.GeneratedMessageV3
        +        .parseDelimitedWithIOException(PARSER, input, extensionRegistry);
        +  }
        +  public static org.tensorflow.proto.framework.LogNormalDistribution parseFrom(
        +      com.google.protobuf.CodedInputStream input)
        +      throws java.io.IOException {
        +    return com.google.protobuf.GeneratedMessageV3
        +        .parseWithIOException(PARSER, input);
        +  }
        +  public static org.tensorflow.proto.framework.LogNormalDistribution parseFrom(
        +      com.google.protobuf.CodedInputStream input,
        +      com.google.protobuf.ExtensionRegistryLite extensionRegistry)
        +      throws java.io.IOException {
        +    return com.google.protobuf.GeneratedMessageV3
        +        .parseWithIOException(PARSER, input, extensionRegistry);
        +  }
        +
        +  @java.lang.Override
        +  public Builder newBuilderForType() { return newBuilder(); }
        +  public static Builder newBuilder() {
        +    return DEFAULT_INSTANCE.toBuilder();
        +  }
        +  public static Builder newBuilder(org.tensorflow.proto.framework.LogNormalDistribution prototype) {
        +    return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype);
        +  }
        +  @java.lang.Override
        +  public Builder toBuilder() {
        +    return this == DEFAULT_INSTANCE
        +        ? new Builder() : new Builder().mergeFrom(this);
        +  }
        +
        +  @java.lang.Override
        +  protected Builder newBuilderForType(
        +      com.google.protobuf.GeneratedMessageV3.BuilderParent parent) {
        +    Builder builder = new Builder(parent);
        +    return builder;
        +  }
        +  /**
        +   * Protobuf type {@code tensorflow.LogNormalDistribution}
        +   */
        +  public static final class Builder extends
        +      com.google.protobuf.GeneratedMessageV3.Builder implements
        +      // @@protoc_insertion_point(builder_implements:tensorflow.LogNormalDistribution)
        +      org.tensorflow.proto.framework.LogNormalDistributionOrBuilder {
        +    public static final com.google.protobuf.Descriptors.Descriptor
        +        getDescriptor() {
        +      return org.tensorflow.proto.framework.OpPerformanceDataProtos.internal_static_tensorflow_LogNormalDistribution_descriptor;
        +    }
        +
        +    @java.lang.Override
        +    protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable
        +        internalGetFieldAccessorTable() {
        +      return org.tensorflow.proto.framework.OpPerformanceDataProtos.internal_static_tensorflow_LogNormalDistribution_fieldAccessorTable
        +          .ensureFieldAccessorsInitialized(
        +              org.tensorflow.proto.framework.LogNormalDistribution.class, org.tensorflow.proto.framework.LogNormalDistribution.Builder.class);
        +    }
        +
        +    // Construct using org.tensorflow.proto.framework.LogNormalDistribution.newBuilder()
        +    private Builder() {
        +      maybeForceBuilderInitialization();
        +    }
        +
        +    private Builder(
        +        com.google.protobuf.GeneratedMessageV3.BuilderParent parent) {
        +      super(parent);
        +      maybeForceBuilderInitialization();
        +    }
        +    private void maybeForceBuilderInitialization() {
        +      if (com.google.protobuf.GeneratedMessageV3
        +              .alwaysUseFieldBuilders) {
        +      }
        +    }
        +    @java.lang.Override
        +    public Builder clear() {
        +      super.clear();
        +      mu_ = 0D;
        +
        +      sigma_ = 0D;
        +
        +      return this;
        +    }
        +
        +    @java.lang.Override
        +    public com.google.protobuf.Descriptors.Descriptor
        +        getDescriptorForType() {
        +      return org.tensorflow.proto.framework.OpPerformanceDataProtos.internal_static_tensorflow_LogNormalDistribution_descriptor;
        +    }
        +
        +    @java.lang.Override
        +    public org.tensorflow.proto.framework.LogNormalDistribution getDefaultInstanceForType() {
        +      return org.tensorflow.proto.framework.LogNormalDistribution.getDefaultInstance();
        +    }
        +
        +    @java.lang.Override
        +    public org.tensorflow.proto.framework.LogNormalDistribution build() {
        +      org.tensorflow.proto.framework.LogNormalDistribution result = buildPartial();
        +      if (!result.isInitialized()) {
        +        throw newUninitializedMessageException(result);
        +      }
        +      return result;
        +    }
        +
        +    @java.lang.Override
        +    public org.tensorflow.proto.framework.LogNormalDistribution buildPartial() {
        +      org.tensorflow.proto.framework.LogNormalDistribution result = new org.tensorflow.proto.framework.LogNormalDistribution(this);
        +      result.mu_ = mu_;
        +      result.sigma_ = sigma_;
        +      onBuilt();
        +      return result;
        +    }
        +
        +    @java.lang.Override
        +    public Builder clone() {
        +      return super.clone();
        +    }
        +    @java.lang.Override
        +    public Builder setField(
        +        com.google.protobuf.Descriptors.FieldDescriptor field,
        +        java.lang.Object value) {
        +      return super.setField(field, value);
        +    }
        +    @java.lang.Override
        +    public Builder clearField(
        +        com.google.protobuf.Descriptors.FieldDescriptor field) {
        +      return super.clearField(field);
        +    }
        +    @java.lang.Override
        +    public Builder clearOneof(
        +        com.google.protobuf.Descriptors.OneofDescriptor oneof) {
        +      return super.clearOneof(oneof);
        +    }
        +    @java.lang.Override
        +    public Builder setRepeatedField(
        +        com.google.protobuf.Descriptors.FieldDescriptor field,
        +        int index, java.lang.Object value) {
        +      return super.setRepeatedField(field, index, value);
        +    }
        +    @java.lang.Override
        +    public Builder addRepeatedField(
        +        com.google.protobuf.Descriptors.FieldDescriptor field,
        +        java.lang.Object value) {
        +      return super.addRepeatedField(field, value);
        +    }
        +    @java.lang.Override
        +    public Builder mergeFrom(com.google.protobuf.Message other) {
        +      if (other instanceof org.tensorflow.proto.framework.LogNormalDistribution) {
        +        return mergeFrom((org.tensorflow.proto.framework.LogNormalDistribution)other);
        +      } else {
        +        super.mergeFrom(other);
        +        return this;
        +      }
        +    }
        +
        +    public Builder mergeFrom(org.tensorflow.proto.framework.LogNormalDistribution other) {
        +      if (other == org.tensorflow.proto.framework.LogNormalDistribution.getDefaultInstance()) return this;
        +      if (other.getMu() != 0D) {
        +        setMu(other.getMu());
        +      }
        +      if (other.getSigma() != 0D) {
        +        setSigma(other.getSigma());
        +      }
        +      this.mergeUnknownFields(other.unknownFields);
        +      onChanged();
        +      return this;
        +    }
        +
        +    @java.lang.Override
        +    public final boolean isInitialized() {
        +      return true;
        +    }
        +
        +    @java.lang.Override
        +    public Builder mergeFrom(
        +        com.google.protobuf.CodedInputStream input,
        +        com.google.protobuf.ExtensionRegistryLite extensionRegistry)
        +        throws java.io.IOException {
        +      org.tensorflow.proto.framework.LogNormalDistribution parsedMessage = null;
        +      try {
        +        parsedMessage = PARSER.parsePartialFrom(input, extensionRegistry);
        +      } catch (com.google.protobuf.InvalidProtocolBufferException e) {
        +        parsedMessage = (org.tensorflow.proto.framework.LogNormalDistribution) e.getUnfinishedMessage();
        +        throw e.unwrapIOException();
        +      } finally {
        +        if (parsedMessage != null) {
        +          mergeFrom(parsedMessage);
        +        }
        +      }
        +      return this;
        +    }
        +
        +    private double mu_ ;
        +    /**
        +     * double mu = 1;
        +     */
        +    public double getMu() {
        +      return mu_;
        +    }
        +    /**
        +     * double mu = 1;
        +     */
        +    public Builder setMu(double value) {
        +      
        +      mu_ = value;
        +      onChanged();
        +      return this;
        +    }
        +    /**
        +     * double mu = 1;
        +     */
        +    public Builder clearMu() {
        +      
        +      mu_ = 0D;
        +      onChanged();
        +      return this;
        +    }
        +
        +    private double sigma_ ;
        +    /**
        +     * double sigma = 2;
        +     */
        +    public double getSigma() {
        +      return sigma_;
        +    }
        +    /**
        +     * double sigma = 2;
        +     */
        +    public Builder setSigma(double value) {
        +      
        +      sigma_ = value;
        +      onChanged();
        +      return this;
        +    }
        +    /**
        +     * double sigma = 2;
        +     */
        +    public Builder clearSigma() {
        +      
        +      sigma_ = 0D;
        +      onChanged();
        +      return this;
        +    }
        +    @java.lang.Override
        +    public final Builder setUnknownFields(
        +        final com.google.protobuf.UnknownFieldSet unknownFields) {
        +      return super.setUnknownFields(unknownFields);
        +    }
        +
        +    @java.lang.Override
        +    public final Builder mergeUnknownFields(
        +        final com.google.protobuf.UnknownFieldSet unknownFields) {
        +      return super.mergeUnknownFields(unknownFields);
        +    }
        +
        +
        +    // @@protoc_insertion_point(builder_scope:tensorflow.LogNormalDistribution)
        +  }
        +
        +  // @@protoc_insertion_point(class_scope:tensorflow.LogNormalDistribution)
        +  private static final org.tensorflow.proto.framework.LogNormalDistribution DEFAULT_INSTANCE;
        +  static {
        +    DEFAULT_INSTANCE = new org.tensorflow.proto.framework.LogNormalDistribution();
        +  }
        +
        +  public static org.tensorflow.proto.framework.LogNormalDistribution getDefaultInstance() {
        +    return DEFAULT_INSTANCE;
        +  }
        +
        +  private static final com.google.protobuf.Parser
        +      PARSER = new com.google.protobuf.AbstractParser() {
        +    @java.lang.Override
        +    public LogNormalDistribution parsePartialFrom(
        +        com.google.protobuf.CodedInputStream input,
        +        com.google.protobuf.ExtensionRegistryLite extensionRegistry)
        +        throws com.google.protobuf.InvalidProtocolBufferException {
        +      return new LogNormalDistribution(input, extensionRegistry);
        +    }
        +  };
        +
        +  public static com.google.protobuf.Parser parser() {
        +    return PARSER;
        +  }
        +
        +  @java.lang.Override
        +  public com.google.protobuf.Parser getParserForType() {
        +    return PARSER;
        +  }
        +
        +  @java.lang.Override
        +  public org.tensorflow.proto.framework.LogNormalDistribution getDefaultInstanceForType() {
        +    return DEFAULT_INSTANCE;
        +  }
        +
        +}
        +
        diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/LogNormalDistributionOrBuilder.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/LogNormalDistributionOrBuilder.java
        new file mode 100644
        index 00000000000..367b5827180
        --- /dev/null
        +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/LogNormalDistributionOrBuilder.java
        @@ -0,0 +1,19 @@
        +// Generated by the protocol buffer compiler.  DO NOT EDIT!
        +// source: tensorflow/core/grappler/costs/op_performance_data.proto
        +
        +package org.tensorflow.proto.framework;
        +
        +public interface LogNormalDistributionOrBuilder extends
        +    // @@protoc_insertion_point(interface_extends:tensorflow.LogNormalDistribution)
        +    com.google.protobuf.MessageOrBuilder {
        +
        +  /**
        +   * double mu = 1;
        +   */
        +  double getMu();
        +
        +  /**
        +   * double sigma = 2;
        +   */
        +  double getSigma();
        +}
        diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/NormalDistribution.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/NormalDistribution.java
        new file mode 100644
        index 00000000000..976cb57df20
        --- /dev/null
        +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/NormalDistribution.java
        @@ -0,0 +1,537 @@
        +// Generated by the protocol buffer compiler.  DO NOT EDIT!
        +// source: tensorflow/core/grappler/costs/op_performance_data.proto
        +
        +package org.tensorflow.proto.framework;
        +
        +/**
        + * Protobuf type {@code tensorflow.NormalDistribution}
        + */
        +public  final class NormalDistribution extends
        +    com.google.protobuf.GeneratedMessageV3 implements
        +    // @@protoc_insertion_point(message_implements:tensorflow.NormalDistribution)
        +    NormalDistributionOrBuilder {
        +private static final long serialVersionUID = 0L;
        +  // Use NormalDistribution.newBuilder() to construct.
        +  private NormalDistribution(com.google.protobuf.GeneratedMessageV3.Builder builder) {
        +    super(builder);
        +  }
        +  private NormalDistribution() {
        +  }
        +
        +  @java.lang.Override
        +  @SuppressWarnings({"unused"})
        +  protected java.lang.Object newInstance(
        +      UnusedPrivateParameter unused) {
        +    return new NormalDistribution();
        +  }
        +
        +  @java.lang.Override
        +  public final com.google.protobuf.UnknownFieldSet
        +  getUnknownFields() {
        +    return this.unknownFields;
        +  }
        +  private NormalDistribution(
        +      com.google.protobuf.CodedInputStream input,
        +      com.google.protobuf.ExtensionRegistryLite extensionRegistry)
        +      throws com.google.protobuf.InvalidProtocolBufferException {
        +    this();
        +    if (extensionRegistry == null) {
        +      throw new java.lang.NullPointerException();
        +    }
        +    com.google.protobuf.UnknownFieldSet.Builder unknownFields =
        +        com.google.protobuf.UnknownFieldSet.newBuilder();
        +    try {
        +      boolean done = false;
        +      while (!done) {
        +        int tag = input.readTag();
        +        switch (tag) {
        +          case 0:
        +            done = true;
        +            break;
        +          case 9: {
        +
        +            mu_ = input.readDouble();
        +            break;
        +          }
        +          case 17: {
        +
        +            sigma_ = input.readDouble();
        +            break;
        +          }
        +          default: {
        +            if (!parseUnknownField(
        +                input, unknownFields, extensionRegistry, tag)) {
        +              done = true;
        +            }
        +            break;
        +          }
        +        }
        +      }
        +    } catch (com.google.protobuf.InvalidProtocolBufferException e) {
        +      throw e.setUnfinishedMessage(this);
        +    } catch (java.io.IOException e) {
        +      throw new com.google.protobuf.InvalidProtocolBufferException(
        +          e).setUnfinishedMessage(this);
        +    } finally {
        +      this.unknownFields = unknownFields.build();
        +      makeExtensionsImmutable();
        +    }
        +  }
        +  public static final com.google.protobuf.Descriptors.Descriptor
        +      getDescriptor() {
        +    return org.tensorflow.proto.framework.OpPerformanceDataProtos.internal_static_tensorflow_NormalDistribution_descriptor;
        +  }
        +
        +  @java.lang.Override
        +  protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable
        +      internalGetFieldAccessorTable() {
        +    return org.tensorflow.proto.framework.OpPerformanceDataProtos.internal_static_tensorflow_NormalDistribution_fieldAccessorTable
        +        .ensureFieldAccessorsInitialized(
        +            org.tensorflow.proto.framework.NormalDistribution.class, org.tensorflow.proto.framework.NormalDistribution.Builder.class);
        +  }
        +
        +  public static final int MU_FIELD_NUMBER = 1;
        +  private double mu_;
        +  /**
        +   * double mu = 1;
        +   */
        +  public double getMu() {
        +    return mu_;
        +  }
        +
        +  public static final int SIGMA_FIELD_NUMBER = 2;
        +  private double sigma_;
        +  /**
        +   * double sigma = 2;
        +   */
        +  public double getSigma() {
        +    return sigma_;
        +  }
        +
        +  private byte memoizedIsInitialized = -1;
        +  @java.lang.Override
        +  public final boolean isInitialized() {
        +    byte isInitialized = memoizedIsInitialized;
        +    if (isInitialized == 1) return true;
        +    if (isInitialized == 0) return false;
        +
        +    memoizedIsInitialized = 1;
        +    return true;
        +  }
        +
        +  @java.lang.Override
        +  public void writeTo(com.google.protobuf.CodedOutputStream output)
        +                      throws java.io.IOException {
        +    if (mu_ != 0D) {
        +      output.writeDouble(1, mu_);
        +    }
        +    if (sigma_ != 0D) {
        +      output.writeDouble(2, sigma_);
        +    }
        +    unknownFields.writeTo(output);
        +  }
        +
        +  @java.lang.Override
        +  public int getSerializedSize() {
        +    int size = memoizedSize;
        +    if (size != -1) return size;
        +
        +    size = 0;
        +    if (mu_ != 0D) {
        +      size += com.google.protobuf.CodedOutputStream
        +        .computeDoubleSize(1, mu_);
        +    }
        +    if (sigma_ != 0D) {
        +      size += com.google.protobuf.CodedOutputStream
        +        .computeDoubleSize(2, sigma_);
        +    }
        +    size += unknownFields.getSerializedSize();
        +    memoizedSize = size;
        +    return size;
        +  }
        +
        +  @java.lang.Override
        +  public boolean equals(final java.lang.Object obj) {
        +    if (obj == this) {
        +     return true;
        +    }
        +    if (!(obj instanceof org.tensorflow.proto.framework.NormalDistribution)) {
        +      return super.equals(obj);
        +    }
        +    org.tensorflow.proto.framework.NormalDistribution other = (org.tensorflow.proto.framework.NormalDistribution) obj;
        +
        +    if (java.lang.Double.doubleToLongBits(getMu())
        +        != java.lang.Double.doubleToLongBits(
        +            other.getMu())) return false;
        +    if (java.lang.Double.doubleToLongBits(getSigma())
        +        != java.lang.Double.doubleToLongBits(
        +            other.getSigma())) return false;
        +    if (!unknownFields.equals(other.unknownFields)) return false;
        +    return true;
        +  }
        +
        +  @java.lang.Override
        +  public int hashCode() {
        +    if (memoizedHashCode != 0) {
        +      return memoizedHashCode;
        +    }
        +    int hash = 41;
        +    hash = (19 * hash) + getDescriptor().hashCode();
        +    hash = (37 * hash) + MU_FIELD_NUMBER;
        +    hash = (53 * hash) + com.google.protobuf.Internal.hashLong(
        +        java.lang.Double.doubleToLongBits(getMu()));
        +    hash = (37 * hash) + SIGMA_FIELD_NUMBER;
        +    hash = (53 * hash) + com.google.protobuf.Internal.hashLong(
        +        java.lang.Double.doubleToLongBits(getSigma()));
        +    hash = (29 * hash) + unknownFields.hashCode();
        +    memoizedHashCode = hash;
        +    return hash;
        +  }
        +
        +  public static org.tensorflow.proto.framework.NormalDistribution parseFrom(
        +      java.nio.ByteBuffer data)
        +      throws com.google.protobuf.InvalidProtocolBufferException {
        +    return PARSER.parseFrom(data);
        +  }
        +  public static org.tensorflow.proto.framework.NormalDistribution parseFrom(
        +      java.nio.ByteBuffer data,
        +      com.google.protobuf.ExtensionRegistryLite extensionRegistry)
        +      throws com.google.protobuf.InvalidProtocolBufferException {
        +    return PARSER.parseFrom(data, extensionRegistry);
        +  }
        +  public static org.tensorflow.proto.framework.NormalDistribution parseFrom(
        +      com.google.protobuf.ByteString data)
        +      throws com.google.protobuf.InvalidProtocolBufferException {
        +    return PARSER.parseFrom(data);
        +  }
        +  public static org.tensorflow.proto.framework.NormalDistribution parseFrom(
        +      com.google.protobuf.ByteString data,
        +      com.google.protobuf.ExtensionRegistryLite extensionRegistry)
        +      throws com.google.protobuf.InvalidProtocolBufferException {
        +    return PARSER.parseFrom(data, extensionRegistry);
        +  }
        +  public static org.tensorflow.proto.framework.NormalDistribution parseFrom(byte[] data)
        +      throws com.google.protobuf.InvalidProtocolBufferException {
        +    return PARSER.parseFrom(data);
        +  }
        +  public static org.tensorflow.proto.framework.NormalDistribution parseFrom(
        +      byte[] data,
        +      com.google.protobuf.ExtensionRegistryLite extensionRegistry)
        +      throws com.google.protobuf.InvalidProtocolBufferException {
        +    return PARSER.parseFrom(data, extensionRegistry);
        +  }
        +  public static org.tensorflow.proto.framework.NormalDistribution parseFrom(java.io.InputStream input)
        +      throws java.io.IOException {
        +    return com.google.protobuf.GeneratedMessageV3
        +        .parseWithIOException(PARSER, input);
        +  }
        +  public static org.tensorflow.proto.framework.NormalDistribution parseFrom(
        +      java.io.InputStream input,
        +      com.google.protobuf.ExtensionRegistryLite extensionRegistry)
        +      throws java.io.IOException {
        +    return com.google.protobuf.GeneratedMessageV3
        +        .parseWithIOException(PARSER, input, extensionRegistry);
        +  }
        +  public static org.tensorflow.proto.framework.NormalDistribution parseDelimitedFrom(java.io.InputStream input)
        +      throws java.io.IOException {
        +    return com.google.protobuf.GeneratedMessageV3
        +        .parseDelimitedWithIOException(PARSER, input);
        +  }
        +  public static org.tensorflow.proto.framework.NormalDistribution parseDelimitedFrom(
        +      java.io.InputStream input,
        +      com.google.protobuf.ExtensionRegistryLite extensionRegistry)
        +      throws java.io.IOException {
        +    return com.google.protobuf.GeneratedMessageV3
        +        .parseDelimitedWithIOException(PARSER, input, extensionRegistry);
        +  }
        +  public static org.tensorflow.proto.framework.NormalDistribution parseFrom(
        +      com.google.protobuf.CodedInputStream input)
        +      throws java.io.IOException {
        +    return com.google.protobuf.GeneratedMessageV3
        +        .parseWithIOException(PARSER, input);
        +  }
        +  public static org.tensorflow.proto.framework.NormalDistribution parseFrom(
        +      com.google.protobuf.CodedInputStream input,
        +      com.google.protobuf.ExtensionRegistryLite extensionRegistry)
        +      throws java.io.IOException {
        +    return com.google.protobuf.GeneratedMessageV3
        +        .parseWithIOException(PARSER, input, extensionRegistry);
        +  }
        +
        +  @java.lang.Override
        +  public Builder newBuilderForType() { return newBuilder(); }
        +  public static Builder newBuilder() {
        +    return DEFAULT_INSTANCE.toBuilder();
        +  }
        +  public static Builder newBuilder(org.tensorflow.proto.framework.NormalDistribution prototype) {
        +    return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype);
        +  }
        +  @java.lang.Override
        +  public Builder toBuilder() {
        +    return this == DEFAULT_INSTANCE
        +        ? new Builder() : new Builder().mergeFrom(this);
        +  }
        +
        +  @java.lang.Override
        +  protected Builder newBuilderForType(
        +      com.google.protobuf.GeneratedMessageV3.BuilderParent parent) {
        +    Builder builder = new Builder(parent);
        +    return builder;
        +  }
        +  /**
        +   * Protobuf type {@code tensorflow.NormalDistribution}
        +   */
        +  public static final class Builder extends
        +      com.google.protobuf.GeneratedMessageV3.Builder implements
        +      // @@protoc_insertion_point(builder_implements:tensorflow.NormalDistribution)
        +      org.tensorflow.proto.framework.NormalDistributionOrBuilder {
        +    public static final com.google.protobuf.Descriptors.Descriptor
        +        getDescriptor() {
        +      return org.tensorflow.proto.framework.OpPerformanceDataProtos.internal_static_tensorflow_NormalDistribution_descriptor;
        +    }
        +
        +    @java.lang.Override
        +    protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable
        +        internalGetFieldAccessorTable() {
        +      return org.tensorflow.proto.framework.OpPerformanceDataProtos.internal_static_tensorflow_NormalDistribution_fieldAccessorTable
        +          .ensureFieldAccessorsInitialized(
        +              org.tensorflow.proto.framework.NormalDistribution.class, org.tensorflow.proto.framework.NormalDistribution.Builder.class);
        +    }
        +
        +    // Construct using org.tensorflow.proto.framework.NormalDistribution.newBuilder()
        +    private Builder() {
        +      maybeForceBuilderInitialization();
        +    }
        +
        +    private Builder(
        +        com.google.protobuf.GeneratedMessageV3.BuilderParent parent) {
        +      super(parent);
        +      maybeForceBuilderInitialization();
        +    }
        +    private void maybeForceBuilderInitialization() {
        +      if (com.google.protobuf.GeneratedMessageV3
        +              .alwaysUseFieldBuilders) {
        +      }
        +    }
        +    @java.lang.Override
        +    public Builder clear() {
        +      super.clear();
        +      mu_ = 0D;
        +
        +      sigma_ = 0D;
        +
        +      return this;
        +    }
        +
        +    @java.lang.Override
        +    public com.google.protobuf.Descriptors.Descriptor
        +        getDescriptorForType() {
        +      return org.tensorflow.proto.framework.OpPerformanceDataProtos.internal_static_tensorflow_NormalDistribution_descriptor;
        +    }
        +
        +    @java.lang.Override
        +    public org.tensorflow.proto.framework.NormalDistribution getDefaultInstanceForType() {
        +      return org.tensorflow.proto.framework.NormalDistribution.getDefaultInstance();
        +    }
        +
        +    @java.lang.Override
        +    public org.tensorflow.proto.framework.NormalDistribution build() {
        +      org.tensorflow.proto.framework.NormalDistribution result = buildPartial();
        +      if (!result.isInitialized()) {
        +        throw newUninitializedMessageException(result);
        +      }
        +      return result;
        +    }
        +
        +    @java.lang.Override
        +    public org.tensorflow.proto.framework.NormalDistribution buildPartial() {
        +      org.tensorflow.proto.framework.NormalDistribution result = new org.tensorflow.proto.framework.NormalDistribution(this);
        +      result.mu_ = mu_;
        +      result.sigma_ = sigma_;
        +      onBuilt();
        +      return result;
        +    }
        +
        +    @java.lang.Override
        +    public Builder clone() {
        +      return super.clone();
        +    }
        +    @java.lang.Override
        +    public Builder setField(
        +        com.google.protobuf.Descriptors.FieldDescriptor field,
        +        java.lang.Object value) {
        +      return super.setField(field, value);
        +    }
        +    @java.lang.Override
        +    public Builder clearField(
        +        com.google.protobuf.Descriptors.FieldDescriptor field) {
        +      return super.clearField(field);
        +    }
        +    @java.lang.Override
        +    public Builder clearOneof(
        +        com.google.protobuf.Descriptors.OneofDescriptor oneof) {
        +      return super.clearOneof(oneof);
        +    }
        +    @java.lang.Override
        +    public Builder setRepeatedField(
        +        com.google.protobuf.Descriptors.FieldDescriptor field,
        +        int index, java.lang.Object value) {
        +      return super.setRepeatedField(field, index, value);
        +    }
        +    @java.lang.Override
        +    public Builder addRepeatedField(
        +        com.google.protobuf.Descriptors.FieldDescriptor field,
        +        java.lang.Object value) {
        +      return super.addRepeatedField(field, value);
        +    }
        +    @java.lang.Override
        +    public Builder mergeFrom(com.google.protobuf.Message other) {
        +      if (other instanceof org.tensorflow.proto.framework.NormalDistribution) {
        +        return mergeFrom((org.tensorflow.proto.framework.NormalDistribution)other);
        +      } else {
        +        super.mergeFrom(other);
        +        return this;
        +      }
        +    }
        +
        +    public Builder mergeFrom(org.tensorflow.proto.framework.NormalDistribution other) {
        +      if (other == org.tensorflow.proto.framework.NormalDistribution.getDefaultInstance()) return this;
        +      if (other.getMu() != 0D) {
        +        setMu(other.getMu());
        +      }
        +      if (other.getSigma() != 0D) {
        +        setSigma(other.getSigma());
        +      }
        +      this.mergeUnknownFields(other.unknownFields);
        +      onChanged();
        +      return this;
        +    }
        +
        +    @java.lang.Override
        +    public final boolean isInitialized() {
        +      return true;
        +    }
        +
        +    @java.lang.Override
        +    public Builder mergeFrom(
        +        com.google.protobuf.CodedInputStream input,
        +        com.google.protobuf.ExtensionRegistryLite extensionRegistry)
        +        throws java.io.IOException {
        +      org.tensorflow.proto.framework.NormalDistribution parsedMessage = null;
        +      try {
        +        parsedMessage = PARSER.parsePartialFrom(input, extensionRegistry);
        +      } catch (com.google.protobuf.InvalidProtocolBufferException e) {
        +        parsedMessage = (org.tensorflow.proto.framework.NormalDistribution) e.getUnfinishedMessage();
        +        throw e.unwrapIOException();
        +      } finally {
        +        if (parsedMessage != null) {
        +          mergeFrom(parsedMessage);
        +        }
        +      }
        +      return this;
        +    }
        +
        +    private double mu_ ;
        +    /**
        +     * double mu = 1;
        +     */
        +    public double getMu() {
        +      return mu_;
        +    }
        +    /**
        +     * double mu = 1;
        +     */
        +    public Builder setMu(double value) {
        +      
        +      mu_ = value;
        +      onChanged();
        +      return this;
        +    }
        +    /**
        +     * double mu = 1;
        +     */
        +    public Builder clearMu() {
        +      
        +      mu_ = 0D;
        +      onChanged();
        +      return this;
        +    }
        +
        +    private double sigma_ ;
        +    /**
        +     * double sigma = 2;
        +     */
        +    public double getSigma() {
        +      return sigma_;
        +    }
        +    /**
        +     * double sigma = 2;
        +     */
        +    public Builder setSigma(double value) {
        +      
        +      sigma_ = value;
        +      onChanged();
        +      return this;
        +    }
        +    /**
        +     * double sigma = 2;
        +     */
        +    public Builder clearSigma() {
        +      
        +      sigma_ = 0D;
        +      onChanged();
        +      return this;
        +    }
        +    @java.lang.Override
        +    public final Builder setUnknownFields(
        +        final com.google.protobuf.UnknownFieldSet unknownFields) {
        +      return super.setUnknownFields(unknownFields);
        +    }
        +
        +    @java.lang.Override
        +    public final Builder mergeUnknownFields(
        +        final com.google.protobuf.UnknownFieldSet unknownFields) {
        +      return super.mergeUnknownFields(unknownFields);
        +    }
        +
        +
        +    // @@protoc_insertion_point(builder_scope:tensorflow.NormalDistribution)
        +  }
        +
        +  // @@protoc_insertion_point(class_scope:tensorflow.NormalDistribution)
        +  private static final org.tensorflow.proto.framework.NormalDistribution DEFAULT_INSTANCE;
        +  static {
        +    DEFAULT_INSTANCE = new org.tensorflow.proto.framework.NormalDistribution();
        +  }
        +
        +  public static org.tensorflow.proto.framework.NormalDistribution getDefaultInstance() {
        +    return DEFAULT_INSTANCE;
        +  }
        +
        +  private static final com.google.protobuf.Parser
        +      PARSER = new com.google.protobuf.AbstractParser() {
        +    @java.lang.Override
        +    public NormalDistribution parsePartialFrom(
        +        com.google.protobuf.CodedInputStream input,
        +        com.google.protobuf.ExtensionRegistryLite extensionRegistry)
        +        throws com.google.protobuf.InvalidProtocolBufferException {
        +      return new NormalDistribution(input, extensionRegistry);
        +    }
        +  };
        +
        +  public static com.google.protobuf.Parser parser() {
        +    return PARSER;
        +  }
        +
        +  @java.lang.Override
        +  public com.google.protobuf.Parser getParserForType() {
        +    return PARSER;
        +  }
        +
        +  @java.lang.Override
        +  public org.tensorflow.proto.framework.NormalDistribution getDefaultInstanceForType() {
        +    return DEFAULT_INSTANCE;
        +  }
        +
        +}
        +
        diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/NormalDistributionOrBuilder.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/NormalDistributionOrBuilder.java
        new file mode 100644
        index 00000000000..4b2c75b1f24
        --- /dev/null
        +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/NormalDistributionOrBuilder.java
        @@ -0,0 +1,19 @@
        +// Generated by the protocol buffer compiler.  DO NOT EDIT!
        +// source: tensorflow/core/grappler/costs/op_performance_data.proto
        +
        +package org.tensorflow.proto.framework;
        +
        +public interface NormalDistributionOrBuilder extends
        +    // @@protoc_insertion_point(interface_extends:tensorflow.NormalDistribution)
        +    com.google.protobuf.MessageOrBuilder {
        +
        +  /**
        +   * double mu = 1;
        +   */
        +  double getMu();
        +
        +  /**
        +   * double sigma = 2;
        +   */
        +  double getSigma();
        +}
        diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/OpDef.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/OpDef.java
        index 80839f48dcc..958471427f3 100644
        --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/OpDef.java
        +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/OpDef.java
        @@ -324,6 +324,50 @@ public interface ArgDefOrBuilder extends
             com.google.protobuf.ByteString
                 getTypeListAttrBytes();
         
        +    /**
        +     * 
        +     * The handle data for resource inputs.
        +     * 
        + * + * repeated .tensorflow.ResourceHandleProto.DtypeAndShape handle_data = 7; + */ + java.util.List + getHandleDataList(); + /** + *
        +     * The handle data for resource inputs.
        +     * 
        + * + * repeated .tensorflow.ResourceHandleProto.DtypeAndShape handle_data = 7; + */ + org.tensorflow.proto.framework.ResourceHandleProto.DtypeAndShape getHandleData(int index); + /** + *
        +     * The handle data for resource inputs.
        +     * 
        + * + * repeated .tensorflow.ResourceHandleProto.DtypeAndShape handle_data = 7; + */ + int getHandleDataCount(); + /** + *
        +     * The handle data for resource inputs.
        +     * 
        + * + * repeated .tensorflow.ResourceHandleProto.DtypeAndShape handle_data = 7; + */ + java.util.List + getHandleDataOrBuilderList(); + /** + *
        +     * The handle data for resource inputs.
        +     * 
        + * + * repeated .tensorflow.ResourceHandleProto.DtypeAndShape handle_data = 7; + */ + org.tensorflow.proto.framework.ResourceHandleProto.DtypeAndShapeOrBuilder getHandleDataOrBuilder( + int index); + /** *
              * For inputs: if true, the inputs are required to be refs.
        @@ -358,6 +402,7 @@ private ArgDef() {
               typeAttr_ = "";
               numberAttr_ = "";
               typeListAttr_ = "";
        +      handleData_ = java.util.Collections.emptyList();
             }
         
             @java.lang.Override
        @@ -380,6 +425,7 @@ private ArgDef(
               if (extensionRegistry == null) {
                 throw new java.lang.NullPointerException();
               }
        +      int mutable_bitField0_ = 0;
               com.google.protobuf.UnknownFieldSet.Builder unknownFields =
                   com.google.protobuf.UnknownFieldSet.newBuilder();
               try {
        @@ -426,6 +472,15 @@ private ArgDef(
                       typeListAttr_ = s;
                       break;
                     }
        +            case 58: {
        +              if (!((mutable_bitField0_ & 0x00000001) != 0)) {
        +                handleData_ = new java.util.ArrayList();
        +                mutable_bitField0_ |= 0x00000001;
        +              }
        +              handleData_.add(
        +                  input.readMessage(org.tensorflow.proto.framework.ResourceHandleProto.DtypeAndShape.parser(), extensionRegistry));
        +              break;
        +            }
                     case 128: {
         
                       isRef_ = input.readBool();
        @@ -446,6 +501,9 @@ private ArgDef(
                 throw new com.google.protobuf.InvalidProtocolBufferException(
                     e).setUnfinishedMessage(this);
               } finally {
        +        if (((mutable_bitField0_ & 0x00000001) != 0)) {
        +          handleData_ = java.util.Collections.unmodifiableList(handleData_);
        +        }
                 this.unknownFields = unknownFields.build();
                 makeExtensionsImmutable();
               }
        @@ -718,6 +776,61 @@ public java.lang.String getTypeListAttr() {
               }
             }
         
        +    public static final int HANDLE_DATA_FIELD_NUMBER = 7;
        +    private java.util.List handleData_;
        +    /**
        +     * 
        +     * The handle data for resource inputs.
        +     * 
        + * + * repeated .tensorflow.ResourceHandleProto.DtypeAndShape handle_data = 7; + */ + public java.util.List getHandleDataList() { + return handleData_; + } + /** + *
        +     * The handle data for resource inputs.
        +     * 
        + * + * repeated .tensorflow.ResourceHandleProto.DtypeAndShape handle_data = 7; + */ + public java.util.List + getHandleDataOrBuilderList() { + return handleData_; + } + /** + *
        +     * The handle data for resource inputs.
        +     * 
        + * + * repeated .tensorflow.ResourceHandleProto.DtypeAndShape handle_data = 7; + */ + public int getHandleDataCount() { + return handleData_.size(); + } + /** + *
        +     * The handle data for resource inputs.
        +     * 
        + * + * repeated .tensorflow.ResourceHandleProto.DtypeAndShape handle_data = 7; + */ + public org.tensorflow.proto.framework.ResourceHandleProto.DtypeAndShape getHandleData(int index) { + return handleData_.get(index); + } + /** + *
        +     * The handle data for resource inputs.
        +     * 
        + * + * repeated .tensorflow.ResourceHandleProto.DtypeAndShape handle_data = 7; + */ + public org.tensorflow.proto.framework.ResourceHandleProto.DtypeAndShapeOrBuilder getHandleDataOrBuilder( + int index) { + return handleData_.get(index); + } + public static final int IS_REF_FIELD_NUMBER = 16; private boolean isRef_; /** @@ -765,6 +878,9 @@ public void writeTo(com.google.protobuf.CodedOutputStream output) if (!getTypeListAttrBytes().isEmpty()) { com.google.protobuf.GeneratedMessageV3.writeString(output, 6, typeListAttr_); } + for (int i = 0; i < handleData_.size(); i++) { + output.writeMessage(7, handleData_.get(i)); + } if (isRef_ != false) { output.writeBool(16, isRef_); } @@ -796,6 +912,10 @@ public int getSerializedSize() { if (!getTypeListAttrBytes().isEmpty()) { size += com.google.protobuf.GeneratedMessageV3.computeStringSize(6, typeListAttr_); } + for (int i = 0; i < handleData_.size(); i++) { + size += com.google.protobuf.CodedOutputStream + .computeMessageSize(7, handleData_.get(i)); + } if (isRef_ != false) { size += com.google.protobuf.CodedOutputStream .computeBoolSize(16, isRef_); @@ -826,6 +946,8 @@ public boolean equals(final java.lang.Object obj) { .equals(other.getNumberAttr())) return false; if (!getTypeListAttr() .equals(other.getTypeListAttr())) return false; + if (!getHandleDataList() + .equals(other.getHandleDataList())) return false; if (getIsRef() != other.getIsRef()) return false; if (!unknownFields.equals(other.unknownFields)) return false; @@ -851,6 +973,10 @@ public int hashCode() { hash = (53 * hash) + getNumberAttr().hashCode(); hash = (37 * hash) + TYPE_LIST_ATTR_FIELD_NUMBER; hash = (53 * hash) + getTypeListAttr().hashCode(); + if (getHandleDataCount() > 0) { + hash = (37 * hash) + HANDLE_DATA_FIELD_NUMBER; + hash = (53 * hash) + getHandleDataList().hashCode(); + } hash = (37 * hash) + IS_REF_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashBoolean( getIsRef()); @@ -986,6 +1112,7 @@ private Builder( private void maybeForceBuilderInitialization() { if (com.google.protobuf.GeneratedMessageV3 .alwaysUseFieldBuilders) { + getHandleDataFieldBuilder(); } } @java.lang.Override @@ -1003,6 +1130,12 @@ public Builder clear() { typeListAttr_ = ""; + if (handleDataBuilder_ == null) { + handleData_ = java.util.Collections.emptyList(); + bitField0_ = (bitField0_ & ~0x00000001); + } else { + handleDataBuilder_.clear(); + } isRef_ = false; return this; @@ -1031,12 +1164,22 @@ public org.tensorflow.proto.framework.OpDef.ArgDef build() { @java.lang.Override public org.tensorflow.proto.framework.OpDef.ArgDef buildPartial() { org.tensorflow.proto.framework.OpDef.ArgDef result = new org.tensorflow.proto.framework.OpDef.ArgDef(this); + int from_bitField0_ = bitField0_; result.name_ = name_; result.description_ = description_; result.type_ = type_; result.typeAttr_ = typeAttr_; result.numberAttr_ = numberAttr_; result.typeListAttr_ = typeListAttr_; + if (handleDataBuilder_ == null) { + if (((bitField0_ & 0x00000001) != 0)) { + handleData_ = java.util.Collections.unmodifiableList(handleData_); + bitField0_ = (bitField0_ & ~0x00000001); + } + result.handleData_ = handleData_; + } else { + result.handleData_ = handleDataBuilder_.build(); + } result.isRef_ = isRef_; onBuilt(); return result; @@ -1109,6 +1252,32 @@ public Builder mergeFrom(org.tensorflow.proto.framework.OpDef.ArgDef other) { typeListAttr_ = other.typeListAttr_; onChanged(); } + if (handleDataBuilder_ == null) { + if (!other.handleData_.isEmpty()) { + if (handleData_.isEmpty()) { + handleData_ = other.handleData_; + bitField0_ = (bitField0_ & ~0x00000001); + } else { + ensureHandleDataIsMutable(); + handleData_.addAll(other.handleData_); + } + onChanged(); + } + } else { + if (!other.handleData_.isEmpty()) { + if (handleDataBuilder_.isEmpty()) { + handleDataBuilder_.dispose(); + handleDataBuilder_ = null; + handleData_ = other.handleData_; + bitField0_ = (bitField0_ & ~0x00000001); + handleDataBuilder_ = + com.google.protobuf.GeneratedMessageV3.alwaysUseFieldBuilders ? + getHandleDataFieldBuilder() : null; + } else { + handleDataBuilder_.addAllMessages(other.handleData_); + } + } + } if (other.getIsRef() != false) { setIsRef(other.getIsRef()); } @@ -1140,6 +1309,7 @@ public Builder mergeFrom( } return this; } + private int bitField0_; private java.lang.Object name_ = ""; /** @@ -1701,6 +1871,318 @@ public Builder setTypeListAttrBytes( return this; } + private java.util.List handleData_ = + java.util.Collections.emptyList(); + private void ensureHandleDataIsMutable() { + if (!((bitField0_ & 0x00000001) != 0)) { + handleData_ = new java.util.ArrayList(handleData_); + bitField0_ |= 0x00000001; + } + } + + private com.google.protobuf.RepeatedFieldBuilderV3< + org.tensorflow.proto.framework.ResourceHandleProto.DtypeAndShape, org.tensorflow.proto.framework.ResourceHandleProto.DtypeAndShape.Builder, org.tensorflow.proto.framework.ResourceHandleProto.DtypeAndShapeOrBuilder> handleDataBuilder_; + + /** + *
        +       * The handle data for resource inputs.
        +       * 
        + * + * repeated .tensorflow.ResourceHandleProto.DtypeAndShape handle_data = 7; + */ + public java.util.List getHandleDataList() { + if (handleDataBuilder_ == null) { + return java.util.Collections.unmodifiableList(handleData_); + } else { + return handleDataBuilder_.getMessageList(); + } + } + /** + *
        +       * The handle data for resource inputs.
        +       * 
        + * + * repeated .tensorflow.ResourceHandleProto.DtypeAndShape handle_data = 7; + */ + public int getHandleDataCount() { + if (handleDataBuilder_ == null) { + return handleData_.size(); + } else { + return handleDataBuilder_.getCount(); + } + } + /** + *
        +       * The handle data for resource inputs.
        +       * 
        + * + * repeated .tensorflow.ResourceHandleProto.DtypeAndShape handle_data = 7; + */ + public org.tensorflow.proto.framework.ResourceHandleProto.DtypeAndShape getHandleData(int index) { + if (handleDataBuilder_ == null) { + return handleData_.get(index); + } else { + return handleDataBuilder_.getMessage(index); + } + } + /** + *
        +       * The handle data for resource inputs.
        +       * 
        + * + * repeated .tensorflow.ResourceHandleProto.DtypeAndShape handle_data = 7; + */ + public Builder setHandleData( + int index, org.tensorflow.proto.framework.ResourceHandleProto.DtypeAndShape value) { + if (handleDataBuilder_ == null) { + if (value == null) { + throw new NullPointerException(); + } + ensureHandleDataIsMutable(); + handleData_.set(index, value); + onChanged(); + } else { + handleDataBuilder_.setMessage(index, value); + } + return this; + } + /** + *
        +       * The handle data for resource inputs.
        +       * 
        + * + * repeated .tensorflow.ResourceHandleProto.DtypeAndShape handle_data = 7; + */ + public Builder setHandleData( + int index, org.tensorflow.proto.framework.ResourceHandleProto.DtypeAndShape.Builder builderForValue) { + if (handleDataBuilder_ == null) { + ensureHandleDataIsMutable(); + handleData_.set(index, builderForValue.build()); + onChanged(); + } else { + handleDataBuilder_.setMessage(index, builderForValue.build()); + } + return this; + } + /** + *
        +       * The handle data for resource inputs.
        +       * 
        + * + * repeated .tensorflow.ResourceHandleProto.DtypeAndShape handle_data = 7; + */ + public Builder addHandleData(org.tensorflow.proto.framework.ResourceHandleProto.DtypeAndShape value) { + if (handleDataBuilder_ == null) { + if (value == null) { + throw new NullPointerException(); + } + ensureHandleDataIsMutable(); + handleData_.add(value); + onChanged(); + } else { + handleDataBuilder_.addMessage(value); + } + return this; + } + /** + *
        +       * The handle data for resource inputs.
        +       * 
        + * + * repeated .tensorflow.ResourceHandleProto.DtypeAndShape handle_data = 7; + */ + public Builder addHandleData( + int index, org.tensorflow.proto.framework.ResourceHandleProto.DtypeAndShape value) { + if (handleDataBuilder_ == null) { + if (value == null) { + throw new NullPointerException(); + } + ensureHandleDataIsMutable(); + handleData_.add(index, value); + onChanged(); + } else { + handleDataBuilder_.addMessage(index, value); + } + return this; + } + /** + *
        +       * The handle data for resource inputs.
        +       * 
        + * + * repeated .tensorflow.ResourceHandleProto.DtypeAndShape handle_data = 7; + */ + public Builder addHandleData( + org.tensorflow.proto.framework.ResourceHandleProto.DtypeAndShape.Builder builderForValue) { + if (handleDataBuilder_ == null) { + ensureHandleDataIsMutable(); + handleData_.add(builderForValue.build()); + onChanged(); + } else { + handleDataBuilder_.addMessage(builderForValue.build()); + } + return this; + } + /** + *
        +       * The handle data for resource inputs.
        +       * 
        + * + * repeated .tensorflow.ResourceHandleProto.DtypeAndShape handle_data = 7; + */ + public Builder addHandleData( + int index, org.tensorflow.proto.framework.ResourceHandleProto.DtypeAndShape.Builder builderForValue) { + if (handleDataBuilder_ == null) { + ensureHandleDataIsMutable(); + handleData_.add(index, builderForValue.build()); + onChanged(); + } else { + handleDataBuilder_.addMessage(index, builderForValue.build()); + } + return this; + } + /** + *
        +       * The handle data for resource inputs.
        +       * 
        + * + * repeated .tensorflow.ResourceHandleProto.DtypeAndShape handle_data = 7; + */ + public Builder addAllHandleData( + java.lang.Iterable values) { + if (handleDataBuilder_ == null) { + ensureHandleDataIsMutable(); + com.google.protobuf.AbstractMessageLite.Builder.addAll( + values, handleData_); + onChanged(); + } else { + handleDataBuilder_.addAllMessages(values); + } + return this; + } + /** + *
        +       * The handle data for resource inputs.
        +       * 
        + * + * repeated .tensorflow.ResourceHandleProto.DtypeAndShape handle_data = 7; + */ + public Builder clearHandleData() { + if (handleDataBuilder_ == null) { + handleData_ = java.util.Collections.emptyList(); + bitField0_ = (bitField0_ & ~0x00000001); + onChanged(); + } else { + handleDataBuilder_.clear(); + } + return this; + } + /** + *
        +       * The handle data for resource inputs.
        +       * 
        + * + * repeated .tensorflow.ResourceHandleProto.DtypeAndShape handle_data = 7; + */ + public Builder removeHandleData(int index) { + if (handleDataBuilder_ == null) { + ensureHandleDataIsMutable(); + handleData_.remove(index); + onChanged(); + } else { + handleDataBuilder_.remove(index); + } + return this; + } + /** + *
        +       * The handle data for resource inputs.
        +       * 
        + * + * repeated .tensorflow.ResourceHandleProto.DtypeAndShape handle_data = 7; + */ + public org.tensorflow.proto.framework.ResourceHandleProto.DtypeAndShape.Builder getHandleDataBuilder( + int index) { + return getHandleDataFieldBuilder().getBuilder(index); + } + /** + *
        +       * The handle data for resource inputs.
        +       * 
        + * + * repeated .tensorflow.ResourceHandleProto.DtypeAndShape handle_data = 7; + */ + public org.tensorflow.proto.framework.ResourceHandleProto.DtypeAndShapeOrBuilder getHandleDataOrBuilder( + int index) { + if (handleDataBuilder_ == null) { + return handleData_.get(index); } else { + return handleDataBuilder_.getMessageOrBuilder(index); + } + } + /** + *
        +       * The handle data for resource inputs.
        +       * 
        + * + * repeated .tensorflow.ResourceHandleProto.DtypeAndShape handle_data = 7; + */ + public java.util.List + getHandleDataOrBuilderList() { + if (handleDataBuilder_ != null) { + return handleDataBuilder_.getMessageOrBuilderList(); + } else { + return java.util.Collections.unmodifiableList(handleData_); + } + } + /** + *
        +       * The handle data for resource inputs.
        +       * 
        + * + * repeated .tensorflow.ResourceHandleProto.DtypeAndShape handle_data = 7; + */ + public org.tensorflow.proto.framework.ResourceHandleProto.DtypeAndShape.Builder addHandleDataBuilder() { + return getHandleDataFieldBuilder().addBuilder( + org.tensorflow.proto.framework.ResourceHandleProto.DtypeAndShape.getDefaultInstance()); + } + /** + *
        +       * The handle data for resource inputs.
        +       * 
        + * + * repeated .tensorflow.ResourceHandleProto.DtypeAndShape handle_data = 7; + */ + public org.tensorflow.proto.framework.ResourceHandleProto.DtypeAndShape.Builder addHandleDataBuilder( + int index) { + return getHandleDataFieldBuilder().addBuilder( + index, org.tensorflow.proto.framework.ResourceHandleProto.DtypeAndShape.getDefaultInstance()); + } + /** + *
        +       * The handle data for resource inputs.
        +       * 
        + * + * repeated .tensorflow.ResourceHandleProto.DtypeAndShape handle_data = 7; + */ + public java.util.List + getHandleDataBuilderList() { + return getHandleDataFieldBuilder().getBuilderList(); + } + private com.google.protobuf.RepeatedFieldBuilderV3< + org.tensorflow.proto.framework.ResourceHandleProto.DtypeAndShape, org.tensorflow.proto.framework.ResourceHandleProto.DtypeAndShape.Builder, org.tensorflow.proto.framework.ResourceHandleProto.DtypeAndShapeOrBuilder> + getHandleDataFieldBuilder() { + if (handleDataBuilder_ == null) { + handleDataBuilder_ = new com.google.protobuf.RepeatedFieldBuilderV3< + org.tensorflow.proto.framework.ResourceHandleProto.DtypeAndShape, org.tensorflow.proto.framework.ResourceHandleProto.DtypeAndShape.Builder, org.tensorflow.proto.framework.ResourceHandleProto.DtypeAndShapeOrBuilder>( + handleData_, + ((bitField0_ & 0x00000001) != 0), + getParentForChildren(), + isClean()); + handleData_ = null; + } + return handleDataBuilder_; + } + private boolean isRef_ ; /** *
        diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/OpDefProtos.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/OpDefProtos.java
        index 8beef161f83..e56b212a6a6 100644
        --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/OpDefProtos.java
        +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/OpDefProtos.java
        @@ -51,37 +51,41 @@ public static void registerAllExtensions(
               "\n&tensorflow/core/framework/op_def.proto" +
               "\022\ntensorflow\032*tensorflow/core/framework/" +
               "attr_value.proto\032%tensorflow/core/framew" +
        -      "ork/types.proto\"\320\005\n\005OpDef\022\014\n\004name\030\001 \001(\t\022" +
        -      "+\n\tinput_arg\030\002 \003(\0132\030.tensorflow.OpDef.Ar" +
        -      "gDef\022,\n\noutput_arg\030\003 \003(\0132\030.tensorflow.Op" +
        -      "Def.ArgDef\022\026\n\016control_output\030\024 \003(\t\022\'\n\004at" +
        -      "tr\030\004 \003(\0132\031.tensorflow.OpDef.AttrDef\022.\n\013d" +
        -      "eprecation\030\010 \001(\0132\031.tensorflow.OpDeprecat" +
        -      "ion\022\017\n\007summary\030\005 \001(\t\022\023\n\013description\030\006 \001(" +
        -      "\t\022\026\n\016is_commutative\030\022 \001(\010\022\024\n\014is_aggregat" +
        -      "e\030\020 \001(\010\022\023\n\013is_stateful\030\021 \001(\010\022\"\n\032allows_u" +
        -      "ninitialized_input\030\023 \001(\010\032\237\001\n\006ArgDef\022\014\n\004n" +
        -      "ame\030\001 \001(\t\022\023\n\013description\030\002 \001(\t\022\"\n\004type\030\003" +
        -      " \001(\0162\024.tensorflow.DataType\022\021\n\ttype_attr\030" +
        -      "\004 \001(\t\022\023\n\013number_attr\030\005 \001(\t\022\026\n\016type_list_" +
        -      "attr\030\006 \001(\t\022\016\n\006is_ref\030\020 \001(\010\032\275\001\n\007AttrDef\022\014" +
        -      "\n\004name\030\001 \001(\t\022\014\n\004type\030\002 \001(\t\022,\n\rdefault_va" +
        -      "lue\030\003 \001(\0132\025.tensorflow.AttrValue\022\023\n\013desc" +
        -      "ription\030\004 \001(\t\022\023\n\013has_minimum\030\005 \001(\010\022\017\n\007mi" +
        -      "nimum\030\006 \001(\003\022-\n\016allowed_values\030\007 \001(\0132\025.te" +
        -      "nsorflow.AttrValue\"5\n\rOpDeprecation\022\017\n\007v" +
        -      "ersion\030\001 \001(\005\022\023\n\013explanation\030\002 \001(\t\"\'\n\006OpL" +
        -      "ist\022\035\n\002op\030\001 \003(\0132\021.tensorflow.OpDefB\201\001\n\036o" +
        -      "rg.tensorflow.proto.frameworkB\013OpDefProt" +
        -      "osP\001ZMgithub.com/tensorflow/tensorflow/t" +
        -      "ensorflow/go/core/framework/op_def_go_pr" +
        -      "oto\370\001\001b\006proto3"
        +      "ork/types.proto\032/tensorflow/core/framewo" +
        +      "rk/resource_handle.proto\"\224\006\n\005OpDef\022\014\n\004na" +
        +      "me\030\001 \001(\t\022+\n\tinput_arg\030\002 \003(\0132\030.tensorflow" +
        +      ".OpDef.ArgDef\022,\n\noutput_arg\030\003 \003(\0132\030.tens" +
        +      "orflow.OpDef.ArgDef\022\026\n\016control_output\030\024 " +
        +      "\003(\t\022\'\n\004attr\030\004 \003(\0132\031.tensorflow.OpDef.Att" +
        +      "rDef\022.\n\013deprecation\030\010 \001(\0132\031.tensorflow.O" +
        +      "pDeprecation\022\017\n\007summary\030\005 \001(\t\022\023\n\013descrip" +
        +      "tion\030\006 \001(\t\022\026\n\016is_commutative\030\022 \001(\010\022\024\n\014is" +
        +      "_aggregate\030\020 \001(\010\022\023\n\013is_stateful\030\021 \001(\010\022\"\n" +
        +      "\032allows_uninitialized_input\030\023 \001(\010\032\343\001\n\006Ar" +
        +      "gDef\022\014\n\004name\030\001 \001(\t\022\023\n\013description\030\002 \001(\t\022" +
        +      "\"\n\004type\030\003 \001(\0162\024.tensorflow.DataType\022\021\n\tt" +
        +      "ype_attr\030\004 \001(\t\022\023\n\013number_attr\030\005 \001(\t\022\026\n\016t" +
        +      "ype_list_attr\030\006 \001(\t\022B\n\013handle_data\030\007 \003(\013" +
        +      "2-.tensorflow.ResourceHandleProto.DtypeA" +
        +      "ndShape\022\016\n\006is_ref\030\020 \001(\010\032\275\001\n\007AttrDef\022\014\n\004n" +
        +      "ame\030\001 \001(\t\022\014\n\004type\030\002 \001(\t\022,\n\rdefault_value" +
        +      "\030\003 \001(\0132\025.tensorflow.AttrValue\022\023\n\013descrip" +
        +      "tion\030\004 \001(\t\022\023\n\013has_minimum\030\005 \001(\010\022\017\n\007minim" +
        +      "um\030\006 \001(\003\022-\n\016allowed_values\030\007 \001(\0132\025.tenso" +
        +      "rflow.AttrValue\"5\n\rOpDeprecation\022\017\n\007vers" +
        +      "ion\030\001 \001(\005\022\023\n\013explanation\030\002 \001(\t\"\'\n\006OpList" +
        +      "\022\035\n\002op\030\001 \003(\0132\021.tensorflow.OpDefB\201\001\n\036org." +
        +      "tensorflow.proto.frameworkB\013OpDefProtosP" +
        +      "\001ZMgithub.com/tensorflow/tensorflow/tens" +
        +      "orflow/go/core/framework/op_def_go_proto" +
        +      "\370\001\001b\006proto3"
             };
             descriptor = com.google.protobuf.Descriptors.FileDescriptor
               .internalBuildGeneratedFileFrom(descriptorData,
                 new com.google.protobuf.Descriptors.FileDescriptor[] {
                   org.tensorflow.proto.framework.AttrValueProtos.getDescriptor(),
                   org.tensorflow.proto.framework.TypesProtos.getDescriptor(),
        +          org.tensorflow.proto.framework.ResourceHandle.getDescriptor(),
                 });
             internal_static_tensorflow_OpDef_descriptor =
               getDescriptor().getMessageTypes().get(0);
        @@ -94,7 +98,7 @@ public static void registerAllExtensions(
             internal_static_tensorflow_OpDef_ArgDef_fieldAccessorTable = new
               com.google.protobuf.GeneratedMessageV3.FieldAccessorTable(
                 internal_static_tensorflow_OpDef_ArgDef_descriptor,
        -        new java.lang.String[] { "Name", "Description", "Type", "TypeAttr", "NumberAttr", "TypeListAttr", "IsRef", });
        +        new java.lang.String[] { "Name", "Description", "Type", "TypeAttr", "NumberAttr", "TypeListAttr", "HandleData", "IsRef", });
             internal_static_tensorflow_OpDef_AttrDef_descriptor =
               internal_static_tensorflow_OpDef_descriptor.getNestedTypes().get(1);
             internal_static_tensorflow_OpDef_AttrDef_fieldAccessorTable = new
        @@ -115,6 +119,7 @@ public static void registerAllExtensions(
                 new java.lang.String[] { "Op", });
             org.tensorflow.proto.framework.AttrValueProtos.getDescriptor();
             org.tensorflow.proto.framework.TypesProtos.getDescriptor();
        +    org.tensorflow.proto.framework.ResourceHandle.getDescriptor();
           }
         
           // @@protoc_insertion_point(outer_class_scope)
        diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/OpInfo.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/OpInfo.java
        new file mode 100644
        index 00000000000..860edaad590
        --- /dev/null
        +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/OpInfo.java
        @@ -0,0 +1,3048 @@
        +// Generated by the protocol buffer compiler.  DO NOT EDIT!
        +// source: tensorflow/core/grappler/costs/op_performance_data.proto
        +
        +package org.tensorflow.proto.framework;
        +
        +/**
        + * 
        + * Description of an operation as well as the parameters expected to impact its
        + * performance.
        + * 
        + * + * Protobuf type {@code tensorflow.OpInfo} + */ +public final class OpInfo extends + com.google.protobuf.GeneratedMessageV3 implements + // @@protoc_insertion_point(message_implements:tensorflow.OpInfo) + OpInfoOrBuilder { +private static final long serialVersionUID = 0L; + // Use OpInfo.newBuilder() to construct. + private OpInfo(com.google.protobuf.GeneratedMessageV3.Builder builder) { + super(builder); + } + private OpInfo() { + op_ = ""; + inputs_ = java.util.Collections.emptyList(); + outputs_ = java.util.Collections.emptyList(); + } + + @java.lang.Override + @SuppressWarnings({"unused"}) + protected java.lang.Object newInstance( + UnusedPrivateParameter unused) { + return new OpInfo(); + } + + @java.lang.Override + public final com.google.protobuf.UnknownFieldSet + getUnknownFields() { + return this.unknownFields; + } + private OpInfo( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + this(); + if (extensionRegistry == null) { + throw new java.lang.NullPointerException(); + } + int mutable_bitField0_ = 0; + com.google.protobuf.UnknownFieldSet.Builder unknownFields = + com.google.protobuf.UnknownFieldSet.newBuilder(); + try { + boolean done = false; + while (!done) { + int tag = input.readTag(); + switch (tag) { + case 0: + done = true; + break; + case 10: { + java.lang.String s = input.readStringRequireUtf8(); + + op_ = s; + break; + } + case 18: { + if (!((mutable_bitField0_ & 0x00000001) != 0)) { + attr_ = com.google.protobuf.MapField.newMapField( + AttrDefaultEntryHolder.defaultEntry); + mutable_bitField0_ |= 0x00000001; + } + com.google.protobuf.MapEntry + attr__ = input.readMessage( + AttrDefaultEntryHolder.defaultEntry.getParserForType(), extensionRegistry); + attr_.getMutableMap().put( + attr__.getKey(), attr__.getValue()); + break; + } + case 26: { + if (!((mutable_bitField0_ & 0x00000002) != 0)) { + inputs_ = new java.util.ArrayList(); + mutable_bitField0_ |= 0x00000002; + } + inputs_.add( + input.readMessage(org.tensorflow.proto.framework.OpInfo.TensorProperties.parser(), extensionRegistry)); + break; + } + case 34: { + org.tensorflow.proto.framework.DeviceProperties.Builder subBuilder = null; + if (device_ != null) { + subBuilder = device_.toBuilder(); + } + device_ = input.readMessage(org.tensorflow.proto.framework.DeviceProperties.parser(), extensionRegistry); + if (subBuilder != null) { + subBuilder.mergeFrom(device_); + device_ = subBuilder.buildPartial(); + } + + break; + } + case 42: { + if (!((mutable_bitField0_ & 0x00000004) != 0)) { + outputs_ = new java.util.ArrayList(); + mutable_bitField0_ |= 0x00000004; + } + outputs_.add( + input.readMessage(org.tensorflow.proto.framework.OpInfo.TensorProperties.parser(), extensionRegistry)); + break; + } + case 50: { + org.tensorflow.proto.framework.SessionInfo.Builder subBuilder = null; + if (sessionInfo_ != null) { + subBuilder = sessionInfo_.toBuilder(); + } + sessionInfo_ = input.readMessage(org.tensorflow.proto.framework.SessionInfo.parser(), extensionRegistry); + if (subBuilder != null) { + subBuilder.mergeFrom(sessionInfo_); + sessionInfo_ = subBuilder.buildPartial(); + } + + break; + } + default: { + if (!parseUnknownField( + input, unknownFields, extensionRegistry, tag)) { + done = true; + } + break; + } + } + } + } catch (com.google.protobuf.InvalidProtocolBufferException e) { + throw e.setUnfinishedMessage(this); + } catch (java.io.IOException e) { + throw new com.google.protobuf.InvalidProtocolBufferException( + e).setUnfinishedMessage(this); + } finally { + if (((mutable_bitField0_ & 0x00000002) != 0)) { + inputs_ = java.util.Collections.unmodifiableList(inputs_); + } + if (((mutable_bitField0_ & 0x00000004) != 0)) { + outputs_ = java.util.Collections.unmodifiableList(outputs_); + } + this.unknownFields = unknownFields.build(); + makeExtensionsImmutable(); + } + } + public static final com.google.protobuf.Descriptors.Descriptor + getDescriptor() { + return org.tensorflow.proto.framework.OpPerformanceDataProtos.internal_static_tensorflow_OpInfo_descriptor; + } + + @SuppressWarnings({"rawtypes"}) + @java.lang.Override + protected com.google.protobuf.MapField internalGetMapField( + int number) { + switch (number) { + case 2: + return internalGetAttr(); + default: + throw new RuntimeException( + "Invalid map field number: " + number); + } + } + @java.lang.Override + protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable + internalGetFieldAccessorTable() { + return org.tensorflow.proto.framework.OpPerformanceDataProtos.internal_static_tensorflow_OpInfo_fieldAccessorTable + .ensureFieldAccessorsInitialized( + org.tensorflow.proto.framework.OpInfo.class, org.tensorflow.proto.framework.OpInfo.Builder.class); + } + + public interface TensorPropertiesOrBuilder extends + // @@protoc_insertion_point(interface_extends:tensorflow.OpInfo.TensorProperties) + com.google.protobuf.MessageOrBuilder { + + /** + * .tensorflow.DataType dtype = 1; + */ + int getDtypeValue(); + /** + * .tensorflow.DataType dtype = 1; + */ + org.tensorflow.proto.framework.DataType getDtype(); + + /** + * .tensorflow.TensorShapeProto shape = 2; + */ + boolean hasShape(); + /** + * .tensorflow.TensorShapeProto shape = 2; + */ + org.tensorflow.proto.framework.TensorShapeProto getShape(); + /** + * .tensorflow.TensorShapeProto shape = 2; + */ + org.tensorflow.proto.framework.TensorShapeProtoOrBuilder getShapeOrBuilder(); + + /** + * .tensorflow.TensorProto value = 3; + */ + boolean hasValue(); + /** + * .tensorflow.TensorProto value = 3; + */ + org.tensorflow.proto.framework.TensorProto getValue(); + /** + * .tensorflow.TensorProto value = 3; + */ + org.tensorflow.proto.framework.TensorProtoOrBuilder getValueOrBuilder(); + } + /** + *
        +   * Input data types, shapes and values if known.
        +   * 
        + * + * Protobuf type {@code tensorflow.OpInfo.TensorProperties} + */ + public static final class TensorProperties extends + com.google.protobuf.GeneratedMessageV3 implements + // @@protoc_insertion_point(message_implements:tensorflow.OpInfo.TensorProperties) + TensorPropertiesOrBuilder { + private static final long serialVersionUID = 0L; + // Use TensorProperties.newBuilder() to construct. + private TensorProperties(com.google.protobuf.GeneratedMessageV3.Builder builder) { + super(builder); + } + private TensorProperties() { + dtype_ = 0; + } + + @java.lang.Override + @SuppressWarnings({"unused"}) + protected java.lang.Object newInstance( + UnusedPrivateParameter unused) { + return new TensorProperties(); + } + + @java.lang.Override + public final com.google.protobuf.UnknownFieldSet + getUnknownFields() { + return this.unknownFields; + } + private TensorProperties( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + this(); + if (extensionRegistry == null) { + throw new java.lang.NullPointerException(); + } + com.google.protobuf.UnknownFieldSet.Builder unknownFields = + com.google.protobuf.UnknownFieldSet.newBuilder(); + try { + boolean done = false; + while (!done) { + int tag = input.readTag(); + switch (tag) { + case 0: + done = true; + break; + case 8: { + int rawValue = input.readEnum(); + + dtype_ = rawValue; + break; + } + case 18: { + org.tensorflow.proto.framework.TensorShapeProto.Builder subBuilder = null; + if (shape_ != null) { + subBuilder = shape_.toBuilder(); + } + shape_ = input.readMessage(org.tensorflow.proto.framework.TensorShapeProto.parser(), extensionRegistry); + if (subBuilder != null) { + subBuilder.mergeFrom(shape_); + shape_ = subBuilder.buildPartial(); + } + + break; + } + case 26: { + org.tensorflow.proto.framework.TensorProto.Builder subBuilder = null; + if (value_ != null) { + subBuilder = value_.toBuilder(); + } + value_ = input.readMessage(org.tensorflow.proto.framework.TensorProto.parser(), extensionRegistry); + if (subBuilder != null) { + subBuilder.mergeFrom(value_); + value_ = subBuilder.buildPartial(); + } + + break; + } + default: { + if (!parseUnknownField( + input, unknownFields, extensionRegistry, tag)) { + done = true; + } + break; + } + } + } + } catch (com.google.protobuf.InvalidProtocolBufferException e) { + throw e.setUnfinishedMessage(this); + } catch (java.io.IOException e) { + throw new com.google.protobuf.InvalidProtocolBufferException( + e).setUnfinishedMessage(this); + } finally { + this.unknownFields = unknownFields.build(); + makeExtensionsImmutable(); + } + } + public static final com.google.protobuf.Descriptors.Descriptor + getDescriptor() { + return org.tensorflow.proto.framework.OpPerformanceDataProtos.internal_static_tensorflow_OpInfo_TensorProperties_descriptor; + } + + @java.lang.Override + protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable + internalGetFieldAccessorTable() { + return org.tensorflow.proto.framework.OpPerformanceDataProtos.internal_static_tensorflow_OpInfo_TensorProperties_fieldAccessorTable + .ensureFieldAccessorsInitialized( + org.tensorflow.proto.framework.OpInfo.TensorProperties.class, org.tensorflow.proto.framework.OpInfo.TensorProperties.Builder.class); + } + + public static final int DTYPE_FIELD_NUMBER = 1; + private int dtype_; + /** + * .tensorflow.DataType dtype = 1; + */ + public int getDtypeValue() { + return dtype_; + } + /** + * .tensorflow.DataType dtype = 1; + */ + public org.tensorflow.proto.framework.DataType getDtype() { + @SuppressWarnings("deprecation") + org.tensorflow.proto.framework.DataType result = org.tensorflow.proto.framework.DataType.valueOf(dtype_); + return result == null ? org.tensorflow.proto.framework.DataType.UNRECOGNIZED : result; + } + + public static final int SHAPE_FIELD_NUMBER = 2; + private org.tensorflow.proto.framework.TensorShapeProto shape_; + /** + * .tensorflow.TensorShapeProto shape = 2; + */ + public boolean hasShape() { + return shape_ != null; + } + /** + * .tensorflow.TensorShapeProto shape = 2; + */ + public org.tensorflow.proto.framework.TensorShapeProto getShape() { + return shape_ == null ? org.tensorflow.proto.framework.TensorShapeProto.getDefaultInstance() : shape_; + } + /** + * .tensorflow.TensorShapeProto shape = 2; + */ + public org.tensorflow.proto.framework.TensorShapeProtoOrBuilder getShapeOrBuilder() { + return getShape(); + } + + public static final int VALUE_FIELD_NUMBER = 3; + private org.tensorflow.proto.framework.TensorProto value_; + /** + * .tensorflow.TensorProto value = 3; + */ + public boolean hasValue() { + return value_ != null; + } + /** + * .tensorflow.TensorProto value = 3; + */ + public org.tensorflow.proto.framework.TensorProto getValue() { + return value_ == null ? org.tensorflow.proto.framework.TensorProto.getDefaultInstance() : value_; + } + /** + * .tensorflow.TensorProto value = 3; + */ + public org.tensorflow.proto.framework.TensorProtoOrBuilder getValueOrBuilder() { + return getValue(); + } + + private byte memoizedIsInitialized = -1; + @java.lang.Override + public final boolean isInitialized() { + byte isInitialized = memoizedIsInitialized; + if (isInitialized == 1) return true; + if (isInitialized == 0) return false; + + memoizedIsInitialized = 1; + return true; + } + + @java.lang.Override + public void writeTo(com.google.protobuf.CodedOutputStream output) + throws java.io.IOException { + if (dtype_ != org.tensorflow.proto.framework.DataType.DT_INVALID.getNumber()) { + output.writeEnum(1, dtype_); + } + if (shape_ != null) { + output.writeMessage(2, getShape()); + } + if (value_ != null) { + output.writeMessage(3, getValue()); + } + unknownFields.writeTo(output); + } + + @java.lang.Override + public int getSerializedSize() { + int size = memoizedSize; + if (size != -1) return size; + + size = 0; + if (dtype_ != org.tensorflow.proto.framework.DataType.DT_INVALID.getNumber()) { + size += com.google.protobuf.CodedOutputStream + .computeEnumSize(1, dtype_); + } + if (shape_ != null) { + size += com.google.protobuf.CodedOutputStream + .computeMessageSize(2, getShape()); + } + if (value_ != null) { + size += com.google.protobuf.CodedOutputStream + .computeMessageSize(3, getValue()); + } + size += unknownFields.getSerializedSize(); + memoizedSize = size; + return size; + } + + @java.lang.Override + public boolean equals(final java.lang.Object obj) { + if (obj == this) { + return true; + } + if (!(obj instanceof org.tensorflow.proto.framework.OpInfo.TensorProperties)) { + return super.equals(obj); + } + org.tensorflow.proto.framework.OpInfo.TensorProperties other = (org.tensorflow.proto.framework.OpInfo.TensorProperties) obj; + + if (dtype_ != other.dtype_) return false; + if (hasShape() != other.hasShape()) return false; + if (hasShape()) { + if (!getShape() + .equals(other.getShape())) return false; + } + if (hasValue() != other.hasValue()) return false; + if (hasValue()) { + if (!getValue() + .equals(other.getValue())) return false; + } + if (!unknownFields.equals(other.unknownFields)) return false; + return true; + } + + @java.lang.Override + public int hashCode() { + if (memoizedHashCode != 0) { + return memoizedHashCode; + } + int hash = 41; + hash = (19 * hash) + getDescriptor().hashCode(); + hash = (37 * hash) + DTYPE_FIELD_NUMBER; + hash = (53 * hash) + dtype_; + if (hasShape()) { + hash = (37 * hash) + SHAPE_FIELD_NUMBER; + hash = (53 * hash) + getShape().hashCode(); + } + if (hasValue()) { + hash = (37 * hash) + VALUE_FIELD_NUMBER; + hash = (53 * hash) + getValue().hashCode(); + } + hash = (29 * hash) + unknownFields.hashCode(); + memoizedHashCode = hash; + return hash; + } + + public static org.tensorflow.proto.framework.OpInfo.TensorProperties parseFrom( + java.nio.ByteBuffer data) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data); + } + public static org.tensorflow.proto.framework.OpInfo.TensorProperties parseFrom( + java.nio.ByteBuffer data, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data, extensionRegistry); + } + public static org.tensorflow.proto.framework.OpInfo.TensorProperties parseFrom( + com.google.protobuf.ByteString data) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data); + } + public static org.tensorflow.proto.framework.OpInfo.TensorProperties parseFrom( + com.google.protobuf.ByteString data, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data, extensionRegistry); + } + public static org.tensorflow.proto.framework.OpInfo.TensorProperties parseFrom(byte[] data) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data); + } + public static org.tensorflow.proto.framework.OpInfo.TensorProperties parseFrom( + byte[] data, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data, extensionRegistry); + } + public static org.tensorflow.proto.framework.OpInfo.TensorProperties parseFrom(java.io.InputStream input) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input); + } + public static org.tensorflow.proto.framework.OpInfo.TensorProperties parseFrom( + java.io.InputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input, extensionRegistry); + } + public static org.tensorflow.proto.framework.OpInfo.TensorProperties parseDelimitedFrom(java.io.InputStream input) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseDelimitedWithIOException(PARSER, input); + } + public static org.tensorflow.proto.framework.OpInfo.TensorProperties parseDelimitedFrom( + java.io.InputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseDelimitedWithIOException(PARSER, input, extensionRegistry); + } + public static org.tensorflow.proto.framework.OpInfo.TensorProperties parseFrom( + com.google.protobuf.CodedInputStream input) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input); + } + public static org.tensorflow.proto.framework.OpInfo.TensorProperties parseFrom( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input, extensionRegistry); + } + + @java.lang.Override + public Builder newBuilderForType() { return newBuilder(); } + public static Builder newBuilder() { + return DEFAULT_INSTANCE.toBuilder(); + } + public static Builder newBuilder(org.tensorflow.proto.framework.OpInfo.TensorProperties prototype) { + return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); + } + @java.lang.Override + public Builder toBuilder() { + return this == DEFAULT_INSTANCE + ? new Builder() : new Builder().mergeFrom(this); + } + + @java.lang.Override + protected Builder newBuilderForType( + com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { + Builder builder = new Builder(parent); + return builder; + } + /** + *
        +     * Input data types, shapes and values if known.
        +     * 
        + * + * Protobuf type {@code tensorflow.OpInfo.TensorProperties} + */ + public static final class Builder extends + com.google.protobuf.GeneratedMessageV3.Builder implements + // @@protoc_insertion_point(builder_implements:tensorflow.OpInfo.TensorProperties) + org.tensorflow.proto.framework.OpInfo.TensorPropertiesOrBuilder { + public static final com.google.protobuf.Descriptors.Descriptor + getDescriptor() { + return org.tensorflow.proto.framework.OpPerformanceDataProtos.internal_static_tensorflow_OpInfo_TensorProperties_descriptor; + } + + @java.lang.Override + protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable + internalGetFieldAccessorTable() { + return org.tensorflow.proto.framework.OpPerformanceDataProtos.internal_static_tensorflow_OpInfo_TensorProperties_fieldAccessorTable + .ensureFieldAccessorsInitialized( + org.tensorflow.proto.framework.OpInfo.TensorProperties.class, org.tensorflow.proto.framework.OpInfo.TensorProperties.Builder.class); + } + + // Construct using org.tensorflow.proto.framework.OpInfo.TensorProperties.newBuilder() + private Builder() { + maybeForceBuilderInitialization(); + } + + private Builder( + com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { + super(parent); + maybeForceBuilderInitialization(); + } + private void maybeForceBuilderInitialization() { + if (com.google.protobuf.GeneratedMessageV3 + .alwaysUseFieldBuilders) { + } + } + @java.lang.Override + public Builder clear() { + super.clear(); + dtype_ = 0; + + if (shapeBuilder_ == null) { + shape_ = null; + } else { + shape_ = null; + shapeBuilder_ = null; + } + if (valueBuilder_ == null) { + value_ = null; + } else { + value_ = null; + valueBuilder_ = null; + } + return this; + } + + @java.lang.Override + public com.google.protobuf.Descriptors.Descriptor + getDescriptorForType() { + return org.tensorflow.proto.framework.OpPerformanceDataProtos.internal_static_tensorflow_OpInfo_TensorProperties_descriptor; + } + + @java.lang.Override + public org.tensorflow.proto.framework.OpInfo.TensorProperties getDefaultInstanceForType() { + return org.tensorflow.proto.framework.OpInfo.TensorProperties.getDefaultInstance(); + } + + @java.lang.Override + public org.tensorflow.proto.framework.OpInfo.TensorProperties build() { + org.tensorflow.proto.framework.OpInfo.TensorProperties result = buildPartial(); + if (!result.isInitialized()) { + throw newUninitializedMessageException(result); + } + return result; + } + + @java.lang.Override + public org.tensorflow.proto.framework.OpInfo.TensorProperties buildPartial() { + org.tensorflow.proto.framework.OpInfo.TensorProperties result = new org.tensorflow.proto.framework.OpInfo.TensorProperties(this); + result.dtype_ = dtype_; + if (shapeBuilder_ == null) { + result.shape_ = shape_; + } else { + result.shape_ = shapeBuilder_.build(); + } + if (valueBuilder_ == null) { + result.value_ = value_; + } else { + result.value_ = valueBuilder_.build(); + } + onBuilt(); + return result; + } + + @java.lang.Override + public Builder clone() { + return super.clone(); + } + @java.lang.Override + public Builder setField( + com.google.protobuf.Descriptors.FieldDescriptor field, + java.lang.Object value) { + return super.setField(field, value); + } + @java.lang.Override + public Builder clearField( + com.google.protobuf.Descriptors.FieldDescriptor field) { + return super.clearField(field); + } + @java.lang.Override + public Builder clearOneof( + com.google.protobuf.Descriptors.OneofDescriptor oneof) { + return super.clearOneof(oneof); + } + @java.lang.Override + public Builder setRepeatedField( + com.google.protobuf.Descriptors.FieldDescriptor field, + int index, java.lang.Object value) { + return super.setRepeatedField(field, index, value); + } + @java.lang.Override + public Builder addRepeatedField( + com.google.protobuf.Descriptors.FieldDescriptor field, + java.lang.Object value) { + return super.addRepeatedField(field, value); + } + @java.lang.Override + public Builder mergeFrom(com.google.protobuf.Message other) { + if (other instanceof org.tensorflow.proto.framework.OpInfo.TensorProperties) { + return mergeFrom((org.tensorflow.proto.framework.OpInfo.TensorProperties)other); + } else { + super.mergeFrom(other); + return this; + } + } + + public Builder mergeFrom(org.tensorflow.proto.framework.OpInfo.TensorProperties other) { + if (other == org.tensorflow.proto.framework.OpInfo.TensorProperties.getDefaultInstance()) return this; + if (other.dtype_ != 0) { + setDtypeValue(other.getDtypeValue()); + } + if (other.hasShape()) { + mergeShape(other.getShape()); + } + if (other.hasValue()) { + mergeValue(other.getValue()); + } + this.mergeUnknownFields(other.unknownFields); + onChanged(); + return this; + } + + @java.lang.Override + public final boolean isInitialized() { + return true; + } + + @java.lang.Override + public Builder mergeFrom( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + org.tensorflow.proto.framework.OpInfo.TensorProperties parsedMessage = null; + try { + parsedMessage = PARSER.parsePartialFrom(input, extensionRegistry); + } catch (com.google.protobuf.InvalidProtocolBufferException e) { + parsedMessage = (org.tensorflow.proto.framework.OpInfo.TensorProperties) e.getUnfinishedMessage(); + throw e.unwrapIOException(); + } finally { + if (parsedMessage != null) { + mergeFrom(parsedMessage); + } + } + return this; + } + + private int dtype_ = 0; + /** + * .tensorflow.DataType dtype = 1; + */ + public int getDtypeValue() { + return dtype_; + } + /** + * .tensorflow.DataType dtype = 1; + */ + public Builder setDtypeValue(int value) { + dtype_ = value; + onChanged(); + return this; + } + /** + * .tensorflow.DataType dtype = 1; + */ + public org.tensorflow.proto.framework.DataType getDtype() { + @SuppressWarnings("deprecation") + org.tensorflow.proto.framework.DataType result = org.tensorflow.proto.framework.DataType.valueOf(dtype_); + return result == null ? org.tensorflow.proto.framework.DataType.UNRECOGNIZED : result; + } + /** + * .tensorflow.DataType dtype = 1; + */ + public Builder setDtype(org.tensorflow.proto.framework.DataType value) { + if (value == null) { + throw new NullPointerException(); + } + + dtype_ = value.getNumber(); + onChanged(); + return this; + } + /** + * .tensorflow.DataType dtype = 1; + */ + public Builder clearDtype() { + + dtype_ = 0; + onChanged(); + return this; + } + + private org.tensorflow.proto.framework.TensorShapeProto shape_; + private com.google.protobuf.SingleFieldBuilderV3< + org.tensorflow.proto.framework.TensorShapeProto, org.tensorflow.proto.framework.TensorShapeProto.Builder, org.tensorflow.proto.framework.TensorShapeProtoOrBuilder> shapeBuilder_; + /** + * .tensorflow.TensorShapeProto shape = 2; + */ + public boolean hasShape() { + return shapeBuilder_ != null || shape_ != null; + } + /** + * .tensorflow.TensorShapeProto shape = 2; + */ + public org.tensorflow.proto.framework.TensorShapeProto getShape() { + if (shapeBuilder_ == null) { + return shape_ == null ? org.tensorflow.proto.framework.TensorShapeProto.getDefaultInstance() : shape_; + } else { + return shapeBuilder_.getMessage(); + } + } + /** + * .tensorflow.TensorShapeProto shape = 2; + */ + public Builder setShape(org.tensorflow.proto.framework.TensorShapeProto value) { + if (shapeBuilder_ == null) { + if (value == null) { + throw new NullPointerException(); + } + shape_ = value; + onChanged(); + } else { + shapeBuilder_.setMessage(value); + } + + return this; + } + /** + * .tensorflow.TensorShapeProto shape = 2; + */ + public Builder setShape( + org.tensorflow.proto.framework.TensorShapeProto.Builder builderForValue) { + if (shapeBuilder_ == null) { + shape_ = builderForValue.build(); + onChanged(); + } else { + shapeBuilder_.setMessage(builderForValue.build()); + } + + return this; + } + /** + * .tensorflow.TensorShapeProto shape = 2; + */ + public Builder mergeShape(org.tensorflow.proto.framework.TensorShapeProto value) { + if (shapeBuilder_ == null) { + if (shape_ != null) { + shape_ = + org.tensorflow.proto.framework.TensorShapeProto.newBuilder(shape_).mergeFrom(value).buildPartial(); + } else { + shape_ = value; + } + onChanged(); + } else { + shapeBuilder_.mergeFrom(value); + } + + return this; + } + /** + * .tensorflow.TensorShapeProto shape = 2; + */ + public Builder clearShape() { + if (shapeBuilder_ == null) { + shape_ = null; + onChanged(); + } else { + shape_ = null; + shapeBuilder_ = null; + } + + return this; + } + /** + * .tensorflow.TensorShapeProto shape = 2; + */ + public org.tensorflow.proto.framework.TensorShapeProto.Builder getShapeBuilder() { + + onChanged(); + return getShapeFieldBuilder().getBuilder(); + } + /** + * .tensorflow.TensorShapeProto shape = 2; + */ + public org.tensorflow.proto.framework.TensorShapeProtoOrBuilder getShapeOrBuilder() { + if (shapeBuilder_ != null) { + return shapeBuilder_.getMessageOrBuilder(); + } else { + return shape_ == null ? + org.tensorflow.proto.framework.TensorShapeProto.getDefaultInstance() : shape_; + } + } + /** + * .tensorflow.TensorShapeProto shape = 2; + */ + private com.google.protobuf.SingleFieldBuilderV3< + org.tensorflow.proto.framework.TensorShapeProto, org.tensorflow.proto.framework.TensorShapeProto.Builder, org.tensorflow.proto.framework.TensorShapeProtoOrBuilder> + getShapeFieldBuilder() { + if (shapeBuilder_ == null) { + shapeBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< + org.tensorflow.proto.framework.TensorShapeProto, org.tensorflow.proto.framework.TensorShapeProto.Builder, org.tensorflow.proto.framework.TensorShapeProtoOrBuilder>( + getShape(), + getParentForChildren(), + isClean()); + shape_ = null; + } + return shapeBuilder_; + } + + private org.tensorflow.proto.framework.TensorProto value_; + private com.google.protobuf.SingleFieldBuilderV3< + org.tensorflow.proto.framework.TensorProto, org.tensorflow.proto.framework.TensorProto.Builder, org.tensorflow.proto.framework.TensorProtoOrBuilder> valueBuilder_; + /** + * .tensorflow.TensorProto value = 3; + */ + public boolean hasValue() { + return valueBuilder_ != null || value_ != null; + } + /** + * .tensorflow.TensorProto value = 3; + */ + public org.tensorflow.proto.framework.TensorProto getValue() { + if (valueBuilder_ == null) { + return value_ == null ? org.tensorflow.proto.framework.TensorProto.getDefaultInstance() : value_; + } else { + return valueBuilder_.getMessage(); + } + } + /** + * .tensorflow.TensorProto value = 3; + */ + public Builder setValue(org.tensorflow.proto.framework.TensorProto value) { + if (valueBuilder_ == null) { + if (value == null) { + throw new NullPointerException(); + } + value_ = value; + onChanged(); + } else { + valueBuilder_.setMessage(value); + } + + return this; + } + /** + * .tensorflow.TensorProto value = 3; + */ + public Builder setValue( + org.tensorflow.proto.framework.TensorProto.Builder builderForValue) { + if (valueBuilder_ == null) { + value_ = builderForValue.build(); + onChanged(); + } else { + valueBuilder_.setMessage(builderForValue.build()); + } + + return this; + } + /** + * .tensorflow.TensorProto value = 3; + */ + public Builder mergeValue(org.tensorflow.proto.framework.TensorProto value) { + if (valueBuilder_ == null) { + if (value_ != null) { + value_ = + org.tensorflow.proto.framework.TensorProto.newBuilder(value_).mergeFrom(value).buildPartial(); + } else { + value_ = value; + } + onChanged(); + } else { + valueBuilder_.mergeFrom(value); + } + + return this; + } + /** + * .tensorflow.TensorProto value = 3; + */ + public Builder clearValue() { + if (valueBuilder_ == null) { + value_ = null; + onChanged(); + } else { + value_ = null; + valueBuilder_ = null; + } + + return this; + } + /** + * .tensorflow.TensorProto value = 3; + */ + public org.tensorflow.proto.framework.TensorProto.Builder getValueBuilder() { + + onChanged(); + return getValueFieldBuilder().getBuilder(); + } + /** + * .tensorflow.TensorProto value = 3; + */ + public org.tensorflow.proto.framework.TensorProtoOrBuilder getValueOrBuilder() { + if (valueBuilder_ != null) { + return valueBuilder_.getMessageOrBuilder(); + } else { + return value_ == null ? + org.tensorflow.proto.framework.TensorProto.getDefaultInstance() : value_; + } + } + /** + * .tensorflow.TensorProto value = 3; + */ + private com.google.protobuf.SingleFieldBuilderV3< + org.tensorflow.proto.framework.TensorProto, org.tensorflow.proto.framework.TensorProto.Builder, org.tensorflow.proto.framework.TensorProtoOrBuilder> + getValueFieldBuilder() { + if (valueBuilder_ == null) { + valueBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< + org.tensorflow.proto.framework.TensorProto, org.tensorflow.proto.framework.TensorProto.Builder, org.tensorflow.proto.framework.TensorProtoOrBuilder>( + getValue(), + getParentForChildren(), + isClean()); + value_ = null; + } + return valueBuilder_; + } + @java.lang.Override + public final Builder setUnknownFields( + final com.google.protobuf.UnknownFieldSet unknownFields) { + return super.setUnknownFields(unknownFields); + } + + @java.lang.Override + public final Builder mergeUnknownFields( + final com.google.protobuf.UnknownFieldSet unknownFields) { + return super.mergeUnknownFields(unknownFields); + } + + + // @@protoc_insertion_point(builder_scope:tensorflow.OpInfo.TensorProperties) + } + + // @@protoc_insertion_point(class_scope:tensorflow.OpInfo.TensorProperties) + private static final org.tensorflow.proto.framework.OpInfo.TensorProperties DEFAULT_INSTANCE; + static { + DEFAULT_INSTANCE = new org.tensorflow.proto.framework.OpInfo.TensorProperties(); + } + + public static org.tensorflow.proto.framework.OpInfo.TensorProperties getDefaultInstance() { + return DEFAULT_INSTANCE; + } + + private static final com.google.protobuf.Parser + PARSER = new com.google.protobuf.AbstractParser() { + @java.lang.Override + public TensorProperties parsePartialFrom( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return new TensorProperties(input, extensionRegistry); + } + }; + + public static com.google.protobuf.Parser parser() { + return PARSER; + } + + @java.lang.Override + public com.google.protobuf.Parser getParserForType() { + return PARSER; + } + + @java.lang.Override + public org.tensorflow.proto.framework.OpInfo.TensorProperties getDefaultInstanceForType() { + return DEFAULT_INSTANCE; + } + + } + + public static final int OP_FIELD_NUMBER = 1; + private volatile java.lang.Object op_; + /** + *
        +   * The operation name.  There may be custom parameters in attrs.
        +   * 
        + * + * string op = 1; + */ + public java.lang.String getOp() { + java.lang.Object ref = op_; + if (ref instanceof java.lang.String) { + return (java.lang.String) ref; + } else { + com.google.protobuf.ByteString bs = + (com.google.protobuf.ByteString) ref; + java.lang.String s = bs.toStringUtf8(); + op_ = s; + return s; + } + } + /** + *
        +   * The operation name.  There may be custom parameters in attrs.
        +   * 
        + * + * string op = 1; + */ + public com.google.protobuf.ByteString + getOpBytes() { + java.lang.Object ref = op_; + if (ref instanceof java.lang.String) { + com.google.protobuf.ByteString b = + com.google.protobuf.ByteString.copyFromUtf8( + (java.lang.String) ref); + op_ = b; + return b; + } else { + return (com.google.protobuf.ByteString) ref; + } + } + + public static final int ATTR_FIELD_NUMBER = 2; + private static final class AttrDefaultEntryHolder { + static final com.google.protobuf.MapEntry< + java.lang.String, org.tensorflow.proto.framework.AttrValue> defaultEntry = + com.google.protobuf.MapEntry + .newDefaultInstance( + org.tensorflow.proto.framework.OpPerformanceDataProtos.internal_static_tensorflow_OpInfo_AttrEntry_descriptor, + com.google.protobuf.WireFormat.FieldType.STRING, + "", + com.google.protobuf.WireFormat.FieldType.MESSAGE, + org.tensorflow.proto.framework.AttrValue.getDefaultInstance()); + } + private com.google.protobuf.MapField< + java.lang.String, org.tensorflow.proto.framework.AttrValue> attr_; + private com.google.protobuf.MapField + internalGetAttr() { + if (attr_ == null) { + return com.google.protobuf.MapField.emptyMapField( + AttrDefaultEntryHolder.defaultEntry); + } + return attr_; + } + + public int getAttrCount() { + return internalGetAttr().getMap().size(); + } + /** + *
        +   * Custom parameters impacting the behavior of the op.
        +   * 
        + * + * map<string, .tensorflow.AttrValue> attr = 2; + */ + + public boolean containsAttr( + java.lang.String key) { + if (key == null) { throw new java.lang.NullPointerException(); } + return internalGetAttr().getMap().containsKey(key); + } + /** + * Use {@link #getAttrMap()} instead. + */ + @java.lang.Deprecated + public java.util.Map getAttr() { + return getAttrMap(); + } + /** + *
        +   * Custom parameters impacting the behavior of the op.
        +   * 
        + * + * map<string, .tensorflow.AttrValue> attr = 2; + */ + + public java.util.Map getAttrMap() { + return internalGetAttr().getMap(); + } + /** + *
        +   * Custom parameters impacting the behavior of the op.
        +   * 
        + * + * map<string, .tensorflow.AttrValue> attr = 2; + */ + + public org.tensorflow.proto.framework.AttrValue getAttrOrDefault( + java.lang.String key, + org.tensorflow.proto.framework.AttrValue defaultValue) { + if (key == null) { throw new java.lang.NullPointerException(); } + java.util.Map map = + internalGetAttr().getMap(); + return map.containsKey(key) ? map.get(key) : defaultValue; + } + /** + *
        +   * Custom parameters impacting the behavior of the op.
        +   * 
        + * + * map<string, .tensorflow.AttrValue> attr = 2; + */ + + public org.tensorflow.proto.framework.AttrValue getAttrOrThrow( + java.lang.String key) { + if (key == null) { throw new java.lang.NullPointerException(); } + java.util.Map map = + internalGetAttr().getMap(); + if (!map.containsKey(key)) { + throw new java.lang.IllegalArgumentException(); + } + return map.get(key); + } + + public static final int INPUTS_FIELD_NUMBER = 3; + private java.util.List inputs_; + /** + * repeated .tensorflow.OpInfo.TensorProperties inputs = 3; + */ + public java.util.List getInputsList() { + return inputs_; + } + /** + * repeated .tensorflow.OpInfo.TensorProperties inputs = 3; + */ + public java.util.List + getInputsOrBuilderList() { + return inputs_; + } + /** + * repeated .tensorflow.OpInfo.TensorProperties inputs = 3; + */ + public int getInputsCount() { + return inputs_.size(); + } + /** + * repeated .tensorflow.OpInfo.TensorProperties inputs = 3; + */ + public org.tensorflow.proto.framework.OpInfo.TensorProperties getInputs(int index) { + return inputs_.get(index); + } + /** + * repeated .tensorflow.OpInfo.TensorProperties inputs = 3; + */ + public org.tensorflow.proto.framework.OpInfo.TensorPropertiesOrBuilder getInputsOrBuilder( + int index) { + return inputs_.get(index); + } + + public static final int OUTPUTS_FIELD_NUMBER = 5; + private java.util.List outputs_; + /** + *
        +   * Optional description of the op outputs
        +   * 
        + * + * repeated .tensorflow.OpInfo.TensorProperties outputs = 5; + */ + public java.util.List getOutputsList() { + return outputs_; + } + /** + *
        +   * Optional description of the op outputs
        +   * 
        + * + * repeated .tensorflow.OpInfo.TensorProperties outputs = 5; + */ + public java.util.List + getOutputsOrBuilderList() { + return outputs_; + } + /** + *
        +   * Optional description of the op outputs
        +   * 
        + * + * repeated .tensorflow.OpInfo.TensorProperties outputs = 5; + */ + public int getOutputsCount() { + return outputs_.size(); + } + /** + *
        +   * Optional description of the op outputs
        +   * 
        + * + * repeated .tensorflow.OpInfo.TensorProperties outputs = 5; + */ + public org.tensorflow.proto.framework.OpInfo.TensorProperties getOutputs(int index) { + return outputs_.get(index); + } + /** + *
        +   * Optional description of the op outputs
        +   * 
        + * + * repeated .tensorflow.OpInfo.TensorProperties outputs = 5; + */ + public org.tensorflow.proto.framework.OpInfo.TensorPropertiesOrBuilder getOutputsOrBuilder( + int index) { + return outputs_.get(index); + } + + public static final int DEVICE_FIELD_NUMBER = 4; + private org.tensorflow.proto.framework.DeviceProperties device_; + /** + *
        +   * Device on which the operation is run.
        +   * 
        + * + * .tensorflow.DeviceProperties device = 4; + */ + public boolean hasDevice() { + return device_ != null; + } + /** + *
        +   * Device on which the operation is run.
        +   * 
        + * + * .tensorflow.DeviceProperties device = 4; + */ + public org.tensorflow.proto.framework.DeviceProperties getDevice() { + return device_ == null ? org.tensorflow.proto.framework.DeviceProperties.getDefaultInstance() : device_; + } + /** + *
        +   * Device on which the operation is run.
        +   * 
        + * + * .tensorflow.DeviceProperties device = 4; + */ + public org.tensorflow.proto.framework.DevicePropertiesOrBuilder getDeviceOrBuilder() { + return getDevice(); + } + + public static final int SESSION_INFO_FIELD_NUMBER = 6; + private org.tensorflow.proto.framework.SessionInfo sessionInfo_; + /** + *
        +   * Information about the session configs.
        +   * 
        + * + * .tensorflow.SessionInfo session_info = 6; + */ + public boolean hasSessionInfo() { + return sessionInfo_ != null; + } + /** + *
        +   * Information about the session configs.
        +   * 
        + * + * .tensorflow.SessionInfo session_info = 6; + */ + public org.tensorflow.proto.framework.SessionInfo getSessionInfo() { + return sessionInfo_ == null ? org.tensorflow.proto.framework.SessionInfo.getDefaultInstance() : sessionInfo_; + } + /** + *
        +   * Information about the session configs.
        +   * 
        + * + * .tensorflow.SessionInfo session_info = 6; + */ + public org.tensorflow.proto.framework.SessionInfoOrBuilder getSessionInfoOrBuilder() { + return getSessionInfo(); + } + + private byte memoizedIsInitialized = -1; + @java.lang.Override + public final boolean isInitialized() { + byte isInitialized = memoizedIsInitialized; + if (isInitialized == 1) return true; + if (isInitialized == 0) return false; + + memoizedIsInitialized = 1; + return true; + } + + @java.lang.Override + public void writeTo(com.google.protobuf.CodedOutputStream output) + throws java.io.IOException { + if (!getOpBytes().isEmpty()) { + com.google.protobuf.GeneratedMessageV3.writeString(output, 1, op_); + } + com.google.protobuf.GeneratedMessageV3 + .serializeStringMapTo( + output, + internalGetAttr(), + AttrDefaultEntryHolder.defaultEntry, + 2); + for (int i = 0; i < inputs_.size(); i++) { + output.writeMessage(3, inputs_.get(i)); + } + if (device_ != null) { + output.writeMessage(4, getDevice()); + } + for (int i = 0; i < outputs_.size(); i++) { + output.writeMessage(5, outputs_.get(i)); + } + if (sessionInfo_ != null) { + output.writeMessage(6, getSessionInfo()); + } + unknownFields.writeTo(output); + } + + @java.lang.Override + public int getSerializedSize() { + int size = memoizedSize; + if (size != -1) return size; + + size = 0; + if (!getOpBytes().isEmpty()) { + size += com.google.protobuf.GeneratedMessageV3.computeStringSize(1, op_); + } + for (java.util.Map.Entry entry + : internalGetAttr().getMap().entrySet()) { + com.google.protobuf.MapEntry + attr__ = AttrDefaultEntryHolder.defaultEntry.newBuilderForType() + .setKey(entry.getKey()) + .setValue(entry.getValue()) + .build(); + size += com.google.protobuf.CodedOutputStream + .computeMessageSize(2, attr__); + } + for (int i = 0; i < inputs_.size(); i++) { + size += com.google.protobuf.CodedOutputStream + .computeMessageSize(3, inputs_.get(i)); + } + if (device_ != null) { + size += com.google.protobuf.CodedOutputStream + .computeMessageSize(4, getDevice()); + } + for (int i = 0; i < outputs_.size(); i++) { + size += com.google.protobuf.CodedOutputStream + .computeMessageSize(5, outputs_.get(i)); + } + if (sessionInfo_ != null) { + size += com.google.protobuf.CodedOutputStream + .computeMessageSize(6, getSessionInfo()); + } + size += unknownFields.getSerializedSize(); + memoizedSize = size; + return size; + } + + @java.lang.Override + public boolean equals(final java.lang.Object obj) { + if (obj == this) { + return true; + } + if (!(obj instanceof org.tensorflow.proto.framework.OpInfo)) { + return super.equals(obj); + } + org.tensorflow.proto.framework.OpInfo other = (org.tensorflow.proto.framework.OpInfo) obj; + + if (!getOp() + .equals(other.getOp())) return false; + if (!internalGetAttr().equals( + other.internalGetAttr())) return false; + if (!getInputsList() + .equals(other.getInputsList())) return false; + if (!getOutputsList() + .equals(other.getOutputsList())) return false; + if (hasDevice() != other.hasDevice()) return false; + if (hasDevice()) { + if (!getDevice() + .equals(other.getDevice())) return false; + } + if (hasSessionInfo() != other.hasSessionInfo()) return false; + if (hasSessionInfo()) { + if (!getSessionInfo() + .equals(other.getSessionInfo())) return false; + } + if (!unknownFields.equals(other.unknownFields)) return false; + return true; + } + + @java.lang.Override + public int hashCode() { + if (memoizedHashCode != 0) { + return memoizedHashCode; + } + int hash = 41; + hash = (19 * hash) + getDescriptor().hashCode(); + hash = (37 * hash) + OP_FIELD_NUMBER; + hash = (53 * hash) + getOp().hashCode(); + if (!internalGetAttr().getMap().isEmpty()) { + hash = (37 * hash) + ATTR_FIELD_NUMBER; + hash = (53 * hash) + internalGetAttr().hashCode(); + } + if (getInputsCount() > 0) { + hash = (37 * hash) + INPUTS_FIELD_NUMBER; + hash = (53 * hash) + getInputsList().hashCode(); + } + if (getOutputsCount() > 0) { + hash = (37 * hash) + OUTPUTS_FIELD_NUMBER; + hash = (53 * hash) + getOutputsList().hashCode(); + } + if (hasDevice()) { + hash = (37 * hash) + DEVICE_FIELD_NUMBER; + hash = (53 * hash) + getDevice().hashCode(); + } + if (hasSessionInfo()) { + hash = (37 * hash) + SESSION_INFO_FIELD_NUMBER; + hash = (53 * hash) + getSessionInfo().hashCode(); + } + hash = (29 * hash) + unknownFields.hashCode(); + memoizedHashCode = hash; + return hash; + } + + public static org.tensorflow.proto.framework.OpInfo parseFrom( + java.nio.ByteBuffer data) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data); + } + public static org.tensorflow.proto.framework.OpInfo parseFrom( + java.nio.ByteBuffer data, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data, extensionRegistry); + } + public static org.tensorflow.proto.framework.OpInfo parseFrom( + com.google.protobuf.ByteString data) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data); + } + public static org.tensorflow.proto.framework.OpInfo parseFrom( + com.google.protobuf.ByteString data, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data, extensionRegistry); + } + public static org.tensorflow.proto.framework.OpInfo parseFrom(byte[] data) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data); + } + public static org.tensorflow.proto.framework.OpInfo parseFrom( + byte[] data, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data, extensionRegistry); + } + public static org.tensorflow.proto.framework.OpInfo parseFrom(java.io.InputStream input) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input); + } + public static org.tensorflow.proto.framework.OpInfo parseFrom( + java.io.InputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input, extensionRegistry); + } + public static org.tensorflow.proto.framework.OpInfo parseDelimitedFrom(java.io.InputStream input) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseDelimitedWithIOException(PARSER, input); + } + public static org.tensorflow.proto.framework.OpInfo parseDelimitedFrom( + java.io.InputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseDelimitedWithIOException(PARSER, input, extensionRegistry); + } + public static org.tensorflow.proto.framework.OpInfo parseFrom( + com.google.protobuf.CodedInputStream input) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input); + } + public static org.tensorflow.proto.framework.OpInfo parseFrom( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input, extensionRegistry); + } + + @java.lang.Override + public Builder newBuilderForType() { return newBuilder(); } + public static Builder newBuilder() { + return DEFAULT_INSTANCE.toBuilder(); + } + public static Builder newBuilder(org.tensorflow.proto.framework.OpInfo prototype) { + return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); + } + @java.lang.Override + public Builder toBuilder() { + return this == DEFAULT_INSTANCE + ? new Builder() : new Builder().mergeFrom(this); + } + + @java.lang.Override + protected Builder newBuilderForType( + com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { + Builder builder = new Builder(parent); + return builder; + } + /** + *
        +   * Description of an operation as well as the parameters expected to impact its
        +   * performance.
        +   * 
        + * + * Protobuf type {@code tensorflow.OpInfo} + */ + public static final class Builder extends + com.google.protobuf.GeneratedMessageV3.Builder implements + // @@protoc_insertion_point(builder_implements:tensorflow.OpInfo) + org.tensorflow.proto.framework.OpInfoOrBuilder { + public static final com.google.protobuf.Descriptors.Descriptor + getDescriptor() { + return org.tensorflow.proto.framework.OpPerformanceDataProtos.internal_static_tensorflow_OpInfo_descriptor; + } + + @SuppressWarnings({"rawtypes"}) + protected com.google.protobuf.MapField internalGetMapField( + int number) { + switch (number) { + case 2: + return internalGetAttr(); + default: + throw new RuntimeException( + "Invalid map field number: " + number); + } + } + @SuppressWarnings({"rawtypes"}) + protected com.google.protobuf.MapField internalGetMutableMapField( + int number) { + switch (number) { + case 2: + return internalGetMutableAttr(); + default: + throw new RuntimeException( + "Invalid map field number: " + number); + } + } + @java.lang.Override + protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable + internalGetFieldAccessorTable() { + return org.tensorflow.proto.framework.OpPerformanceDataProtos.internal_static_tensorflow_OpInfo_fieldAccessorTable + .ensureFieldAccessorsInitialized( + org.tensorflow.proto.framework.OpInfo.class, org.tensorflow.proto.framework.OpInfo.Builder.class); + } + + // Construct using org.tensorflow.proto.framework.OpInfo.newBuilder() + private Builder() { + maybeForceBuilderInitialization(); + } + + private Builder( + com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { + super(parent); + maybeForceBuilderInitialization(); + } + private void maybeForceBuilderInitialization() { + if (com.google.protobuf.GeneratedMessageV3 + .alwaysUseFieldBuilders) { + getInputsFieldBuilder(); + getOutputsFieldBuilder(); + } + } + @java.lang.Override + public Builder clear() { + super.clear(); + op_ = ""; + + internalGetMutableAttr().clear(); + if (inputsBuilder_ == null) { + inputs_ = java.util.Collections.emptyList(); + bitField0_ = (bitField0_ & ~0x00000002); + } else { + inputsBuilder_.clear(); + } + if (outputsBuilder_ == null) { + outputs_ = java.util.Collections.emptyList(); + bitField0_ = (bitField0_ & ~0x00000004); + } else { + outputsBuilder_.clear(); + } + if (deviceBuilder_ == null) { + device_ = null; + } else { + device_ = null; + deviceBuilder_ = null; + } + if (sessionInfoBuilder_ == null) { + sessionInfo_ = null; + } else { + sessionInfo_ = null; + sessionInfoBuilder_ = null; + } + return this; + } + + @java.lang.Override + public com.google.protobuf.Descriptors.Descriptor + getDescriptorForType() { + return org.tensorflow.proto.framework.OpPerformanceDataProtos.internal_static_tensorflow_OpInfo_descriptor; + } + + @java.lang.Override + public org.tensorflow.proto.framework.OpInfo getDefaultInstanceForType() { + return org.tensorflow.proto.framework.OpInfo.getDefaultInstance(); + } + + @java.lang.Override + public org.tensorflow.proto.framework.OpInfo build() { + org.tensorflow.proto.framework.OpInfo result = buildPartial(); + if (!result.isInitialized()) { + throw newUninitializedMessageException(result); + } + return result; + } + + @java.lang.Override + public org.tensorflow.proto.framework.OpInfo buildPartial() { + org.tensorflow.proto.framework.OpInfo result = new org.tensorflow.proto.framework.OpInfo(this); + int from_bitField0_ = bitField0_; + result.op_ = op_; + result.attr_ = internalGetAttr(); + result.attr_.makeImmutable(); + if (inputsBuilder_ == null) { + if (((bitField0_ & 0x00000002) != 0)) { + inputs_ = java.util.Collections.unmodifiableList(inputs_); + bitField0_ = (bitField0_ & ~0x00000002); + } + result.inputs_ = inputs_; + } else { + result.inputs_ = inputsBuilder_.build(); + } + if (outputsBuilder_ == null) { + if (((bitField0_ & 0x00000004) != 0)) { + outputs_ = java.util.Collections.unmodifiableList(outputs_); + bitField0_ = (bitField0_ & ~0x00000004); + } + result.outputs_ = outputs_; + } else { + result.outputs_ = outputsBuilder_.build(); + } + if (deviceBuilder_ == null) { + result.device_ = device_; + } else { + result.device_ = deviceBuilder_.build(); + } + if (sessionInfoBuilder_ == null) { + result.sessionInfo_ = sessionInfo_; + } else { + result.sessionInfo_ = sessionInfoBuilder_.build(); + } + onBuilt(); + return result; + } + + @java.lang.Override + public Builder clone() { + return super.clone(); + } + @java.lang.Override + public Builder setField( + com.google.protobuf.Descriptors.FieldDescriptor field, + java.lang.Object value) { + return super.setField(field, value); + } + @java.lang.Override + public Builder clearField( + com.google.protobuf.Descriptors.FieldDescriptor field) { + return super.clearField(field); + } + @java.lang.Override + public Builder clearOneof( + com.google.protobuf.Descriptors.OneofDescriptor oneof) { + return super.clearOneof(oneof); + } + @java.lang.Override + public Builder setRepeatedField( + com.google.protobuf.Descriptors.FieldDescriptor field, + int index, java.lang.Object value) { + return super.setRepeatedField(field, index, value); + } + @java.lang.Override + public Builder addRepeatedField( + com.google.protobuf.Descriptors.FieldDescriptor field, + java.lang.Object value) { + return super.addRepeatedField(field, value); + } + @java.lang.Override + public Builder mergeFrom(com.google.protobuf.Message other) { + if (other instanceof org.tensorflow.proto.framework.OpInfo) { + return mergeFrom((org.tensorflow.proto.framework.OpInfo)other); + } else { + super.mergeFrom(other); + return this; + } + } + + public Builder mergeFrom(org.tensorflow.proto.framework.OpInfo other) { + if (other == org.tensorflow.proto.framework.OpInfo.getDefaultInstance()) return this; + if (!other.getOp().isEmpty()) { + op_ = other.op_; + onChanged(); + } + internalGetMutableAttr().mergeFrom( + other.internalGetAttr()); + if (inputsBuilder_ == null) { + if (!other.inputs_.isEmpty()) { + if (inputs_.isEmpty()) { + inputs_ = other.inputs_; + bitField0_ = (bitField0_ & ~0x00000002); + } else { + ensureInputsIsMutable(); + inputs_.addAll(other.inputs_); + } + onChanged(); + } + } else { + if (!other.inputs_.isEmpty()) { + if (inputsBuilder_.isEmpty()) { + inputsBuilder_.dispose(); + inputsBuilder_ = null; + inputs_ = other.inputs_; + bitField0_ = (bitField0_ & ~0x00000002); + inputsBuilder_ = + com.google.protobuf.GeneratedMessageV3.alwaysUseFieldBuilders ? + getInputsFieldBuilder() : null; + } else { + inputsBuilder_.addAllMessages(other.inputs_); + } + } + } + if (outputsBuilder_ == null) { + if (!other.outputs_.isEmpty()) { + if (outputs_.isEmpty()) { + outputs_ = other.outputs_; + bitField0_ = (bitField0_ & ~0x00000004); + } else { + ensureOutputsIsMutable(); + outputs_.addAll(other.outputs_); + } + onChanged(); + } + } else { + if (!other.outputs_.isEmpty()) { + if (outputsBuilder_.isEmpty()) { + outputsBuilder_.dispose(); + outputsBuilder_ = null; + outputs_ = other.outputs_; + bitField0_ = (bitField0_ & ~0x00000004); + outputsBuilder_ = + com.google.protobuf.GeneratedMessageV3.alwaysUseFieldBuilders ? + getOutputsFieldBuilder() : null; + } else { + outputsBuilder_.addAllMessages(other.outputs_); + } + } + } + if (other.hasDevice()) { + mergeDevice(other.getDevice()); + } + if (other.hasSessionInfo()) { + mergeSessionInfo(other.getSessionInfo()); + } + this.mergeUnknownFields(other.unknownFields); + onChanged(); + return this; + } + + @java.lang.Override + public final boolean isInitialized() { + return true; + } + + @java.lang.Override + public Builder mergeFrom( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + org.tensorflow.proto.framework.OpInfo parsedMessage = null; + try { + parsedMessage = PARSER.parsePartialFrom(input, extensionRegistry); + } catch (com.google.protobuf.InvalidProtocolBufferException e) { + parsedMessage = (org.tensorflow.proto.framework.OpInfo) e.getUnfinishedMessage(); + throw e.unwrapIOException(); + } finally { + if (parsedMessage != null) { + mergeFrom(parsedMessage); + } + } + return this; + } + private int bitField0_; + + private java.lang.Object op_ = ""; + /** + *
        +     * The operation name.  There may be custom parameters in attrs.
        +     * 
        + * + * string op = 1; + */ + public java.lang.String getOp() { + java.lang.Object ref = op_; + if (!(ref instanceof java.lang.String)) { + com.google.protobuf.ByteString bs = + (com.google.protobuf.ByteString) ref; + java.lang.String s = bs.toStringUtf8(); + op_ = s; + return s; + } else { + return (java.lang.String) ref; + } + } + /** + *
        +     * The operation name.  There may be custom parameters in attrs.
        +     * 
        + * + * string op = 1; + */ + public com.google.protobuf.ByteString + getOpBytes() { + java.lang.Object ref = op_; + if (ref instanceof String) { + com.google.protobuf.ByteString b = + com.google.protobuf.ByteString.copyFromUtf8( + (java.lang.String) ref); + op_ = b; + return b; + } else { + return (com.google.protobuf.ByteString) ref; + } + } + /** + *
        +     * The operation name.  There may be custom parameters in attrs.
        +     * 
        + * + * string op = 1; + */ + public Builder setOp( + java.lang.String value) { + if (value == null) { + throw new NullPointerException(); + } + + op_ = value; + onChanged(); + return this; + } + /** + *
        +     * The operation name.  There may be custom parameters in attrs.
        +     * 
        + * + * string op = 1; + */ + public Builder clearOp() { + + op_ = getDefaultInstance().getOp(); + onChanged(); + return this; + } + /** + *
        +     * The operation name.  There may be custom parameters in attrs.
        +     * 
        + * + * string op = 1; + */ + public Builder setOpBytes( + com.google.protobuf.ByteString value) { + if (value == null) { + throw new NullPointerException(); + } + checkByteStringIsUtf8(value); + + op_ = value; + onChanged(); + return this; + } + + private com.google.protobuf.MapField< + java.lang.String, org.tensorflow.proto.framework.AttrValue> attr_; + private com.google.protobuf.MapField + internalGetAttr() { + if (attr_ == null) { + return com.google.protobuf.MapField.emptyMapField( + AttrDefaultEntryHolder.defaultEntry); + } + return attr_; + } + private com.google.protobuf.MapField + internalGetMutableAttr() { + onChanged();; + if (attr_ == null) { + attr_ = com.google.protobuf.MapField.newMapField( + AttrDefaultEntryHolder.defaultEntry); + } + if (!attr_.isMutable()) { + attr_ = attr_.copy(); + } + return attr_; + } + + public int getAttrCount() { + return internalGetAttr().getMap().size(); + } + /** + *
        +     * Custom parameters impacting the behavior of the op.
        +     * 
        + * + * map<string, .tensorflow.AttrValue> attr = 2; + */ + + public boolean containsAttr( + java.lang.String key) { + if (key == null) { throw new java.lang.NullPointerException(); } + return internalGetAttr().getMap().containsKey(key); + } + /** + * Use {@link #getAttrMap()} instead. + */ + @java.lang.Deprecated + public java.util.Map getAttr() { + return getAttrMap(); + } + /** + *
        +     * Custom parameters impacting the behavior of the op.
        +     * 
        + * + * map<string, .tensorflow.AttrValue> attr = 2; + */ + + public java.util.Map getAttrMap() { + return internalGetAttr().getMap(); + } + /** + *
        +     * Custom parameters impacting the behavior of the op.
        +     * 
        + * + * map<string, .tensorflow.AttrValue> attr = 2; + */ + + public org.tensorflow.proto.framework.AttrValue getAttrOrDefault( + java.lang.String key, + org.tensorflow.proto.framework.AttrValue defaultValue) { + if (key == null) { throw new java.lang.NullPointerException(); } + java.util.Map map = + internalGetAttr().getMap(); + return map.containsKey(key) ? map.get(key) : defaultValue; + } + /** + *
        +     * Custom parameters impacting the behavior of the op.
        +     * 
        + * + * map<string, .tensorflow.AttrValue> attr = 2; + */ + + public org.tensorflow.proto.framework.AttrValue getAttrOrThrow( + java.lang.String key) { + if (key == null) { throw new java.lang.NullPointerException(); } + java.util.Map map = + internalGetAttr().getMap(); + if (!map.containsKey(key)) { + throw new java.lang.IllegalArgumentException(); + } + return map.get(key); + } + + public Builder clearAttr() { + internalGetMutableAttr().getMutableMap() + .clear(); + return this; + } + /** + *
        +     * Custom parameters impacting the behavior of the op.
        +     * 
        + * + * map<string, .tensorflow.AttrValue> attr = 2; + */ + + public Builder removeAttr( + java.lang.String key) { + if (key == null) { throw new java.lang.NullPointerException(); } + internalGetMutableAttr().getMutableMap() + .remove(key); + return this; + } + /** + * Use alternate mutation accessors instead. + */ + @java.lang.Deprecated + public java.util.Map + getMutableAttr() { + return internalGetMutableAttr().getMutableMap(); + } + /** + *
        +     * Custom parameters impacting the behavior of the op.
        +     * 
        + * + * map<string, .tensorflow.AttrValue> attr = 2; + */ + public Builder putAttr( + java.lang.String key, + org.tensorflow.proto.framework.AttrValue value) { + if (key == null) { throw new java.lang.NullPointerException(); } + if (value == null) { throw new java.lang.NullPointerException(); } + internalGetMutableAttr().getMutableMap() + .put(key, value); + return this; + } + /** + *
        +     * Custom parameters impacting the behavior of the op.
        +     * 
        + * + * map<string, .tensorflow.AttrValue> attr = 2; + */ + + public Builder putAllAttr( + java.util.Map values) { + internalGetMutableAttr().getMutableMap() + .putAll(values); + return this; + } + + private java.util.List inputs_ = + java.util.Collections.emptyList(); + private void ensureInputsIsMutable() { + if (!((bitField0_ & 0x00000002) != 0)) { + inputs_ = new java.util.ArrayList(inputs_); + bitField0_ |= 0x00000002; + } + } + + private com.google.protobuf.RepeatedFieldBuilderV3< + org.tensorflow.proto.framework.OpInfo.TensorProperties, org.tensorflow.proto.framework.OpInfo.TensorProperties.Builder, org.tensorflow.proto.framework.OpInfo.TensorPropertiesOrBuilder> inputsBuilder_; + + /** + * repeated .tensorflow.OpInfo.TensorProperties inputs = 3; + */ + public java.util.List getInputsList() { + if (inputsBuilder_ == null) { + return java.util.Collections.unmodifiableList(inputs_); + } else { + return inputsBuilder_.getMessageList(); + } + } + /** + * repeated .tensorflow.OpInfo.TensorProperties inputs = 3; + */ + public int getInputsCount() { + if (inputsBuilder_ == null) { + return inputs_.size(); + } else { + return inputsBuilder_.getCount(); + } + } + /** + * repeated .tensorflow.OpInfo.TensorProperties inputs = 3; + */ + public org.tensorflow.proto.framework.OpInfo.TensorProperties getInputs(int index) { + if (inputsBuilder_ == null) { + return inputs_.get(index); + } else { + return inputsBuilder_.getMessage(index); + } + } + /** + * repeated .tensorflow.OpInfo.TensorProperties inputs = 3; + */ + public Builder setInputs( + int index, org.tensorflow.proto.framework.OpInfo.TensorProperties value) { + if (inputsBuilder_ == null) { + if (value == null) { + throw new NullPointerException(); + } + ensureInputsIsMutable(); + inputs_.set(index, value); + onChanged(); + } else { + inputsBuilder_.setMessage(index, value); + } + return this; + } + /** + * repeated .tensorflow.OpInfo.TensorProperties inputs = 3; + */ + public Builder setInputs( + int index, org.tensorflow.proto.framework.OpInfo.TensorProperties.Builder builderForValue) { + if (inputsBuilder_ == null) { + ensureInputsIsMutable(); + inputs_.set(index, builderForValue.build()); + onChanged(); + } else { + inputsBuilder_.setMessage(index, builderForValue.build()); + } + return this; + } + /** + * repeated .tensorflow.OpInfo.TensorProperties inputs = 3; + */ + public Builder addInputs(org.tensorflow.proto.framework.OpInfo.TensorProperties value) { + if (inputsBuilder_ == null) { + if (value == null) { + throw new NullPointerException(); + } + ensureInputsIsMutable(); + inputs_.add(value); + onChanged(); + } else { + inputsBuilder_.addMessage(value); + } + return this; + } + /** + * repeated .tensorflow.OpInfo.TensorProperties inputs = 3; + */ + public Builder addInputs( + int index, org.tensorflow.proto.framework.OpInfo.TensorProperties value) { + if (inputsBuilder_ == null) { + if (value == null) { + throw new NullPointerException(); + } + ensureInputsIsMutable(); + inputs_.add(index, value); + onChanged(); + } else { + inputsBuilder_.addMessage(index, value); + } + return this; + } + /** + * repeated .tensorflow.OpInfo.TensorProperties inputs = 3; + */ + public Builder addInputs( + org.tensorflow.proto.framework.OpInfo.TensorProperties.Builder builderForValue) { + if (inputsBuilder_ == null) { + ensureInputsIsMutable(); + inputs_.add(builderForValue.build()); + onChanged(); + } else { + inputsBuilder_.addMessage(builderForValue.build()); + } + return this; + } + /** + * repeated .tensorflow.OpInfo.TensorProperties inputs = 3; + */ + public Builder addInputs( + int index, org.tensorflow.proto.framework.OpInfo.TensorProperties.Builder builderForValue) { + if (inputsBuilder_ == null) { + ensureInputsIsMutable(); + inputs_.add(index, builderForValue.build()); + onChanged(); + } else { + inputsBuilder_.addMessage(index, builderForValue.build()); + } + return this; + } + /** + * repeated .tensorflow.OpInfo.TensorProperties inputs = 3; + */ + public Builder addAllInputs( + java.lang.Iterable values) { + if (inputsBuilder_ == null) { + ensureInputsIsMutable(); + com.google.protobuf.AbstractMessageLite.Builder.addAll( + values, inputs_); + onChanged(); + } else { + inputsBuilder_.addAllMessages(values); + } + return this; + } + /** + * repeated .tensorflow.OpInfo.TensorProperties inputs = 3; + */ + public Builder clearInputs() { + if (inputsBuilder_ == null) { + inputs_ = java.util.Collections.emptyList(); + bitField0_ = (bitField0_ & ~0x00000002); + onChanged(); + } else { + inputsBuilder_.clear(); + } + return this; + } + /** + * repeated .tensorflow.OpInfo.TensorProperties inputs = 3; + */ + public Builder removeInputs(int index) { + if (inputsBuilder_ == null) { + ensureInputsIsMutable(); + inputs_.remove(index); + onChanged(); + } else { + inputsBuilder_.remove(index); + } + return this; + } + /** + * repeated .tensorflow.OpInfo.TensorProperties inputs = 3; + */ + public org.tensorflow.proto.framework.OpInfo.TensorProperties.Builder getInputsBuilder( + int index) { + return getInputsFieldBuilder().getBuilder(index); + } + /** + * repeated .tensorflow.OpInfo.TensorProperties inputs = 3; + */ + public org.tensorflow.proto.framework.OpInfo.TensorPropertiesOrBuilder getInputsOrBuilder( + int index) { + if (inputsBuilder_ == null) { + return inputs_.get(index); } else { + return inputsBuilder_.getMessageOrBuilder(index); + } + } + /** + * repeated .tensorflow.OpInfo.TensorProperties inputs = 3; + */ + public java.util.List + getInputsOrBuilderList() { + if (inputsBuilder_ != null) { + return inputsBuilder_.getMessageOrBuilderList(); + } else { + return java.util.Collections.unmodifiableList(inputs_); + } + } + /** + * repeated .tensorflow.OpInfo.TensorProperties inputs = 3; + */ + public org.tensorflow.proto.framework.OpInfo.TensorProperties.Builder addInputsBuilder() { + return getInputsFieldBuilder().addBuilder( + org.tensorflow.proto.framework.OpInfo.TensorProperties.getDefaultInstance()); + } + /** + * repeated .tensorflow.OpInfo.TensorProperties inputs = 3; + */ + public org.tensorflow.proto.framework.OpInfo.TensorProperties.Builder addInputsBuilder( + int index) { + return getInputsFieldBuilder().addBuilder( + index, org.tensorflow.proto.framework.OpInfo.TensorProperties.getDefaultInstance()); + } + /** + * repeated .tensorflow.OpInfo.TensorProperties inputs = 3; + */ + public java.util.List + getInputsBuilderList() { + return getInputsFieldBuilder().getBuilderList(); + } + private com.google.protobuf.RepeatedFieldBuilderV3< + org.tensorflow.proto.framework.OpInfo.TensorProperties, org.tensorflow.proto.framework.OpInfo.TensorProperties.Builder, org.tensorflow.proto.framework.OpInfo.TensorPropertiesOrBuilder> + getInputsFieldBuilder() { + if (inputsBuilder_ == null) { + inputsBuilder_ = new com.google.protobuf.RepeatedFieldBuilderV3< + org.tensorflow.proto.framework.OpInfo.TensorProperties, org.tensorflow.proto.framework.OpInfo.TensorProperties.Builder, org.tensorflow.proto.framework.OpInfo.TensorPropertiesOrBuilder>( + inputs_, + ((bitField0_ & 0x00000002) != 0), + getParentForChildren(), + isClean()); + inputs_ = null; + } + return inputsBuilder_; + } + + private java.util.List outputs_ = + java.util.Collections.emptyList(); + private void ensureOutputsIsMutable() { + if (!((bitField0_ & 0x00000004) != 0)) { + outputs_ = new java.util.ArrayList(outputs_); + bitField0_ |= 0x00000004; + } + } + + private com.google.protobuf.RepeatedFieldBuilderV3< + org.tensorflow.proto.framework.OpInfo.TensorProperties, org.tensorflow.proto.framework.OpInfo.TensorProperties.Builder, org.tensorflow.proto.framework.OpInfo.TensorPropertiesOrBuilder> outputsBuilder_; + + /** + *
        +     * Optional description of the op outputs
        +     * 
        + * + * repeated .tensorflow.OpInfo.TensorProperties outputs = 5; + */ + public java.util.List getOutputsList() { + if (outputsBuilder_ == null) { + return java.util.Collections.unmodifiableList(outputs_); + } else { + return outputsBuilder_.getMessageList(); + } + } + /** + *
        +     * Optional description of the op outputs
        +     * 
        + * + * repeated .tensorflow.OpInfo.TensorProperties outputs = 5; + */ + public int getOutputsCount() { + if (outputsBuilder_ == null) { + return outputs_.size(); + } else { + return outputsBuilder_.getCount(); + } + } + /** + *
        +     * Optional description of the op outputs
        +     * 
        + * + * repeated .tensorflow.OpInfo.TensorProperties outputs = 5; + */ + public org.tensorflow.proto.framework.OpInfo.TensorProperties getOutputs(int index) { + if (outputsBuilder_ == null) { + return outputs_.get(index); + } else { + return outputsBuilder_.getMessage(index); + } + } + /** + *
        +     * Optional description of the op outputs
        +     * 
        + * + * repeated .tensorflow.OpInfo.TensorProperties outputs = 5; + */ + public Builder setOutputs( + int index, org.tensorflow.proto.framework.OpInfo.TensorProperties value) { + if (outputsBuilder_ == null) { + if (value == null) { + throw new NullPointerException(); + } + ensureOutputsIsMutable(); + outputs_.set(index, value); + onChanged(); + } else { + outputsBuilder_.setMessage(index, value); + } + return this; + } + /** + *
        +     * Optional description of the op outputs
        +     * 
        + * + * repeated .tensorflow.OpInfo.TensorProperties outputs = 5; + */ + public Builder setOutputs( + int index, org.tensorflow.proto.framework.OpInfo.TensorProperties.Builder builderForValue) { + if (outputsBuilder_ == null) { + ensureOutputsIsMutable(); + outputs_.set(index, builderForValue.build()); + onChanged(); + } else { + outputsBuilder_.setMessage(index, builderForValue.build()); + } + return this; + } + /** + *
        +     * Optional description of the op outputs
        +     * 
        + * + * repeated .tensorflow.OpInfo.TensorProperties outputs = 5; + */ + public Builder addOutputs(org.tensorflow.proto.framework.OpInfo.TensorProperties value) { + if (outputsBuilder_ == null) { + if (value == null) { + throw new NullPointerException(); + } + ensureOutputsIsMutable(); + outputs_.add(value); + onChanged(); + } else { + outputsBuilder_.addMessage(value); + } + return this; + } + /** + *
        +     * Optional description of the op outputs
        +     * 
        + * + * repeated .tensorflow.OpInfo.TensorProperties outputs = 5; + */ + public Builder addOutputs( + int index, org.tensorflow.proto.framework.OpInfo.TensorProperties value) { + if (outputsBuilder_ == null) { + if (value == null) { + throw new NullPointerException(); + } + ensureOutputsIsMutable(); + outputs_.add(index, value); + onChanged(); + } else { + outputsBuilder_.addMessage(index, value); + } + return this; + } + /** + *
        +     * Optional description of the op outputs
        +     * 
        + * + * repeated .tensorflow.OpInfo.TensorProperties outputs = 5; + */ + public Builder addOutputs( + org.tensorflow.proto.framework.OpInfo.TensorProperties.Builder builderForValue) { + if (outputsBuilder_ == null) { + ensureOutputsIsMutable(); + outputs_.add(builderForValue.build()); + onChanged(); + } else { + outputsBuilder_.addMessage(builderForValue.build()); + } + return this; + } + /** + *
        +     * Optional description of the op outputs
        +     * 
        + * + * repeated .tensorflow.OpInfo.TensorProperties outputs = 5; + */ + public Builder addOutputs( + int index, org.tensorflow.proto.framework.OpInfo.TensorProperties.Builder builderForValue) { + if (outputsBuilder_ == null) { + ensureOutputsIsMutable(); + outputs_.add(index, builderForValue.build()); + onChanged(); + } else { + outputsBuilder_.addMessage(index, builderForValue.build()); + } + return this; + } + /** + *
        +     * Optional description of the op outputs
        +     * 
        + * + * repeated .tensorflow.OpInfo.TensorProperties outputs = 5; + */ + public Builder addAllOutputs( + java.lang.Iterable values) { + if (outputsBuilder_ == null) { + ensureOutputsIsMutable(); + com.google.protobuf.AbstractMessageLite.Builder.addAll( + values, outputs_); + onChanged(); + } else { + outputsBuilder_.addAllMessages(values); + } + return this; + } + /** + *
        +     * Optional description of the op outputs
        +     * 
        + * + * repeated .tensorflow.OpInfo.TensorProperties outputs = 5; + */ + public Builder clearOutputs() { + if (outputsBuilder_ == null) { + outputs_ = java.util.Collections.emptyList(); + bitField0_ = (bitField0_ & ~0x00000004); + onChanged(); + } else { + outputsBuilder_.clear(); + } + return this; + } + /** + *
        +     * Optional description of the op outputs
        +     * 
        + * + * repeated .tensorflow.OpInfo.TensorProperties outputs = 5; + */ + public Builder removeOutputs(int index) { + if (outputsBuilder_ == null) { + ensureOutputsIsMutable(); + outputs_.remove(index); + onChanged(); + } else { + outputsBuilder_.remove(index); + } + return this; + } + /** + *
        +     * Optional description of the op outputs
        +     * 
        + * + * repeated .tensorflow.OpInfo.TensorProperties outputs = 5; + */ + public org.tensorflow.proto.framework.OpInfo.TensorProperties.Builder getOutputsBuilder( + int index) { + return getOutputsFieldBuilder().getBuilder(index); + } + /** + *
        +     * Optional description of the op outputs
        +     * 
        + * + * repeated .tensorflow.OpInfo.TensorProperties outputs = 5; + */ + public org.tensorflow.proto.framework.OpInfo.TensorPropertiesOrBuilder getOutputsOrBuilder( + int index) { + if (outputsBuilder_ == null) { + return outputs_.get(index); } else { + return outputsBuilder_.getMessageOrBuilder(index); + } + } + /** + *
        +     * Optional description of the op outputs
        +     * 
        + * + * repeated .tensorflow.OpInfo.TensorProperties outputs = 5; + */ + public java.util.List + getOutputsOrBuilderList() { + if (outputsBuilder_ != null) { + return outputsBuilder_.getMessageOrBuilderList(); + } else { + return java.util.Collections.unmodifiableList(outputs_); + } + } + /** + *
        +     * Optional description of the op outputs
        +     * 
        + * + * repeated .tensorflow.OpInfo.TensorProperties outputs = 5; + */ + public org.tensorflow.proto.framework.OpInfo.TensorProperties.Builder addOutputsBuilder() { + return getOutputsFieldBuilder().addBuilder( + org.tensorflow.proto.framework.OpInfo.TensorProperties.getDefaultInstance()); + } + /** + *
        +     * Optional description of the op outputs
        +     * 
        + * + * repeated .tensorflow.OpInfo.TensorProperties outputs = 5; + */ + public org.tensorflow.proto.framework.OpInfo.TensorProperties.Builder addOutputsBuilder( + int index) { + return getOutputsFieldBuilder().addBuilder( + index, org.tensorflow.proto.framework.OpInfo.TensorProperties.getDefaultInstance()); + } + /** + *
        +     * Optional description of the op outputs
        +     * 
        + * + * repeated .tensorflow.OpInfo.TensorProperties outputs = 5; + */ + public java.util.List + getOutputsBuilderList() { + return getOutputsFieldBuilder().getBuilderList(); + } + private com.google.protobuf.RepeatedFieldBuilderV3< + org.tensorflow.proto.framework.OpInfo.TensorProperties, org.tensorflow.proto.framework.OpInfo.TensorProperties.Builder, org.tensorflow.proto.framework.OpInfo.TensorPropertiesOrBuilder> + getOutputsFieldBuilder() { + if (outputsBuilder_ == null) { + outputsBuilder_ = new com.google.protobuf.RepeatedFieldBuilderV3< + org.tensorflow.proto.framework.OpInfo.TensorProperties, org.tensorflow.proto.framework.OpInfo.TensorProperties.Builder, org.tensorflow.proto.framework.OpInfo.TensorPropertiesOrBuilder>( + outputs_, + ((bitField0_ & 0x00000004) != 0), + getParentForChildren(), + isClean()); + outputs_ = null; + } + return outputsBuilder_; + } + + private org.tensorflow.proto.framework.DeviceProperties device_; + private com.google.protobuf.SingleFieldBuilderV3< + org.tensorflow.proto.framework.DeviceProperties, org.tensorflow.proto.framework.DeviceProperties.Builder, org.tensorflow.proto.framework.DevicePropertiesOrBuilder> deviceBuilder_; + /** + *
        +     * Device on which the operation is run.
        +     * 
        + * + * .tensorflow.DeviceProperties device = 4; + */ + public boolean hasDevice() { + return deviceBuilder_ != null || device_ != null; + } + /** + *
        +     * Device on which the operation is run.
        +     * 
        + * + * .tensorflow.DeviceProperties device = 4; + */ + public org.tensorflow.proto.framework.DeviceProperties getDevice() { + if (deviceBuilder_ == null) { + return device_ == null ? org.tensorflow.proto.framework.DeviceProperties.getDefaultInstance() : device_; + } else { + return deviceBuilder_.getMessage(); + } + } + /** + *
        +     * Device on which the operation is run.
        +     * 
        + * + * .tensorflow.DeviceProperties device = 4; + */ + public Builder setDevice(org.tensorflow.proto.framework.DeviceProperties value) { + if (deviceBuilder_ == null) { + if (value == null) { + throw new NullPointerException(); + } + device_ = value; + onChanged(); + } else { + deviceBuilder_.setMessage(value); + } + + return this; + } + /** + *
        +     * Device on which the operation is run.
        +     * 
        + * + * .tensorflow.DeviceProperties device = 4; + */ + public Builder setDevice( + org.tensorflow.proto.framework.DeviceProperties.Builder builderForValue) { + if (deviceBuilder_ == null) { + device_ = builderForValue.build(); + onChanged(); + } else { + deviceBuilder_.setMessage(builderForValue.build()); + } + + return this; + } + /** + *
        +     * Device on which the operation is run.
        +     * 
        + * + * .tensorflow.DeviceProperties device = 4; + */ + public Builder mergeDevice(org.tensorflow.proto.framework.DeviceProperties value) { + if (deviceBuilder_ == null) { + if (device_ != null) { + device_ = + org.tensorflow.proto.framework.DeviceProperties.newBuilder(device_).mergeFrom(value).buildPartial(); + } else { + device_ = value; + } + onChanged(); + } else { + deviceBuilder_.mergeFrom(value); + } + + return this; + } + /** + *
        +     * Device on which the operation is run.
        +     * 
        + * + * .tensorflow.DeviceProperties device = 4; + */ + public Builder clearDevice() { + if (deviceBuilder_ == null) { + device_ = null; + onChanged(); + } else { + device_ = null; + deviceBuilder_ = null; + } + + return this; + } + /** + *
        +     * Device on which the operation is run.
        +     * 
        + * + * .tensorflow.DeviceProperties device = 4; + */ + public org.tensorflow.proto.framework.DeviceProperties.Builder getDeviceBuilder() { + + onChanged(); + return getDeviceFieldBuilder().getBuilder(); + } + /** + *
        +     * Device on which the operation is run.
        +     * 
        + * + * .tensorflow.DeviceProperties device = 4; + */ + public org.tensorflow.proto.framework.DevicePropertiesOrBuilder getDeviceOrBuilder() { + if (deviceBuilder_ != null) { + return deviceBuilder_.getMessageOrBuilder(); + } else { + return device_ == null ? + org.tensorflow.proto.framework.DeviceProperties.getDefaultInstance() : device_; + } + } + /** + *
        +     * Device on which the operation is run.
        +     * 
        + * + * .tensorflow.DeviceProperties device = 4; + */ + private com.google.protobuf.SingleFieldBuilderV3< + org.tensorflow.proto.framework.DeviceProperties, org.tensorflow.proto.framework.DeviceProperties.Builder, org.tensorflow.proto.framework.DevicePropertiesOrBuilder> + getDeviceFieldBuilder() { + if (deviceBuilder_ == null) { + deviceBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< + org.tensorflow.proto.framework.DeviceProperties, org.tensorflow.proto.framework.DeviceProperties.Builder, org.tensorflow.proto.framework.DevicePropertiesOrBuilder>( + getDevice(), + getParentForChildren(), + isClean()); + device_ = null; + } + return deviceBuilder_; + } + + private org.tensorflow.proto.framework.SessionInfo sessionInfo_; + private com.google.protobuf.SingleFieldBuilderV3< + org.tensorflow.proto.framework.SessionInfo, org.tensorflow.proto.framework.SessionInfo.Builder, org.tensorflow.proto.framework.SessionInfoOrBuilder> sessionInfoBuilder_; + /** + *
        +     * Information about the session configs.
        +     * 
        + * + * .tensorflow.SessionInfo session_info = 6; + */ + public boolean hasSessionInfo() { + return sessionInfoBuilder_ != null || sessionInfo_ != null; + } + /** + *
        +     * Information about the session configs.
        +     * 
        + * + * .tensorflow.SessionInfo session_info = 6; + */ + public org.tensorflow.proto.framework.SessionInfo getSessionInfo() { + if (sessionInfoBuilder_ == null) { + return sessionInfo_ == null ? org.tensorflow.proto.framework.SessionInfo.getDefaultInstance() : sessionInfo_; + } else { + return sessionInfoBuilder_.getMessage(); + } + } + /** + *
        +     * Information about the session configs.
        +     * 
        + * + * .tensorflow.SessionInfo session_info = 6; + */ + public Builder setSessionInfo(org.tensorflow.proto.framework.SessionInfo value) { + if (sessionInfoBuilder_ == null) { + if (value == null) { + throw new NullPointerException(); + } + sessionInfo_ = value; + onChanged(); + } else { + sessionInfoBuilder_.setMessage(value); + } + + return this; + } + /** + *
        +     * Information about the session configs.
        +     * 
        + * + * .tensorflow.SessionInfo session_info = 6; + */ + public Builder setSessionInfo( + org.tensorflow.proto.framework.SessionInfo.Builder builderForValue) { + if (sessionInfoBuilder_ == null) { + sessionInfo_ = builderForValue.build(); + onChanged(); + } else { + sessionInfoBuilder_.setMessage(builderForValue.build()); + } + + return this; + } + /** + *
        +     * Information about the session configs.
        +     * 
        + * + * .tensorflow.SessionInfo session_info = 6; + */ + public Builder mergeSessionInfo(org.tensorflow.proto.framework.SessionInfo value) { + if (sessionInfoBuilder_ == null) { + if (sessionInfo_ != null) { + sessionInfo_ = + org.tensorflow.proto.framework.SessionInfo.newBuilder(sessionInfo_).mergeFrom(value).buildPartial(); + } else { + sessionInfo_ = value; + } + onChanged(); + } else { + sessionInfoBuilder_.mergeFrom(value); + } + + return this; + } + /** + *
        +     * Information about the session configs.
        +     * 
        + * + * .tensorflow.SessionInfo session_info = 6; + */ + public Builder clearSessionInfo() { + if (sessionInfoBuilder_ == null) { + sessionInfo_ = null; + onChanged(); + } else { + sessionInfo_ = null; + sessionInfoBuilder_ = null; + } + + return this; + } + /** + *
        +     * Information about the session configs.
        +     * 
        + * + * .tensorflow.SessionInfo session_info = 6; + */ + public org.tensorflow.proto.framework.SessionInfo.Builder getSessionInfoBuilder() { + + onChanged(); + return getSessionInfoFieldBuilder().getBuilder(); + } + /** + *
        +     * Information about the session configs.
        +     * 
        + * + * .tensorflow.SessionInfo session_info = 6; + */ + public org.tensorflow.proto.framework.SessionInfoOrBuilder getSessionInfoOrBuilder() { + if (sessionInfoBuilder_ != null) { + return sessionInfoBuilder_.getMessageOrBuilder(); + } else { + return sessionInfo_ == null ? + org.tensorflow.proto.framework.SessionInfo.getDefaultInstance() : sessionInfo_; + } + } + /** + *
        +     * Information about the session configs.
        +     * 
        + * + * .tensorflow.SessionInfo session_info = 6; + */ + private com.google.protobuf.SingleFieldBuilderV3< + org.tensorflow.proto.framework.SessionInfo, org.tensorflow.proto.framework.SessionInfo.Builder, org.tensorflow.proto.framework.SessionInfoOrBuilder> + getSessionInfoFieldBuilder() { + if (sessionInfoBuilder_ == null) { + sessionInfoBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< + org.tensorflow.proto.framework.SessionInfo, org.tensorflow.proto.framework.SessionInfo.Builder, org.tensorflow.proto.framework.SessionInfoOrBuilder>( + getSessionInfo(), + getParentForChildren(), + isClean()); + sessionInfo_ = null; + } + return sessionInfoBuilder_; + } + @java.lang.Override + public final Builder setUnknownFields( + final com.google.protobuf.UnknownFieldSet unknownFields) { + return super.setUnknownFields(unknownFields); + } + + @java.lang.Override + public final Builder mergeUnknownFields( + final com.google.protobuf.UnknownFieldSet unknownFields) { + return super.mergeUnknownFields(unknownFields); + } + + + // @@protoc_insertion_point(builder_scope:tensorflow.OpInfo) + } + + // @@protoc_insertion_point(class_scope:tensorflow.OpInfo) + private static final org.tensorflow.proto.framework.OpInfo DEFAULT_INSTANCE; + static { + DEFAULT_INSTANCE = new org.tensorflow.proto.framework.OpInfo(); + } + + public static org.tensorflow.proto.framework.OpInfo getDefaultInstance() { + return DEFAULT_INSTANCE; + } + + private static final com.google.protobuf.Parser + PARSER = new com.google.protobuf.AbstractParser() { + @java.lang.Override + public OpInfo parsePartialFrom( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return new OpInfo(input, extensionRegistry); + } + }; + + public static com.google.protobuf.Parser parser() { + return PARSER; + } + + @java.lang.Override + public com.google.protobuf.Parser getParserForType() { + return PARSER; + } + + @java.lang.Override + public org.tensorflow.proto.framework.OpInfo getDefaultInstanceForType() { + return DEFAULT_INSTANCE; + } + +} + diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/OpInfoOrBuilder.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/OpInfoOrBuilder.java new file mode 100644 index 00000000000..675799794a4 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/OpInfoOrBuilder.java @@ -0,0 +1,199 @@ +// Generated by the protocol buffer compiler. DO NOT EDIT! +// source: tensorflow/core/grappler/costs/op_performance_data.proto + +package org.tensorflow.proto.framework; + +public interface OpInfoOrBuilder extends + // @@protoc_insertion_point(interface_extends:tensorflow.OpInfo) + com.google.protobuf.MessageOrBuilder { + + /** + *
        +   * The operation name.  There may be custom parameters in attrs.
        +   * 
        + * + * string op = 1; + */ + java.lang.String getOp(); + /** + *
        +   * The operation name.  There may be custom parameters in attrs.
        +   * 
        + * + * string op = 1; + */ + com.google.protobuf.ByteString + getOpBytes(); + + /** + *
        +   * Custom parameters impacting the behavior of the op.
        +   * 
        + * + * map<string, .tensorflow.AttrValue> attr = 2; + */ + int getAttrCount(); + /** + *
        +   * Custom parameters impacting the behavior of the op.
        +   * 
        + * + * map<string, .tensorflow.AttrValue> attr = 2; + */ + boolean containsAttr( + java.lang.String key); + /** + * Use {@link #getAttrMap()} instead. + */ + @java.lang.Deprecated + java.util.Map + getAttr(); + /** + *
        +   * Custom parameters impacting the behavior of the op.
        +   * 
        + * + * map<string, .tensorflow.AttrValue> attr = 2; + */ + java.util.Map + getAttrMap(); + /** + *
        +   * Custom parameters impacting the behavior of the op.
        +   * 
        + * + * map<string, .tensorflow.AttrValue> attr = 2; + */ + + org.tensorflow.proto.framework.AttrValue getAttrOrDefault( + java.lang.String key, + org.tensorflow.proto.framework.AttrValue defaultValue); + /** + *
        +   * Custom parameters impacting the behavior of the op.
        +   * 
        + * + * map<string, .tensorflow.AttrValue> attr = 2; + */ + + org.tensorflow.proto.framework.AttrValue getAttrOrThrow( + java.lang.String key); + + /** + * repeated .tensorflow.OpInfo.TensorProperties inputs = 3; + */ + java.util.List + getInputsList(); + /** + * repeated .tensorflow.OpInfo.TensorProperties inputs = 3; + */ + org.tensorflow.proto.framework.OpInfo.TensorProperties getInputs(int index); + /** + * repeated .tensorflow.OpInfo.TensorProperties inputs = 3; + */ + int getInputsCount(); + /** + * repeated .tensorflow.OpInfo.TensorProperties inputs = 3; + */ + java.util.List + getInputsOrBuilderList(); + /** + * repeated .tensorflow.OpInfo.TensorProperties inputs = 3; + */ + org.tensorflow.proto.framework.OpInfo.TensorPropertiesOrBuilder getInputsOrBuilder( + int index); + + /** + *
        +   * Optional description of the op outputs
        +   * 
        + * + * repeated .tensorflow.OpInfo.TensorProperties outputs = 5; + */ + java.util.List + getOutputsList(); + /** + *
        +   * Optional description of the op outputs
        +   * 
        + * + * repeated .tensorflow.OpInfo.TensorProperties outputs = 5; + */ + org.tensorflow.proto.framework.OpInfo.TensorProperties getOutputs(int index); + /** + *
        +   * Optional description of the op outputs
        +   * 
        + * + * repeated .tensorflow.OpInfo.TensorProperties outputs = 5; + */ + int getOutputsCount(); + /** + *
        +   * Optional description of the op outputs
        +   * 
        + * + * repeated .tensorflow.OpInfo.TensorProperties outputs = 5; + */ + java.util.List + getOutputsOrBuilderList(); + /** + *
        +   * Optional description of the op outputs
        +   * 
        + * + * repeated .tensorflow.OpInfo.TensorProperties outputs = 5; + */ + org.tensorflow.proto.framework.OpInfo.TensorPropertiesOrBuilder getOutputsOrBuilder( + int index); + + /** + *
        +   * Device on which the operation is run.
        +   * 
        + * + * .tensorflow.DeviceProperties device = 4; + */ + boolean hasDevice(); + /** + *
        +   * Device on which the operation is run.
        +   * 
        + * + * .tensorflow.DeviceProperties device = 4; + */ + org.tensorflow.proto.framework.DeviceProperties getDevice(); + /** + *
        +   * Device on which the operation is run.
        +   * 
        + * + * .tensorflow.DeviceProperties device = 4; + */ + org.tensorflow.proto.framework.DevicePropertiesOrBuilder getDeviceOrBuilder(); + + /** + *
        +   * Information about the session configs.
        +   * 
        + * + * .tensorflow.SessionInfo session_info = 6; + */ + boolean hasSessionInfo(); + /** + *
        +   * Information about the session configs.
        +   * 
        + * + * .tensorflow.SessionInfo session_info = 6; + */ + org.tensorflow.proto.framework.SessionInfo getSessionInfo(); + /** + *
        +   * Information about the session configs.
        +   * 
        + * + * .tensorflow.SessionInfo session_info = 6; + */ + org.tensorflow.proto.framework.SessionInfoOrBuilder getSessionInfoOrBuilder(); +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/OpPerformance.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/OpPerformance.java new file mode 100644 index 00000000000..0f25f95dff9 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/OpPerformance.java @@ -0,0 +1,3074 @@ +// Generated by the protocol buffer compiler. DO NOT EDIT! +// source: tensorflow/core/grappler/costs/op_performance_data.proto + +package org.tensorflow.proto.framework; + +/** + *
        + * Performance data for tensorflow operations
        + * 
        + * + * Protobuf type {@code tensorflow.OpPerformance} + */ +public final class OpPerformance extends + com.google.protobuf.GeneratedMessageV3 implements + // @@protoc_insertion_point(message_implements:tensorflow.OpPerformance) + OpPerformanceOrBuilder { +private static final long serialVersionUID = 0L; + // Use OpPerformance.newBuilder() to construct. + private OpPerformance(com.google.protobuf.GeneratedMessageV3.Builder builder) { + super(builder); + } + private OpPerformance() { + node_ = ""; + } + + @java.lang.Override + @SuppressWarnings({"unused"}) + protected java.lang.Object newInstance( + UnusedPrivateParameter unused) { + return new OpPerformance(); + } + + @java.lang.Override + public final com.google.protobuf.UnknownFieldSet + getUnknownFields() { + return this.unknownFields; + } + private OpPerformance( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + this(); + if (extensionRegistry == null) { + throw new java.lang.NullPointerException(); + } + com.google.protobuf.UnknownFieldSet.Builder unknownFields = + com.google.protobuf.UnknownFieldSet.newBuilder(); + try { + boolean done = false; + while (!done) { + int tag = input.readTag(); + switch (tag) { + case 0: + done = true; + break; + case 10: { + org.tensorflow.proto.framework.OpInfo.Builder subBuilder = null; + if (op_ != null) { + subBuilder = op_.toBuilder(); + } + op_ = input.readMessage(org.tensorflow.proto.framework.OpInfo.parser(), extensionRegistry); + if (subBuilder != null) { + subBuilder.mergeFrom(op_); + op_ = subBuilder.buildPartial(); + } + + break; + } + case 16: { + + temporaryMemorySize_ = input.readInt64(); + break; + } + case 24: { + + computeCost_ = input.readInt64(); + break; + } + case 33: { + + computeEfficiency_ = input.readDouble(); + break; + } + case 42: { + java.lang.String s = input.readStringRequireUtf8(); + + node_ = s; + break; + } + case 48: { + + computeTime_ = input.readInt64(); + break; + } + case 56: { + + memoryTime_ = input.readInt64(); + break; + } + case 65: { + + memoryEfficiency_ = input.readDouble(); + break; + } + case 74: { + org.tensorflow.proto.framework.OpPerformance.OpMemory.Builder subBuilder = null; + if (opMemory_ != null) { + subBuilder = opMemory_.toBuilder(); + } + opMemory_ = input.readMessage(org.tensorflow.proto.framework.OpPerformance.OpMemory.parser(), extensionRegistry); + if (subBuilder != null) { + subBuilder.mergeFrom(opMemory_); + opMemory_ = subBuilder.buildPartial(); + } + + break; + } + case 82: { + org.tensorflow.proto.framework.NormalDistribution.Builder subBuilder = null; + if (executionTimeCase_ == 10) { + subBuilder = ((org.tensorflow.proto.framework.NormalDistribution) executionTime_).toBuilder(); + } + executionTime_ = + input.readMessage(org.tensorflow.proto.framework.NormalDistribution.parser(), extensionRegistry); + if (subBuilder != null) { + subBuilder.mergeFrom((org.tensorflow.proto.framework.NormalDistribution) executionTime_); + executionTime_ = subBuilder.buildPartial(); + } + executionTimeCase_ = 10; + break; + } + case 90: { + org.tensorflow.proto.framework.LogNormalDistribution.Builder subBuilder = null; + if (executionTimeCase_ == 11) { + subBuilder = ((org.tensorflow.proto.framework.LogNormalDistribution) executionTime_).toBuilder(); + } + executionTime_ = + input.readMessage(org.tensorflow.proto.framework.LogNormalDistribution.parser(), extensionRegistry); + if (subBuilder != null) { + subBuilder.mergeFrom((org.tensorflow.proto.framework.LogNormalDistribution) executionTime_); + executionTime_ = subBuilder.buildPartial(); + } + executionTimeCase_ = 11; + break; + } + case 98: { + org.tensorflow.proto.framework.SessionInfo.Builder subBuilder = null; + if (sessionInfo_ != null) { + subBuilder = sessionInfo_.toBuilder(); + } + sessionInfo_ = input.readMessage(org.tensorflow.proto.framework.SessionInfo.parser(), extensionRegistry); + if (subBuilder != null) { + subBuilder.mergeFrom(sessionInfo_); + sessionInfo_ = subBuilder.buildPartial(); + } + + break; + } + default: { + if (!parseUnknownField( + input, unknownFields, extensionRegistry, tag)) { + done = true; + } + break; + } + } + } + } catch (com.google.protobuf.InvalidProtocolBufferException e) { + throw e.setUnfinishedMessage(this); + } catch (java.io.IOException e) { + throw new com.google.protobuf.InvalidProtocolBufferException( + e).setUnfinishedMessage(this); + } finally { + this.unknownFields = unknownFields.build(); + makeExtensionsImmutable(); + } + } + public static final com.google.protobuf.Descriptors.Descriptor + getDescriptor() { + return org.tensorflow.proto.framework.OpPerformanceDataProtos.internal_static_tensorflow_OpPerformance_descriptor; + } + + @java.lang.Override + protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable + internalGetFieldAccessorTable() { + return org.tensorflow.proto.framework.OpPerformanceDataProtos.internal_static_tensorflow_OpPerformance_fieldAccessorTable + .ensureFieldAccessorsInitialized( + org.tensorflow.proto.framework.OpPerformance.class, org.tensorflow.proto.framework.OpPerformance.Builder.class); + } + + public interface OpMemoryOrBuilder extends + // @@protoc_insertion_point(interface_extends:tensorflow.OpPerformance.OpMemory) + com.google.protobuf.MessageOrBuilder { + + /** + *
        +     * The output information may have memory usage and output shapes.
        +     * 
        + * + * repeated int64 output_memory = 1; + */ + java.util.List getOutputMemoryList(); + /** + *
        +     * The output information may have memory usage and output shapes.
        +     * 
        + * + * repeated int64 output_memory = 1; + */ + int getOutputMemoryCount(); + /** + *
        +     * The output information may have memory usage and output shapes.
        +     * 
        + * + * repeated int64 output_memory = 1; + */ + long getOutputMemory(int index); + + /** + *
        +     * Temp and persistent memory allocated by this node.
        +     * 
        + * + * int64 temp_memory = 2; + */ + long getTempMemory(); + + /** + * int64 persistent_memory = 4; + */ + long getPersistentMemory(); + + /** + * int64 device_temp_memory = 3 [deprecated = true]; + */ + @java.lang.Deprecated long getDeviceTempMemory(); + + /** + * int64 device_persistent_memory = 5 [deprecated = true]; + */ + @java.lang.Deprecated long getDevicePersistentMemory(); + } + /** + *
        +   * Memory usage data for a tensorflow operation.
        +   * 
        + * + * Protobuf type {@code tensorflow.OpPerformance.OpMemory} + */ + public static final class OpMemory extends + com.google.protobuf.GeneratedMessageV3 implements + // @@protoc_insertion_point(message_implements:tensorflow.OpPerformance.OpMemory) + OpMemoryOrBuilder { + private static final long serialVersionUID = 0L; + // Use OpMemory.newBuilder() to construct. + private OpMemory(com.google.protobuf.GeneratedMessageV3.Builder builder) { + super(builder); + } + private OpMemory() { + outputMemory_ = emptyLongList(); + } + + @java.lang.Override + @SuppressWarnings({"unused"}) + protected java.lang.Object newInstance( + UnusedPrivateParameter unused) { + return new OpMemory(); + } + + @java.lang.Override + public final com.google.protobuf.UnknownFieldSet + getUnknownFields() { + return this.unknownFields; + } + private OpMemory( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + this(); + if (extensionRegistry == null) { + throw new java.lang.NullPointerException(); + } + int mutable_bitField0_ = 0; + com.google.protobuf.UnknownFieldSet.Builder unknownFields = + com.google.protobuf.UnknownFieldSet.newBuilder(); + try { + boolean done = false; + while (!done) { + int tag = input.readTag(); + switch (tag) { + case 0: + done = true; + break; + case 8: { + if (!((mutable_bitField0_ & 0x00000001) != 0)) { + outputMemory_ = newLongList(); + mutable_bitField0_ |= 0x00000001; + } + outputMemory_.addLong(input.readInt64()); + break; + } + case 10: { + int length = input.readRawVarint32(); + int limit = input.pushLimit(length); + if (!((mutable_bitField0_ & 0x00000001) != 0) && input.getBytesUntilLimit() > 0) { + outputMemory_ = newLongList(); + mutable_bitField0_ |= 0x00000001; + } + while (input.getBytesUntilLimit() > 0) { + outputMemory_.addLong(input.readInt64()); + } + input.popLimit(limit); + break; + } + case 16: { + + tempMemory_ = input.readInt64(); + break; + } + case 24: { + + deviceTempMemory_ = input.readInt64(); + break; + } + case 32: { + + persistentMemory_ = input.readInt64(); + break; + } + case 40: { + + devicePersistentMemory_ = input.readInt64(); + break; + } + default: { + if (!parseUnknownField( + input, unknownFields, extensionRegistry, tag)) { + done = true; + } + break; + } + } + } + } catch (com.google.protobuf.InvalidProtocolBufferException e) { + throw e.setUnfinishedMessage(this); + } catch (java.io.IOException e) { + throw new com.google.protobuf.InvalidProtocolBufferException( + e).setUnfinishedMessage(this); + } finally { + if (((mutable_bitField0_ & 0x00000001) != 0)) { + outputMemory_.makeImmutable(); // C + } + this.unknownFields = unknownFields.build(); + makeExtensionsImmutable(); + } + } + public static final com.google.protobuf.Descriptors.Descriptor + getDescriptor() { + return org.tensorflow.proto.framework.OpPerformanceDataProtos.internal_static_tensorflow_OpPerformance_OpMemory_descriptor; + } + + @java.lang.Override + protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable + internalGetFieldAccessorTable() { + return org.tensorflow.proto.framework.OpPerformanceDataProtos.internal_static_tensorflow_OpPerformance_OpMemory_fieldAccessorTable + .ensureFieldAccessorsInitialized( + org.tensorflow.proto.framework.OpPerformance.OpMemory.class, org.tensorflow.proto.framework.OpPerformance.OpMemory.Builder.class); + } + + public static final int OUTPUT_MEMORY_FIELD_NUMBER = 1; + private com.google.protobuf.Internal.LongList outputMemory_; + /** + *
        +     * The output information may have memory usage and output shapes.
        +     * 
        + * + * repeated int64 output_memory = 1; + */ + public java.util.List + getOutputMemoryList() { + return outputMemory_; + } + /** + *
        +     * The output information may have memory usage and output shapes.
        +     * 
        + * + * repeated int64 output_memory = 1; + */ + public int getOutputMemoryCount() { + return outputMemory_.size(); + } + /** + *
        +     * The output information may have memory usage and output shapes.
        +     * 
        + * + * repeated int64 output_memory = 1; + */ + public long getOutputMemory(int index) { + return outputMemory_.getLong(index); + } + private int outputMemoryMemoizedSerializedSize = -1; + + public static final int TEMP_MEMORY_FIELD_NUMBER = 2; + private long tempMemory_; + /** + *
        +     * Temp and persistent memory allocated by this node.
        +     * 
        + * + * int64 temp_memory = 2; + */ + public long getTempMemory() { + return tempMemory_; + } + + public static final int PERSISTENT_MEMORY_FIELD_NUMBER = 4; + private long persistentMemory_; + /** + * int64 persistent_memory = 4; + */ + public long getPersistentMemory() { + return persistentMemory_; + } + + public static final int DEVICE_TEMP_MEMORY_FIELD_NUMBER = 3; + private long deviceTempMemory_; + /** + * int64 device_temp_memory = 3 [deprecated = true]; + */ + @java.lang.Deprecated public long getDeviceTempMemory() { + return deviceTempMemory_; + } + + public static final int DEVICE_PERSISTENT_MEMORY_FIELD_NUMBER = 5; + private long devicePersistentMemory_; + /** + * int64 device_persistent_memory = 5 [deprecated = true]; + */ + @java.lang.Deprecated public long getDevicePersistentMemory() { + return devicePersistentMemory_; + } + + private byte memoizedIsInitialized = -1; + @java.lang.Override + public final boolean isInitialized() { + byte isInitialized = memoizedIsInitialized; + if (isInitialized == 1) return true; + if (isInitialized == 0) return false; + + memoizedIsInitialized = 1; + return true; + } + + @java.lang.Override + public void writeTo(com.google.protobuf.CodedOutputStream output) + throws java.io.IOException { + getSerializedSize(); + if (getOutputMemoryList().size() > 0) { + output.writeUInt32NoTag(10); + output.writeUInt32NoTag(outputMemoryMemoizedSerializedSize); + } + for (int i = 0; i < outputMemory_.size(); i++) { + output.writeInt64NoTag(outputMemory_.getLong(i)); + } + if (tempMemory_ != 0L) { + output.writeInt64(2, tempMemory_); + } + if (deviceTempMemory_ != 0L) { + output.writeInt64(3, deviceTempMemory_); + } + if (persistentMemory_ != 0L) { + output.writeInt64(4, persistentMemory_); + } + if (devicePersistentMemory_ != 0L) { + output.writeInt64(5, devicePersistentMemory_); + } + unknownFields.writeTo(output); + } + + @java.lang.Override + public int getSerializedSize() { + int size = memoizedSize; + if (size != -1) return size; + + size = 0; + { + int dataSize = 0; + for (int i = 0; i < outputMemory_.size(); i++) { + dataSize += com.google.protobuf.CodedOutputStream + .computeInt64SizeNoTag(outputMemory_.getLong(i)); + } + size += dataSize; + if (!getOutputMemoryList().isEmpty()) { + size += 1; + size += com.google.protobuf.CodedOutputStream + .computeInt32SizeNoTag(dataSize); + } + outputMemoryMemoizedSerializedSize = dataSize; + } + if (tempMemory_ != 0L) { + size += com.google.protobuf.CodedOutputStream + .computeInt64Size(2, tempMemory_); + } + if (deviceTempMemory_ != 0L) { + size += com.google.protobuf.CodedOutputStream + .computeInt64Size(3, deviceTempMemory_); + } + if (persistentMemory_ != 0L) { + size += com.google.protobuf.CodedOutputStream + .computeInt64Size(4, persistentMemory_); + } + if (devicePersistentMemory_ != 0L) { + size += com.google.protobuf.CodedOutputStream + .computeInt64Size(5, devicePersistentMemory_); + } + size += unknownFields.getSerializedSize(); + memoizedSize = size; + return size; + } + + @java.lang.Override + public boolean equals(final java.lang.Object obj) { + if (obj == this) { + return true; + } + if (!(obj instanceof org.tensorflow.proto.framework.OpPerformance.OpMemory)) { + return super.equals(obj); + } + org.tensorflow.proto.framework.OpPerformance.OpMemory other = (org.tensorflow.proto.framework.OpPerformance.OpMemory) obj; + + if (!getOutputMemoryList() + .equals(other.getOutputMemoryList())) return false; + if (getTempMemory() + != other.getTempMemory()) return false; + if (getPersistentMemory() + != other.getPersistentMemory()) return false; + if (getDeviceTempMemory() + != other.getDeviceTempMemory()) return false; + if (getDevicePersistentMemory() + != other.getDevicePersistentMemory()) return false; + if (!unknownFields.equals(other.unknownFields)) return false; + return true; + } + + @java.lang.Override + public int hashCode() { + if (memoizedHashCode != 0) { + return memoizedHashCode; + } + int hash = 41; + hash = (19 * hash) + getDescriptor().hashCode(); + if (getOutputMemoryCount() > 0) { + hash = (37 * hash) + OUTPUT_MEMORY_FIELD_NUMBER; + hash = (53 * hash) + getOutputMemoryList().hashCode(); + } + hash = (37 * hash) + TEMP_MEMORY_FIELD_NUMBER; + hash = (53 * hash) + com.google.protobuf.Internal.hashLong( + getTempMemory()); + hash = (37 * hash) + PERSISTENT_MEMORY_FIELD_NUMBER; + hash = (53 * hash) + com.google.protobuf.Internal.hashLong( + getPersistentMemory()); + hash = (37 * hash) + DEVICE_TEMP_MEMORY_FIELD_NUMBER; + hash = (53 * hash) + com.google.protobuf.Internal.hashLong( + getDeviceTempMemory()); + hash = (37 * hash) + DEVICE_PERSISTENT_MEMORY_FIELD_NUMBER; + hash = (53 * hash) + com.google.protobuf.Internal.hashLong( + getDevicePersistentMemory()); + hash = (29 * hash) + unknownFields.hashCode(); + memoizedHashCode = hash; + return hash; + } + + public static org.tensorflow.proto.framework.OpPerformance.OpMemory parseFrom( + java.nio.ByteBuffer data) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data); + } + public static org.tensorflow.proto.framework.OpPerformance.OpMemory parseFrom( + java.nio.ByteBuffer data, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data, extensionRegistry); + } + public static org.tensorflow.proto.framework.OpPerformance.OpMemory parseFrom( + com.google.protobuf.ByteString data) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data); + } + public static org.tensorflow.proto.framework.OpPerformance.OpMemory parseFrom( + com.google.protobuf.ByteString data, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data, extensionRegistry); + } + public static org.tensorflow.proto.framework.OpPerformance.OpMemory parseFrom(byte[] data) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data); + } + public static org.tensorflow.proto.framework.OpPerformance.OpMemory parseFrom( + byte[] data, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data, extensionRegistry); + } + public static org.tensorflow.proto.framework.OpPerformance.OpMemory parseFrom(java.io.InputStream input) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input); + } + public static org.tensorflow.proto.framework.OpPerformance.OpMemory parseFrom( + java.io.InputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input, extensionRegistry); + } + public static org.tensorflow.proto.framework.OpPerformance.OpMemory parseDelimitedFrom(java.io.InputStream input) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseDelimitedWithIOException(PARSER, input); + } + public static org.tensorflow.proto.framework.OpPerformance.OpMemory parseDelimitedFrom( + java.io.InputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseDelimitedWithIOException(PARSER, input, extensionRegistry); + } + public static org.tensorflow.proto.framework.OpPerformance.OpMemory parseFrom( + com.google.protobuf.CodedInputStream input) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input); + } + public static org.tensorflow.proto.framework.OpPerformance.OpMemory parseFrom( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input, extensionRegistry); + } + + @java.lang.Override + public Builder newBuilderForType() { return newBuilder(); } + public static Builder newBuilder() { + return DEFAULT_INSTANCE.toBuilder(); + } + public static Builder newBuilder(org.tensorflow.proto.framework.OpPerformance.OpMemory prototype) { + return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); + } + @java.lang.Override + public Builder toBuilder() { + return this == DEFAULT_INSTANCE + ? new Builder() : new Builder().mergeFrom(this); + } + + @java.lang.Override + protected Builder newBuilderForType( + com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { + Builder builder = new Builder(parent); + return builder; + } + /** + *
        +     * Memory usage data for a tensorflow operation.
        +     * 
        + * + * Protobuf type {@code tensorflow.OpPerformance.OpMemory} + */ + public static final class Builder extends + com.google.protobuf.GeneratedMessageV3.Builder implements + // @@protoc_insertion_point(builder_implements:tensorflow.OpPerformance.OpMemory) + org.tensorflow.proto.framework.OpPerformance.OpMemoryOrBuilder { + public static final com.google.protobuf.Descriptors.Descriptor + getDescriptor() { + return org.tensorflow.proto.framework.OpPerformanceDataProtos.internal_static_tensorflow_OpPerformance_OpMemory_descriptor; + } + + @java.lang.Override + protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable + internalGetFieldAccessorTable() { + return org.tensorflow.proto.framework.OpPerformanceDataProtos.internal_static_tensorflow_OpPerformance_OpMemory_fieldAccessorTable + .ensureFieldAccessorsInitialized( + org.tensorflow.proto.framework.OpPerformance.OpMemory.class, org.tensorflow.proto.framework.OpPerformance.OpMemory.Builder.class); + } + + // Construct using org.tensorflow.proto.framework.OpPerformance.OpMemory.newBuilder() + private Builder() { + maybeForceBuilderInitialization(); + } + + private Builder( + com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { + super(parent); + maybeForceBuilderInitialization(); + } + private void maybeForceBuilderInitialization() { + if (com.google.protobuf.GeneratedMessageV3 + .alwaysUseFieldBuilders) { + } + } + @java.lang.Override + public Builder clear() { + super.clear(); + outputMemory_ = emptyLongList(); + bitField0_ = (bitField0_ & ~0x00000001); + tempMemory_ = 0L; + + persistentMemory_ = 0L; + + deviceTempMemory_ = 0L; + + devicePersistentMemory_ = 0L; + + return this; + } + + @java.lang.Override + public com.google.protobuf.Descriptors.Descriptor + getDescriptorForType() { + return org.tensorflow.proto.framework.OpPerformanceDataProtos.internal_static_tensorflow_OpPerformance_OpMemory_descriptor; + } + + @java.lang.Override + public org.tensorflow.proto.framework.OpPerformance.OpMemory getDefaultInstanceForType() { + return org.tensorflow.proto.framework.OpPerformance.OpMemory.getDefaultInstance(); + } + + @java.lang.Override + public org.tensorflow.proto.framework.OpPerformance.OpMemory build() { + org.tensorflow.proto.framework.OpPerformance.OpMemory result = buildPartial(); + if (!result.isInitialized()) { + throw newUninitializedMessageException(result); + } + return result; + } + + @java.lang.Override + public org.tensorflow.proto.framework.OpPerformance.OpMemory buildPartial() { + org.tensorflow.proto.framework.OpPerformance.OpMemory result = new org.tensorflow.proto.framework.OpPerformance.OpMemory(this); + int from_bitField0_ = bitField0_; + if (((bitField0_ & 0x00000001) != 0)) { + outputMemory_.makeImmutable(); + bitField0_ = (bitField0_ & ~0x00000001); + } + result.outputMemory_ = outputMemory_; + result.tempMemory_ = tempMemory_; + result.persistentMemory_ = persistentMemory_; + result.deviceTempMemory_ = deviceTempMemory_; + result.devicePersistentMemory_ = devicePersistentMemory_; + onBuilt(); + return result; + } + + @java.lang.Override + public Builder clone() { + return super.clone(); + } + @java.lang.Override + public Builder setField( + com.google.protobuf.Descriptors.FieldDescriptor field, + java.lang.Object value) { + return super.setField(field, value); + } + @java.lang.Override + public Builder clearField( + com.google.protobuf.Descriptors.FieldDescriptor field) { + return super.clearField(field); + } + @java.lang.Override + public Builder clearOneof( + com.google.protobuf.Descriptors.OneofDescriptor oneof) { + return super.clearOneof(oneof); + } + @java.lang.Override + public Builder setRepeatedField( + com.google.protobuf.Descriptors.FieldDescriptor field, + int index, java.lang.Object value) { + return super.setRepeatedField(field, index, value); + } + @java.lang.Override + public Builder addRepeatedField( + com.google.protobuf.Descriptors.FieldDescriptor field, + java.lang.Object value) { + return super.addRepeatedField(field, value); + } + @java.lang.Override + public Builder mergeFrom(com.google.protobuf.Message other) { + if (other instanceof org.tensorflow.proto.framework.OpPerformance.OpMemory) { + return mergeFrom((org.tensorflow.proto.framework.OpPerformance.OpMemory)other); + } else { + super.mergeFrom(other); + return this; + } + } + + public Builder mergeFrom(org.tensorflow.proto.framework.OpPerformance.OpMemory other) { + if (other == org.tensorflow.proto.framework.OpPerformance.OpMemory.getDefaultInstance()) return this; + if (!other.outputMemory_.isEmpty()) { + if (outputMemory_.isEmpty()) { + outputMemory_ = other.outputMemory_; + bitField0_ = (bitField0_ & ~0x00000001); + } else { + ensureOutputMemoryIsMutable(); + outputMemory_.addAll(other.outputMemory_); + } + onChanged(); + } + if (other.getTempMemory() != 0L) { + setTempMemory(other.getTempMemory()); + } + if (other.getPersistentMemory() != 0L) { + setPersistentMemory(other.getPersistentMemory()); + } + if (other.getDeviceTempMemory() != 0L) { + setDeviceTempMemory(other.getDeviceTempMemory()); + } + if (other.getDevicePersistentMemory() != 0L) { + setDevicePersistentMemory(other.getDevicePersistentMemory()); + } + this.mergeUnknownFields(other.unknownFields); + onChanged(); + return this; + } + + @java.lang.Override + public final boolean isInitialized() { + return true; + } + + @java.lang.Override + public Builder mergeFrom( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + org.tensorflow.proto.framework.OpPerformance.OpMemory parsedMessage = null; + try { + parsedMessage = PARSER.parsePartialFrom(input, extensionRegistry); + } catch (com.google.protobuf.InvalidProtocolBufferException e) { + parsedMessage = (org.tensorflow.proto.framework.OpPerformance.OpMemory) e.getUnfinishedMessage(); + throw e.unwrapIOException(); + } finally { + if (parsedMessage != null) { + mergeFrom(parsedMessage); + } + } + return this; + } + private int bitField0_; + + private com.google.protobuf.Internal.LongList outputMemory_ = emptyLongList(); + private void ensureOutputMemoryIsMutable() { + if (!((bitField0_ & 0x00000001) != 0)) { + outputMemory_ = mutableCopy(outputMemory_); + bitField0_ |= 0x00000001; + } + } + /** + *
        +       * The output information may have memory usage and output shapes.
        +       * 
        + * + * repeated int64 output_memory = 1; + */ + public java.util.List + getOutputMemoryList() { + return ((bitField0_ & 0x00000001) != 0) ? + java.util.Collections.unmodifiableList(outputMemory_) : outputMemory_; + } + /** + *
        +       * The output information may have memory usage and output shapes.
        +       * 
        + * + * repeated int64 output_memory = 1; + */ + public int getOutputMemoryCount() { + return outputMemory_.size(); + } + /** + *
        +       * The output information may have memory usage and output shapes.
        +       * 
        + * + * repeated int64 output_memory = 1; + */ + public long getOutputMemory(int index) { + return outputMemory_.getLong(index); + } + /** + *
        +       * The output information may have memory usage and output shapes.
        +       * 
        + * + * repeated int64 output_memory = 1; + */ + public Builder setOutputMemory( + int index, long value) { + ensureOutputMemoryIsMutable(); + outputMemory_.setLong(index, value); + onChanged(); + return this; + } + /** + *
        +       * The output information may have memory usage and output shapes.
        +       * 
        + * + * repeated int64 output_memory = 1; + */ + public Builder addOutputMemory(long value) { + ensureOutputMemoryIsMutable(); + outputMemory_.addLong(value); + onChanged(); + return this; + } + /** + *
        +       * The output information may have memory usage and output shapes.
        +       * 
        + * + * repeated int64 output_memory = 1; + */ + public Builder addAllOutputMemory( + java.lang.Iterable values) { + ensureOutputMemoryIsMutable(); + com.google.protobuf.AbstractMessageLite.Builder.addAll( + values, outputMemory_); + onChanged(); + return this; + } + /** + *
        +       * The output information may have memory usage and output shapes.
        +       * 
        + * + * repeated int64 output_memory = 1; + */ + public Builder clearOutputMemory() { + outputMemory_ = emptyLongList(); + bitField0_ = (bitField0_ & ~0x00000001); + onChanged(); + return this; + } + + private long tempMemory_ ; + /** + *
        +       * Temp and persistent memory allocated by this node.
        +       * 
        + * + * int64 temp_memory = 2; + */ + public long getTempMemory() { + return tempMemory_; + } + /** + *
        +       * Temp and persistent memory allocated by this node.
        +       * 
        + * + * int64 temp_memory = 2; + */ + public Builder setTempMemory(long value) { + + tempMemory_ = value; + onChanged(); + return this; + } + /** + *
        +       * Temp and persistent memory allocated by this node.
        +       * 
        + * + * int64 temp_memory = 2; + */ + public Builder clearTempMemory() { + + tempMemory_ = 0L; + onChanged(); + return this; + } + + private long persistentMemory_ ; + /** + * int64 persistent_memory = 4; + */ + public long getPersistentMemory() { + return persistentMemory_; + } + /** + * int64 persistent_memory = 4; + */ + public Builder setPersistentMemory(long value) { + + persistentMemory_ = value; + onChanged(); + return this; + } + /** + * int64 persistent_memory = 4; + */ + public Builder clearPersistentMemory() { + + persistentMemory_ = 0L; + onChanged(); + return this; + } + + private long deviceTempMemory_ ; + /** + * int64 device_temp_memory = 3 [deprecated = true]; + */ + @java.lang.Deprecated public long getDeviceTempMemory() { + return deviceTempMemory_; + } + /** + * int64 device_temp_memory = 3 [deprecated = true]; + */ + @java.lang.Deprecated public Builder setDeviceTempMemory(long value) { + + deviceTempMemory_ = value; + onChanged(); + return this; + } + /** + * int64 device_temp_memory = 3 [deprecated = true]; + */ + @java.lang.Deprecated public Builder clearDeviceTempMemory() { + + deviceTempMemory_ = 0L; + onChanged(); + return this; + } + + private long devicePersistentMemory_ ; + /** + * int64 device_persistent_memory = 5 [deprecated = true]; + */ + @java.lang.Deprecated public long getDevicePersistentMemory() { + return devicePersistentMemory_; + } + /** + * int64 device_persistent_memory = 5 [deprecated = true]; + */ + @java.lang.Deprecated public Builder setDevicePersistentMemory(long value) { + + devicePersistentMemory_ = value; + onChanged(); + return this; + } + /** + * int64 device_persistent_memory = 5 [deprecated = true]; + */ + @java.lang.Deprecated public Builder clearDevicePersistentMemory() { + + devicePersistentMemory_ = 0L; + onChanged(); + return this; + } + @java.lang.Override + public final Builder setUnknownFields( + final com.google.protobuf.UnknownFieldSet unknownFields) { + return super.setUnknownFields(unknownFields); + } + + @java.lang.Override + public final Builder mergeUnknownFields( + final com.google.protobuf.UnknownFieldSet unknownFields) { + return super.mergeUnknownFields(unknownFields); + } + + + // @@protoc_insertion_point(builder_scope:tensorflow.OpPerformance.OpMemory) + } + + // @@protoc_insertion_point(class_scope:tensorflow.OpPerformance.OpMemory) + private static final org.tensorflow.proto.framework.OpPerformance.OpMemory DEFAULT_INSTANCE; + static { + DEFAULT_INSTANCE = new org.tensorflow.proto.framework.OpPerformance.OpMemory(); + } + + public static org.tensorflow.proto.framework.OpPerformance.OpMemory getDefaultInstance() { + return DEFAULT_INSTANCE; + } + + private static final com.google.protobuf.Parser + PARSER = new com.google.protobuf.AbstractParser() { + @java.lang.Override + public OpMemory parsePartialFrom( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return new OpMemory(input, extensionRegistry); + } + }; + + public static com.google.protobuf.Parser parser() { + return PARSER; + } + + @java.lang.Override + public com.google.protobuf.Parser getParserForType() { + return PARSER; + } + + @java.lang.Override + public org.tensorflow.proto.framework.OpPerformance.OpMemory getDefaultInstanceForType() { + return DEFAULT_INSTANCE; + } + + } + + private int executionTimeCase_ = 0; + private java.lang.Object executionTime_; + public enum ExecutionTimeCase + implements com.google.protobuf.Internal.EnumLite { + EXECUTION_TIME_NORMAL(10), + EXECUTION_TIME_LOG_NORMAL(11), + EXECUTIONTIME_NOT_SET(0); + private final int value; + private ExecutionTimeCase(int value) { + this.value = value; + } + /** + * @deprecated Use {@link #forNumber(int)} instead. + */ + @java.lang.Deprecated + public static ExecutionTimeCase valueOf(int value) { + return forNumber(value); + } + + public static ExecutionTimeCase forNumber(int value) { + switch (value) { + case 10: return EXECUTION_TIME_NORMAL; + case 11: return EXECUTION_TIME_LOG_NORMAL; + case 0: return EXECUTIONTIME_NOT_SET; + default: return null; + } + } + public int getNumber() { + return this.value; + } + }; + + public ExecutionTimeCase + getExecutionTimeCase() { + return ExecutionTimeCase.forNumber( + executionTimeCase_); + } + + public static final int OP_FIELD_NUMBER = 1; + private org.tensorflow.proto.framework.OpInfo op_; + /** + *
        +   * The op
        +   * 
        + * + * .tensorflow.OpInfo op = 1; + */ + public boolean hasOp() { + return op_ != null; + } + /** + *
        +   * The op
        +   * 
        + * + * .tensorflow.OpInfo op = 1; + */ + public org.tensorflow.proto.framework.OpInfo getOp() { + return op_ == null ? org.tensorflow.proto.framework.OpInfo.getDefaultInstance() : op_; + } + /** + *
        +   * The op
        +   * 
        + * + * .tensorflow.OpInfo op = 1; + */ + public org.tensorflow.proto.framework.OpInfoOrBuilder getOpOrBuilder() { + return getOp(); + } + + public static final int SESSION_INFO_FIELD_NUMBER = 12; + private org.tensorflow.proto.framework.SessionInfo sessionInfo_; + /** + *
        +   * Information about the session configs.
        +   * 
        + * + * .tensorflow.SessionInfo session_info = 12 [deprecated = true]; + */ + @java.lang.Deprecated public boolean hasSessionInfo() { + return sessionInfo_ != null; + } + /** + *
        +   * Information about the session configs.
        +   * 
        + * + * .tensorflow.SessionInfo session_info = 12 [deprecated = true]; + */ + @java.lang.Deprecated public org.tensorflow.proto.framework.SessionInfo getSessionInfo() { + return sessionInfo_ == null ? org.tensorflow.proto.framework.SessionInfo.getDefaultInstance() : sessionInfo_; + } + /** + *
        +   * Information about the session configs.
        +   * 
        + * + * .tensorflow.SessionInfo session_info = 12 [deprecated = true]; + */ + @java.lang.Deprecated public org.tensorflow.proto.framework.SessionInfoOrBuilder getSessionInfoOrBuilder() { + return getSessionInfo(); + } + + public static final int NODE_FIELD_NUMBER = 5; + private volatile java.lang.Object node_; + /** + *
        +   * The node name (optional). Makes it easier to associate the performance data
        +   * with a specific graph node.
        +   * 
        + * + * string node = 5; + */ + public java.lang.String getNode() { + java.lang.Object ref = node_; + if (ref instanceof java.lang.String) { + return (java.lang.String) ref; + } else { + com.google.protobuf.ByteString bs = + (com.google.protobuf.ByteString) ref; + java.lang.String s = bs.toStringUtf8(); + node_ = s; + return s; + } + } + /** + *
        +   * The node name (optional). Makes it easier to associate the performance data
        +   * with a specific graph node.
        +   * 
        + * + * string node = 5; + */ + public com.google.protobuf.ByteString + getNodeBytes() { + java.lang.Object ref = node_; + if (ref instanceof java.lang.String) { + com.google.protobuf.ByteString b = + com.google.protobuf.ByteString.copyFromUtf8( + (java.lang.String) ref); + node_ = b; + return b; + } else { + return (com.google.protobuf.ByteString) ref; + } + } + + public static final int TEMPORARY_MEMORY_SIZE_FIELD_NUMBER = 2; + private long temporaryMemorySize_; + /** + *
        +   * Temporary memory used by this node (in bytes).
        +   * 
        + * + * int64 temporary_memory_size = 2; + */ + public long getTemporaryMemorySize() { + return temporaryMemorySize_; + } + + public static final int COMPUTE_COST_FIELD_NUMBER = 3; + private long computeCost_; + /** + *
        +   * Time it takes to run the op (in nanoseconds).
        +   * 
        + * + * int64 compute_cost = 3; + */ + public long getComputeCost() { + return computeCost_; + } + + public static final int COMPUTE_TIME_FIELD_NUMBER = 6; + private long computeTime_; + /** + *
        +   * Analytical compute cost (in nanoseconds).
        +   * 
        + * + * int64 compute_time = 6; + */ + public long getComputeTime() { + return computeTime_; + } + + public static final int MEMORY_TIME_FIELD_NUMBER = 7; + private long memoryTime_; + /** + *
        +   * Analytical memory access cost (in nanoseconds).
        +   * 
        + * + * int64 memory_time = 7; + */ + public long getMemoryTime() { + return memoryTime_; + } + + public static final int COMPUTE_EFFICIENCY_FIELD_NUMBER = 4; + private double computeEfficiency_; + /** + *
        +   * Percentage of theoretical compute performance.
        +   * 
        + * + * double compute_efficiency = 4; + */ + public double getComputeEfficiency() { + return computeEfficiency_; + } + + public static final int MEMORY_EFFICIENCY_FIELD_NUMBER = 8; + private double memoryEfficiency_; + /** + *
        +   * Percentage of theoretical memory performance.
        +   * 
        + * + * double memory_efficiency = 8; + */ + public double getMemoryEfficiency() { + return memoryEfficiency_; + } + + public static final int EXECUTION_TIME_NORMAL_FIELD_NUMBER = 10; + /** + * .tensorflow.NormalDistribution execution_time_normal = 10; + */ + public boolean hasExecutionTimeNormal() { + return executionTimeCase_ == 10; + } + /** + * .tensorflow.NormalDistribution execution_time_normal = 10; + */ + public org.tensorflow.proto.framework.NormalDistribution getExecutionTimeNormal() { + if (executionTimeCase_ == 10) { + return (org.tensorflow.proto.framework.NormalDistribution) executionTime_; + } + return org.tensorflow.proto.framework.NormalDistribution.getDefaultInstance(); + } + /** + * .tensorflow.NormalDistribution execution_time_normal = 10; + */ + public org.tensorflow.proto.framework.NormalDistributionOrBuilder getExecutionTimeNormalOrBuilder() { + if (executionTimeCase_ == 10) { + return (org.tensorflow.proto.framework.NormalDistribution) executionTime_; + } + return org.tensorflow.proto.framework.NormalDistribution.getDefaultInstance(); + } + + public static final int EXECUTION_TIME_LOG_NORMAL_FIELD_NUMBER = 11; + /** + * .tensorflow.LogNormalDistribution execution_time_log_normal = 11; + */ + public boolean hasExecutionTimeLogNormal() { + return executionTimeCase_ == 11; + } + /** + * .tensorflow.LogNormalDistribution execution_time_log_normal = 11; + */ + public org.tensorflow.proto.framework.LogNormalDistribution getExecutionTimeLogNormal() { + if (executionTimeCase_ == 11) { + return (org.tensorflow.proto.framework.LogNormalDistribution) executionTime_; + } + return org.tensorflow.proto.framework.LogNormalDistribution.getDefaultInstance(); + } + /** + * .tensorflow.LogNormalDistribution execution_time_log_normal = 11; + */ + public org.tensorflow.proto.framework.LogNormalDistributionOrBuilder getExecutionTimeLogNormalOrBuilder() { + if (executionTimeCase_ == 11) { + return (org.tensorflow.proto.framework.LogNormalDistribution) executionTime_; + } + return org.tensorflow.proto.framework.LogNormalDistribution.getDefaultInstance(); + } + + public static final int OP_MEMORY_FIELD_NUMBER = 9; + private org.tensorflow.proto.framework.OpPerformance.OpMemory opMemory_; + /** + * .tensorflow.OpPerformance.OpMemory op_memory = 9; + */ + public boolean hasOpMemory() { + return opMemory_ != null; + } + /** + * .tensorflow.OpPerformance.OpMemory op_memory = 9; + */ + public org.tensorflow.proto.framework.OpPerformance.OpMemory getOpMemory() { + return opMemory_ == null ? org.tensorflow.proto.framework.OpPerformance.OpMemory.getDefaultInstance() : opMemory_; + } + /** + * .tensorflow.OpPerformance.OpMemory op_memory = 9; + */ + public org.tensorflow.proto.framework.OpPerformance.OpMemoryOrBuilder getOpMemoryOrBuilder() { + return getOpMemory(); + } + + private byte memoizedIsInitialized = -1; + @java.lang.Override + public final boolean isInitialized() { + byte isInitialized = memoizedIsInitialized; + if (isInitialized == 1) return true; + if (isInitialized == 0) return false; + + memoizedIsInitialized = 1; + return true; + } + + @java.lang.Override + public void writeTo(com.google.protobuf.CodedOutputStream output) + throws java.io.IOException { + if (op_ != null) { + output.writeMessage(1, getOp()); + } + if (temporaryMemorySize_ != 0L) { + output.writeInt64(2, temporaryMemorySize_); + } + if (computeCost_ != 0L) { + output.writeInt64(3, computeCost_); + } + if (computeEfficiency_ != 0D) { + output.writeDouble(4, computeEfficiency_); + } + if (!getNodeBytes().isEmpty()) { + com.google.protobuf.GeneratedMessageV3.writeString(output, 5, node_); + } + if (computeTime_ != 0L) { + output.writeInt64(6, computeTime_); + } + if (memoryTime_ != 0L) { + output.writeInt64(7, memoryTime_); + } + if (memoryEfficiency_ != 0D) { + output.writeDouble(8, memoryEfficiency_); + } + if (opMemory_ != null) { + output.writeMessage(9, getOpMemory()); + } + if (executionTimeCase_ == 10) { + output.writeMessage(10, (org.tensorflow.proto.framework.NormalDistribution) executionTime_); + } + if (executionTimeCase_ == 11) { + output.writeMessage(11, (org.tensorflow.proto.framework.LogNormalDistribution) executionTime_); + } + if (sessionInfo_ != null) { + output.writeMessage(12, getSessionInfo()); + } + unknownFields.writeTo(output); + } + + @java.lang.Override + public int getSerializedSize() { + int size = memoizedSize; + if (size != -1) return size; + + size = 0; + if (op_ != null) { + size += com.google.protobuf.CodedOutputStream + .computeMessageSize(1, getOp()); + } + if (temporaryMemorySize_ != 0L) { + size += com.google.protobuf.CodedOutputStream + .computeInt64Size(2, temporaryMemorySize_); + } + if (computeCost_ != 0L) { + size += com.google.protobuf.CodedOutputStream + .computeInt64Size(3, computeCost_); + } + if (computeEfficiency_ != 0D) { + size += com.google.protobuf.CodedOutputStream + .computeDoubleSize(4, computeEfficiency_); + } + if (!getNodeBytes().isEmpty()) { + size += com.google.protobuf.GeneratedMessageV3.computeStringSize(5, node_); + } + if (computeTime_ != 0L) { + size += com.google.protobuf.CodedOutputStream + .computeInt64Size(6, computeTime_); + } + if (memoryTime_ != 0L) { + size += com.google.protobuf.CodedOutputStream + .computeInt64Size(7, memoryTime_); + } + if (memoryEfficiency_ != 0D) { + size += com.google.protobuf.CodedOutputStream + .computeDoubleSize(8, memoryEfficiency_); + } + if (opMemory_ != null) { + size += com.google.protobuf.CodedOutputStream + .computeMessageSize(9, getOpMemory()); + } + if (executionTimeCase_ == 10) { + size += com.google.protobuf.CodedOutputStream + .computeMessageSize(10, (org.tensorflow.proto.framework.NormalDistribution) executionTime_); + } + if (executionTimeCase_ == 11) { + size += com.google.protobuf.CodedOutputStream + .computeMessageSize(11, (org.tensorflow.proto.framework.LogNormalDistribution) executionTime_); + } + if (sessionInfo_ != null) { + size += com.google.protobuf.CodedOutputStream + .computeMessageSize(12, getSessionInfo()); + } + size += unknownFields.getSerializedSize(); + memoizedSize = size; + return size; + } + + @java.lang.Override + public boolean equals(final java.lang.Object obj) { + if (obj == this) { + return true; + } + if (!(obj instanceof org.tensorflow.proto.framework.OpPerformance)) { + return super.equals(obj); + } + org.tensorflow.proto.framework.OpPerformance other = (org.tensorflow.proto.framework.OpPerformance) obj; + + if (hasOp() != other.hasOp()) return false; + if (hasOp()) { + if (!getOp() + .equals(other.getOp())) return false; + } + if (hasSessionInfo() != other.hasSessionInfo()) return false; + if (hasSessionInfo()) { + if (!getSessionInfo() + .equals(other.getSessionInfo())) return false; + } + if (!getNode() + .equals(other.getNode())) return false; + if (getTemporaryMemorySize() + != other.getTemporaryMemorySize()) return false; + if (getComputeCost() + != other.getComputeCost()) return false; + if (getComputeTime() + != other.getComputeTime()) return false; + if (getMemoryTime() + != other.getMemoryTime()) return false; + if (java.lang.Double.doubleToLongBits(getComputeEfficiency()) + != java.lang.Double.doubleToLongBits( + other.getComputeEfficiency())) return false; + if (java.lang.Double.doubleToLongBits(getMemoryEfficiency()) + != java.lang.Double.doubleToLongBits( + other.getMemoryEfficiency())) return false; + if (hasOpMemory() != other.hasOpMemory()) return false; + if (hasOpMemory()) { + if (!getOpMemory() + .equals(other.getOpMemory())) return false; + } + if (!getExecutionTimeCase().equals(other.getExecutionTimeCase())) return false; + switch (executionTimeCase_) { + case 10: + if (!getExecutionTimeNormal() + .equals(other.getExecutionTimeNormal())) return false; + break; + case 11: + if (!getExecutionTimeLogNormal() + .equals(other.getExecutionTimeLogNormal())) return false; + break; + case 0: + default: + } + if (!unknownFields.equals(other.unknownFields)) return false; + return true; + } + + @java.lang.Override + public int hashCode() { + if (memoizedHashCode != 0) { + return memoizedHashCode; + } + int hash = 41; + hash = (19 * hash) + getDescriptor().hashCode(); + if (hasOp()) { + hash = (37 * hash) + OP_FIELD_NUMBER; + hash = (53 * hash) + getOp().hashCode(); + } + if (hasSessionInfo()) { + hash = (37 * hash) + SESSION_INFO_FIELD_NUMBER; + hash = (53 * hash) + getSessionInfo().hashCode(); + } + hash = (37 * hash) + NODE_FIELD_NUMBER; + hash = (53 * hash) + getNode().hashCode(); + hash = (37 * hash) + TEMPORARY_MEMORY_SIZE_FIELD_NUMBER; + hash = (53 * hash) + com.google.protobuf.Internal.hashLong( + getTemporaryMemorySize()); + hash = (37 * hash) + COMPUTE_COST_FIELD_NUMBER; + hash = (53 * hash) + com.google.protobuf.Internal.hashLong( + getComputeCost()); + hash = (37 * hash) + COMPUTE_TIME_FIELD_NUMBER; + hash = (53 * hash) + com.google.protobuf.Internal.hashLong( + getComputeTime()); + hash = (37 * hash) + MEMORY_TIME_FIELD_NUMBER; + hash = (53 * hash) + com.google.protobuf.Internal.hashLong( + getMemoryTime()); + hash = (37 * hash) + COMPUTE_EFFICIENCY_FIELD_NUMBER; + hash = (53 * hash) + com.google.protobuf.Internal.hashLong( + java.lang.Double.doubleToLongBits(getComputeEfficiency())); + hash = (37 * hash) + MEMORY_EFFICIENCY_FIELD_NUMBER; + hash = (53 * hash) + com.google.protobuf.Internal.hashLong( + java.lang.Double.doubleToLongBits(getMemoryEfficiency())); + if (hasOpMemory()) { + hash = (37 * hash) + OP_MEMORY_FIELD_NUMBER; + hash = (53 * hash) + getOpMemory().hashCode(); + } + switch (executionTimeCase_) { + case 10: + hash = (37 * hash) + EXECUTION_TIME_NORMAL_FIELD_NUMBER; + hash = (53 * hash) + getExecutionTimeNormal().hashCode(); + break; + case 11: + hash = (37 * hash) + EXECUTION_TIME_LOG_NORMAL_FIELD_NUMBER; + hash = (53 * hash) + getExecutionTimeLogNormal().hashCode(); + break; + case 0: + default: + } + hash = (29 * hash) + unknownFields.hashCode(); + memoizedHashCode = hash; + return hash; + } + + public static org.tensorflow.proto.framework.OpPerformance parseFrom( + java.nio.ByteBuffer data) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data); + } + public static org.tensorflow.proto.framework.OpPerformance parseFrom( + java.nio.ByteBuffer data, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data, extensionRegistry); + } + public static org.tensorflow.proto.framework.OpPerformance parseFrom( + com.google.protobuf.ByteString data) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data); + } + public static org.tensorflow.proto.framework.OpPerformance parseFrom( + com.google.protobuf.ByteString data, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data, extensionRegistry); + } + public static org.tensorflow.proto.framework.OpPerformance parseFrom(byte[] data) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data); + } + public static org.tensorflow.proto.framework.OpPerformance parseFrom( + byte[] data, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data, extensionRegistry); + } + public static org.tensorflow.proto.framework.OpPerformance parseFrom(java.io.InputStream input) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input); + } + public static org.tensorflow.proto.framework.OpPerformance parseFrom( + java.io.InputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input, extensionRegistry); + } + public static org.tensorflow.proto.framework.OpPerformance parseDelimitedFrom(java.io.InputStream input) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseDelimitedWithIOException(PARSER, input); + } + public static org.tensorflow.proto.framework.OpPerformance parseDelimitedFrom( + java.io.InputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseDelimitedWithIOException(PARSER, input, extensionRegistry); + } + public static org.tensorflow.proto.framework.OpPerformance parseFrom( + com.google.protobuf.CodedInputStream input) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input); + } + public static org.tensorflow.proto.framework.OpPerformance parseFrom( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input, extensionRegistry); + } + + @java.lang.Override + public Builder newBuilderForType() { return newBuilder(); } + public static Builder newBuilder() { + return DEFAULT_INSTANCE.toBuilder(); + } + public static Builder newBuilder(org.tensorflow.proto.framework.OpPerformance prototype) { + return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); + } + @java.lang.Override + public Builder toBuilder() { + return this == DEFAULT_INSTANCE + ? new Builder() : new Builder().mergeFrom(this); + } + + @java.lang.Override + protected Builder newBuilderForType( + com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { + Builder builder = new Builder(parent); + return builder; + } + /** + *
        +   * Performance data for tensorflow operations
        +   * 
        + * + * Protobuf type {@code tensorflow.OpPerformance} + */ + public static final class Builder extends + com.google.protobuf.GeneratedMessageV3.Builder implements + // @@protoc_insertion_point(builder_implements:tensorflow.OpPerformance) + org.tensorflow.proto.framework.OpPerformanceOrBuilder { + public static final com.google.protobuf.Descriptors.Descriptor + getDescriptor() { + return org.tensorflow.proto.framework.OpPerformanceDataProtos.internal_static_tensorflow_OpPerformance_descriptor; + } + + @java.lang.Override + protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable + internalGetFieldAccessorTable() { + return org.tensorflow.proto.framework.OpPerformanceDataProtos.internal_static_tensorflow_OpPerformance_fieldAccessorTable + .ensureFieldAccessorsInitialized( + org.tensorflow.proto.framework.OpPerformance.class, org.tensorflow.proto.framework.OpPerformance.Builder.class); + } + + // Construct using org.tensorflow.proto.framework.OpPerformance.newBuilder() + private Builder() { + maybeForceBuilderInitialization(); + } + + private Builder( + com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { + super(parent); + maybeForceBuilderInitialization(); + } + private void maybeForceBuilderInitialization() { + if (com.google.protobuf.GeneratedMessageV3 + .alwaysUseFieldBuilders) { + } + } + @java.lang.Override + public Builder clear() { + super.clear(); + if (opBuilder_ == null) { + op_ = null; + } else { + op_ = null; + opBuilder_ = null; + } + if (sessionInfoBuilder_ == null) { + sessionInfo_ = null; + } else { + sessionInfo_ = null; + sessionInfoBuilder_ = null; + } + node_ = ""; + + temporaryMemorySize_ = 0L; + + computeCost_ = 0L; + + computeTime_ = 0L; + + memoryTime_ = 0L; + + computeEfficiency_ = 0D; + + memoryEfficiency_ = 0D; + + if (opMemoryBuilder_ == null) { + opMemory_ = null; + } else { + opMemory_ = null; + opMemoryBuilder_ = null; + } + executionTimeCase_ = 0; + executionTime_ = null; + return this; + } + + @java.lang.Override + public com.google.protobuf.Descriptors.Descriptor + getDescriptorForType() { + return org.tensorflow.proto.framework.OpPerformanceDataProtos.internal_static_tensorflow_OpPerformance_descriptor; + } + + @java.lang.Override + public org.tensorflow.proto.framework.OpPerformance getDefaultInstanceForType() { + return org.tensorflow.proto.framework.OpPerformance.getDefaultInstance(); + } + + @java.lang.Override + public org.tensorflow.proto.framework.OpPerformance build() { + org.tensorflow.proto.framework.OpPerformance result = buildPartial(); + if (!result.isInitialized()) { + throw newUninitializedMessageException(result); + } + return result; + } + + @java.lang.Override + public org.tensorflow.proto.framework.OpPerformance buildPartial() { + org.tensorflow.proto.framework.OpPerformance result = new org.tensorflow.proto.framework.OpPerformance(this); + if (opBuilder_ == null) { + result.op_ = op_; + } else { + result.op_ = opBuilder_.build(); + } + if (sessionInfoBuilder_ == null) { + result.sessionInfo_ = sessionInfo_; + } else { + result.sessionInfo_ = sessionInfoBuilder_.build(); + } + result.node_ = node_; + result.temporaryMemorySize_ = temporaryMemorySize_; + result.computeCost_ = computeCost_; + result.computeTime_ = computeTime_; + result.memoryTime_ = memoryTime_; + result.computeEfficiency_ = computeEfficiency_; + result.memoryEfficiency_ = memoryEfficiency_; + if (executionTimeCase_ == 10) { + if (executionTimeNormalBuilder_ == null) { + result.executionTime_ = executionTime_; + } else { + result.executionTime_ = executionTimeNormalBuilder_.build(); + } + } + if (executionTimeCase_ == 11) { + if (executionTimeLogNormalBuilder_ == null) { + result.executionTime_ = executionTime_; + } else { + result.executionTime_ = executionTimeLogNormalBuilder_.build(); + } + } + if (opMemoryBuilder_ == null) { + result.opMemory_ = opMemory_; + } else { + result.opMemory_ = opMemoryBuilder_.build(); + } + result.executionTimeCase_ = executionTimeCase_; + onBuilt(); + return result; + } + + @java.lang.Override + public Builder clone() { + return super.clone(); + } + @java.lang.Override + public Builder setField( + com.google.protobuf.Descriptors.FieldDescriptor field, + java.lang.Object value) { + return super.setField(field, value); + } + @java.lang.Override + public Builder clearField( + com.google.protobuf.Descriptors.FieldDescriptor field) { + return super.clearField(field); + } + @java.lang.Override + public Builder clearOneof( + com.google.protobuf.Descriptors.OneofDescriptor oneof) { + return super.clearOneof(oneof); + } + @java.lang.Override + public Builder setRepeatedField( + com.google.protobuf.Descriptors.FieldDescriptor field, + int index, java.lang.Object value) { + return super.setRepeatedField(field, index, value); + } + @java.lang.Override + public Builder addRepeatedField( + com.google.protobuf.Descriptors.FieldDescriptor field, + java.lang.Object value) { + return super.addRepeatedField(field, value); + } + @java.lang.Override + public Builder mergeFrom(com.google.protobuf.Message other) { + if (other instanceof org.tensorflow.proto.framework.OpPerformance) { + return mergeFrom((org.tensorflow.proto.framework.OpPerformance)other); + } else { + super.mergeFrom(other); + return this; + } + } + + public Builder mergeFrom(org.tensorflow.proto.framework.OpPerformance other) { + if (other == org.tensorflow.proto.framework.OpPerformance.getDefaultInstance()) return this; + if (other.hasOp()) { + mergeOp(other.getOp()); + } + if (other.hasSessionInfo()) { + mergeSessionInfo(other.getSessionInfo()); + } + if (!other.getNode().isEmpty()) { + node_ = other.node_; + onChanged(); + } + if (other.getTemporaryMemorySize() != 0L) { + setTemporaryMemorySize(other.getTemporaryMemorySize()); + } + if (other.getComputeCost() != 0L) { + setComputeCost(other.getComputeCost()); + } + if (other.getComputeTime() != 0L) { + setComputeTime(other.getComputeTime()); + } + if (other.getMemoryTime() != 0L) { + setMemoryTime(other.getMemoryTime()); + } + if (other.getComputeEfficiency() != 0D) { + setComputeEfficiency(other.getComputeEfficiency()); + } + if (other.getMemoryEfficiency() != 0D) { + setMemoryEfficiency(other.getMemoryEfficiency()); + } + if (other.hasOpMemory()) { + mergeOpMemory(other.getOpMemory()); + } + switch (other.getExecutionTimeCase()) { + case EXECUTION_TIME_NORMAL: { + mergeExecutionTimeNormal(other.getExecutionTimeNormal()); + break; + } + case EXECUTION_TIME_LOG_NORMAL: { + mergeExecutionTimeLogNormal(other.getExecutionTimeLogNormal()); + break; + } + case EXECUTIONTIME_NOT_SET: { + break; + } + } + this.mergeUnknownFields(other.unknownFields); + onChanged(); + return this; + } + + @java.lang.Override + public final boolean isInitialized() { + return true; + } + + @java.lang.Override + public Builder mergeFrom( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + org.tensorflow.proto.framework.OpPerformance parsedMessage = null; + try { + parsedMessage = PARSER.parsePartialFrom(input, extensionRegistry); + } catch (com.google.protobuf.InvalidProtocolBufferException e) { + parsedMessage = (org.tensorflow.proto.framework.OpPerformance) e.getUnfinishedMessage(); + throw e.unwrapIOException(); + } finally { + if (parsedMessage != null) { + mergeFrom(parsedMessage); + } + } + return this; + } + private int executionTimeCase_ = 0; + private java.lang.Object executionTime_; + public ExecutionTimeCase + getExecutionTimeCase() { + return ExecutionTimeCase.forNumber( + executionTimeCase_); + } + + public Builder clearExecutionTime() { + executionTimeCase_ = 0; + executionTime_ = null; + onChanged(); + return this; + } + + + private org.tensorflow.proto.framework.OpInfo op_; + private com.google.protobuf.SingleFieldBuilderV3< + org.tensorflow.proto.framework.OpInfo, org.tensorflow.proto.framework.OpInfo.Builder, org.tensorflow.proto.framework.OpInfoOrBuilder> opBuilder_; + /** + *
        +     * The op
        +     * 
        + * + * .tensorflow.OpInfo op = 1; + */ + public boolean hasOp() { + return opBuilder_ != null || op_ != null; + } + /** + *
        +     * The op
        +     * 
        + * + * .tensorflow.OpInfo op = 1; + */ + public org.tensorflow.proto.framework.OpInfo getOp() { + if (opBuilder_ == null) { + return op_ == null ? org.tensorflow.proto.framework.OpInfo.getDefaultInstance() : op_; + } else { + return opBuilder_.getMessage(); + } + } + /** + *
        +     * The op
        +     * 
        + * + * .tensorflow.OpInfo op = 1; + */ + public Builder setOp(org.tensorflow.proto.framework.OpInfo value) { + if (opBuilder_ == null) { + if (value == null) { + throw new NullPointerException(); + } + op_ = value; + onChanged(); + } else { + opBuilder_.setMessage(value); + } + + return this; + } + /** + *
        +     * The op
        +     * 
        + * + * .tensorflow.OpInfo op = 1; + */ + public Builder setOp( + org.tensorflow.proto.framework.OpInfo.Builder builderForValue) { + if (opBuilder_ == null) { + op_ = builderForValue.build(); + onChanged(); + } else { + opBuilder_.setMessage(builderForValue.build()); + } + + return this; + } + /** + *
        +     * The op
        +     * 
        + * + * .tensorflow.OpInfo op = 1; + */ + public Builder mergeOp(org.tensorflow.proto.framework.OpInfo value) { + if (opBuilder_ == null) { + if (op_ != null) { + op_ = + org.tensorflow.proto.framework.OpInfo.newBuilder(op_).mergeFrom(value).buildPartial(); + } else { + op_ = value; + } + onChanged(); + } else { + opBuilder_.mergeFrom(value); + } + + return this; + } + /** + *
        +     * The op
        +     * 
        + * + * .tensorflow.OpInfo op = 1; + */ + public Builder clearOp() { + if (opBuilder_ == null) { + op_ = null; + onChanged(); + } else { + op_ = null; + opBuilder_ = null; + } + + return this; + } + /** + *
        +     * The op
        +     * 
        + * + * .tensorflow.OpInfo op = 1; + */ + public org.tensorflow.proto.framework.OpInfo.Builder getOpBuilder() { + + onChanged(); + return getOpFieldBuilder().getBuilder(); + } + /** + *
        +     * The op
        +     * 
        + * + * .tensorflow.OpInfo op = 1; + */ + public org.tensorflow.proto.framework.OpInfoOrBuilder getOpOrBuilder() { + if (opBuilder_ != null) { + return opBuilder_.getMessageOrBuilder(); + } else { + return op_ == null ? + org.tensorflow.proto.framework.OpInfo.getDefaultInstance() : op_; + } + } + /** + *
        +     * The op
        +     * 
        + * + * .tensorflow.OpInfo op = 1; + */ + private com.google.protobuf.SingleFieldBuilderV3< + org.tensorflow.proto.framework.OpInfo, org.tensorflow.proto.framework.OpInfo.Builder, org.tensorflow.proto.framework.OpInfoOrBuilder> + getOpFieldBuilder() { + if (opBuilder_ == null) { + opBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< + org.tensorflow.proto.framework.OpInfo, org.tensorflow.proto.framework.OpInfo.Builder, org.tensorflow.proto.framework.OpInfoOrBuilder>( + getOp(), + getParentForChildren(), + isClean()); + op_ = null; + } + return opBuilder_; + } + + private org.tensorflow.proto.framework.SessionInfo sessionInfo_; + private com.google.protobuf.SingleFieldBuilderV3< + org.tensorflow.proto.framework.SessionInfo, org.tensorflow.proto.framework.SessionInfo.Builder, org.tensorflow.proto.framework.SessionInfoOrBuilder> sessionInfoBuilder_; + /** + *
        +     * Information about the session configs.
        +     * 
        + * + * .tensorflow.SessionInfo session_info = 12 [deprecated = true]; + */ + @java.lang.Deprecated public boolean hasSessionInfo() { + return sessionInfoBuilder_ != null || sessionInfo_ != null; + } + /** + *
        +     * Information about the session configs.
        +     * 
        + * + * .tensorflow.SessionInfo session_info = 12 [deprecated = true]; + */ + @java.lang.Deprecated public org.tensorflow.proto.framework.SessionInfo getSessionInfo() { + if (sessionInfoBuilder_ == null) { + return sessionInfo_ == null ? org.tensorflow.proto.framework.SessionInfo.getDefaultInstance() : sessionInfo_; + } else { + return sessionInfoBuilder_.getMessage(); + } + } + /** + *
        +     * Information about the session configs.
        +     * 
        + * + * .tensorflow.SessionInfo session_info = 12 [deprecated = true]; + */ + @java.lang.Deprecated public Builder setSessionInfo(org.tensorflow.proto.framework.SessionInfo value) { + if (sessionInfoBuilder_ == null) { + if (value == null) { + throw new NullPointerException(); + } + sessionInfo_ = value; + onChanged(); + } else { + sessionInfoBuilder_.setMessage(value); + } + + return this; + } + /** + *
        +     * Information about the session configs.
        +     * 
        + * + * .tensorflow.SessionInfo session_info = 12 [deprecated = true]; + */ + @java.lang.Deprecated public Builder setSessionInfo( + org.tensorflow.proto.framework.SessionInfo.Builder builderForValue) { + if (sessionInfoBuilder_ == null) { + sessionInfo_ = builderForValue.build(); + onChanged(); + } else { + sessionInfoBuilder_.setMessage(builderForValue.build()); + } + + return this; + } + /** + *
        +     * Information about the session configs.
        +     * 
        + * + * .tensorflow.SessionInfo session_info = 12 [deprecated = true]; + */ + @java.lang.Deprecated public Builder mergeSessionInfo(org.tensorflow.proto.framework.SessionInfo value) { + if (sessionInfoBuilder_ == null) { + if (sessionInfo_ != null) { + sessionInfo_ = + org.tensorflow.proto.framework.SessionInfo.newBuilder(sessionInfo_).mergeFrom(value).buildPartial(); + } else { + sessionInfo_ = value; + } + onChanged(); + } else { + sessionInfoBuilder_.mergeFrom(value); + } + + return this; + } + /** + *
        +     * Information about the session configs.
        +     * 
        + * + * .tensorflow.SessionInfo session_info = 12 [deprecated = true]; + */ + @java.lang.Deprecated public Builder clearSessionInfo() { + if (sessionInfoBuilder_ == null) { + sessionInfo_ = null; + onChanged(); + } else { + sessionInfo_ = null; + sessionInfoBuilder_ = null; + } + + return this; + } + /** + *
        +     * Information about the session configs.
        +     * 
        + * + * .tensorflow.SessionInfo session_info = 12 [deprecated = true]; + */ + @java.lang.Deprecated public org.tensorflow.proto.framework.SessionInfo.Builder getSessionInfoBuilder() { + + onChanged(); + return getSessionInfoFieldBuilder().getBuilder(); + } + /** + *
        +     * Information about the session configs.
        +     * 
        + * + * .tensorflow.SessionInfo session_info = 12 [deprecated = true]; + */ + @java.lang.Deprecated public org.tensorflow.proto.framework.SessionInfoOrBuilder getSessionInfoOrBuilder() { + if (sessionInfoBuilder_ != null) { + return sessionInfoBuilder_.getMessageOrBuilder(); + } else { + return sessionInfo_ == null ? + org.tensorflow.proto.framework.SessionInfo.getDefaultInstance() : sessionInfo_; + } + } + /** + *
        +     * Information about the session configs.
        +     * 
        + * + * .tensorflow.SessionInfo session_info = 12 [deprecated = true]; + */ + private com.google.protobuf.SingleFieldBuilderV3< + org.tensorflow.proto.framework.SessionInfo, org.tensorflow.proto.framework.SessionInfo.Builder, org.tensorflow.proto.framework.SessionInfoOrBuilder> + getSessionInfoFieldBuilder() { + if (sessionInfoBuilder_ == null) { + sessionInfoBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< + org.tensorflow.proto.framework.SessionInfo, org.tensorflow.proto.framework.SessionInfo.Builder, org.tensorflow.proto.framework.SessionInfoOrBuilder>( + getSessionInfo(), + getParentForChildren(), + isClean()); + sessionInfo_ = null; + } + return sessionInfoBuilder_; + } + + private java.lang.Object node_ = ""; + /** + *
        +     * The node name (optional). Makes it easier to associate the performance data
        +     * with a specific graph node.
        +     * 
        + * + * string node = 5; + */ + public java.lang.String getNode() { + java.lang.Object ref = node_; + if (!(ref instanceof java.lang.String)) { + com.google.protobuf.ByteString bs = + (com.google.protobuf.ByteString) ref; + java.lang.String s = bs.toStringUtf8(); + node_ = s; + return s; + } else { + return (java.lang.String) ref; + } + } + /** + *
        +     * The node name (optional). Makes it easier to associate the performance data
        +     * with a specific graph node.
        +     * 
        + * + * string node = 5; + */ + public com.google.protobuf.ByteString + getNodeBytes() { + java.lang.Object ref = node_; + if (ref instanceof String) { + com.google.protobuf.ByteString b = + com.google.protobuf.ByteString.copyFromUtf8( + (java.lang.String) ref); + node_ = b; + return b; + } else { + return (com.google.protobuf.ByteString) ref; + } + } + /** + *
        +     * The node name (optional). Makes it easier to associate the performance data
        +     * with a specific graph node.
        +     * 
        + * + * string node = 5; + */ + public Builder setNode( + java.lang.String value) { + if (value == null) { + throw new NullPointerException(); + } + + node_ = value; + onChanged(); + return this; + } + /** + *
        +     * The node name (optional). Makes it easier to associate the performance data
        +     * with a specific graph node.
        +     * 
        + * + * string node = 5; + */ + public Builder clearNode() { + + node_ = getDefaultInstance().getNode(); + onChanged(); + return this; + } + /** + *
        +     * The node name (optional). Makes it easier to associate the performance data
        +     * with a specific graph node.
        +     * 
        + * + * string node = 5; + */ + public Builder setNodeBytes( + com.google.protobuf.ByteString value) { + if (value == null) { + throw new NullPointerException(); + } + checkByteStringIsUtf8(value); + + node_ = value; + onChanged(); + return this; + } + + private long temporaryMemorySize_ ; + /** + *
        +     * Temporary memory used by this node (in bytes).
        +     * 
        + * + * int64 temporary_memory_size = 2; + */ + public long getTemporaryMemorySize() { + return temporaryMemorySize_; + } + /** + *
        +     * Temporary memory used by this node (in bytes).
        +     * 
        + * + * int64 temporary_memory_size = 2; + */ + public Builder setTemporaryMemorySize(long value) { + + temporaryMemorySize_ = value; + onChanged(); + return this; + } + /** + *
        +     * Temporary memory used by this node (in bytes).
        +     * 
        + * + * int64 temporary_memory_size = 2; + */ + public Builder clearTemporaryMemorySize() { + + temporaryMemorySize_ = 0L; + onChanged(); + return this; + } + + private long computeCost_ ; + /** + *
        +     * Time it takes to run the op (in nanoseconds).
        +     * 
        + * + * int64 compute_cost = 3; + */ + public long getComputeCost() { + return computeCost_; + } + /** + *
        +     * Time it takes to run the op (in nanoseconds).
        +     * 
        + * + * int64 compute_cost = 3; + */ + public Builder setComputeCost(long value) { + + computeCost_ = value; + onChanged(); + return this; + } + /** + *
        +     * Time it takes to run the op (in nanoseconds).
        +     * 
        + * + * int64 compute_cost = 3; + */ + public Builder clearComputeCost() { + + computeCost_ = 0L; + onChanged(); + return this; + } + + private long computeTime_ ; + /** + *
        +     * Analytical compute cost (in nanoseconds).
        +     * 
        + * + * int64 compute_time = 6; + */ + public long getComputeTime() { + return computeTime_; + } + /** + *
        +     * Analytical compute cost (in nanoseconds).
        +     * 
        + * + * int64 compute_time = 6; + */ + public Builder setComputeTime(long value) { + + computeTime_ = value; + onChanged(); + return this; + } + /** + *
        +     * Analytical compute cost (in nanoseconds).
        +     * 
        + * + * int64 compute_time = 6; + */ + public Builder clearComputeTime() { + + computeTime_ = 0L; + onChanged(); + return this; + } + + private long memoryTime_ ; + /** + *
        +     * Analytical memory access cost (in nanoseconds).
        +     * 
        + * + * int64 memory_time = 7; + */ + public long getMemoryTime() { + return memoryTime_; + } + /** + *
        +     * Analytical memory access cost (in nanoseconds).
        +     * 
        + * + * int64 memory_time = 7; + */ + public Builder setMemoryTime(long value) { + + memoryTime_ = value; + onChanged(); + return this; + } + /** + *
        +     * Analytical memory access cost (in nanoseconds).
        +     * 
        + * + * int64 memory_time = 7; + */ + public Builder clearMemoryTime() { + + memoryTime_ = 0L; + onChanged(); + return this; + } + + private double computeEfficiency_ ; + /** + *
        +     * Percentage of theoretical compute performance.
        +     * 
        + * + * double compute_efficiency = 4; + */ + public double getComputeEfficiency() { + return computeEfficiency_; + } + /** + *
        +     * Percentage of theoretical compute performance.
        +     * 
        + * + * double compute_efficiency = 4; + */ + public Builder setComputeEfficiency(double value) { + + computeEfficiency_ = value; + onChanged(); + return this; + } + /** + *
        +     * Percentage of theoretical compute performance.
        +     * 
        + * + * double compute_efficiency = 4; + */ + public Builder clearComputeEfficiency() { + + computeEfficiency_ = 0D; + onChanged(); + return this; + } + + private double memoryEfficiency_ ; + /** + *
        +     * Percentage of theoretical memory performance.
        +     * 
        + * + * double memory_efficiency = 8; + */ + public double getMemoryEfficiency() { + return memoryEfficiency_; + } + /** + *
        +     * Percentage of theoretical memory performance.
        +     * 
        + * + * double memory_efficiency = 8; + */ + public Builder setMemoryEfficiency(double value) { + + memoryEfficiency_ = value; + onChanged(); + return this; + } + /** + *
        +     * Percentage of theoretical memory performance.
        +     * 
        + * + * double memory_efficiency = 8; + */ + public Builder clearMemoryEfficiency() { + + memoryEfficiency_ = 0D; + onChanged(); + return this; + } + + private com.google.protobuf.SingleFieldBuilderV3< + org.tensorflow.proto.framework.NormalDistribution, org.tensorflow.proto.framework.NormalDistribution.Builder, org.tensorflow.proto.framework.NormalDistributionOrBuilder> executionTimeNormalBuilder_; + /** + * .tensorflow.NormalDistribution execution_time_normal = 10; + */ + public boolean hasExecutionTimeNormal() { + return executionTimeCase_ == 10; + } + /** + * .tensorflow.NormalDistribution execution_time_normal = 10; + */ + public org.tensorflow.proto.framework.NormalDistribution getExecutionTimeNormal() { + if (executionTimeNormalBuilder_ == null) { + if (executionTimeCase_ == 10) { + return (org.tensorflow.proto.framework.NormalDistribution) executionTime_; + } + return org.tensorflow.proto.framework.NormalDistribution.getDefaultInstance(); + } else { + if (executionTimeCase_ == 10) { + return executionTimeNormalBuilder_.getMessage(); + } + return org.tensorflow.proto.framework.NormalDistribution.getDefaultInstance(); + } + } + /** + * .tensorflow.NormalDistribution execution_time_normal = 10; + */ + public Builder setExecutionTimeNormal(org.tensorflow.proto.framework.NormalDistribution value) { + if (executionTimeNormalBuilder_ == null) { + if (value == null) { + throw new NullPointerException(); + } + executionTime_ = value; + onChanged(); + } else { + executionTimeNormalBuilder_.setMessage(value); + } + executionTimeCase_ = 10; + return this; + } + /** + * .tensorflow.NormalDistribution execution_time_normal = 10; + */ + public Builder setExecutionTimeNormal( + org.tensorflow.proto.framework.NormalDistribution.Builder builderForValue) { + if (executionTimeNormalBuilder_ == null) { + executionTime_ = builderForValue.build(); + onChanged(); + } else { + executionTimeNormalBuilder_.setMessage(builderForValue.build()); + } + executionTimeCase_ = 10; + return this; + } + /** + * .tensorflow.NormalDistribution execution_time_normal = 10; + */ + public Builder mergeExecutionTimeNormal(org.tensorflow.proto.framework.NormalDistribution value) { + if (executionTimeNormalBuilder_ == null) { + if (executionTimeCase_ == 10 && + executionTime_ != org.tensorflow.proto.framework.NormalDistribution.getDefaultInstance()) { + executionTime_ = org.tensorflow.proto.framework.NormalDistribution.newBuilder((org.tensorflow.proto.framework.NormalDistribution) executionTime_) + .mergeFrom(value).buildPartial(); + } else { + executionTime_ = value; + } + onChanged(); + } else { + if (executionTimeCase_ == 10) { + executionTimeNormalBuilder_.mergeFrom(value); + } + executionTimeNormalBuilder_.setMessage(value); + } + executionTimeCase_ = 10; + return this; + } + /** + * .tensorflow.NormalDistribution execution_time_normal = 10; + */ + public Builder clearExecutionTimeNormal() { + if (executionTimeNormalBuilder_ == null) { + if (executionTimeCase_ == 10) { + executionTimeCase_ = 0; + executionTime_ = null; + onChanged(); + } + } else { + if (executionTimeCase_ == 10) { + executionTimeCase_ = 0; + executionTime_ = null; + } + executionTimeNormalBuilder_.clear(); + } + return this; + } + /** + * .tensorflow.NormalDistribution execution_time_normal = 10; + */ + public org.tensorflow.proto.framework.NormalDistribution.Builder getExecutionTimeNormalBuilder() { + return getExecutionTimeNormalFieldBuilder().getBuilder(); + } + /** + * .tensorflow.NormalDistribution execution_time_normal = 10; + */ + public org.tensorflow.proto.framework.NormalDistributionOrBuilder getExecutionTimeNormalOrBuilder() { + if ((executionTimeCase_ == 10) && (executionTimeNormalBuilder_ != null)) { + return executionTimeNormalBuilder_.getMessageOrBuilder(); + } else { + if (executionTimeCase_ == 10) { + return (org.tensorflow.proto.framework.NormalDistribution) executionTime_; + } + return org.tensorflow.proto.framework.NormalDistribution.getDefaultInstance(); + } + } + /** + * .tensorflow.NormalDistribution execution_time_normal = 10; + */ + private com.google.protobuf.SingleFieldBuilderV3< + org.tensorflow.proto.framework.NormalDistribution, org.tensorflow.proto.framework.NormalDistribution.Builder, org.tensorflow.proto.framework.NormalDistributionOrBuilder> + getExecutionTimeNormalFieldBuilder() { + if (executionTimeNormalBuilder_ == null) { + if (!(executionTimeCase_ == 10)) { + executionTime_ = org.tensorflow.proto.framework.NormalDistribution.getDefaultInstance(); + } + executionTimeNormalBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< + org.tensorflow.proto.framework.NormalDistribution, org.tensorflow.proto.framework.NormalDistribution.Builder, org.tensorflow.proto.framework.NormalDistributionOrBuilder>( + (org.tensorflow.proto.framework.NormalDistribution) executionTime_, + getParentForChildren(), + isClean()); + executionTime_ = null; + } + executionTimeCase_ = 10; + onChanged();; + return executionTimeNormalBuilder_; + } + + private com.google.protobuf.SingleFieldBuilderV3< + org.tensorflow.proto.framework.LogNormalDistribution, org.tensorflow.proto.framework.LogNormalDistribution.Builder, org.tensorflow.proto.framework.LogNormalDistributionOrBuilder> executionTimeLogNormalBuilder_; + /** + * .tensorflow.LogNormalDistribution execution_time_log_normal = 11; + */ + public boolean hasExecutionTimeLogNormal() { + return executionTimeCase_ == 11; + } + /** + * .tensorflow.LogNormalDistribution execution_time_log_normal = 11; + */ + public org.tensorflow.proto.framework.LogNormalDistribution getExecutionTimeLogNormal() { + if (executionTimeLogNormalBuilder_ == null) { + if (executionTimeCase_ == 11) { + return (org.tensorflow.proto.framework.LogNormalDistribution) executionTime_; + } + return org.tensorflow.proto.framework.LogNormalDistribution.getDefaultInstance(); + } else { + if (executionTimeCase_ == 11) { + return executionTimeLogNormalBuilder_.getMessage(); + } + return org.tensorflow.proto.framework.LogNormalDistribution.getDefaultInstance(); + } + } + /** + * .tensorflow.LogNormalDistribution execution_time_log_normal = 11; + */ + public Builder setExecutionTimeLogNormal(org.tensorflow.proto.framework.LogNormalDistribution value) { + if (executionTimeLogNormalBuilder_ == null) { + if (value == null) { + throw new NullPointerException(); + } + executionTime_ = value; + onChanged(); + } else { + executionTimeLogNormalBuilder_.setMessage(value); + } + executionTimeCase_ = 11; + return this; + } + /** + * .tensorflow.LogNormalDistribution execution_time_log_normal = 11; + */ + public Builder setExecutionTimeLogNormal( + org.tensorflow.proto.framework.LogNormalDistribution.Builder builderForValue) { + if (executionTimeLogNormalBuilder_ == null) { + executionTime_ = builderForValue.build(); + onChanged(); + } else { + executionTimeLogNormalBuilder_.setMessage(builderForValue.build()); + } + executionTimeCase_ = 11; + return this; + } + /** + * .tensorflow.LogNormalDistribution execution_time_log_normal = 11; + */ + public Builder mergeExecutionTimeLogNormal(org.tensorflow.proto.framework.LogNormalDistribution value) { + if (executionTimeLogNormalBuilder_ == null) { + if (executionTimeCase_ == 11 && + executionTime_ != org.tensorflow.proto.framework.LogNormalDistribution.getDefaultInstance()) { + executionTime_ = org.tensorflow.proto.framework.LogNormalDistribution.newBuilder((org.tensorflow.proto.framework.LogNormalDistribution) executionTime_) + .mergeFrom(value).buildPartial(); + } else { + executionTime_ = value; + } + onChanged(); + } else { + if (executionTimeCase_ == 11) { + executionTimeLogNormalBuilder_.mergeFrom(value); + } + executionTimeLogNormalBuilder_.setMessage(value); + } + executionTimeCase_ = 11; + return this; + } + /** + * .tensorflow.LogNormalDistribution execution_time_log_normal = 11; + */ + public Builder clearExecutionTimeLogNormal() { + if (executionTimeLogNormalBuilder_ == null) { + if (executionTimeCase_ == 11) { + executionTimeCase_ = 0; + executionTime_ = null; + onChanged(); + } + } else { + if (executionTimeCase_ == 11) { + executionTimeCase_ = 0; + executionTime_ = null; + } + executionTimeLogNormalBuilder_.clear(); + } + return this; + } + /** + * .tensorflow.LogNormalDistribution execution_time_log_normal = 11; + */ + public org.tensorflow.proto.framework.LogNormalDistribution.Builder getExecutionTimeLogNormalBuilder() { + return getExecutionTimeLogNormalFieldBuilder().getBuilder(); + } + /** + * .tensorflow.LogNormalDistribution execution_time_log_normal = 11; + */ + public org.tensorflow.proto.framework.LogNormalDistributionOrBuilder getExecutionTimeLogNormalOrBuilder() { + if ((executionTimeCase_ == 11) && (executionTimeLogNormalBuilder_ != null)) { + return executionTimeLogNormalBuilder_.getMessageOrBuilder(); + } else { + if (executionTimeCase_ == 11) { + return (org.tensorflow.proto.framework.LogNormalDistribution) executionTime_; + } + return org.tensorflow.proto.framework.LogNormalDistribution.getDefaultInstance(); + } + } + /** + * .tensorflow.LogNormalDistribution execution_time_log_normal = 11; + */ + private com.google.protobuf.SingleFieldBuilderV3< + org.tensorflow.proto.framework.LogNormalDistribution, org.tensorflow.proto.framework.LogNormalDistribution.Builder, org.tensorflow.proto.framework.LogNormalDistributionOrBuilder> + getExecutionTimeLogNormalFieldBuilder() { + if (executionTimeLogNormalBuilder_ == null) { + if (!(executionTimeCase_ == 11)) { + executionTime_ = org.tensorflow.proto.framework.LogNormalDistribution.getDefaultInstance(); + } + executionTimeLogNormalBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< + org.tensorflow.proto.framework.LogNormalDistribution, org.tensorflow.proto.framework.LogNormalDistribution.Builder, org.tensorflow.proto.framework.LogNormalDistributionOrBuilder>( + (org.tensorflow.proto.framework.LogNormalDistribution) executionTime_, + getParentForChildren(), + isClean()); + executionTime_ = null; + } + executionTimeCase_ = 11; + onChanged();; + return executionTimeLogNormalBuilder_; + } + + private org.tensorflow.proto.framework.OpPerformance.OpMemory opMemory_; + private com.google.protobuf.SingleFieldBuilderV3< + org.tensorflow.proto.framework.OpPerformance.OpMemory, org.tensorflow.proto.framework.OpPerformance.OpMemory.Builder, org.tensorflow.proto.framework.OpPerformance.OpMemoryOrBuilder> opMemoryBuilder_; + /** + * .tensorflow.OpPerformance.OpMemory op_memory = 9; + */ + public boolean hasOpMemory() { + return opMemoryBuilder_ != null || opMemory_ != null; + } + /** + * .tensorflow.OpPerformance.OpMemory op_memory = 9; + */ + public org.tensorflow.proto.framework.OpPerformance.OpMemory getOpMemory() { + if (opMemoryBuilder_ == null) { + return opMemory_ == null ? org.tensorflow.proto.framework.OpPerformance.OpMemory.getDefaultInstance() : opMemory_; + } else { + return opMemoryBuilder_.getMessage(); + } + } + /** + * .tensorflow.OpPerformance.OpMemory op_memory = 9; + */ + public Builder setOpMemory(org.tensorflow.proto.framework.OpPerformance.OpMemory value) { + if (opMemoryBuilder_ == null) { + if (value == null) { + throw new NullPointerException(); + } + opMemory_ = value; + onChanged(); + } else { + opMemoryBuilder_.setMessage(value); + } + + return this; + } + /** + * .tensorflow.OpPerformance.OpMemory op_memory = 9; + */ + public Builder setOpMemory( + org.tensorflow.proto.framework.OpPerformance.OpMemory.Builder builderForValue) { + if (opMemoryBuilder_ == null) { + opMemory_ = builderForValue.build(); + onChanged(); + } else { + opMemoryBuilder_.setMessage(builderForValue.build()); + } + + return this; + } + /** + * .tensorflow.OpPerformance.OpMemory op_memory = 9; + */ + public Builder mergeOpMemory(org.tensorflow.proto.framework.OpPerformance.OpMemory value) { + if (opMemoryBuilder_ == null) { + if (opMemory_ != null) { + opMemory_ = + org.tensorflow.proto.framework.OpPerformance.OpMemory.newBuilder(opMemory_).mergeFrom(value).buildPartial(); + } else { + opMemory_ = value; + } + onChanged(); + } else { + opMemoryBuilder_.mergeFrom(value); + } + + return this; + } + /** + * .tensorflow.OpPerformance.OpMemory op_memory = 9; + */ + public Builder clearOpMemory() { + if (opMemoryBuilder_ == null) { + opMemory_ = null; + onChanged(); + } else { + opMemory_ = null; + opMemoryBuilder_ = null; + } + + return this; + } + /** + * .tensorflow.OpPerformance.OpMemory op_memory = 9; + */ + public org.tensorflow.proto.framework.OpPerformance.OpMemory.Builder getOpMemoryBuilder() { + + onChanged(); + return getOpMemoryFieldBuilder().getBuilder(); + } + /** + * .tensorflow.OpPerformance.OpMemory op_memory = 9; + */ + public org.tensorflow.proto.framework.OpPerformance.OpMemoryOrBuilder getOpMemoryOrBuilder() { + if (opMemoryBuilder_ != null) { + return opMemoryBuilder_.getMessageOrBuilder(); + } else { + return opMemory_ == null ? + org.tensorflow.proto.framework.OpPerformance.OpMemory.getDefaultInstance() : opMemory_; + } + } + /** + * .tensorflow.OpPerformance.OpMemory op_memory = 9; + */ + private com.google.protobuf.SingleFieldBuilderV3< + org.tensorflow.proto.framework.OpPerformance.OpMemory, org.tensorflow.proto.framework.OpPerformance.OpMemory.Builder, org.tensorflow.proto.framework.OpPerformance.OpMemoryOrBuilder> + getOpMemoryFieldBuilder() { + if (opMemoryBuilder_ == null) { + opMemoryBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< + org.tensorflow.proto.framework.OpPerformance.OpMemory, org.tensorflow.proto.framework.OpPerformance.OpMemory.Builder, org.tensorflow.proto.framework.OpPerformance.OpMemoryOrBuilder>( + getOpMemory(), + getParentForChildren(), + isClean()); + opMemory_ = null; + } + return opMemoryBuilder_; + } + @java.lang.Override + public final Builder setUnknownFields( + final com.google.protobuf.UnknownFieldSet unknownFields) { + return super.setUnknownFields(unknownFields); + } + + @java.lang.Override + public final Builder mergeUnknownFields( + final com.google.protobuf.UnknownFieldSet unknownFields) { + return super.mergeUnknownFields(unknownFields); + } + + + // @@protoc_insertion_point(builder_scope:tensorflow.OpPerformance) + } + + // @@protoc_insertion_point(class_scope:tensorflow.OpPerformance) + private static final org.tensorflow.proto.framework.OpPerformance DEFAULT_INSTANCE; + static { + DEFAULT_INSTANCE = new org.tensorflow.proto.framework.OpPerformance(); + } + + public static org.tensorflow.proto.framework.OpPerformance getDefaultInstance() { + return DEFAULT_INSTANCE; + } + + private static final com.google.protobuf.Parser + PARSER = new com.google.protobuf.AbstractParser() { + @java.lang.Override + public OpPerformance parsePartialFrom( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return new OpPerformance(input, extensionRegistry); + } + }; + + public static com.google.protobuf.Parser parser() { + return PARSER; + } + + @java.lang.Override + public com.google.protobuf.Parser getParserForType() { + return PARSER; + } + + @java.lang.Override + public org.tensorflow.proto.framework.OpPerformance getDefaultInstanceForType() { + return DEFAULT_INSTANCE; + } + +} + diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/OpPerformanceDataProtos.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/OpPerformanceDataProtos.java new file mode 100644 index 00000000000..4c3fcec5afa --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/OpPerformanceDataProtos.java @@ -0,0 +1,186 @@ +// Generated by the protocol buffer compiler. DO NOT EDIT! +// source: tensorflow/core/grappler/costs/op_performance_data.proto + +package org.tensorflow.proto.framework; + +public final class OpPerformanceDataProtos { + private OpPerformanceDataProtos() {} + public static void registerAllExtensions( + com.google.protobuf.ExtensionRegistryLite registry) { + } + + public static void registerAllExtensions( + com.google.protobuf.ExtensionRegistry registry) { + registerAllExtensions( + (com.google.protobuf.ExtensionRegistryLite) registry); + } + static final com.google.protobuf.Descriptors.Descriptor + internal_static_tensorflow_SessionInfo_descriptor; + static final + com.google.protobuf.GeneratedMessageV3.FieldAccessorTable + internal_static_tensorflow_SessionInfo_fieldAccessorTable; + static final com.google.protobuf.Descriptors.Descriptor + internal_static_tensorflow_OpInfo_descriptor; + static final + com.google.protobuf.GeneratedMessageV3.FieldAccessorTable + internal_static_tensorflow_OpInfo_fieldAccessorTable; + static final com.google.protobuf.Descriptors.Descriptor + internal_static_tensorflow_OpInfo_AttrEntry_descriptor; + static final + com.google.protobuf.GeneratedMessageV3.FieldAccessorTable + internal_static_tensorflow_OpInfo_AttrEntry_fieldAccessorTable; + static final com.google.protobuf.Descriptors.Descriptor + internal_static_tensorflow_OpInfo_TensorProperties_descriptor; + static final + com.google.protobuf.GeneratedMessageV3.FieldAccessorTable + internal_static_tensorflow_OpInfo_TensorProperties_fieldAccessorTable; + static final com.google.protobuf.Descriptors.Descriptor + internal_static_tensorflow_NormalDistribution_descriptor; + static final + com.google.protobuf.GeneratedMessageV3.FieldAccessorTable + internal_static_tensorflow_NormalDistribution_fieldAccessorTable; + static final com.google.protobuf.Descriptors.Descriptor + internal_static_tensorflow_LogNormalDistribution_descriptor; + static final + com.google.protobuf.GeneratedMessageV3.FieldAccessorTable + internal_static_tensorflow_LogNormalDistribution_fieldAccessorTable; + static final com.google.protobuf.Descriptors.Descriptor + internal_static_tensorflow_OpPerformance_descriptor; + static final + com.google.protobuf.GeneratedMessageV3.FieldAccessorTable + internal_static_tensorflow_OpPerformance_fieldAccessorTable; + static final com.google.protobuf.Descriptors.Descriptor + internal_static_tensorflow_OpPerformance_OpMemory_descriptor; + static final + com.google.protobuf.GeneratedMessageV3.FieldAccessorTable + internal_static_tensorflow_OpPerformance_OpMemory_fieldAccessorTable; + static final com.google.protobuf.Descriptors.Descriptor + internal_static_tensorflow_OpPerformanceList_descriptor; + static final + com.google.protobuf.GeneratedMessageV3.FieldAccessorTable + internal_static_tensorflow_OpPerformanceList_fieldAccessorTable; + + public static com.google.protobuf.Descriptors.FileDescriptor + getDescriptor() { + return descriptor; + } + private static com.google.protobuf.Descriptors.FileDescriptor + descriptor; + static { + java.lang.String[] descriptorData = { + "\n8tensorflow/core/grappler/costs/op_perf" + + "ormance_data.proto\022\ntensorflow\032&tensorfl" + + "ow/core/framework/tensor.proto\032,tensorfl" + + "ow/core/framework/tensor_shape.proto\032%te" + + "nsorflow/core/framework/types.proto\032*ten" + + "sorflow/core/framework/attr_value.proto\032" + + "0tensorflow/core/protobuf/device_propert" + + "ies.proto\"+\n\013SessionInfo\022\034\n\024intra_op_par" + + "allelism\030\001 \001(\003\"\333\003\n\006OpInfo\022\n\n\002op\030\001 \001(\t\022*\n" + + "\004attr\030\002 \003(\0132\034.tensorflow.OpInfo.AttrEntr" + + "y\0223\n\006inputs\030\003 \003(\0132#.tensorflow.OpInfo.Te" + + "nsorProperties\0224\n\007outputs\030\005 \003(\0132#.tensor" + + "flow.OpInfo.TensorProperties\022,\n\006device\030\004" + + " \001(\0132\034.tensorflow.DeviceProperties\022-\n\014se" + + "ssion_info\030\006 \001(\0132\027.tensorflow.SessionInf" + + "o\032B\n\tAttrEntry\022\013\n\003key\030\001 \001(\t\022$\n\005value\030\002 \001" + + "(\0132\025.tensorflow.AttrValue:\0028\001\032\214\001\n\020Tensor" + + "Properties\022#\n\005dtype\030\001 \001(\0162\024.tensorflow.D" + + "ataType\022+\n\005shape\030\002 \001(\0132\034.tensorflow.Tens" + + "orShapeProto\022&\n\005value\030\003 \001(\0132\027.tensorflow" + + ".TensorProto\"/\n\022NormalDistribution\022\n\n\002mu" + + "\030\001 \001(\001\022\r\n\005sigma\030\002 \001(\001\"2\n\025LogNormalDistri" + + "bution\022\n\n\002mu\030\001 \001(\001\022\r\n\005sigma\030\002 \001(\001\"\363\004\n\rOp" + + "Performance\022\036\n\002op\030\001 \001(\0132\022.tensorflow.OpI" + + "nfo\0221\n\014session_info\030\014 \001(\0132\027.tensorflow.S" + + "essionInfoB\002\030\001\022\014\n\004node\030\005 \001(\t\022\035\n\025temporar" + + "y_memory_size\030\002 \001(\003\022\024\n\014compute_cost\030\003 \001(" + + "\003\022\024\n\014compute_time\030\006 \001(\003\022\023\n\013memory_time\030\007" + + " \001(\003\022\032\n\022compute_efficiency\030\004 \001(\001\022\031\n\021memo" + + "ry_efficiency\030\010 \001(\001\022?\n\025execution_time_no" + + "rmal\030\n \001(\0132\036.tensorflow.NormalDistributi" + + "onH\000\022F\n\031execution_time_log_normal\030\013 \001(\0132" + + "!.tensorflow.LogNormalDistributionH\000\0225\n\t" + + "op_memory\030\t \001(\0132\".tensorflow.OpPerforman" + + "ce.OpMemory\032\227\001\n\010OpMemory\022\025\n\routput_memor" + + "y\030\001 \003(\003\022\023\n\013temp_memory\030\002 \001(\003\022\031\n\021persiste" + + "nt_memory\030\004 \001(\003\022\036\n\022device_temp_memory\030\003 " + + "\001(\003B\002\030\001\022$\n\030device_persistent_memory\030\005 \001(" + + "\003B\002\030\001B\020\n\016execution_time\"F\n\021OpPerformance" + + "List\0221\n\016op_performance\030\001 \003(\0132\031.tensorflo" + + "w.OpPerformanceB>\n\036org.tensorflow.proto." + + "frameworkB\027OpPerformanceDataProtosP\001\370\001\001b" + + "\006proto3" + }; + descriptor = com.google.protobuf.Descriptors.FileDescriptor + .internalBuildGeneratedFileFrom(descriptorData, + new com.google.protobuf.Descriptors.FileDescriptor[] { + org.tensorflow.proto.framework.TensorProtos.getDescriptor(), + org.tensorflow.proto.framework.TensorShapeProtos.getDescriptor(), + org.tensorflow.proto.framework.TypesProtos.getDescriptor(), + org.tensorflow.proto.framework.AttrValueProtos.getDescriptor(), + org.tensorflow.proto.framework.DevicePropertiesProtos.getDescriptor(), + }); + internal_static_tensorflow_SessionInfo_descriptor = + getDescriptor().getMessageTypes().get(0); + internal_static_tensorflow_SessionInfo_fieldAccessorTable = new + com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( + internal_static_tensorflow_SessionInfo_descriptor, + new java.lang.String[] { "IntraOpParallelism", }); + internal_static_tensorflow_OpInfo_descriptor = + getDescriptor().getMessageTypes().get(1); + internal_static_tensorflow_OpInfo_fieldAccessorTable = new + com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( + internal_static_tensorflow_OpInfo_descriptor, + new java.lang.String[] { "Op", "Attr", "Inputs", "Outputs", "Device", "SessionInfo", }); + internal_static_tensorflow_OpInfo_AttrEntry_descriptor = + internal_static_tensorflow_OpInfo_descriptor.getNestedTypes().get(0); + internal_static_tensorflow_OpInfo_AttrEntry_fieldAccessorTable = new + com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( + internal_static_tensorflow_OpInfo_AttrEntry_descriptor, + new java.lang.String[] { "Key", "Value", }); + internal_static_tensorflow_OpInfo_TensorProperties_descriptor = + internal_static_tensorflow_OpInfo_descriptor.getNestedTypes().get(1); + internal_static_tensorflow_OpInfo_TensorProperties_fieldAccessorTable = new + com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( + internal_static_tensorflow_OpInfo_TensorProperties_descriptor, + new java.lang.String[] { "Dtype", "Shape", "Value", }); + internal_static_tensorflow_NormalDistribution_descriptor = + getDescriptor().getMessageTypes().get(2); + internal_static_tensorflow_NormalDistribution_fieldAccessorTable = new + com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( + internal_static_tensorflow_NormalDistribution_descriptor, + new java.lang.String[] { "Mu", "Sigma", }); + internal_static_tensorflow_LogNormalDistribution_descriptor = + getDescriptor().getMessageTypes().get(3); + internal_static_tensorflow_LogNormalDistribution_fieldAccessorTable = new + com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( + internal_static_tensorflow_LogNormalDistribution_descriptor, + new java.lang.String[] { "Mu", "Sigma", }); + internal_static_tensorflow_OpPerformance_descriptor = + getDescriptor().getMessageTypes().get(4); + internal_static_tensorflow_OpPerformance_fieldAccessorTable = new + com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( + internal_static_tensorflow_OpPerformance_descriptor, + new java.lang.String[] { "Op", "SessionInfo", "Node", "TemporaryMemorySize", "ComputeCost", "ComputeTime", "MemoryTime", "ComputeEfficiency", "MemoryEfficiency", "ExecutionTimeNormal", "ExecutionTimeLogNormal", "OpMemory", "ExecutionTime", }); + internal_static_tensorflow_OpPerformance_OpMemory_descriptor = + internal_static_tensorflow_OpPerformance_descriptor.getNestedTypes().get(0); + internal_static_tensorflow_OpPerformance_OpMemory_fieldAccessorTable = new + com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( + internal_static_tensorflow_OpPerformance_OpMemory_descriptor, + new java.lang.String[] { "OutputMemory", "TempMemory", "PersistentMemory", "DeviceTempMemory", "DevicePersistentMemory", }); + internal_static_tensorflow_OpPerformanceList_descriptor = + getDescriptor().getMessageTypes().get(5); + internal_static_tensorflow_OpPerformanceList_fieldAccessorTable = new + com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( + internal_static_tensorflow_OpPerformanceList_descriptor, + new java.lang.String[] { "OpPerformance", }); + org.tensorflow.proto.framework.TensorProtos.getDescriptor(); + org.tensorflow.proto.framework.TensorShapeProtos.getDescriptor(); + org.tensorflow.proto.framework.TypesProtos.getDescriptor(); + org.tensorflow.proto.framework.AttrValueProtos.getDescriptor(); + org.tensorflow.proto.framework.DevicePropertiesProtos.getDescriptor(); + } + + // @@protoc_insertion_point(outer_class_scope) +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/OpPerformanceList.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/OpPerformanceList.java new file mode 100644 index 00000000000..0b09d450f2d --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/OpPerformanceList.java @@ -0,0 +1,773 @@ +// Generated by the protocol buffer compiler. DO NOT EDIT! +// source: tensorflow/core/grappler/costs/op_performance_data.proto + +package org.tensorflow.proto.framework; + +/** + *
        + * A collection of OpPerformance data points.
        + * 
        + * + * Protobuf type {@code tensorflow.OpPerformanceList} + */ +public final class OpPerformanceList extends + com.google.protobuf.GeneratedMessageV3 implements + // @@protoc_insertion_point(message_implements:tensorflow.OpPerformanceList) + OpPerformanceListOrBuilder { +private static final long serialVersionUID = 0L; + // Use OpPerformanceList.newBuilder() to construct. + private OpPerformanceList(com.google.protobuf.GeneratedMessageV3.Builder builder) { + super(builder); + } + private OpPerformanceList() { + opPerformance_ = java.util.Collections.emptyList(); + } + + @java.lang.Override + @SuppressWarnings({"unused"}) + protected java.lang.Object newInstance( + UnusedPrivateParameter unused) { + return new OpPerformanceList(); + } + + @java.lang.Override + public final com.google.protobuf.UnknownFieldSet + getUnknownFields() { + return this.unknownFields; + } + private OpPerformanceList( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + this(); + if (extensionRegistry == null) { + throw new java.lang.NullPointerException(); + } + int mutable_bitField0_ = 0; + com.google.protobuf.UnknownFieldSet.Builder unknownFields = + com.google.protobuf.UnknownFieldSet.newBuilder(); + try { + boolean done = false; + while (!done) { + int tag = input.readTag(); + switch (tag) { + case 0: + done = true; + break; + case 10: { + if (!((mutable_bitField0_ & 0x00000001) != 0)) { + opPerformance_ = new java.util.ArrayList(); + mutable_bitField0_ |= 0x00000001; + } + opPerformance_.add( + input.readMessage(org.tensorflow.proto.framework.OpPerformance.parser(), extensionRegistry)); + break; + } + default: { + if (!parseUnknownField( + input, unknownFields, extensionRegistry, tag)) { + done = true; + } + break; + } + } + } + } catch (com.google.protobuf.InvalidProtocolBufferException e) { + throw e.setUnfinishedMessage(this); + } catch (java.io.IOException e) { + throw new com.google.protobuf.InvalidProtocolBufferException( + e).setUnfinishedMessage(this); + } finally { + if (((mutable_bitField0_ & 0x00000001) != 0)) { + opPerformance_ = java.util.Collections.unmodifiableList(opPerformance_); + } + this.unknownFields = unknownFields.build(); + makeExtensionsImmutable(); + } + } + public static final com.google.protobuf.Descriptors.Descriptor + getDescriptor() { + return org.tensorflow.proto.framework.OpPerformanceDataProtos.internal_static_tensorflow_OpPerformanceList_descriptor; + } + + @java.lang.Override + protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable + internalGetFieldAccessorTable() { + return org.tensorflow.proto.framework.OpPerformanceDataProtos.internal_static_tensorflow_OpPerformanceList_fieldAccessorTable + .ensureFieldAccessorsInitialized( + org.tensorflow.proto.framework.OpPerformanceList.class, org.tensorflow.proto.framework.OpPerformanceList.Builder.class); + } + + public static final int OP_PERFORMANCE_FIELD_NUMBER = 1; + private java.util.List opPerformance_; + /** + * repeated .tensorflow.OpPerformance op_performance = 1; + */ + public java.util.List getOpPerformanceList() { + return opPerformance_; + } + /** + * repeated .tensorflow.OpPerformance op_performance = 1; + */ + public java.util.List + getOpPerformanceOrBuilderList() { + return opPerformance_; + } + /** + * repeated .tensorflow.OpPerformance op_performance = 1; + */ + public int getOpPerformanceCount() { + return opPerformance_.size(); + } + /** + * repeated .tensorflow.OpPerformance op_performance = 1; + */ + public org.tensorflow.proto.framework.OpPerformance getOpPerformance(int index) { + return opPerformance_.get(index); + } + /** + * repeated .tensorflow.OpPerformance op_performance = 1; + */ + public org.tensorflow.proto.framework.OpPerformanceOrBuilder getOpPerformanceOrBuilder( + int index) { + return opPerformance_.get(index); + } + + private byte memoizedIsInitialized = -1; + @java.lang.Override + public final boolean isInitialized() { + byte isInitialized = memoizedIsInitialized; + if (isInitialized == 1) return true; + if (isInitialized == 0) return false; + + memoizedIsInitialized = 1; + return true; + } + + @java.lang.Override + public void writeTo(com.google.protobuf.CodedOutputStream output) + throws java.io.IOException { + for (int i = 0; i < opPerformance_.size(); i++) { + output.writeMessage(1, opPerformance_.get(i)); + } + unknownFields.writeTo(output); + } + + @java.lang.Override + public int getSerializedSize() { + int size = memoizedSize; + if (size != -1) return size; + + size = 0; + for (int i = 0; i < opPerformance_.size(); i++) { + size += com.google.protobuf.CodedOutputStream + .computeMessageSize(1, opPerformance_.get(i)); + } + size += unknownFields.getSerializedSize(); + memoizedSize = size; + return size; + } + + @java.lang.Override + public boolean equals(final java.lang.Object obj) { + if (obj == this) { + return true; + } + if (!(obj instanceof org.tensorflow.proto.framework.OpPerformanceList)) { + return super.equals(obj); + } + org.tensorflow.proto.framework.OpPerformanceList other = (org.tensorflow.proto.framework.OpPerformanceList) obj; + + if (!getOpPerformanceList() + .equals(other.getOpPerformanceList())) return false; + if (!unknownFields.equals(other.unknownFields)) return false; + return true; + } + + @java.lang.Override + public int hashCode() { + if (memoizedHashCode != 0) { + return memoizedHashCode; + } + int hash = 41; + hash = (19 * hash) + getDescriptor().hashCode(); + if (getOpPerformanceCount() > 0) { + hash = (37 * hash) + OP_PERFORMANCE_FIELD_NUMBER; + hash = (53 * hash) + getOpPerformanceList().hashCode(); + } + hash = (29 * hash) + unknownFields.hashCode(); + memoizedHashCode = hash; + return hash; + } + + public static org.tensorflow.proto.framework.OpPerformanceList parseFrom( + java.nio.ByteBuffer data) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data); + } + public static org.tensorflow.proto.framework.OpPerformanceList parseFrom( + java.nio.ByteBuffer data, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data, extensionRegistry); + } + public static org.tensorflow.proto.framework.OpPerformanceList parseFrom( + com.google.protobuf.ByteString data) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data); + } + public static org.tensorflow.proto.framework.OpPerformanceList parseFrom( + com.google.protobuf.ByteString data, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data, extensionRegistry); + } + public static org.tensorflow.proto.framework.OpPerformanceList parseFrom(byte[] data) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data); + } + public static org.tensorflow.proto.framework.OpPerformanceList parseFrom( + byte[] data, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data, extensionRegistry); + } + public static org.tensorflow.proto.framework.OpPerformanceList parseFrom(java.io.InputStream input) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input); + } + public static org.tensorflow.proto.framework.OpPerformanceList parseFrom( + java.io.InputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input, extensionRegistry); + } + public static org.tensorflow.proto.framework.OpPerformanceList parseDelimitedFrom(java.io.InputStream input) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseDelimitedWithIOException(PARSER, input); + } + public static org.tensorflow.proto.framework.OpPerformanceList parseDelimitedFrom( + java.io.InputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseDelimitedWithIOException(PARSER, input, extensionRegistry); + } + public static org.tensorflow.proto.framework.OpPerformanceList parseFrom( + com.google.protobuf.CodedInputStream input) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input); + } + public static org.tensorflow.proto.framework.OpPerformanceList parseFrom( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input, extensionRegistry); + } + + @java.lang.Override + public Builder newBuilderForType() { return newBuilder(); } + public static Builder newBuilder() { + return DEFAULT_INSTANCE.toBuilder(); + } + public static Builder newBuilder(org.tensorflow.proto.framework.OpPerformanceList prototype) { + return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); + } + @java.lang.Override + public Builder toBuilder() { + return this == DEFAULT_INSTANCE + ? new Builder() : new Builder().mergeFrom(this); + } + + @java.lang.Override + protected Builder newBuilderForType( + com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { + Builder builder = new Builder(parent); + return builder; + } + /** + *
        +   * A collection of OpPerformance data points.
        +   * 
        + * + * Protobuf type {@code tensorflow.OpPerformanceList} + */ + public static final class Builder extends + com.google.protobuf.GeneratedMessageV3.Builder implements + // @@protoc_insertion_point(builder_implements:tensorflow.OpPerformanceList) + org.tensorflow.proto.framework.OpPerformanceListOrBuilder { + public static final com.google.protobuf.Descriptors.Descriptor + getDescriptor() { + return org.tensorflow.proto.framework.OpPerformanceDataProtos.internal_static_tensorflow_OpPerformanceList_descriptor; + } + + @java.lang.Override + protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable + internalGetFieldAccessorTable() { + return org.tensorflow.proto.framework.OpPerformanceDataProtos.internal_static_tensorflow_OpPerformanceList_fieldAccessorTable + .ensureFieldAccessorsInitialized( + org.tensorflow.proto.framework.OpPerformanceList.class, org.tensorflow.proto.framework.OpPerformanceList.Builder.class); + } + + // Construct using org.tensorflow.proto.framework.OpPerformanceList.newBuilder() + private Builder() { + maybeForceBuilderInitialization(); + } + + private Builder( + com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { + super(parent); + maybeForceBuilderInitialization(); + } + private void maybeForceBuilderInitialization() { + if (com.google.protobuf.GeneratedMessageV3 + .alwaysUseFieldBuilders) { + getOpPerformanceFieldBuilder(); + } + } + @java.lang.Override + public Builder clear() { + super.clear(); + if (opPerformanceBuilder_ == null) { + opPerformance_ = java.util.Collections.emptyList(); + bitField0_ = (bitField0_ & ~0x00000001); + } else { + opPerformanceBuilder_.clear(); + } + return this; + } + + @java.lang.Override + public com.google.protobuf.Descriptors.Descriptor + getDescriptorForType() { + return org.tensorflow.proto.framework.OpPerformanceDataProtos.internal_static_tensorflow_OpPerformanceList_descriptor; + } + + @java.lang.Override + public org.tensorflow.proto.framework.OpPerformanceList getDefaultInstanceForType() { + return org.tensorflow.proto.framework.OpPerformanceList.getDefaultInstance(); + } + + @java.lang.Override + public org.tensorflow.proto.framework.OpPerformanceList build() { + org.tensorflow.proto.framework.OpPerformanceList result = buildPartial(); + if (!result.isInitialized()) { + throw newUninitializedMessageException(result); + } + return result; + } + + @java.lang.Override + public org.tensorflow.proto.framework.OpPerformanceList buildPartial() { + org.tensorflow.proto.framework.OpPerformanceList result = new org.tensorflow.proto.framework.OpPerformanceList(this); + int from_bitField0_ = bitField0_; + if (opPerformanceBuilder_ == null) { + if (((bitField0_ & 0x00000001) != 0)) { + opPerformance_ = java.util.Collections.unmodifiableList(opPerformance_); + bitField0_ = (bitField0_ & ~0x00000001); + } + result.opPerformance_ = opPerformance_; + } else { + result.opPerformance_ = opPerformanceBuilder_.build(); + } + onBuilt(); + return result; + } + + @java.lang.Override + public Builder clone() { + return super.clone(); + } + @java.lang.Override + public Builder setField( + com.google.protobuf.Descriptors.FieldDescriptor field, + java.lang.Object value) { + return super.setField(field, value); + } + @java.lang.Override + public Builder clearField( + com.google.protobuf.Descriptors.FieldDescriptor field) { + return super.clearField(field); + } + @java.lang.Override + public Builder clearOneof( + com.google.protobuf.Descriptors.OneofDescriptor oneof) { + return super.clearOneof(oneof); + } + @java.lang.Override + public Builder setRepeatedField( + com.google.protobuf.Descriptors.FieldDescriptor field, + int index, java.lang.Object value) { + return super.setRepeatedField(field, index, value); + } + @java.lang.Override + public Builder addRepeatedField( + com.google.protobuf.Descriptors.FieldDescriptor field, + java.lang.Object value) { + return super.addRepeatedField(field, value); + } + @java.lang.Override + public Builder mergeFrom(com.google.protobuf.Message other) { + if (other instanceof org.tensorflow.proto.framework.OpPerformanceList) { + return mergeFrom((org.tensorflow.proto.framework.OpPerformanceList)other); + } else { + super.mergeFrom(other); + return this; + } + } + + public Builder mergeFrom(org.tensorflow.proto.framework.OpPerformanceList other) { + if (other == org.tensorflow.proto.framework.OpPerformanceList.getDefaultInstance()) return this; + if (opPerformanceBuilder_ == null) { + if (!other.opPerformance_.isEmpty()) { + if (opPerformance_.isEmpty()) { + opPerformance_ = other.opPerformance_; + bitField0_ = (bitField0_ & ~0x00000001); + } else { + ensureOpPerformanceIsMutable(); + opPerformance_.addAll(other.opPerformance_); + } + onChanged(); + } + } else { + if (!other.opPerformance_.isEmpty()) { + if (opPerformanceBuilder_.isEmpty()) { + opPerformanceBuilder_.dispose(); + opPerformanceBuilder_ = null; + opPerformance_ = other.opPerformance_; + bitField0_ = (bitField0_ & ~0x00000001); + opPerformanceBuilder_ = + com.google.protobuf.GeneratedMessageV3.alwaysUseFieldBuilders ? + getOpPerformanceFieldBuilder() : null; + } else { + opPerformanceBuilder_.addAllMessages(other.opPerformance_); + } + } + } + this.mergeUnknownFields(other.unknownFields); + onChanged(); + return this; + } + + @java.lang.Override + public final boolean isInitialized() { + return true; + } + + @java.lang.Override + public Builder mergeFrom( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + org.tensorflow.proto.framework.OpPerformanceList parsedMessage = null; + try { + parsedMessage = PARSER.parsePartialFrom(input, extensionRegistry); + } catch (com.google.protobuf.InvalidProtocolBufferException e) { + parsedMessage = (org.tensorflow.proto.framework.OpPerformanceList) e.getUnfinishedMessage(); + throw e.unwrapIOException(); + } finally { + if (parsedMessage != null) { + mergeFrom(parsedMessage); + } + } + return this; + } + private int bitField0_; + + private java.util.List opPerformance_ = + java.util.Collections.emptyList(); + private void ensureOpPerformanceIsMutable() { + if (!((bitField0_ & 0x00000001) != 0)) { + opPerformance_ = new java.util.ArrayList(opPerformance_); + bitField0_ |= 0x00000001; + } + } + + private com.google.protobuf.RepeatedFieldBuilderV3< + org.tensorflow.proto.framework.OpPerformance, org.tensorflow.proto.framework.OpPerformance.Builder, org.tensorflow.proto.framework.OpPerformanceOrBuilder> opPerformanceBuilder_; + + /** + * repeated .tensorflow.OpPerformance op_performance = 1; + */ + public java.util.List getOpPerformanceList() { + if (opPerformanceBuilder_ == null) { + return java.util.Collections.unmodifiableList(opPerformance_); + } else { + return opPerformanceBuilder_.getMessageList(); + } + } + /** + * repeated .tensorflow.OpPerformance op_performance = 1; + */ + public int getOpPerformanceCount() { + if (opPerformanceBuilder_ == null) { + return opPerformance_.size(); + } else { + return opPerformanceBuilder_.getCount(); + } + } + /** + * repeated .tensorflow.OpPerformance op_performance = 1; + */ + public org.tensorflow.proto.framework.OpPerformance getOpPerformance(int index) { + if (opPerformanceBuilder_ == null) { + return opPerformance_.get(index); + } else { + return opPerformanceBuilder_.getMessage(index); + } + } + /** + * repeated .tensorflow.OpPerformance op_performance = 1; + */ + public Builder setOpPerformance( + int index, org.tensorflow.proto.framework.OpPerformance value) { + if (opPerformanceBuilder_ == null) { + if (value == null) { + throw new NullPointerException(); + } + ensureOpPerformanceIsMutable(); + opPerformance_.set(index, value); + onChanged(); + } else { + opPerformanceBuilder_.setMessage(index, value); + } + return this; + } + /** + * repeated .tensorflow.OpPerformance op_performance = 1; + */ + public Builder setOpPerformance( + int index, org.tensorflow.proto.framework.OpPerformance.Builder builderForValue) { + if (opPerformanceBuilder_ == null) { + ensureOpPerformanceIsMutable(); + opPerformance_.set(index, builderForValue.build()); + onChanged(); + } else { + opPerformanceBuilder_.setMessage(index, builderForValue.build()); + } + return this; + } + /** + * repeated .tensorflow.OpPerformance op_performance = 1; + */ + public Builder addOpPerformance(org.tensorflow.proto.framework.OpPerformance value) { + if (opPerformanceBuilder_ == null) { + if (value == null) { + throw new NullPointerException(); + } + ensureOpPerformanceIsMutable(); + opPerformance_.add(value); + onChanged(); + } else { + opPerformanceBuilder_.addMessage(value); + } + return this; + } + /** + * repeated .tensorflow.OpPerformance op_performance = 1; + */ + public Builder addOpPerformance( + int index, org.tensorflow.proto.framework.OpPerformance value) { + if (opPerformanceBuilder_ == null) { + if (value == null) { + throw new NullPointerException(); + } + ensureOpPerformanceIsMutable(); + opPerformance_.add(index, value); + onChanged(); + } else { + opPerformanceBuilder_.addMessage(index, value); + } + return this; + } + /** + * repeated .tensorflow.OpPerformance op_performance = 1; + */ + public Builder addOpPerformance( + org.tensorflow.proto.framework.OpPerformance.Builder builderForValue) { + if (opPerformanceBuilder_ == null) { + ensureOpPerformanceIsMutable(); + opPerformance_.add(builderForValue.build()); + onChanged(); + } else { + opPerformanceBuilder_.addMessage(builderForValue.build()); + } + return this; + } + /** + * repeated .tensorflow.OpPerformance op_performance = 1; + */ + public Builder addOpPerformance( + int index, org.tensorflow.proto.framework.OpPerformance.Builder builderForValue) { + if (opPerformanceBuilder_ == null) { + ensureOpPerformanceIsMutable(); + opPerformance_.add(index, builderForValue.build()); + onChanged(); + } else { + opPerformanceBuilder_.addMessage(index, builderForValue.build()); + } + return this; + } + /** + * repeated .tensorflow.OpPerformance op_performance = 1; + */ + public Builder addAllOpPerformance( + java.lang.Iterable values) { + if (opPerformanceBuilder_ == null) { + ensureOpPerformanceIsMutable(); + com.google.protobuf.AbstractMessageLite.Builder.addAll( + values, opPerformance_); + onChanged(); + } else { + opPerformanceBuilder_.addAllMessages(values); + } + return this; + } + /** + * repeated .tensorflow.OpPerformance op_performance = 1; + */ + public Builder clearOpPerformance() { + if (opPerformanceBuilder_ == null) { + opPerformance_ = java.util.Collections.emptyList(); + bitField0_ = (bitField0_ & ~0x00000001); + onChanged(); + } else { + opPerformanceBuilder_.clear(); + } + return this; + } + /** + * repeated .tensorflow.OpPerformance op_performance = 1; + */ + public Builder removeOpPerformance(int index) { + if (opPerformanceBuilder_ == null) { + ensureOpPerformanceIsMutable(); + opPerformance_.remove(index); + onChanged(); + } else { + opPerformanceBuilder_.remove(index); + } + return this; + } + /** + * repeated .tensorflow.OpPerformance op_performance = 1; + */ + public org.tensorflow.proto.framework.OpPerformance.Builder getOpPerformanceBuilder( + int index) { + return getOpPerformanceFieldBuilder().getBuilder(index); + } + /** + * repeated .tensorflow.OpPerformance op_performance = 1; + */ + public org.tensorflow.proto.framework.OpPerformanceOrBuilder getOpPerformanceOrBuilder( + int index) { + if (opPerformanceBuilder_ == null) { + return opPerformance_.get(index); } else { + return opPerformanceBuilder_.getMessageOrBuilder(index); + } + } + /** + * repeated .tensorflow.OpPerformance op_performance = 1; + */ + public java.util.List + getOpPerformanceOrBuilderList() { + if (opPerformanceBuilder_ != null) { + return opPerformanceBuilder_.getMessageOrBuilderList(); + } else { + return java.util.Collections.unmodifiableList(opPerformance_); + } + } + /** + * repeated .tensorflow.OpPerformance op_performance = 1; + */ + public org.tensorflow.proto.framework.OpPerformance.Builder addOpPerformanceBuilder() { + return getOpPerformanceFieldBuilder().addBuilder( + org.tensorflow.proto.framework.OpPerformance.getDefaultInstance()); + } + /** + * repeated .tensorflow.OpPerformance op_performance = 1; + */ + public org.tensorflow.proto.framework.OpPerformance.Builder addOpPerformanceBuilder( + int index) { + return getOpPerformanceFieldBuilder().addBuilder( + index, org.tensorflow.proto.framework.OpPerformance.getDefaultInstance()); + } + /** + * repeated .tensorflow.OpPerformance op_performance = 1; + */ + public java.util.List + getOpPerformanceBuilderList() { + return getOpPerformanceFieldBuilder().getBuilderList(); + } + private com.google.protobuf.RepeatedFieldBuilderV3< + org.tensorflow.proto.framework.OpPerformance, org.tensorflow.proto.framework.OpPerformance.Builder, org.tensorflow.proto.framework.OpPerformanceOrBuilder> + getOpPerformanceFieldBuilder() { + if (opPerformanceBuilder_ == null) { + opPerformanceBuilder_ = new com.google.protobuf.RepeatedFieldBuilderV3< + org.tensorflow.proto.framework.OpPerformance, org.tensorflow.proto.framework.OpPerformance.Builder, org.tensorflow.proto.framework.OpPerformanceOrBuilder>( + opPerformance_, + ((bitField0_ & 0x00000001) != 0), + getParentForChildren(), + isClean()); + opPerformance_ = null; + } + return opPerformanceBuilder_; + } + @java.lang.Override + public final Builder setUnknownFields( + final com.google.protobuf.UnknownFieldSet unknownFields) { + return super.setUnknownFields(unknownFields); + } + + @java.lang.Override + public final Builder mergeUnknownFields( + final com.google.protobuf.UnknownFieldSet unknownFields) { + return super.mergeUnknownFields(unknownFields); + } + + + // @@protoc_insertion_point(builder_scope:tensorflow.OpPerformanceList) + } + + // @@protoc_insertion_point(class_scope:tensorflow.OpPerformanceList) + private static final org.tensorflow.proto.framework.OpPerformanceList DEFAULT_INSTANCE; + static { + DEFAULT_INSTANCE = new org.tensorflow.proto.framework.OpPerformanceList(); + } + + public static org.tensorflow.proto.framework.OpPerformanceList getDefaultInstance() { + return DEFAULT_INSTANCE; + } + + private static final com.google.protobuf.Parser + PARSER = new com.google.protobuf.AbstractParser() { + @java.lang.Override + public OpPerformanceList parsePartialFrom( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return new OpPerformanceList(input, extensionRegistry); + } + }; + + public static com.google.protobuf.Parser parser() { + return PARSER; + } + + @java.lang.Override + public com.google.protobuf.Parser getParserForType() { + return PARSER; + } + + @java.lang.Override + public org.tensorflow.proto.framework.OpPerformanceList getDefaultInstanceForType() { + return DEFAULT_INSTANCE; + } + +} + diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/OpPerformanceListOrBuilder.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/OpPerformanceListOrBuilder.java new file mode 100644 index 00000000000..9944ba70599 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/OpPerformanceListOrBuilder.java @@ -0,0 +1,33 @@ +// Generated by the protocol buffer compiler. DO NOT EDIT! +// source: tensorflow/core/grappler/costs/op_performance_data.proto + +package org.tensorflow.proto.framework; + +public interface OpPerformanceListOrBuilder extends + // @@protoc_insertion_point(interface_extends:tensorflow.OpPerformanceList) + com.google.protobuf.MessageOrBuilder { + + /** + * repeated .tensorflow.OpPerformance op_performance = 1; + */ + java.util.List + getOpPerformanceList(); + /** + * repeated .tensorflow.OpPerformance op_performance = 1; + */ + org.tensorflow.proto.framework.OpPerformance getOpPerformance(int index); + /** + * repeated .tensorflow.OpPerformance op_performance = 1; + */ + int getOpPerformanceCount(); + /** + * repeated .tensorflow.OpPerformance op_performance = 1; + */ + java.util.List + getOpPerformanceOrBuilderList(); + /** + * repeated .tensorflow.OpPerformance op_performance = 1; + */ + org.tensorflow.proto.framework.OpPerformanceOrBuilder getOpPerformanceOrBuilder( + int index); +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/OpPerformanceOrBuilder.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/OpPerformanceOrBuilder.java new file mode 100644 index 00000000000..513d2706c18 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/OpPerformanceOrBuilder.java @@ -0,0 +1,174 @@ +// Generated by the protocol buffer compiler. DO NOT EDIT! +// source: tensorflow/core/grappler/costs/op_performance_data.proto + +package org.tensorflow.proto.framework; + +public interface OpPerformanceOrBuilder extends + // @@protoc_insertion_point(interface_extends:tensorflow.OpPerformance) + com.google.protobuf.MessageOrBuilder { + + /** + *
        +   * The op
        +   * 
        + * + * .tensorflow.OpInfo op = 1; + */ + boolean hasOp(); + /** + *
        +   * The op
        +   * 
        + * + * .tensorflow.OpInfo op = 1; + */ + org.tensorflow.proto.framework.OpInfo getOp(); + /** + *
        +   * The op
        +   * 
        + * + * .tensorflow.OpInfo op = 1; + */ + org.tensorflow.proto.framework.OpInfoOrBuilder getOpOrBuilder(); + + /** + *
        +   * Information about the session configs.
        +   * 
        + * + * .tensorflow.SessionInfo session_info = 12 [deprecated = true]; + */ + @java.lang.Deprecated boolean hasSessionInfo(); + /** + *
        +   * Information about the session configs.
        +   * 
        + * + * .tensorflow.SessionInfo session_info = 12 [deprecated = true]; + */ + @java.lang.Deprecated org.tensorflow.proto.framework.SessionInfo getSessionInfo(); + /** + *
        +   * Information about the session configs.
        +   * 
        + * + * .tensorflow.SessionInfo session_info = 12 [deprecated = true]; + */ + @java.lang.Deprecated org.tensorflow.proto.framework.SessionInfoOrBuilder getSessionInfoOrBuilder(); + + /** + *
        +   * The node name (optional). Makes it easier to associate the performance data
        +   * with a specific graph node.
        +   * 
        + * + * string node = 5; + */ + java.lang.String getNode(); + /** + *
        +   * The node name (optional). Makes it easier to associate the performance data
        +   * with a specific graph node.
        +   * 
        + * + * string node = 5; + */ + com.google.protobuf.ByteString + getNodeBytes(); + + /** + *
        +   * Temporary memory used by this node (in bytes).
        +   * 
        + * + * int64 temporary_memory_size = 2; + */ + long getTemporaryMemorySize(); + + /** + *
        +   * Time it takes to run the op (in nanoseconds).
        +   * 
        + * + * int64 compute_cost = 3; + */ + long getComputeCost(); + + /** + *
        +   * Analytical compute cost (in nanoseconds).
        +   * 
        + * + * int64 compute_time = 6; + */ + long getComputeTime(); + + /** + *
        +   * Analytical memory access cost (in nanoseconds).
        +   * 
        + * + * int64 memory_time = 7; + */ + long getMemoryTime(); + + /** + *
        +   * Percentage of theoretical compute performance.
        +   * 
        + * + * double compute_efficiency = 4; + */ + double getComputeEfficiency(); + + /** + *
        +   * Percentage of theoretical memory performance.
        +   * 
        + * + * double memory_efficiency = 8; + */ + double getMemoryEfficiency(); + + /** + * .tensorflow.NormalDistribution execution_time_normal = 10; + */ + boolean hasExecutionTimeNormal(); + /** + * .tensorflow.NormalDistribution execution_time_normal = 10; + */ + org.tensorflow.proto.framework.NormalDistribution getExecutionTimeNormal(); + /** + * .tensorflow.NormalDistribution execution_time_normal = 10; + */ + org.tensorflow.proto.framework.NormalDistributionOrBuilder getExecutionTimeNormalOrBuilder(); + + /** + * .tensorflow.LogNormalDistribution execution_time_log_normal = 11; + */ + boolean hasExecutionTimeLogNormal(); + /** + * .tensorflow.LogNormalDistribution execution_time_log_normal = 11; + */ + org.tensorflow.proto.framework.LogNormalDistribution getExecutionTimeLogNormal(); + /** + * .tensorflow.LogNormalDistribution execution_time_log_normal = 11; + */ + org.tensorflow.proto.framework.LogNormalDistributionOrBuilder getExecutionTimeLogNormalOrBuilder(); + + /** + * .tensorflow.OpPerformance.OpMemory op_memory = 9; + */ + boolean hasOpMemory(); + /** + * .tensorflow.OpPerformance.OpMemory op_memory = 9; + */ + org.tensorflow.proto.framework.OpPerformance.OpMemory getOpMemory(); + /** + * .tensorflow.OpPerformance.OpMemory op_memory = 9; + */ + org.tensorflow.proto.framework.OpPerformance.OpMemoryOrBuilder getOpMemoryOrBuilder(); + + public org.tensorflow.proto.framework.OpPerformance.ExecutionTimeCase getExecutionTimeCase(); +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/RemoteFusedGraphExecuteInfo.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/RemoteFusedGraphExecuteInfo.java deleted file mode 100644 index bc2e6840de2..00000000000 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/RemoteFusedGraphExecuteInfo.java +++ /dev/null @@ -1,3007 +0,0 @@ -// Generated by the protocol buffer compiler. DO NOT EDIT! -// source: tensorflow/core/framework/remote_fused_graph_execute_info.proto - -package org.tensorflow.proto.framework; - -/** - *
        - * Protocol buffer representing a handle to a tensorflow resource. Handles are
        - * not valid across executions, but can be serialized back and forth from within
        - * a single run.
        - * 
        - * - * Protobuf type {@code tensorflow.RemoteFusedGraphExecuteInfo} - */ -public final class RemoteFusedGraphExecuteInfo extends - com.google.protobuf.GeneratedMessageV3 implements - // @@protoc_insertion_point(message_implements:tensorflow.RemoteFusedGraphExecuteInfo) - RemoteFusedGraphExecuteInfoOrBuilder { -private static final long serialVersionUID = 0L; - // Use RemoteFusedGraphExecuteInfo.newBuilder() to construct. - private RemoteFusedGraphExecuteInfo(com.google.protobuf.GeneratedMessageV3.Builder builder) { - super(builder); - } - private RemoteFusedGraphExecuteInfo() { - graphInputNodeName_ = com.google.protobuf.LazyStringArrayList.EMPTY; - graphOutputNodeName_ = com.google.protobuf.LazyStringArrayList.EMPTY; - executorName_ = ""; - serializedExecutorParameters_ = com.google.protobuf.ByteString.EMPTY; - defaultGraphInputTensorShape_ = java.util.Collections.emptyList(); - defaultGraphOutputTensorShape_ = java.util.Collections.emptyList(); - } - - @java.lang.Override - @SuppressWarnings({"unused"}) - protected java.lang.Object newInstance( - UnusedPrivateParameter unused) { - return new RemoteFusedGraphExecuteInfo(); - } - - @java.lang.Override - public final com.google.protobuf.UnknownFieldSet - getUnknownFields() { - return this.unknownFields; - } - private RemoteFusedGraphExecuteInfo( - com.google.protobuf.CodedInputStream input, - com.google.protobuf.ExtensionRegistryLite extensionRegistry) - throws com.google.protobuf.InvalidProtocolBufferException { - this(); - if (extensionRegistry == null) { - throw new java.lang.NullPointerException(); - } - int mutable_bitField0_ = 0; - com.google.protobuf.UnknownFieldSet.Builder unknownFields = - com.google.protobuf.UnknownFieldSet.newBuilder(); - try { - boolean done = false; - while (!done) { - int tag = input.readTag(); - switch (tag) { - case 0: - done = true; - break; - case 10: { - org.tensorflow.proto.framework.GraphDef.Builder subBuilder = null; - if (remoteGraph_ != null) { - subBuilder = remoteGraph_.toBuilder(); - } - remoteGraph_ = input.readMessage(org.tensorflow.proto.framework.GraphDef.parser(), extensionRegistry); - if (subBuilder != null) { - subBuilder.mergeFrom(remoteGraph_); - remoteGraph_ = subBuilder.buildPartial(); - } - - break; - } - case 18: { - java.lang.String s = input.readStringRequireUtf8(); - if (!((mutable_bitField0_ & 0x00000001) != 0)) { - graphInputNodeName_ = new com.google.protobuf.LazyStringArrayList(); - mutable_bitField0_ |= 0x00000001; - } - graphInputNodeName_.add(s); - break; - } - case 26: { - java.lang.String s = input.readStringRequireUtf8(); - if (!((mutable_bitField0_ & 0x00000002) != 0)) { - graphOutputNodeName_ = new com.google.protobuf.LazyStringArrayList(); - mutable_bitField0_ |= 0x00000002; - } - graphOutputNodeName_.add(s); - break; - } - case 34: { - java.lang.String s = input.readStringRequireUtf8(); - - executorName_ = s; - break; - } - case 42: { - - serializedExecutorParameters_ = input.readBytes(); - break; - } - case 50: { - if (!((mutable_bitField0_ & 0x00000004) != 0)) { - defaultGraphInputTensorShape_ = new java.util.ArrayList(); - mutable_bitField0_ |= 0x00000004; - } - defaultGraphInputTensorShape_.add( - input.readMessage(org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto.parser(), extensionRegistry)); - break; - } - case 58: { - if (!((mutable_bitField0_ & 0x00000008) != 0)) { - defaultGraphOutputTensorShape_ = new java.util.ArrayList(); - mutable_bitField0_ |= 0x00000008; - } - defaultGraphOutputTensorShape_.add( - input.readMessage(org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto.parser(), extensionRegistry)); - break; - } - default: { - if (!parseUnknownField( - input, unknownFields, extensionRegistry, tag)) { - done = true; - } - break; - } - } - } - } catch (com.google.protobuf.InvalidProtocolBufferException e) { - throw e.setUnfinishedMessage(this); - } catch (java.io.IOException e) { - throw new com.google.protobuf.InvalidProtocolBufferException( - e).setUnfinishedMessage(this); - } finally { - if (((mutable_bitField0_ & 0x00000001) != 0)) { - graphInputNodeName_ = graphInputNodeName_.getUnmodifiableView(); - } - if (((mutable_bitField0_ & 0x00000002) != 0)) { - graphOutputNodeName_ = graphOutputNodeName_.getUnmodifiableView(); - } - if (((mutable_bitField0_ & 0x00000004) != 0)) { - defaultGraphInputTensorShape_ = java.util.Collections.unmodifiableList(defaultGraphInputTensorShape_); - } - if (((mutable_bitField0_ & 0x00000008) != 0)) { - defaultGraphOutputTensorShape_ = java.util.Collections.unmodifiableList(defaultGraphOutputTensorShape_); - } - this.unknownFields = unknownFields.build(); - makeExtensionsImmutable(); - } - } - public static final com.google.protobuf.Descriptors.Descriptor - getDescriptor() { - return org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfoProto.internal_static_tensorflow_RemoteFusedGraphExecuteInfo_descriptor; - } - - @java.lang.Override - protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable - internalGetFieldAccessorTable() { - return org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfoProto.internal_static_tensorflow_RemoteFusedGraphExecuteInfo_fieldAccessorTable - .ensureFieldAccessorsInitialized( - org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.class, org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.Builder.class); - } - - public interface TensorShapeTypeProtoOrBuilder extends - // @@protoc_insertion_point(interface_extends:tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto) - com.google.protobuf.MessageOrBuilder { - - /** - * .tensorflow.DataType dtype = 1; - */ - int getDtypeValue(); - /** - * .tensorflow.DataType dtype = 1; - */ - org.tensorflow.proto.framework.DataType getDtype(); - - /** - * .tensorflow.TensorShapeProto shape = 2; - */ - boolean hasShape(); - /** - * .tensorflow.TensorShapeProto shape = 2; - */ - org.tensorflow.proto.framework.TensorShapeProto getShape(); - /** - * .tensorflow.TensorShapeProto shape = 2; - */ - org.tensorflow.proto.framework.TensorShapeProtoOrBuilder getShapeOrBuilder(); - } - /** - * Protobuf type {@code tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto} - */ - public static final class TensorShapeTypeProto extends - com.google.protobuf.GeneratedMessageV3 implements - // @@protoc_insertion_point(message_implements:tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto) - TensorShapeTypeProtoOrBuilder { - private static final long serialVersionUID = 0L; - // Use TensorShapeTypeProto.newBuilder() to construct. - private TensorShapeTypeProto(com.google.protobuf.GeneratedMessageV3.Builder builder) { - super(builder); - } - private TensorShapeTypeProto() { - dtype_ = 0; - } - - @java.lang.Override - @SuppressWarnings({"unused"}) - protected java.lang.Object newInstance( - UnusedPrivateParameter unused) { - return new TensorShapeTypeProto(); - } - - @java.lang.Override - public final com.google.protobuf.UnknownFieldSet - getUnknownFields() { - return this.unknownFields; - } - private TensorShapeTypeProto( - com.google.protobuf.CodedInputStream input, - com.google.protobuf.ExtensionRegistryLite extensionRegistry) - throws com.google.protobuf.InvalidProtocolBufferException { - this(); - if (extensionRegistry == null) { - throw new java.lang.NullPointerException(); - } - com.google.protobuf.UnknownFieldSet.Builder unknownFields = - com.google.protobuf.UnknownFieldSet.newBuilder(); - try { - boolean done = false; - while (!done) { - int tag = input.readTag(); - switch (tag) { - case 0: - done = true; - break; - case 8: { - int rawValue = input.readEnum(); - - dtype_ = rawValue; - break; - } - case 18: { - org.tensorflow.proto.framework.TensorShapeProto.Builder subBuilder = null; - if (shape_ != null) { - subBuilder = shape_.toBuilder(); - } - shape_ = input.readMessage(org.tensorflow.proto.framework.TensorShapeProto.parser(), extensionRegistry); - if (subBuilder != null) { - subBuilder.mergeFrom(shape_); - shape_ = subBuilder.buildPartial(); - } - - break; - } - default: { - if (!parseUnknownField( - input, unknownFields, extensionRegistry, tag)) { - done = true; - } - break; - } - } - } - } catch (com.google.protobuf.InvalidProtocolBufferException e) { - throw e.setUnfinishedMessage(this); - } catch (java.io.IOException e) { - throw new com.google.protobuf.InvalidProtocolBufferException( - e).setUnfinishedMessage(this); - } finally { - this.unknownFields = unknownFields.build(); - makeExtensionsImmutable(); - } - } - public static final com.google.protobuf.Descriptors.Descriptor - getDescriptor() { - return org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfoProto.internal_static_tensorflow_RemoteFusedGraphExecuteInfo_TensorShapeTypeProto_descriptor; - } - - @java.lang.Override - protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable - internalGetFieldAccessorTable() { - return org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfoProto.internal_static_tensorflow_RemoteFusedGraphExecuteInfo_TensorShapeTypeProto_fieldAccessorTable - .ensureFieldAccessorsInitialized( - org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto.class, org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto.Builder.class); - } - - public static final int DTYPE_FIELD_NUMBER = 1; - private int dtype_; - /** - * .tensorflow.DataType dtype = 1; - */ - public int getDtypeValue() { - return dtype_; - } - /** - * .tensorflow.DataType dtype = 1; - */ - public org.tensorflow.proto.framework.DataType getDtype() { - @SuppressWarnings("deprecation") - org.tensorflow.proto.framework.DataType result = org.tensorflow.proto.framework.DataType.valueOf(dtype_); - return result == null ? org.tensorflow.proto.framework.DataType.UNRECOGNIZED : result; - } - - public static final int SHAPE_FIELD_NUMBER = 2; - private org.tensorflow.proto.framework.TensorShapeProto shape_; - /** - * .tensorflow.TensorShapeProto shape = 2; - */ - public boolean hasShape() { - return shape_ != null; - } - /** - * .tensorflow.TensorShapeProto shape = 2; - */ - public org.tensorflow.proto.framework.TensorShapeProto getShape() { - return shape_ == null ? org.tensorflow.proto.framework.TensorShapeProto.getDefaultInstance() : shape_; - } - /** - * .tensorflow.TensorShapeProto shape = 2; - */ - public org.tensorflow.proto.framework.TensorShapeProtoOrBuilder getShapeOrBuilder() { - return getShape(); - } - - private byte memoizedIsInitialized = -1; - @java.lang.Override - public final boolean isInitialized() { - byte isInitialized = memoizedIsInitialized; - if (isInitialized == 1) return true; - if (isInitialized == 0) return false; - - memoizedIsInitialized = 1; - return true; - } - - @java.lang.Override - public void writeTo(com.google.protobuf.CodedOutputStream output) - throws java.io.IOException { - if (dtype_ != org.tensorflow.proto.framework.DataType.DT_INVALID.getNumber()) { - output.writeEnum(1, dtype_); - } - if (shape_ != null) { - output.writeMessage(2, getShape()); - } - unknownFields.writeTo(output); - } - - @java.lang.Override - public int getSerializedSize() { - int size = memoizedSize; - if (size != -1) return size; - - size = 0; - if (dtype_ != org.tensorflow.proto.framework.DataType.DT_INVALID.getNumber()) { - size += com.google.protobuf.CodedOutputStream - .computeEnumSize(1, dtype_); - } - if (shape_ != null) { - size += com.google.protobuf.CodedOutputStream - .computeMessageSize(2, getShape()); - } - size += unknownFields.getSerializedSize(); - memoizedSize = size; - return size; - } - - @java.lang.Override - public boolean equals(final java.lang.Object obj) { - if (obj == this) { - return true; - } - if (!(obj instanceof org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto)) { - return super.equals(obj); - } - org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto other = (org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto) obj; - - if (dtype_ != other.dtype_) return false; - if (hasShape() != other.hasShape()) return false; - if (hasShape()) { - if (!getShape() - .equals(other.getShape())) return false; - } - if (!unknownFields.equals(other.unknownFields)) return false; - return true; - } - - @java.lang.Override - public int hashCode() { - if (memoizedHashCode != 0) { - return memoizedHashCode; - } - int hash = 41; - hash = (19 * hash) + getDescriptor().hashCode(); - hash = (37 * hash) + DTYPE_FIELD_NUMBER; - hash = (53 * hash) + dtype_; - if (hasShape()) { - hash = (37 * hash) + SHAPE_FIELD_NUMBER; - hash = (53 * hash) + getShape().hashCode(); - } - hash = (29 * hash) + unknownFields.hashCode(); - memoizedHashCode = hash; - return hash; - } - - public static org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto parseFrom( - java.nio.ByteBuffer data) - throws com.google.protobuf.InvalidProtocolBufferException { - return PARSER.parseFrom(data); - } - public static org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto parseFrom( - java.nio.ByteBuffer data, - com.google.protobuf.ExtensionRegistryLite extensionRegistry) - throws com.google.protobuf.InvalidProtocolBufferException { - return PARSER.parseFrom(data, extensionRegistry); - } - public static org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto parseFrom( - com.google.protobuf.ByteString data) - throws com.google.protobuf.InvalidProtocolBufferException { - return PARSER.parseFrom(data); - } - public static org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto parseFrom( - com.google.protobuf.ByteString data, - com.google.protobuf.ExtensionRegistryLite extensionRegistry) - throws com.google.protobuf.InvalidProtocolBufferException { - return PARSER.parseFrom(data, extensionRegistry); - } - public static org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto parseFrom(byte[] data) - throws com.google.protobuf.InvalidProtocolBufferException { - return PARSER.parseFrom(data); - } - public static org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto parseFrom( - byte[] data, - com.google.protobuf.ExtensionRegistryLite extensionRegistry) - throws com.google.protobuf.InvalidProtocolBufferException { - return PARSER.parseFrom(data, extensionRegistry); - } - public static org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto parseFrom(java.io.InputStream input) - throws java.io.IOException { - return com.google.protobuf.GeneratedMessageV3 - .parseWithIOException(PARSER, input); - } - public static org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto parseFrom( - java.io.InputStream input, - com.google.protobuf.ExtensionRegistryLite extensionRegistry) - throws java.io.IOException { - return com.google.protobuf.GeneratedMessageV3 - .parseWithIOException(PARSER, input, extensionRegistry); - } - public static org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto parseDelimitedFrom(java.io.InputStream input) - throws java.io.IOException { - return com.google.protobuf.GeneratedMessageV3 - .parseDelimitedWithIOException(PARSER, input); - } - public static org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto parseDelimitedFrom( - java.io.InputStream input, - com.google.protobuf.ExtensionRegistryLite extensionRegistry) - throws java.io.IOException { - return com.google.protobuf.GeneratedMessageV3 - .parseDelimitedWithIOException(PARSER, input, extensionRegistry); - } - public static org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto parseFrom( - com.google.protobuf.CodedInputStream input) - throws java.io.IOException { - return com.google.protobuf.GeneratedMessageV3 - .parseWithIOException(PARSER, input); - } - public static org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto parseFrom( - com.google.protobuf.CodedInputStream input, - com.google.protobuf.ExtensionRegistryLite extensionRegistry) - throws java.io.IOException { - return com.google.protobuf.GeneratedMessageV3 - .parseWithIOException(PARSER, input, extensionRegistry); - } - - @java.lang.Override - public Builder newBuilderForType() { return newBuilder(); } - public static Builder newBuilder() { - return DEFAULT_INSTANCE.toBuilder(); - } - public static Builder newBuilder(org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto prototype) { - return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); - } - @java.lang.Override - public Builder toBuilder() { - return this == DEFAULT_INSTANCE - ? new Builder() : new Builder().mergeFrom(this); - } - - @java.lang.Override - protected Builder newBuilderForType( - com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { - Builder builder = new Builder(parent); - return builder; - } - /** - * Protobuf type {@code tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto} - */ - public static final class Builder extends - com.google.protobuf.GeneratedMessageV3.Builder implements - // @@protoc_insertion_point(builder_implements:tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto) - org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProtoOrBuilder { - public static final com.google.protobuf.Descriptors.Descriptor - getDescriptor() { - return org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfoProto.internal_static_tensorflow_RemoteFusedGraphExecuteInfo_TensorShapeTypeProto_descriptor; - } - - @java.lang.Override - protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable - internalGetFieldAccessorTable() { - return org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfoProto.internal_static_tensorflow_RemoteFusedGraphExecuteInfo_TensorShapeTypeProto_fieldAccessorTable - .ensureFieldAccessorsInitialized( - org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto.class, org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto.Builder.class); - } - - // Construct using org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto.newBuilder() - private Builder() { - maybeForceBuilderInitialization(); - } - - private Builder( - com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { - super(parent); - maybeForceBuilderInitialization(); - } - private void maybeForceBuilderInitialization() { - if (com.google.protobuf.GeneratedMessageV3 - .alwaysUseFieldBuilders) { - } - } - @java.lang.Override - public Builder clear() { - super.clear(); - dtype_ = 0; - - if (shapeBuilder_ == null) { - shape_ = null; - } else { - shape_ = null; - shapeBuilder_ = null; - } - return this; - } - - @java.lang.Override - public com.google.protobuf.Descriptors.Descriptor - getDescriptorForType() { - return org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfoProto.internal_static_tensorflow_RemoteFusedGraphExecuteInfo_TensorShapeTypeProto_descriptor; - } - - @java.lang.Override - public org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto getDefaultInstanceForType() { - return org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto.getDefaultInstance(); - } - - @java.lang.Override - public org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto build() { - org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto result = buildPartial(); - if (!result.isInitialized()) { - throw newUninitializedMessageException(result); - } - return result; - } - - @java.lang.Override - public org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto buildPartial() { - org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto result = new org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto(this); - result.dtype_ = dtype_; - if (shapeBuilder_ == null) { - result.shape_ = shape_; - } else { - result.shape_ = shapeBuilder_.build(); - } - onBuilt(); - return result; - } - - @java.lang.Override - public Builder clone() { - return super.clone(); - } - @java.lang.Override - public Builder setField( - com.google.protobuf.Descriptors.FieldDescriptor field, - java.lang.Object value) { - return super.setField(field, value); - } - @java.lang.Override - public Builder clearField( - com.google.protobuf.Descriptors.FieldDescriptor field) { - return super.clearField(field); - } - @java.lang.Override - public Builder clearOneof( - com.google.protobuf.Descriptors.OneofDescriptor oneof) { - return super.clearOneof(oneof); - } - @java.lang.Override - public Builder setRepeatedField( - com.google.protobuf.Descriptors.FieldDescriptor field, - int index, java.lang.Object value) { - return super.setRepeatedField(field, index, value); - } - @java.lang.Override - public Builder addRepeatedField( - com.google.protobuf.Descriptors.FieldDescriptor field, - java.lang.Object value) { - return super.addRepeatedField(field, value); - } - @java.lang.Override - public Builder mergeFrom(com.google.protobuf.Message other) { - if (other instanceof org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto) { - return mergeFrom((org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto)other); - } else { - super.mergeFrom(other); - return this; - } - } - - public Builder mergeFrom(org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto other) { - if (other == org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto.getDefaultInstance()) return this; - if (other.dtype_ != 0) { - setDtypeValue(other.getDtypeValue()); - } - if (other.hasShape()) { - mergeShape(other.getShape()); - } - this.mergeUnknownFields(other.unknownFields); - onChanged(); - return this; - } - - @java.lang.Override - public final boolean isInitialized() { - return true; - } - - @java.lang.Override - public Builder mergeFrom( - com.google.protobuf.CodedInputStream input, - com.google.protobuf.ExtensionRegistryLite extensionRegistry) - throws java.io.IOException { - org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto parsedMessage = null; - try { - parsedMessage = PARSER.parsePartialFrom(input, extensionRegistry); - } catch (com.google.protobuf.InvalidProtocolBufferException e) { - parsedMessage = (org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto) e.getUnfinishedMessage(); - throw e.unwrapIOException(); - } finally { - if (parsedMessage != null) { - mergeFrom(parsedMessage); - } - } - return this; - } - - private int dtype_ = 0; - /** - * .tensorflow.DataType dtype = 1; - */ - public int getDtypeValue() { - return dtype_; - } - /** - * .tensorflow.DataType dtype = 1; - */ - public Builder setDtypeValue(int value) { - dtype_ = value; - onChanged(); - return this; - } - /** - * .tensorflow.DataType dtype = 1; - */ - public org.tensorflow.proto.framework.DataType getDtype() { - @SuppressWarnings("deprecation") - org.tensorflow.proto.framework.DataType result = org.tensorflow.proto.framework.DataType.valueOf(dtype_); - return result == null ? org.tensorflow.proto.framework.DataType.UNRECOGNIZED : result; - } - /** - * .tensorflow.DataType dtype = 1; - */ - public Builder setDtype(org.tensorflow.proto.framework.DataType value) { - if (value == null) { - throw new NullPointerException(); - } - - dtype_ = value.getNumber(); - onChanged(); - return this; - } - /** - * .tensorflow.DataType dtype = 1; - */ - public Builder clearDtype() { - - dtype_ = 0; - onChanged(); - return this; - } - - private org.tensorflow.proto.framework.TensorShapeProto shape_; - private com.google.protobuf.SingleFieldBuilderV3< - org.tensorflow.proto.framework.TensorShapeProto, org.tensorflow.proto.framework.TensorShapeProto.Builder, org.tensorflow.proto.framework.TensorShapeProtoOrBuilder> shapeBuilder_; - /** - * .tensorflow.TensorShapeProto shape = 2; - */ - public boolean hasShape() { - return shapeBuilder_ != null || shape_ != null; - } - /** - * .tensorflow.TensorShapeProto shape = 2; - */ - public org.tensorflow.proto.framework.TensorShapeProto getShape() { - if (shapeBuilder_ == null) { - return shape_ == null ? org.tensorflow.proto.framework.TensorShapeProto.getDefaultInstance() : shape_; - } else { - return shapeBuilder_.getMessage(); - } - } - /** - * .tensorflow.TensorShapeProto shape = 2; - */ - public Builder setShape(org.tensorflow.proto.framework.TensorShapeProto value) { - if (shapeBuilder_ == null) { - if (value == null) { - throw new NullPointerException(); - } - shape_ = value; - onChanged(); - } else { - shapeBuilder_.setMessage(value); - } - - return this; - } - /** - * .tensorflow.TensorShapeProto shape = 2; - */ - public Builder setShape( - org.tensorflow.proto.framework.TensorShapeProto.Builder builderForValue) { - if (shapeBuilder_ == null) { - shape_ = builderForValue.build(); - onChanged(); - } else { - shapeBuilder_.setMessage(builderForValue.build()); - } - - return this; - } - /** - * .tensorflow.TensorShapeProto shape = 2; - */ - public Builder mergeShape(org.tensorflow.proto.framework.TensorShapeProto value) { - if (shapeBuilder_ == null) { - if (shape_ != null) { - shape_ = - org.tensorflow.proto.framework.TensorShapeProto.newBuilder(shape_).mergeFrom(value).buildPartial(); - } else { - shape_ = value; - } - onChanged(); - } else { - shapeBuilder_.mergeFrom(value); - } - - return this; - } - /** - * .tensorflow.TensorShapeProto shape = 2; - */ - public Builder clearShape() { - if (shapeBuilder_ == null) { - shape_ = null; - onChanged(); - } else { - shape_ = null; - shapeBuilder_ = null; - } - - return this; - } - /** - * .tensorflow.TensorShapeProto shape = 2; - */ - public org.tensorflow.proto.framework.TensorShapeProto.Builder getShapeBuilder() { - - onChanged(); - return getShapeFieldBuilder().getBuilder(); - } - /** - * .tensorflow.TensorShapeProto shape = 2; - */ - public org.tensorflow.proto.framework.TensorShapeProtoOrBuilder getShapeOrBuilder() { - if (shapeBuilder_ != null) { - return shapeBuilder_.getMessageOrBuilder(); - } else { - return shape_ == null ? - org.tensorflow.proto.framework.TensorShapeProto.getDefaultInstance() : shape_; - } - } - /** - * .tensorflow.TensorShapeProto shape = 2; - */ - private com.google.protobuf.SingleFieldBuilderV3< - org.tensorflow.proto.framework.TensorShapeProto, org.tensorflow.proto.framework.TensorShapeProto.Builder, org.tensorflow.proto.framework.TensorShapeProtoOrBuilder> - getShapeFieldBuilder() { - if (shapeBuilder_ == null) { - shapeBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< - org.tensorflow.proto.framework.TensorShapeProto, org.tensorflow.proto.framework.TensorShapeProto.Builder, org.tensorflow.proto.framework.TensorShapeProtoOrBuilder>( - getShape(), - getParentForChildren(), - isClean()); - shape_ = null; - } - return shapeBuilder_; - } - @java.lang.Override - public final Builder setUnknownFields( - final com.google.protobuf.UnknownFieldSet unknownFields) { - return super.setUnknownFields(unknownFields); - } - - @java.lang.Override - public final Builder mergeUnknownFields( - final com.google.protobuf.UnknownFieldSet unknownFields) { - return super.mergeUnknownFields(unknownFields); - } - - - // @@protoc_insertion_point(builder_scope:tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto) - } - - // @@protoc_insertion_point(class_scope:tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto) - private static final org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto DEFAULT_INSTANCE; - static { - DEFAULT_INSTANCE = new org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto(); - } - - public static org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto getDefaultInstance() { - return DEFAULT_INSTANCE; - } - - private static final com.google.protobuf.Parser - PARSER = new com.google.protobuf.AbstractParser() { - @java.lang.Override - public TensorShapeTypeProto parsePartialFrom( - com.google.protobuf.CodedInputStream input, - com.google.protobuf.ExtensionRegistryLite extensionRegistry) - throws com.google.protobuf.InvalidProtocolBufferException { - return new TensorShapeTypeProto(input, extensionRegistry); - } - }; - - public static com.google.protobuf.Parser parser() { - return PARSER; - } - - @java.lang.Override - public com.google.protobuf.Parser getParserForType() { - return PARSER; - } - - @java.lang.Override - public org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto getDefaultInstanceForType() { - return DEFAULT_INSTANCE; - } - - } - - public static final int REMOTE_GRAPH_FIELD_NUMBER = 1; - private org.tensorflow.proto.framework.GraphDef remoteGraph_; - /** - *
        -   * Definition of remote graph
        -   * 
        - * - * .tensorflow.GraphDef remote_graph = 1; - */ - public boolean hasRemoteGraph() { - return remoteGraph_ != null; - } - /** - *
        -   * Definition of remote graph
        -   * 
        - * - * .tensorflow.GraphDef remote_graph = 1; - */ - public org.tensorflow.proto.framework.GraphDef getRemoteGraph() { - return remoteGraph_ == null ? org.tensorflow.proto.framework.GraphDef.getDefaultInstance() : remoteGraph_; - } - /** - *
        -   * Definition of remote graph
        -   * 
        - * - * .tensorflow.GraphDef remote_graph = 1; - */ - public org.tensorflow.proto.framework.GraphDefOrBuilder getRemoteGraphOrBuilder() { - return getRemoteGraph(); - } - - public static final int GRAPH_INPUT_NODE_NAME_FIELD_NUMBER = 2; - private com.google.protobuf.LazyStringList graphInputNodeName_; - /** - *
        -   * Remote fused graph input node name
        -   * 
        - * - * repeated string graph_input_node_name = 2; - */ - public com.google.protobuf.ProtocolStringList - getGraphInputNodeNameList() { - return graphInputNodeName_; - } - /** - *
        -   * Remote fused graph input node name
        -   * 
        - * - * repeated string graph_input_node_name = 2; - */ - public int getGraphInputNodeNameCount() { - return graphInputNodeName_.size(); - } - /** - *
        -   * Remote fused graph input node name
        -   * 
        - * - * repeated string graph_input_node_name = 2; - */ - public java.lang.String getGraphInputNodeName(int index) { - return graphInputNodeName_.get(index); - } - /** - *
        -   * Remote fused graph input node name
        -   * 
        - * - * repeated string graph_input_node_name = 2; - */ - public com.google.protobuf.ByteString - getGraphInputNodeNameBytes(int index) { - return graphInputNodeName_.getByteString(index); - } - - public static final int GRAPH_OUTPUT_NODE_NAME_FIELD_NUMBER = 3; - private com.google.protobuf.LazyStringList graphOutputNodeName_; - /** - *
        -   * Remote fused graph output node name
        -   * 
        - * - * repeated string graph_output_node_name = 3; - */ - public com.google.protobuf.ProtocolStringList - getGraphOutputNodeNameList() { - return graphOutputNodeName_; - } - /** - *
        -   * Remote fused graph output node name
        -   * 
        - * - * repeated string graph_output_node_name = 3; - */ - public int getGraphOutputNodeNameCount() { - return graphOutputNodeName_.size(); - } - /** - *
        -   * Remote fused graph output node name
        -   * 
        - * - * repeated string graph_output_node_name = 3; - */ - public java.lang.String getGraphOutputNodeName(int index) { - return graphOutputNodeName_.get(index); - } - /** - *
        -   * Remote fused graph output node name
        -   * 
        - * - * repeated string graph_output_node_name = 3; - */ - public com.google.protobuf.ByteString - getGraphOutputNodeNameBytes(int index) { - return graphOutputNodeName_.getByteString(index); - } - - public static final int EXECUTOR_NAME_FIELD_NUMBER = 4; - private volatile java.lang.Object executorName_; - /** - *
        -   * Executor's name
        -   * 
        - * - * string executor_name = 4; - */ - public java.lang.String getExecutorName() { - java.lang.Object ref = executorName_; - if (ref instanceof java.lang.String) { - return (java.lang.String) ref; - } else { - com.google.protobuf.ByteString bs = - (com.google.protobuf.ByteString) ref; - java.lang.String s = bs.toStringUtf8(); - executorName_ = s; - return s; - } - } - /** - *
        -   * Executor's name
        -   * 
        - * - * string executor_name = 4; - */ - public com.google.protobuf.ByteString - getExecutorNameBytes() { - java.lang.Object ref = executorName_; - if (ref instanceof java.lang.String) { - com.google.protobuf.ByteString b = - com.google.protobuf.ByteString.copyFromUtf8( - (java.lang.String) ref); - executorName_ = b; - return b; - } else { - return (com.google.protobuf.ByteString) ref; - } - } - - public static final int SERIALIZED_EXECUTOR_PARAMETERS_FIELD_NUMBER = 5; - private com.google.protobuf.ByteString serializedExecutorParameters_; - /** - *
        -   * Optional: Parameters given to the executor
        -   * 
        - * - * bytes serialized_executor_parameters = 5; - */ - public com.google.protobuf.ByteString getSerializedExecutorParameters() { - return serializedExecutorParameters_; - } - - public static final int DEFAULT_GRAPH_INPUT_TENSOR_SHAPE_FIELD_NUMBER = 6; - private java.util.List defaultGraphInputTensorShape_; - /** - *
        -   * Optional: Default graph input tensor shape used to allocate memory
        -   * before executing op
        -   * 
        - * - * repeated .tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto default_graph_input_tensor_shape = 6; - */ - public java.util.List getDefaultGraphInputTensorShapeList() { - return defaultGraphInputTensorShape_; - } - /** - *
        -   * Optional: Default graph input tensor shape used to allocate memory
        -   * before executing op
        -   * 
        - * - * repeated .tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto default_graph_input_tensor_shape = 6; - */ - public java.util.List - getDefaultGraphInputTensorShapeOrBuilderList() { - return defaultGraphInputTensorShape_; - } - /** - *
        -   * Optional: Default graph input tensor shape used to allocate memory
        -   * before executing op
        -   * 
        - * - * repeated .tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto default_graph_input_tensor_shape = 6; - */ - public int getDefaultGraphInputTensorShapeCount() { - return defaultGraphInputTensorShape_.size(); - } - /** - *
        -   * Optional: Default graph input tensor shape used to allocate memory
        -   * before executing op
        -   * 
        - * - * repeated .tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto default_graph_input_tensor_shape = 6; - */ - public org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto getDefaultGraphInputTensorShape(int index) { - return defaultGraphInputTensorShape_.get(index); - } - /** - *
        -   * Optional: Default graph input tensor shape used to allocate memory
        -   * before executing op
        -   * 
        - * - * repeated .tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto default_graph_input_tensor_shape = 6; - */ - public org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProtoOrBuilder getDefaultGraphInputTensorShapeOrBuilder( - int index) { - return defaultGraphInputTensorShape_.get(index); - } - - public static final int DEFAULT_GRAPH_OUTPUT_TENSOR_SHAPE_FIELD_NUMBER = 7; - private java.util.List defaultGraphOutputTensorShape_; - /** - *
        -   * Optional: Default graph input tensor shape used to allocate memory
        -   * before executing op
        -   * TODO(satok): Remote output tensor shape once shape information is stored
        -   * in NodeDef
        -   * 
        - * - * repeated .tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto default_graph_output_tensor_shape = 7; - */ - public java.util.List getDefaultGraphOutputTensorShapeList() { - return defaultGraphOutputTensorShape_; - } - /** - *
        -   * Optional: Default graph input tensor shape used to allocate memory
        -   * before executing op
        -   * TODO(satok): Remote output tensor shape once shape information is stored
        -   * in NodeDef
        -   * 
        - * - * repeated .tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto default_graph_output_tensor_shape = 7; - */ - public java.util.List - getDefaultGraphOutputTensorShapeOrBuilderList() { - return defaultGraphOutputTensorShape_; - } - /** - *
        -   * Optional: Default graph input tensor shape used to allocate memory
        -   * before executing op
        -   * TODO(satok): Remote output tensor shape once shape information is stored
        -   * in NodeDef
        -   * 
        - * - * repeated .tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto default_graph_output_tensor_shape = 7; - */ - public int getDefaultGraphOutputTensorShapeCount() { - return defaultGraphOutputTensorShape_.size(); - } - /** - *
        -   * Optional: Default graph input tensor shape used to allocate memory
        -   * before executing op
        -   * TODO(satok): Remote output tensor shape once shape information is stored
        -   * in NodeDef
        -   * 
        - * - * repeated .tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto default_graph_output_tensor_shape = 7; - */ - public org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto getDefaultGraphOutputTensorShape(int index) { - return defaultGraphOutputTensorShape_.get(index); - } - /** - *
        -   * Optional: Default graph input tensor shape used to allocate memory
        -   * before executing op
        -   * TODO(satok): Remote output tensor shape once shape information is stored
        -   * in NodeDef
        -   * 
        - * - * repeated .tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto default_graph_output_tensor_shape = 7; - */ - public org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProtoOrBuilder getDefaultGraphOutputTensorShapeOrBuilder( - int index) { - return defaultGraphOutputTensorShape_.get(index); - } - - private byte memoizedIsInitialized = -1; - @java.lang.Override - public final boolean isInitialized() { - byte isInitialized = memoizedIsInitialized; - if (isInitialized == 1) return true; - if (isInitialized == 0) return false; - - memoizedIsInitialized = 1; - return true; - } - - @java.lang.Override - public void writeTo(com.google.protobuf.CodedOutputStream output) - throws java.io.IOException { - if (remoteGraph_ != null) { - output.writeMessage(1, getRemoteGraph()); - } - for (int i = 0; i < graphInputNodeName_.size(); i++) { - com.google.protobuf.GeneratedMessageV3.writeString(output, 2, graphInputNodeName_.getRaw(i)); - } - for (int i = 0; i < graphOutputNodeName_.size(); i++) { - com.google.protobuf.GeneratedMessageV3.writeString(output, 3, graphOutputNodeName_.getRaw(i)); - } - if (!getExecutorNameBytes().isEmpty()) { - com.google.protobuf.GeneratedMessageV3.writeString(output, 4, executorName_); - } - if (!serializedExecutorParameters_.isEmpty()) { - output.writeBytes(5, serializedExecutorParameters_); - } - for (int i = 0; i < defaultGraphInputTensorShape_.size(); i++) { - output.writeMessage(6, defaultGraphInputTensorShape_.get(i)); - } - for (int i = 0; i < defaultGraphOutputTensorShape_.size(); i++) { - output.writeMessage(7, defaultGraphOutputTensorShape_.get(i)); - } - unknownFields.writeTo(output); - } - - @java.lang.Override - public int getSerializedSize() { - int size = memoizedSize; - if (size != -1) return size; - - size = 0; - if (remoteGraph_ != null) { - size += com.google.protobuf.CodedOutputStream - .computeMessageSize(1, getRemoteGraph()); - } - { - int dataSize = 0; - for (int i = 0; i < graphInputNodeName_.size(); i++) { - dataSize += computeStringSizeNoTag(graphInputNodeName_.getRaw(i)); - } - size += dataSize; - size += 1 * getGraphInputNodeNameList().size(); - } - { - int dataSize = 0; - for (int i = 0; i < graphOutputNodeName_.size(); i++) { - dataSize += computeStringSizeNoTag(graphOutputNodeName_.getRaw(i)); - } - size += dataSize; - size += 1 * getGraphOutputNodeNameList().size(); - } - if (!getExecutorNameBytes().isEmpty()) { - size += com.google.protobuf.GeneratedMessageV3.computeStringSize(4, executorName_); - } - if (!serializedExecutorParameters_.isEmpty()) { - size += com.google.protobuf.CodedOutputStream - .computeBytesSize(5, serializedExecutorParameters_); - } - for (int i = 0; i < defaultGraphInputTensorShape_.size(); i++) { - size += com.google.protobuf.CodedOutputStream - .computeMessageSize(6, defaultGraphInputTensorShape_.get(i)); - } - for (int i = 0; i < defaultGraphOutputTensorShape_.size(); i++) { - size += com.google.protobuf.CodedOutputStream - .computeMessageSize(7, defaultGraphOutputTensorShape_.get(i)); - } - size += unknownFields.getSerializedSize(); - memoizedSize = size; - return size; - } - - @java.lang.Override - public boolean equals(final java.lang.Object obj) { - if (obj == this) { - return true; - } - if (!(obj instanceof org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo)) { - return super.equals(obj); - } - org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo other = (org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo) obj; - - if (hasRemoteGraph() != other.hasRemoteGraph()) return false; - if (hasRemoteGraph()) { - if (!getRemoteGraph() - .equals(other.getRemoteGraph())) return false; - } - if (!getGraphInputNodeNameList() - .equals(other.getGraphInputNodeNameList())) return false; - if (!getGraphOutputNodeNameList() - .equals(other.getGraphOutputNodeNameList())) return false; - if (!getExecutorName() - .equals(other.getExecutorName())) return false; - if (!getSerializedExecutorParameters() - .equals(other.getSerializedExecutorParameters())) return false; - if (!getDefaultGraphInputTensorShapeList() - .equals(other.getDefaultGraphInputTensorShapeList())) return false; - if (!getDefaultGraphOutputTensorShapeList() - .equals(other.getDefaultGraphOutputTensorShapeList())) return false; - if (!unknownFields.equals(other.unknownFields)) return false; - return true; - } - - @java.lang.Override - public int hashCode() { - if (memoizedHashCode != 0) { - return memoizedHashCode; - } - int hash = 41; - hash = (19 * hash) + getDescriptor().hashCode(); - if (hasRemoteGraph()) { - hash = (37 * hash) + REMOTE_GRAPH_FIELD_NUMBER; - hash = (53 * hash) + getRemoteGraph().hashCode(); - } - if (getGraphInputNodeNameCount() > 0) { - hash = (37 * hash) + GRAPH_INPUT_NODE_NAME_FIELD_NUMBER; - hash = (53 * hash) + getGraphInputNodeNameList().hashCode(); - } - if (getGraphOutputNodeNameCount() > 0) { - hash = (37 * hash) + GRAPH_OUTPUT_NODE_NAME_FIELD_NUMBER; - hash = (53 * hash) + getGraphOutputNodeNameList().hashCode(); - } - hash = (37 * hash) + EXECUTOR_NAME_FIELD_NUMBER; - hash = (53 * hash) + getExecutorName().hashCode(); - hash = (37 * hash) + SERIALIZED_EXECUTOR_PARAMETERS_FIELD_NUMBER; - hash = (53 * hash) + getSerializedExecutorParameters().hashCode(); - if (getDefaultGraphInputTensorShapeCount() > 0) { - hash = (37 * hash) + DEFAULT_GRAPH_INPUT_TENSOR_SHAPE_FIELD_NUMBER; - hash = (53 * hash) + getDefaultGraphInputTensorShapeList().hashCode(); - } - if (getDefaultGraphOutputTensorShapeCount() > 0) { - hash = (37 * hash) + DEFAULT_GRAPH_OUTPUT_TENSOR_SHAPE_FIELD_NUMBER; - hash = (53 * hash) + getDefaultGraphOutputTensorShapeList().hashCode(); - } - hash = (29 * hash) + unknownFields.hashCode(); - memoizedHashCode = hash; - return hash; - } - - public static org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo parseFrom( - java.nio.ByteBuffer data) - throws com.google.protobuf.InvalidProtocolBufferException { - return PARSER.parseFrom(data); - } - public static org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo parseFrom( - java.nio.ByteBuffer data, - com.google.protobuf.ExtensionRegistryLite extensionRegistry) - throws com.google.protobuf.InvalidProtocolBufferException { - return PARSER.parseFrom(data, extensionRegistry); - } - public static org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo parseFrom( - com.google.protobuf.ByteString data) - throws com.google.protobuf.InvalidProtocolBufferException { - return PARSER.parseFrom(data); - } - public static org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo parseFrom( - com.google.protobuf.ByteString data, - com.google.protobuf.ExtensionRegistryLite extensionRegistry) - throws com.google.protobuf.InvalidProtocolBufferException { - return PARSER.parseFrom(data, extensionRegistry); - } - public static org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo parseFrom(byte[] data) - throws com.google.protobuf.InvalidProtocolBufferException { - return PARSER.parseFrom(data); - } - public static org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo parseFrom( - byte[] data, - com.google.protobuf.ExtensionRegistryLite extensionRegistry) - throws com.google.protobuf.InvalidProtocolBufferException { - return PARSER.parseFrom(data, extensionRegistry); - } - public static org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo parseFrom(java.io.InputStream input) - throws java.io.IOException { - return com.google.protobuf.GeneratedMessageV3 - .parseWithIOException(PARSER, input); - } - public static org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo parseFrom( - java.io.InputStream input, - com.google.protobuf.ExtensionRegistryLite extensionRegistry) - throws java.io.IOException { - return com.google.protobuf.GeneratedMessageV3 - .parseWithIOException(PARSER, input, extensionRegistry); - } - public static org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo parseDelimitedFrom(java.io.InputStream input) - throws java.io.IOException { - return com.google.protobuf.GeneratedMessageV3 - .parseDelimitedWithIOException(PARSER, input); - } - public static org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo parseDelimitedFrom( - java.io.InputStream input, - com.google.protobuf.ExtensionRegistryLite extensionRegistry) - throws java.io.IOException { - return com.google.protobuf.GeneratedMessageV3 - .parseDelimitedWithIOException(PARSER, input, extensionRegistry); - } - public static org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo parseFrom( - com.google.protobuf.CodedInputStream input) - throws java.io.IOException { - return com.google.protobuf.GeneratedMessageV3 - .parseWithIOException(PARSER, input); - } - public static org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo parseFrom( - com.google.protobuf.CodedInputStream input, - com.google.protobuf.ExtensionRegistryLite extensionRegistry) - throws java.io.IOException { - return com.google.protobuf.GeneratedMessageV3 - .parseWithIOException(PARSER, input, extensionRegistry); - } - - @java.lang.Override - public Builder newBuilderForType() { return newBuilder(); } - public static Builder newBuilder() { - return DEFAULT_INSTANCE.toBuilder(); - } - public static Builder newBuilder(org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo prototype) { - return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); - } - @java.lang.Override - public Builder toBuilder() { - return this == DEFAULT_INSTANCE - ? new Builder() : new Builder().mergeFrom(this); - } - - @java.lang.Override - protected Builder newBuilderForType( - com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { - Builder builder = new Builder(parent); - return builder; - } - /** - *
        -   * Protocol buffer representing a handle to a tensorflow resource. Handles are
        -   * not valid across executions, but can be serialized back and forth from within
        -   * a single run.
        -   * 
        - * - * Protobuf type {@code tensorflow.RemoteFusedGraphExecuteInfo} - */ - public static final class Builder extends - com.google.protobuf.GeneratedMessageV3.Builder implements - // @@protoc_insertion_point(builder_implements:tensorflow.RemoteFusedGraphExecuteInfo) - org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfoOrBuilder { - public static final com.google.protobuf.Descriptors.Descriptor - getDescriptor() { - return org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfoProto.internal_static_tensorflow_RemoteFusedGraphExecuteInfo_descriptor; - } - - @java.lang.Override - protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable - internalGetFieldAccessorTable() { - return org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfoProto.internal_static_tensorflow_RemoteFusedGraphExecuteInfo_fieldAccessorTable - .ensureFieldAccessorsInitialized( - org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.class, org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.Builder.class); - } - - // Construct using org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.newBuilder() - private Builder() { - maybeForceBuilderInitialization(); - } - - private Builder( - com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { - super(parent); - maybeForceBuilderInitialization(); - } - private void maybeForceBuilderInitialization() { - if (com.google.protobuf.GeneratedMessageV3 - .alwaysUseFieldBuilders) { - getDefaultGraphInputTensorShapeFieldBuilder(); - getDefaultGraphOutputTensorShapeFieldBuilder(); - } - } - @java.lang.Override - public Builder clear() { - super.clear(); - if (remoteGraphBuilder_ == null) { - remoteGraph_ = null; - } else { - remoteGraph_ = null; - remoteGraphBuilder_ = null; - } - graphInputNodeName_ = com.google.protobuf.LazyStringArrayList.EMPTY; - bitField0_ = (bitField0_ & ~0x00000001); - graphOutputNodeName_ = com.google.protobuf.LazyStringArrayList.EMPTY; - bitField0_ = (bitField0_ & ~0x00000002); - executorName_ = ""; - - serializedExecutorParameters_ = com.google.protobuf.ByteString.EMPTY; - - if (defaultGraphInputTensorShapeBuilder_ == null) { - defaultGraphInputTensorShape_ = java.util.Collections.emptyList(); - bitField0_ = (bitField0_ & ~0x00000004); - } else { - defaultGraphInputTensorShapeBuilder_.clear(); - } - if (defaultGraphOutputTensorShapeBuilder_ == null) { - defaultGraphOutputTensorShape_ = java.util.Collections.emptyList(); - bitField0_ = (bitField0_ & ~0x00000008); - } else { - defaultGraphOutputTensorShapeBuilder_.clear(); - } - return this; - } - - @java.lang.Override - public com.google.protobuf.Descriptors.Descriptor - getDescriptorForType() { - return org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfoProto.internal_static_tensorflow_RemoteFusedGraphExecuteInfo_descriptor; - } - - @java.lang.Override - public org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo getDefaultInstanceForType() { - return org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.getDefaultInstance(); - } - - @java.lang.Override - public org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo build() { - org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo result = buildPartial(); - if (!result.isInitialized()) { - throw newUninitializedMessageException(result); - } - return result; - } - - @java.lang.Override - public org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo buildPartial() { - org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo result = new org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo(this); - int from_bitField0_ = bitField0_; - if (remoteGraphBuilder_ == null) { - result.remoteGraph_ = remoteGraph_; - } else { - result.remoteGraph_ = remoteGraphBuilder_.build(); - } - if (((bitField0_ & 0x00000001) != 0)) { - graphInputNodeName_ = graphInputNodeName_.getUnmodifiableView(); - bitField0_ = (bitField0_ & ~0x00000001); - } - result.graphInputNodeName_ = graphInputNodeName_; - if (((bitField0_ & 0x00000002) != 0)) { - graphOutputNodeName_ = graphOutputNodeName_.getUnmodifiableView(); - bitField0_ = (bitField0_ & ~0x00000002); - } - result.graphOutputNodeName_ = graphOutputNodeName_; - result.executorName_ = executorName_; - result.serializedExecutorParameters_ = serializedExecutorParameters_; - if (defaultGraphInputTensorShapeBuilder_ == null) { - if (((bitField0_ & 0x00000004) != 0)) { - defaultGraphInputTensorShape_ = java.util.Collections.unmodifiableList(defaultGraphInputTensorShape_); - bitField0_ = (bitField0_ & ~0x00000004); - } - result.defaultGraphInputTensorShape_ = defaultGraphInputTensorShape_; - } else { - result.defaultGraphInputTensorShape_ = defaultGraphInputTensorShapeBuilder_.build(); - } - if (defaultGraphOutputTensorShapeBuilder_ == null) { - if (((bitField0_ & 0x00000008) != 0)) { - defaultGraphOutputTensorShape_ = java.util.Collections.unmodifiableList(defaultGraphOutputTensorShape_); - bitField0_ = (bitField0_ & ~0x00000008); - } - result.defaultGraphOutputTensorShape_ = defaultGraphOutputTensorShape_; - } else { - result.defaultGraphOutputTensorShape_ = defaultGraphOutputTensorShapeBuilder_.build(); - } - onBuilt(); - return result; - } - - @java.lang.Override - public Builder clone() { - return super.clone(); - } - @java.lang.Override - public Builder setField( - com.google.protobuf.Descriptors.FieldDescriptor field, - java.lang.Object value) { - return super.setField(field, value); - } - @java.lang.Override - public Builder clearField( - com.google.protobuf.Descriptors.FieldDescriptor field) { - return super.clearField(field); - } - @java.lang.Override - public Builder clearOneof( - com.google.protobuf.Descriptors.OneofDescriptor oneof) { - return super.clearOneof(oneof); - } - @java.lang.Override - public Builder setRepeatedField( - com.google.protobuf.Descriptors.FieldDescriptor field, - int index, java.lang.Object value) { - return super.setRepeatedField(field, index, value); - } - @java.lang.Override - public Builder addRepeatedField( - com.google.protobuf.Descriptors.FieldDescriptor field, - java.lang.Object value) { - return super.addRepeatedField(field, value); - } - @java.lang.Override - public Builder mergeFrom(com.google.protobuf.Message other) { - if (other instanceof org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo) { - return mergeFrom((org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo)other); - } else { - super.mergeFrom(other); - return this; - } - } - - public Builder mergeFrom(org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo other) { - if (other == org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.getDefaultInstance()) return this; - if (other.hasRemoteGraph()) { - mergeRemoteGraph(other.getRemoteGraph()); - } - if (!other.graphInputNodeName_.isEmpty()) { - if (graphInputNodeName_.isEmpty()) { - graphInputNodeName_ = other.graphInputNodeName_; - bitField0_ = (bitField0_ & ~0x00000001); - } else { - ensureGraphInputNodeNameIsMutable(); - graphInputNodeName_.addAll(other.graphInputNodeName_); - } - onChanged(); - } - if (!other.graphOutputNodeName_.isEmpty()) { - if (graphOutputNodeName_.isEmpty()) { - graphOutputNodeName_ = other.graphOutputNodeName_; - bitField0_ = (bitField0_ & ~0x00000002); - } else { - ensureGraphOutputNodeNameIsMutable(); - graphOutputNodeName_.addAll(other.graphOutputNodeName_); - } - onChanged(); - } - if (!other.getExecutorName().isEmpty()) { - executorName_ = other.executorName_; - onChanged(); - } - if (other.getSerializedExecutorParameters() != com.google.protobuf.ByteString.EMPTY) { - setSerializedExecutorParameters(other.getSerializedExecutorParameters()); - } - if (defaultGraphInputTensorShapeBuilder_ == null) { - if (!other.defaultGraphInputTensorShape_.isEmpty()) { - if (defaultGraphInputTensorShape_.isEmpty()) { - defaultGraphInputTensorShape_ = other.defaultGraphInputTensorShape_; - bitField0_ = (bitField0_ & ~0x00000004); - } else { - ensureDefaultGraphInputTensorShapeIsMutable(); - defaultGraphInputTensorShape_.addAll(other.defaultGraphInputTensorShape_); - } - onChanged(); - } - } else { - if (!other.defaultGraphInputTensorShape_.isEmpty()) { - if (defaultGraphInputTensorShapeBuilder_.isEmpty()) { - defaultGraphInputTensorShapeBuilder_.dispose(); - defaultGraphInputTensorShapeBuilder_ = null; - defaultGraphInputTensorShape_ = other.defaultGraphInputTensorShape_; - bitField0_ = (bitField0_ & ~0x00000004); - defaultGraphInputTensorShapeBuilder_ = - com.google.protobuf.GeneratedMessageV3.alwaysUseFieldBuilders ? - getDefaultGraphInputTensorShapeFieldBuilder() : null; - } else { - defaultGraphInputTensorShapeBuilder_.addAllMessages(other.defaultGraphInputTensorShape_); - } - } - } - if (defaultGraphOutputTensorShapeBuilder_ == null) { - if (!other.defaultGraphOutputTensorShape_.isEmpty()) { - if (defaultGraphOutputTensorShape_.isEmpty()) { - defaultGraphOutputTensorShape_ = other.defaultGraphOutputTensorShape_; - bitField0_ = (bitField0_ & ~0x00000008); - } else { - ensureDefaultGraphOutputTensorShapeIsMutable(); - defaultGraphOutputTensorShape_.addAll(other.defaultGraphOutputTensorShape_); - } - onChanged(); - } - } else { - if (!other.defaultGraphOutputTensorShape_.isEmpty()) { - if (defaultGraphOutputTensorShapeBuilder_.isEmpty()) { - defaultGraphOutputTensorShapeBuilder_.dispose(); - defaultGraphOutputTensorShapeBuilder_ = null; - defaultGraphOutputTensorShape_ = other.defaultGraphOutputTensorShape_; - bitField0_ = (bitField0_ & ~0x00000008); - defaultGraphOutputTensorShapeBuilder_ = - com.google.protobuf.GeneratedMessageV3.alwaysUseFieldBuilders ? - getDefaultGraphOutputTensorShapeFieldBuilder() : null; - } else { - defaultGraphOutputTensorShapeBuilder_.addAllMessages(other.defaultGraphOutputTensorShape_); - } - } - } - this.mergeUnknownFields(other.unknownFields); - onChanged(); - return this; - } - - @java.lang.Override - public final boolean isInitialized() { - return true; - } - - @java.lang.Override - public Builder mergeFrom( - com.google.protobuf.CodedInputStream input, - com.google.protobuf.ExtensionRegistryLite extensionRegistry) - throws java.io.IOException { - org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo parsedMessage = null; - try { - parsedMessage = PARSER.parsePartialFrom(input, extensionRegistry); - } catch (com.google.protobuf.InvalidProtocolBufferException e) { - parsedMessage = (org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo) e.getUnfinishedMessage(); - throw e.unwrapIOException(); - } finally { - if (parsedMessage != null) { - mergeFrom(parsedMessage); - } - } - return this; - } - private int bitField0_; - - private org.tensorflow.proto.framework.GraphDef remoteGraph_; - private com.google.protobuf.SingleFieldBuilderV3< - org.tensorflow.proto.framework.GraphDef, org.tensorflow.proto.framework.GraphDef.Builder, org.tensorflow.proto.framework.GraphDefOrBuilder> remoteGraphBuilder_; - /** - *
        -     * Definition of remote graph
        -     * 
        - * - * .tensorflow.GraphDef remote_graph = 1; - */ - public boolean hasRemoteGraph() { - return remoteGraphBuilder_ != null || remoteGraph_ != null; - } - /** - *
        -     * Definition of remote graph
        -     * 
        - * - * .tensorflow.GraphDef remote_graph = 1; - */ - public org.tensorflow.proto.framework.GraphDef getRemoteGraph() { - if (remoteGraphBuilder_ == null) { - return remoteGraph_ == null ? org.tensorflow.proto.framework.GraphDef.getDefaultInstance() : remoteGraph_; - } else { - return remoteGraphBuilder_.getMessage(); - } - } - /** - *
        -     * Definition of remote graph
        -     * 
        - * - * .tensorflow.GraphDef remote_graph = 1; - */ - public Builder setRemoteGraph(org.tensorflow.proto.framework.GraphDef value) { - if (remoteGraphBuilder_ == null) { - if (value == null) { - throw new NullPointerException(); - } - remoteGraph_ = value; - onChanged(); - } else { - remoteGraphBuilder_.setMessage(value); - } - - return this; - } - /** - *
        -     * Definition of remote graph
        -     * 
        - * - * .tensorflow.GraphDef remote_graph = 1; - */ - public Builder setRemoteGraph( - org.tensorflow.proto.framework.GraphDef.Builder builderForValue) { - if (remoteGraphBuilder_ == null) { - remoteGraph_ = builderForValue.build(); - onChanged(); - } else { - remoteGraphBuilder_.setMessage(builderForValue.build()); - } - - return this; - } - /** - *
        -     * Definition of remote graph
        -     * 
        - * - * .tensorflow.GraphDef remote_graph = 1; - */ - public Builder mergeRemoteGraph(org.tensorflow.proto.framework.GraphDef value) { - if (remoteGraphBuilder_ == null) { - if (remoteGraph_ != null) { - remoteGraph_ = - org.tensorflow.proto.framework.GraphDef.newBuilder(remoteGraph_).mergeFrom(value).buildPartial(); - } else { - remoteGraph_ = value; - } - onChanged(); - } else { - remoteGraphBuilder_.mergeFrom(value); - } - - return this; - } - /** - *
        -     * Definition of remote graph
        -     * 
        - * - * .tensorflow.GraphDef remote_graph = 1; - */ - public Builder clearRemoteGraph() { - if (remoteGraphBuilder_ == null) { - remoteGraph_ = null; - onChanged(); - } else { - remoteGraph_ = null; - remoteGraphBuilder_ = null; - } - - return this; - } - /** - *
        -     * Definition of remote graph
        -     * 
        - * - * .tensorflow.GraphDef remote_graph = 1; - */ - public org.tensorflow.proto.framework.GraphDef.Builder getRemoteGraphBuilder() { - - onChanged(); - return getRemoteGraphFieldBuilder().getBuilder(); - } - /** - *
        -     * Definition of remote graph
        -     * 
        - * - * .tensorflow.GraphDef remote_graph = 1; - */ - public org.tensorflow.proto.framework.GraphDefOrBuilder getRemoteGraphOrBuilder() { - if (remoteGraphBuilder_ != null) { - return remoteGraphBuilder_.getMessageOrBuilder(); - } else { - return remoteGraph_ == null ? - org.tensorflow.proto.framework.GraphDef.getDefaultInstance() : remoteGraph_; - } - } - /** - *
        -     * Definition of remote graph
        -     * 
        - * - * .tensorflow.GraphDef remote_graph = 1; - */ - private com.google.protobuf.SingleFieldBuilderV3< - org.tensorflow.proto.framework.GraphDef, org.tensorflow.proto.framework.GraphDef.Builder, org.tensorflow.proto.framework.GraphDefOrBuilder> - getRemoteGraphFieldBuilder() { - if (remoteGraphBuilder_ == null) { - remoteGraphBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< - org.tensorflow.proto.framework.GraphDef, org.tensorflow.proto.framework.GraphDef.Builder, org.tensorflow.proto.framework.GraphDefOrBuilder>( - getRemoteGraph(), - getParentForChildren(), - isClean()); - remoteGraph_ = null; - } - return remoteGraphBuilder_; - } - - private com.google.protobuf.LazyStringList graphInputNodeName_ = com.google.protobuf.LazyStringArrayList.EMPTY; - private void ensureGraphInputNodeNameIsMutable() { - if (!((bitField0_ & 0x00000001) != 0)) { - graphInputNodeName_ = new com.google.protobuf.LazyStringArrayList(graphInputNodeName_); - bitField0_ |= 0x00000001; - } - } - /** - *
        -     * Remote fused graph input node name
        -     * 
        - * - * repeated string graph_input_node_name = 2; - */ - public com.google.protobuf.ProtocolStringList - getGraphInputNodeNameList() { - return graphInputNodeName_.getUnmodifiableView(); - } - /** - *
        -     * Remote fused graph input node name
        -     * 
        - * - * repeated string graph_input_node_name = 2; - */ - public int getGraphInputNodeNameCount() { - return graphInputNodeName_.size(); - } - /** - *
        -     * Remote fused graph input node name
        -     * 
        - * - * repeated string graph_input_node_name = 2; - */ - public java.lang.String getGraphInputNodeName(int index) { - return graphInputNodeName_.get(index); - } - /** - *
        -     * Remote fused graph input node name
        -     * 
        - * - * repeated string graph_input_node_name = 2; - */ - public com.google.protobuf.ByteString - getGraphInputNodeNameBytes(int index) { - return graphInputNodeName_.getByteString(index); - } - /** - *
        -     * Remote fused graph input node name
        -     * 
        - * - * repeated string graph_input_node_name = 2; - */ - public Builder setGraphInputNodeName( - int index, java.lang.String value) { - if (value == null) { - throw new NullPointerException(); - } - ensureGraphInputNodeNameIsMutable(); - graphInputNodeName_.set(index, value); - onChanged(); - return this; - } - /** - *
        -     * Remote fused graph input node name
        -     * 
        - * - * repeated string graph_input_node_name = 2; - */ - public Builder addGraphInputNodeName( - java.lang.String value) { - if (value == null) { - throw new NullPointerException(); - } - ensureGraphInputNodeNameIsMutable(); - graphInputNodeName_.add(value); - onChanged(); - return this; - } - /** - *
        -     * Remote fused graph input node name
        -     * 
        - * - * repeated string graph_input_node_name = 2; - */ - public Builder addAllGraphInputNodeName( - java.lang.Iterable values) { - ensureGraphInputNodeNameIsMutable(); - com.google.protobuf.AbstractMessageLite.Builder.addAll( - values, graphInputNodeName_); - onChanged(); - return this; - } - /** - *
        -     * Remote fused graph input node name
        -     * 
        - * - * repeated string graph_input_node_name = 2; - */ - public Builder clearGraphInputNodeName() { - graphInputNodeName_ = com.google.protobuf.LazyStringArrayList.EMPTY; - bitField0_ = (bitField0_ & ~0x00000001); - onChanged(); - return this; - } - /** - *
        -     * Remote fused graph input node name
        -     * 
        - * - * repeated string graph_input_node_name = 2; - */ - public Builder addGraphInputNodeNameBytes( - com.google.protobuf.ByteString value) { - if (value == null) { - throw new NullPointerException(); - } - checkByteStringIsUtf8(value); - ensureGraphInputNodeNameIsMutable(); - graphInputNodeName_.add(value); - onChanged(); - return this; - } - - private com.google.protobuf.LazyStringList graphOutputNodeName_ = com.google.protobuf.LazyStringArrayList.EMPTY; - private void ensureGraphOutputNodeNameIsMutable() { - if (!((bitField0_ & 0x00000002) != 0)) { - graphOutputNodeName_ = new com.google.protobuf.LazyStringArrayList(graphOutputNodeName_); - bitField0_ |= 0x00000002; - } - } - /** - *
        -     * Remote fused graph output node name
        -     * 
        - * - * repeated string graph_output_node_name = 3; - */ - public com.google.protobuf.ProtocolStringList - getGraphOutputNodeNameList() { - return graphOutputNodeName_.getUnmodifiableView(); - } - /** - *
        -     * Remote fused graph output node name
        -     * 
        - * - * repeated string graph_output_node_name = 3; - */ - public int getGraphOutputNodeNameCount() { - return graphOutputNodeName_.size(); - } - /** - *
        -     * Remote fused graph output node name
        -     * 
        - * - * repeated string graph_output_node_name = 3; - */ - public java.lang.String getGraphOutputNodeName(int index) { - return graphOutputNodeName_.get(index); - } - /** - *
        -     * Remote fused graph output node name
        -     * 
        - * - * repeated string graph_output_node_name = 3; - */ - public com.google.protobuf.ByteString - getGraphOutputNodeNameBytes(int index) { - return graphOutputNodeName_.getByteString(index); - } - /** - *
        -     * Remote fused graph output node name
        -     * 
        - * - * repeated string graph_output_node_name = 3; - */ - public Builder setGraphOutputNodeName( - int index, java.lang.String value) { - if (value == null) { - throw new NullPointerException(); - } - ensureGraphOutputNodeNameIsMutable(); - graphOutputNodeName_.set(index, value); - onChanged(); - return this; - } - /** - *
        -     * Remote fused graph output node name
        -     * 
        - * - * repeated string graph_output_node_name = 3; - */ - public Builder addGraphOutputNodeName( - java.lang.String value) { - if (value == null) { - throw new NullPointerException(); - } - ensureGraphOutputNodeNameIsMutable(); - graphOutputNodeName_.add(value); - onChanged(); - return this; - } - /** - *
        -     * Remote fused graph output node name
        -     * 
        - * - * repeated string graph_output_node_name = 3; - */ - public Builder addAllGraphOutputNodeName( - java.lang.Iterable values) { - ensureGraphOutputNodeNameIsMutable(); - com.google.protobuf.AbstractMessageLite.Builder.addAll( - values, graphOutputNodeName_); - onChanged(); - return this; - } - /** - *
        -     * Remote fused graph output node name
        -     * 
        - * - * repeated string graph_output_node_name = 3; - */ - public Builder clearGraphOutputNodeName() { - graphOutputNodeName_ = com.google.protobuf.LazyStringArrayList.EMPTY; - bitField0_ = (bitField0_ & ~0x00000002); - onChanged(); - return this; - } - /** - *
        -     * Remote fused graph output node name
        -     * 
        - * - * repeated string graph_output_node_name = 3; - */ - public Builder addGraphOutputNodeNameBytes( - com.google.protobuf.ByteString value) { - if (value == null) { - throw new NullPointerException(); - } - checkByteStringIsUtf8(value); - ensureGraphOutputNodeNameIsMutable(); - graphOutputNodeName_.add(value); - onChanged(); - return this; - } - - private java.lang.Object executorName_ = ""; - /** - *
        -     * Executor's name
        -     * 
        - * - * string executor_name = 4; - */ - public java.lang.String getExecutorName() { - java.lang.Object ref = executorName_; - if (!(ref instanceof java.lang.String)) { - com.google.protobuf.ByteString bs = - (com.google.protobuf.ByteString) ref; - java.lang.String s = bs.toStringUtf8(); - executorName_ = s; - return s; - } else { - return (java.lang.String) ref; - } - } - /** - *
        -     * Executor's name
        -     * 
        - * - * string executor_name = 4; - */ - public com.google.protobuf.ByteString - getExecutorNameBytes() { - java.lang.Object ref = executorName_; - if (ref instanceof String) { - com.google.protobuf.ByteString b = - com.google.protobuf.ByteString.copyFromUtf8( - (java.lang.String) ref); - executorName_ = b; - return b; - } else { - return (com.google.protobuf.ByteString) ref; - } - } - /** - *
        -     * Executor's name
        -     * 
        - * - * string executor_name = 4; - */ - public Builder setExecutorName( - java.lang.String value) { - if (value == null) { - throw new NullPointerException(); - } - - executorName_ = value; - onChanged(); - return this; - } - /** - *
        -     * Executor's name
        -     * 
        - * - * string executor_name = 4; - */ - public Builder clearExecutorName() { - - executorName_ = getDefaultInstance().getExecutorName(); - onChanged(); - return this; - } - /** - *
        -     * Executor's name
        -     * 
        - * - * string executor_name = 4; - */ - public Builder setExecutorNameBytes( - com.google.protobuf.ByteString value) { - if (value == null) { - throw new NullPointerException(); - } - checkByteStringIsUtf8(value); - - executorName_ = value; - onChanged(); - return this; - } - - private com.google.protobuf.ByteString serializedExecutorParameters_ = com.google.protobuf.ByteString.EMPTY; - /** - *
        -     * Optional: Parameters given to the executor
        -     * 
        - * - * bytes serialized_executor_parameters = 5; - */ - public com.google.protobuf.ByteString getSerializedExecutorParameters() { - return serializedExecutorParameters_; - } - /** - *
        -     * Optional: Parameters given to the executor
        -     * 
        - * - * bytes serialized_executor_parameters = 5; - */ - public Builder setSerializedExecutorParameters(com.google.protobuf.ByteString value) { - if (value == null) { - throw new NullPointerException(); - } - - serializedExecutorParameters_ = value; - onChanged(); - return this; - } - /** - *
        -     * Optional: Parameters given to the executor
        -     * 
        - * - * bytes serialized_executor_parameters = 5; - */ - public Builder clearSerializedExecutorParameters() { - - serializedExecutorParameters_ = getDefaultInstance().getSerializedExecutorParameters(); - onChanged(); - return this; - } - - private java.util.List defaultGraphInputTensorShape_ = - java.util.Collections.emptyList(); - private void ensureDefaultGraphInputTensorShapeIsMutable() { - if (!((bitField0_ & 0x00000004) != 0)) { - defaultGraphInputTensorShape_ = new java.util.ArrayList(defaultGraphInputTensorShape_); - bitField0_ |= 0x00000004; - } - } - - private com.google.protobuf.RepeatedFieldBuilderV3< - org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto, org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto.Builder, org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProtoOrBuilder> defaultGraphInputTensorShapeBuilder_; - - /** - *
        -     * Optional: Default graph input tensor shape used to allocate memory
        -     * before executing op
        -     * 
        - * - * repeated .tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto default_graph_input_tensor_shape = 6; - */ - public java.util.List getDefaultGraphInputTensorShapeList() { - if (defaultGraphInputTensorShapeBuilder_ == null) { - return java.util.Collections.unmodifiableList(defaultGraphInputTensorShape_); - } else { - return defaultGraphInputTensorShapeBuilder_.getMessageList(); - } - } - /** - *
        -     * Optional: Default graph input tensor shape used to allocate memory
        -     * before executing op
        -     * 
        - * - * repeated .tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto default_graph_input_tensor_shape = 6; - */ - public int getDefaultGraphInputTensorShapeCount() { - if (defaultGraphInputTensorShapeBuilder_ == null) { - return defaultGraphInputTensorShape_.size(); - } else { - return defaultGraphInputTensorShapeBuilder_.getCount(); - } - } - /** - *
        -     * Optional: Default graph input tensor shape used to allocate memory
        -     * before executing op
        -     * 
        - * - * repeated .tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto default_graph_input_tensor_shape = 6; - */ - public org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto getDefaultGraphInputTensorShape(int index) { - if (defaultGraphInputTensorShapeBuilder_ == null) { - return defaultGraphInputTensorShape_.get(index); - } else { - return defaultGraphInputTensorShapeBuilder_.getMessage(index); - } - } - /** - *
        -     * Optional: Default graph input tensor shape used to allocate memory
        -     * before executing op
        -     * 
        - * - * repeated .tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto default_graph_input_tensor_shape = 6; - */ - public Builder setDefaultGraphInputTensorShape( - int index, org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto value) { - if (defaultGraphInputTensorShapeBuilder_ == null) { - if (value == null) { - throw new NullPointerException(); - } - ensureDefaultGraphInputTensorShapeIsMutable(); - defaultGraphInputTensorShape_.set(index, value); - onChanged(); - } else { - defaultGraphInputTensorShapeBuilder_.setMessage(index, value); - } - return this; - } - /** - *
        -     * Optional: Default graph input tensor shape used to allocate memory
        -     * before executing op
        -     * 
        - * - * repeated .tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto default_graph_input_tensor_shape = 6; - */ - public Builder setDefaultGraphInputTensorShape( - int index, org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto.Builder builderForValue) { - if (defaultGraphInputTensorShapeBuilder_ == null) { - ensureDefaultGraphInputTensorShapeIsMutable(); - defaultGraphInputTensorShape_.set(index, builderForValue.build()); - onChanged(); - } else { - defaultGraphInputTensorShapeBuilder_.setMessage(index, builderForValue.build()); - } - return this; - } - /** - *
        -     * Optional: Default graph input tensor shape used to allocate memory
        -     * before executing op
        -     * 
        - * - * repeated .tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto default_graph_input_tensor_shape = 6; - */ - public Builder addDefaultGraphInputTensorShape(org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto value) { - if (defaultGraphInputTensorShapeBuilder_ == null) { - if (value == null) { - throw new NullPointerException(); - } - ensureDefaultGraphInputTensorShapeIsMutable(); - defaultGraphInputTensorShape_.add(value); - onChanged(); - } else { - defaultGraphInputTensorShapeBuilder_.addMessage(value); - } - return this; - } - /** - *
        -     * Optional: Default graph input tensor shape used to allocate memory
        -     * before executing op
        -     * 
        - * - * repeated .tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto default_graph_input_tensor_shape = 6; - */ - public Builder addDefaultGraphInputTensorShape( - int index, org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto value) { - if (defaultGraphInputTensorShapeBuilder_ == null) { - if (value == null) { - throw new NullPointerException(); - } - ensureDefaultGraphInputTensorShapeIsMutable(); - defaultGraphInputTensorShape_.add(index, value); - onChanged(); - } else { - defaultGraphInputTensorShapeBuilder_.addMessage(index, value); - } - return this; - } - /** - *
        -     * Optional: Default graph input tensor shape used to allocate memory
        -     * before executing op
        -     * 
        - * - * repeated .tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto default_graph_input_tensor_shape = 6; - */ - public Builder addDefaultGraphInputTensorShape( - org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto.Builder builderForValue) { - if (defaultGraphInputTensorShapeBuilder_ == null) { - ensureDefaultGraphInputTensorShapeIsMutable(); - defaultGraphInputTensorShape_.add(builderForValue.build()); - onChanged(); - } else { - defaultGraphInputTensorShapeBuilder_.addMessage(builderForValue.build()); - } - return this; - } - /** - *
        -     * Optional: Default graph input tensor shape used to allocate memory
        -     * before executing op
        -     * 
        - * - * repeated .tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto default_graph_input_tensor_shape = 6; - */ - public Builder addDefaultGraphInputTensorShape( - int index, org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto.Builder builderForValue) { - if (defaultGraphInputTensorShapeBuilder_ == null) { - ensureDefaultGraphInputTensorShapeIsMutable(); - defaultGraphInputTensorShape_.add(index, builderForValue.build()); - onChanged(); - } else { - defaultGraphInputTensorShapeBuilder_.addMessage(index, builderForValue.build()); - } - return this; - } - /** - *
        -     * Optional: Default graph input tensor shape used to allocate memory
        -     * before executing op
        -     * 
        - * - * repeated .tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto default_graph_input_tensor_shape = 6; - */ - public Builder addAllDefaultGraphInputTensorShape( - java.lang.Iterable values) { - if (defaultGraphInputTensorShapeBuilder_ == null) { - ensureDefaultGraphInputTensorShapeIsMutable(); - com.google.protobuf.AbstractMessageLite.Builder.addAll( - values, defaultGraphInputTensorShape_); - onChanged(); - } else { - defaultGraphInputTensorShapeBuilder_.addAllMessages(values); - } - return this; - } - /** - *
        -     * Optional: Default graph input tensor shape used to allocate memory
        -     * before executing op
        -     * 
        - * - * repeated .tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto default_graph_input_tensor_shape = 6; - */ - public Builder clearDefaultGraphInputTensorShape() { - if (defaultGraphInputTensorShapeBuilder_ == null) { - defaultGraphInputTensorShape_ = java.util.Collections.emptyList(); - bitField0_ = (bitField0_ & ~0x00000004); - onChanged(); - } else { - defaultGraphInputTensorShapeBuilder_.clear(); - } - return this; - } - /** - *
        -     * Optional: Default graph input tensor shape used to allocate memory
        -     * before executing op
        -     * 
        - * - * repeated .tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto default_graph_input_tensor_shape = 6; - */ - public Builder removeDefaultGraphInputTensorShape(int index) { - if (defaultGraphInputTensorShapeBuilder_ == null) { - ensureDefaultGraphInputTensorShapeIsMutable(); - defaultGraphInputTensorShape_.remove(index); - onChanged(); - } else { - defaultGraphInputTensorShapeBuilder_.remove(index); - } - return this; - } - /** - *
        -     * Optional: Default graph input tensor shape used to allocate memory
        -     * before executing op
        -     * 
        - * - * repeated .tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto default_graph_input_tensor_shape = 6; - */ - public org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto.Builder getDefaultGraphInputTensorShapeBuilder( - int index) { - return getDefaultGraphInputTensorShapeFieldBuilder().getBuilder(index); - } - /** - *
        -     * Optional: Default graph input tensor shape used to allocate memory
        -     * before executing op
        -     * 
        - * - * repeated .tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto default_graph_input_tensor_shape = 6; - */ - public org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProtoOrBuilder getDefaultGraphInputTensorShapeOrBuilder( - int index) { - if (defaultGraphInputTensorShapeBuilder_ == null) { - return defaultGraphInputTensorShape_.get(index); } else { - return defaultGraphInputTensorShapeBuilder_.getMessageOrBuilder(index); - } - } - /** - *
        -     * Optional: Default graph input tensor shape used to allocate memory
        -     * before executing op
        -     * 
        - * - * repeated .tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto default_graph_input_tensor_shape = 6; - */ - public java.util.List - getDefaultGraphInputTensorShapeOrBuilderList() { - if (defaultGraphInputTensorShapeBuilder_ != null) { - return defaultGraphInputTensorShapeBuilder_.getMessageOrBuilderList(); - } else { - return java.util.Collections.unmodifiableList(defaultGraphInputTensorShape_); - } - } - /** - *
        -     * Optional: Default graph input tensor shape used to allocate memory
        -     * before executing op
        -     * 
        - * - * repeated .tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto default_graph_input_tensor_shape = 6; - */ - public org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto.Builder addDefaultGraphInputTensorShapeBuilder() { - return getDefaultGraphInputTensorShapeFieldBuilder().addBuilder( - org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto.getDefaultInstance()); - } - /** - *
        -     * Optional: Default graph input tensor shape used to allocate memory
        -     * before executing op
        -     * 
        - * - * repeated .tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto default_graph_input_tensor_shape = 6; - */ - public org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto.Builder addDefaultGraphInputTensorShapeBuilder( - int index) { - return getDefaultGraphInputTensorShapeFieldBuilder().addBuilder( - index, org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto.getDefaultInstance()); - } - /** - *
        -     * Optional: Default graph input tensor shape used to allocate memory
        -     * before executing op
        -     * 
        - * - * repeated .tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto default_graph_input_tensor_shape = 6; - */ - public java.util.List - getDefaultGraphInputTensorShapeBuilderList() { - return getDefaultGraphInputTensorShapeFieldBuilder().getBuilderList(); - } - private com.google.protobuf.RepeatedFieldBuilderV3< - org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto, org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto.Builder, org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProtoOrBuilder> - getDefaultGraphInputTensorShapeFieldBuilder() { - if (defaultGraphInputTensorShapeBuilder_ == null) { - defaultGraphInputTensorShapeBuilder_ = new com.google.protobuf.RepeatedFieldBuilderV3< - org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto, org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto.Builder, org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProtoOrBuilder>( - defaultGraphInputTensorShape_, - ((bitField0_ & 0x00000004) != 0), - getParentForChildren(), - isClean()); - defaultGraphInputTensorShape_ = null; - } - return defaultGraphInputTensorShapeBuilder_; - } - - private java.util.List defaultGraphOutputTensorShape_ = - java.util.Collections.emptyList(); - private void ensureDefaultGraphOutputTensorShapeIsMutable() { - if (!((bitField0_ & 0x00000008) != 0)) { - defaultGraphOutputTensorShape_ = new java.util.ArrayList(defaultGraphOutputTensorShape_); - bitField0_ |= 0x00000008; - } - } - - private com.google.protobuf.RepeatedFieldBuilderV3< - org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto, org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto.Builder, org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProtoOrBuilder> defaultGraphOutputTensorShapeBuilder_; - - /** - *
        -     * Optional: Default graph input tensor shape used to allocate memory
        -     * before executing op
        -     * TODO(satok): Remote output tensor shape once shape information is stored
        -     * in NodeDef
        -     * 
        - * - * repeated .tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto default_graph_output_tensor_shape = 7; - */ - public java.util.List getDefaultGraphOutputTensorShapeList() { - if (defaultGraphOutputTensorShapeBuilder_ == null) { - return java.util.Collections.unmodifiableList(defaultGraphOutputTensorShape_); - } else { - return defaultGraphOutputTensorShapeBuilder_.getMessageList(); - } - } - /** - *
        -     * Optional: Default graph input tensor shape used to allocate memory
        -     * before executing op
        -     * TODO(satok): Remote output tensor shape once shape information is stored
        -     * in NodeDef
        -     * 
        - * - * repeated .tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto default_graph_output_tensor_shape = 7; - */ - public int getDefaultGraphOutputTensorShapeCount() { - if (defaultGraphOutputTensorShapeBuilder_ == null) { - return defaultGraphOutputTensorShape_.size(); - } else { - return defaultGraphOutputTensorShapeBuilder_.getCount(); - } - } - /** - *
        -     * Optional: Default graph input tensor shape used to allocate memory
        -     * before executing op
        -     * TODO(satok): Remote output tensor shape once shape information is stored
        -     * in NodeDef
        -     * 
        - * - * repeated .tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto default_graph_output_tensor_shape = 7; - */ - public org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto getDefaultGraphOutputTensorShape(int index) { - if (defaultGraphOutputTensorShapeBuilder_ == null) { - return defaultGraphOutputTensorShape_.get(index); - } else { - return defaultGraphOutputTensorShapeBuilder_.getMessage(index); - } - } - /** - *
        -     * Optional: Default graph input tensor shape used to allocate memory
        -     * before executing op
        -     * TODO(satok): Remote output tensor shape once shape information is stored
        -     * in NodeDef
        -     * 
        - * - * repeated .tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto default_graph_output_tensor_shape = 7; - */ - public Builder setDefaultGraphOutputTensorShape( - int index, org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto value) { - if (defaultGraphOutputTensorShapeBuilder_ == null) { - if (value == null) { - throw new NullPointerException(); - } - ensureDefaultGraphOutputTensorShapeIsMutable(); - defaultGraphOutputTensorShape_.set(index, value); - onChanged(); - } else { - defaultGraphOutputTensorShapeBuilder_.setMessage(index, value); - } - return this; - } - /** - *
        -     * Optional: Default graph input tensor shape used to allocate memory
        -     * before executing op
        -     * TODO(satok): Remote output tensor shape once shape information is stored
        -     * in NodeDef
        -     * 
        - * - * repeated .tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto default_graph_output_tensor_shape = 7; - */ - public Builder setDefaultGraphOutputTensorShape( - int index, org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto.Builder builderForValue) { - if (defaultGraphOutputTensorShapeBuilder_ == null) { - ensureDefaultGraphOutputTensorShapeIsMutable(); - defaultGraphOutputTensorShape_.set(index, builderForValue.build()); - onChanged(); - } else { - defaultGraphOutputTensorShapeBuilder_.setMessage(index, builderForValue.build()); - } - return this; - } - /** - *
        -     * Optional: Default graph input tensor shape used to allocate memory
        -     * before executing op
        -     * TODO(satok): Remote output tensor shape once shape information is stored
        -     * in NodeDef
        -     * 
        - * - * repeated .tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto default_graph_output_tensor_shape = 7; - */ - public Builder addDefaultGraphOutputTensorShape(org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto value) { - if (defaultGraphOutputTensorShapeBuilder_ == null) { - if (value == null) { - throw new NullPointerException(); - } - ensureDefaultGraphOutputTensorShapeIsMutable(); - defaultGraphOutputTensorShape_.add(value); - onChanged(); - } else { - defaultGraphOutputTensorShapeBuilder_.addMessage(value); - } - return this; - } - /** - *
        -     * Optional: Default graph input tensor shape used to allocate memory
        -     * before executing op
        -     * TODO(satok): Remote output tensor shape once shape information is stored
        -     * in NodeDef
        -     * 
        - * - * repeated .tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto default_graph_output_tensor_shape = 7; - */ - public Builder addDefaultGraphOutputTensorShape( - int index, org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto value) { - if (defaultGraphOutputTensorShapeBuilder_ == null) { - if (value == null) { - throw new NullPointerException(); - } - ensureDefaultGraphOutputTensorShapeIsMutable(); - defaultGraphOutputTensorShape_.add(index, value); - onChanged(); - } else { - defaultGraphOutputTensorShapeBuilder_.addMessage(index, value); - } - return this; - } - /** - *
        -     * Optional: Default graph input tensor shape used to allocate memory
        -     * before executing op
        -     * TODO(satok): Remote output tensor shape once shape information is stored
        -     * in NodeDef
        -     * 
        - * - * repeated .tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto default_graph_output_tensor_shape = 7; - */ - public Builder addDefaultGraphOutputTensorShape( - org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto.Builder builderForValue) { - if (defaultGraphOutputTensorShapeBuilder_ == null) { - ensureDefaultGraphOutputTensorShapeIsMutable(); - defaultGraphOutputTensorShape_.add(builderForValue.build()); - onChanged(); - } else { - defaultGraphOutputTensorShapeBuilder_.addMessage(builderForValue.build()); - } - return this; - } - /** - *
        -     * Optional: Default graph input tensor shape used to allocate memory
        -     * before executing op
        -     * TODO(satok): Remote output tensor shape once shape information is stored
        -     * in NodeDef
        -     * 
        - * - * repeated .tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto default_graph_output_tensor_shape = 7; - */ - public Builder addDefaultGraphOutputTensorShape( - int index, org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto.Builder builderForValue) { - if (defaultGraphOutputTensorShapeBuilder_ == null) { - ensureDefaultGraphOutputTensorShapeIsMutable(); - defaultGraphOutputTensorShape_.add(index, builderForValue.build()); - onChanged(); - } else { - defaultGraphOutputTensorShapeBuilder_.addMessage(index, builderForValue.build()); - } - return this; - } - /** - *
        -     * Optional: Default graph input tensor shape used to allocate memory
        -     * before executing op
        -     * TODO(satok): Remote output tensor shape once shape information is stored
        -     * in NodeDef
        -     * 
        - * - * repeated .tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto default_graph_output_tensor_shape = 7; - */ - public Builder addAllDefaultGraphOutputTensorShape( - java.lang.Iterable values) { - if (defaultGraphOutputTensorShapeBuilder_ == null) { - ensureDefaultGraphOutputTensorShapeIsMutable(); - com.google.protobuf.AbstractMessageLite.Builder.addAll( - values, defaultGraphOutputTensorShape_); - onChanged(); - } else { - defaultGraphOutputTensorShapeBuilder_.addAllMessages(values); - } - return this; - } - /** - *
        -     * Optional: Default graph input tensor shape used to allocate memory
        -     * before executing op
        -     * TODO(satok): Remote output tensor shape once shape information is stored
        -     * in NodeDef
        -     * 
        - * - * repeated .tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto default_graph_output_tensor_shape = 7; - */ - public Builder clearDefaultGraphOutputTensorShape() { - if (defaultGraphOutputTensorShapeBuilder_ == null) { - defaultGraphOutputTensorShape_ = java.util.Collections.emptyList(); - bitField0_ = (bitField0_ & ~0x00000008); - onChanged(); - } else { - defaultGraphOutputTensorShapeBuilder_.clear(); - } - return this; - } - /** - *
        -     * Optional: Default graph input tensor shape used to allocate memory
        -     * before executing op
        -     * TODO(satok): Remote output tensor shape once shape information is stored
        -     * in NodeDef
        -     * 
        - * - * repeated .tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto default_graph_output_tensor_shape = 7; - */ - public Builder removeDefaultGraphOutputTensorShape(int index) { - if (defaultGraphOutputTensorShapeBuilder_ == null) { - ensureDefaultGraphOutputTensorShapeIsMutable(); - defaultGraphOutputTensorShape_.remove(index); - onChanged(); - } else { - defaultGraphOutputTensorShapeBuilder_.remove(index); - } - return this; - } - /** - *
        -     * Optional: Default graph input tensor shape used to allocate memory
        -     * before executing op
        -     * TODO(satok): Remote output tensor shape once shape information is stored
        -     * in NodeDef
        -     * 
        - * - * repeated .tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto default_graph_output_tensor_shape = 7; - */ - public org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto.Builder getDefaultGraphOutputTensorShapeBuilder( - int index) { - return getDefaultGraphOutputTensorShapeFieldBuilder().getBuilder(index); - } - /** - *
        -     * Optional: Default graph input tensor shape used to allocate memory
        -     * before executing op
        -     * TODO(satok): Remote output tensor shape once shape information is stored
        -     * in NodeDef
        -     * 
        - * - * repeated .tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto default_graph_output_tensor_shape = 7; - */ - public org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProtoOrBuilder getDefaultGraphOutputTensorShapeOrBuilder( - int index) { - if (defaultGraphOutputTensorShapeBuilder_ == null) { - return defaultGraphOutputTensorShape_.get(index); } else { - return defaultGraphOutputTensorShapeBuilder_.getMessageOrBuilder(index); - } - } - /** - *
        -     * Optional: Default graph input tensor shape used to allocate memory
        -     * before executing op
        -     * TODO(satok): Remote output tensor shape once shape information is stored
        -     * in NodeDef
        -     * 
        - * - * repeated .tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto default_graph_output_tensor_shape = 7; - */ - public java.util.List - getDefaultGraphOutputTensorShapeOrBuilderList() { - if (defaultGraphOutputTensorShapeBuilder_ != null) { - return defaultGraphOutputTensorShapeBuilder_.getMessageOrBuilderList(); - } else { - return java.util.Collections.unmodifiableList(defaultGraphOutputTensorShape_); - } - } - /** - *
        -     * Optional: Default graph input tensor shape used to allocate memory
        -     * before executing op
        -     * TODO(satok): Remote output tensor shape once shape information is stored
        -     * in NodeDef
        -     * 
        - * - * repeated .tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto default_graph_output_tensor_shape = 7; - */ - public org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto.Builder addDefaultGraphOutputTensorShapeBuilder() { - return getDefaultGraphOutputTensorShapeFieldBuilder().addBuilder( - org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto.getDefaultInstance()); - } - /** - *
        -     * Optional: Default graph input tensor shape used to allocate memory
        -     * before executing op
        -     * TODO(satok): Remote output tensor shape once shape information is stored
        -     * in NodeDef
        -     * 
        - * - * repeated .tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto default_graph_output_tensor_shape = 7; - */ - public org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto.Builder addDefaultGraphOutputTensorShapeBuilder( - int index) { - return getDefaultGraphOutputTensorShapeFieldBuilder().addBuilder( - index, org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto.getDefaultInstance()); - } - /** - *
        -     * Optional: Default graph input tensor shape used to allocate memory
        -     * before executing op
        -     * TODO(satok): Remote output tensor shape once shape information is stored
        -     * in NodeDef
        -     * 
        - * - * repeated .tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto default_graph_output_tensor_shape = 7; - */ - public java.util.List - getDefaultGraphOutputTensorShapeBuilderList() { - return getDefaultGraphOutputTensorShapeFieldBuilder().getBuilderList(); - } - private com.google.protobuf.RepeatedFieldBuilderV3< - org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto, org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto.Builder, org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProtoOrBuilder> - getDefaultGraphOutputTensorShapeFieldBuilder() { - if (defaultGraphOutputTensorShapeBuilder_ == null) { - defaultGraphOutputTensorShapeBuilder_ = new com.google.protobuf.RepeatedFieldBuilderV3< - org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto, org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto.Builder, org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProtoOrBuilder>( - defaultGraphOutputTensorShape_, - ((bitField0_ & 0x00000008) != 0), - getParentForChildren(), - isClean()); - defaultGraphOutputTensorShape_ = null; - } - return defaultGraphOutputTensorShapeBuilder_; - } - @java.lang.Override - public final Builder setUnknownFields( - final com.google.protobuf.UnknownFieldSet unknownFields) { - return super.setUnknownFields(unknownFields); - } - - @java.lang.Override - public final Builder mergeUnknownFields( - final com.google.protobuf.UnknownFieldSet unknownFields) { - return super.mergeUnknownFields(unknownFields); - } - - - // @@protoc_insertion_point(builder_scope:tensorflow.RemoteFusedGraphExecuteInfo) - } - - // @@protoc_insertion_point(class_scope:tensorflow.RemoteFusedGraphExecuteInfo) - private static final org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo DEFAULT_INSTANCE; - static { - DEFAULT_INSTANCE = new org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo(); - } - - public static org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo getDefaultInstance() { - return DEFAULT_INSTANCE; - } - - private static final com.google.protobuf.Parser - PARSER = new com.google.protobuf.AbstractParser() { - @java.lang.Override - public RemoteFusedGraphExecuteInfo parsePartialFrom( - com.google.protobuf.CodedInputStream input, - com.google.protobuf.ExtensionRegistryLite extensionRegistry) - throws com.google.protobuf.InvalidProtocolBufferException { - return new RemoteFusedGraphExecuteInfo(input, extensionRegistry); - } - }; - - public static com.google.protobuf.Parser parser() { - return PARSER; - } - - @java.lang.Override - public com.google.protobuf.Parser getParserForType() { - return PARSER; - } - - @java.lang.Override - public org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo getDefaultInstanceForType() { - return DEFAULT_INSTANCE; - } - -} - diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/RemoteFusedGraphExecuteInfoOrBuilder.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/RemoteFusedGraphExecuteInfoOrBuilder.java deleted file mode 100644 index 6e14ad8a2e0..00000000000 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/RemoteFusedGraphExecuteInfoOrBuilder.java +++ /dev/null @@ -1,239 +0,0 @@ -// Generated by the protocol buffer compiler. DO NOT EDIT! -// source: tensorflow/core/framework/remote_fused_graph_execute_info.proto - -package org.tensorflow.proto.framework; - -public interface RemoteFusedGraphExecuteInfoOrBuilder extends - // @@protoc_insertion_point(interface_extends:tensorflow.RemoteFusedGraphExecuteInfo) - com.google.protobuf.MessageOrBuilder { - - /** - *
        -   * Definition of remote graph
        -   * 
        - * - * .tensorflow.GraphDef remote_graph = 1; - */ - boolean hasRemoteGraph(); - /** - *
        -   * Definition of remote graph
        -   * 
        - * - * .tensorflow.GraphDef remote_graph = 1; - */ - org.tensorflow.proto.framework.GraphDef getRemoteGraph(); - /** - *
        -   * Definition of remote graph
        -   * 
        - * - * .tensorflow.GraphDef remote_graph = 1; - */ - org.tensorflow.proto.framework.GraphDefOrBuilder getRemoteGraphOrBuilder(); - - /** - *
        -   * Remote fused graph input node name
        -   * 
        - * - * repeated string graph_input_node_name = 2; - */ - java.util.List - getGraphInputNodeNameList(); - /** - *
        -   * Remote fused graph input node name
        -   * 
        - * - * repeated string graph_input_node_name = 2; - */ - int getGraphInputNodeNameCount(); - /** - *
        -   * Remote fused graph input node name
        -   * 
        - * - * repeated string graph_input_node_name = 2; - */ - java.lang.String getGraphInputNodeName(int index); - /** - *
        -   * Remote fused graph input node name
        -   * 
        - * - * repeated string graph_input_node_name = 2; - */ - com.google.protobuf.ByteString - getGraphInputNodeNameBytes(int index); - - /** - *
        -   * Remote fused graph output node name
        -   * 
        - * - * repeated string graph_output_node_name = 3; - */ - java.util.List - getGraphOutputNodeNameList(); - /** - *
        -   * Remote fused graph output node name
        -   * 
        - * - * repeated string graph_output_node_name = 3; - */ - int getGraphOutputNodeNameCount(); - /** - *
        -   * Remote fused graph output node name
        -   * 
        - * - * repeated string graph_output_node_name = 3; - */ - java.lang.String getGraphOutputNodeName(int index); - /** - *
        -   * Remote fused graph output node name
        -   * 
        - * - * repeated string graph_output_node_name = 3; - */ - com.google.protobuf.ByteString - getGraphOutputNodeNameBytes(int index); - - /** - *
        -   * Executor's name
        -   * 
        - * - * string executor_name = 4; - */ - java.lang.String getExecutorName(); - /** - *
        -   * Executor's name
        -   * 
        - * - * string executor_name = 4; - */ - com.google.protobuf.ByteString - getExecutorNameBytes(); - - /** - *
        -   * Optional: Parameters given to the executor
        -   * 
        - * - * bytes serialized_executor_parameters = 5; - */ - com.google.protobuf.ByteString getSerializedExecutorParameters(); - - /** - *
        -   * Optional: Default graph input tensor shape used to allocate memory
        -   * before executing op
        -   * 
        - * - * repeated .tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto default_graph_input_tensor_shape = 6; - */ - java.util.List - getDefaultGraphInputTensorShapeList(); - /** - *
        -   * Optional: Default graph input tensor shape used to allocate memory
        -   * before executing op
        -   * 
        - * - * repeated .tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto default_graph_input_tensor_shape = 6; - */ - org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto getDefaultGraphInputTensorShape(int index); - /** - *
        -   * Optional: Default graph input tensor shape used to allocate memory
        -   * before executing op
        -   * 
        - * - * repeated .tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto default_graph_input_tensor_shape = 6; - */ - int getDefaultGraphInputTensorShapeCount(); - /** - *
        -   * Optional: Default graph input tensor shape used to allocate memory
        -   * before executing op
        -   * 
        - * - * repeated .tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto default_graph_input_tensor_shape = 6; - */ - java.util.List - getDefaultGraphInputTensorShapeOrBuilderList(); - /** - *
        -   * Optional: Default graph input tensor shape used to allocate memory
        -   * before executing op
        -   * 
        - * - * repeated .tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto default_graph_input_tensor_shape = 6; - */ - org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProtoOrBuilder getDefaultGraphInputTensorShapeOrBuilder( - int index); - - /** - *
        -   * Optional: Default graph input tensor shape used to allocate memory
        -   * before executing op
        -   * TODO(satok): Remote output tensor shape once shape information is stored
        -   * in NodeDef
        -   * 
        - * - * repeated .tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto default_graph_output_tensor_shape = 7; - */ - java.util.List - getDefaultGraphOutputTensorShapeList(); - /** - *
        -   * Optional: Default graph input tensor shape used to allocate memory
        -   * before executing op
        -   * TODO(satok): Remote output tensor shape once shape information is stored
        -   * in NodeDef
        -   * 
        - * - * repeated .tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto default_graph_output_tensor_shape = 7; - */ - org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto getDefaultGraphOutputTensorShape(int index); - /** - *
        -   * Optional: Default graph input tensor shape used to allocate memory
        -   * before executing op
        -   * TODO(satok): Remote output tensor shape once shape information is stored
        -   * in NodeDef
        -   * 
        - * - * repeated .tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto default_graph_output_tensor_shape = 7; - */ - int getDefaultGraphOutputTensorShapeCount(); - /** - *
        -   * Optional: Default graph input tensor shape used to allocate memory
        -   * before executing op
        -   * TODO(satok): Remote output tensor shape once shape information is stored
        -   * in NodeDef
        -   * 
        - * - * repeated .tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto default_graph_output_tensor_shape = 7; - */ - java.util.List - getDefaultGraphOutputTensorShapeOrBuilderList(); - /** - *
        -   * Optional: Default graph input tensor shape used to allocate memory
        -   * before executing op
        -   * TODO(satok): Remote output tensor shape once shape information is stored
        -   * in NodeDef
        -   * 
        - * - * repeated .tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto default_graph_output_tensor_shape = 7; - */ - org.tensorflow.proto.framework.RemoteFusedGraphExecuteInfo.TensorShapeTypeProtoOrBuilder getDefaultGraphOutputTensorShapeOrBuilder( - int index); -} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/RemoteFusedGraphExecuteInfoProto.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/RemoteFusedGraphExecuteInfoProto.java deleted file mode 100644 index 95aeddaf025..00000000000 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/RemoteFusedGraphExecuteInfoProto.java +++ /dev/null @@ -1,85 +0,0 @@ -// Generated by the protocol buffer compiler. DO NOT EDIT! -// source: tensorflow/core/framework/remote_fused_graph_execute_info.proto - -package org.tensorflow.proto.framework; - -public final class RemoteFusedGraphExecuteInfoProto { - private RemoteFusedGraphExecuteInfoProto() {} - public static void registerAllExtensions( - com.google.protobuf.ExtensionRegistryLite registry) { - } - - public static void registerAllExtensions( - com.google.protobuf.ExtensionRegistry registry) { - registerAllExtensions( - (com.google.protobuf.ExtensionRegistryLite) registry); - } - static final com.google.protobuf.Descriptors.Descriptor - internal_static_tensorflow_RemoteFusedGraphExecuteInfo_descriptor; - static final - com.google.protobuf.GeneratedMessageV3.FieldAccessorTable - internal_static_tensorflow_RemoteFusedGraphExecuteInfo_fieldAccessorTable; - static final com.google.protobuf.Descriptors.Descriptor - internal_static_tensorflow_RemoteFusedGraphExecuteInfo_TensorShapeTypeProto_descriptor; - static final - com.google.protobuf.GeneratedMessageV3.FieldAccessorTable - internal_static_tensorflow_RemoteFusedGraphExecuteInfo_TensorShapeTypeProto_fieldAccessorTable; - - public static com.google.protobuf.Descriptors.FileDescriptor - getDescriptor() { - return descriptor; - } - private static com.google.protobuf.Descriptors.FileDescriptor - descriptor; - static { - java.lang.String[] descriptorData = { - "\n?tensorflow/core/framework/remote_fused" + - "_graph_execute_info.proto\022\ntensorflow\032%t" + - "ensorflow/core/framework/graph.proto\032,te" + - "nsorflow/core/framework/tensor_shape.pro" + - "to\032%tensorflow/core/framework/types.prot" + - "o\"\202\004\n\033RemoteFusedGraphExecuteInfo\022*\n\014rem" + - "ote_graph\030\001 \001(\0132\024.tensorflow.GraphDef\022\035\n" + - "\025graph_input_node_name\030\002 \003(\t\022\036\n\026graph_ou" + - "tput_node_name\030\003 \003(\t\022\025\n\rexecutor_name\030\004 " + - "\001(\t\022&\n\036serialized_executor_parameters\030\005 " + - "\001(\014\022f\n default_graph_input_tensor_shape\030" + - "\006 \003(\0132<.tensorflow.RemoteFusedGraphExecu" + - "teInfo.TensorShapeTypeProto\022g\n!default_g" + - "raph_output_tensor_shape\030\007 \003(\0132<.tensorf" + - "low.RemoteFusedGraphExecuteInfo.TensorSh" + - "apeTypeProto\032h\n\024TensorShapeTypeProto\022#\n\005" + - "dtype\030\001 \001(\0162\024.tensorflow.DataType\022+\n\005sha" + - "pe\030\002 \001(\0132\034.tensorflow.TensorShapeProtoB\257" + - "\001\n\036org.tensorflow.proto.frameworkB Remot" + - "eFusedGraphExecuteInfoProtoP\001Zfgithub.co" + - "m/tensorflow/tensorflow/tensorflow/go/co" + - "re/framework/remote_fused_graph_execute_" + - "info_go_proto\370\001\001b\006proto3" - }; - descriptor = com.google.protobuf.Descriptors.FileDescriptor - .internalBuildGeneratedFileFrom(descriptorData, - new com.google.protobuf.Descriptors.FileDescriptor[] { - org.tensorflow.proto.framework.GraphProtos.getDescriptor(), - org.tensorflow.proto.framework.TensorShapeProtos.getDescriptor(), - org.tensorflow.proto.framework.TypesProtos.getDescriptor(), - }); - internal_static_tensorflow_RemoteFusedGraphExecuteInfo_descriptor = - getDescriptor().getMessageTypes().get(0); - internal_static_tensorflow_RemoteFusedGraphExecuteInfo_fieldAccessorTable = new - com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( - internal_static_tensorflow_RemoteFusedGraphExecuteInfo_descriptor, - new java.lang.String[] { "RemoteGraph", "GraphInputNodeName", "GraphOutputNodeName", "ExecutorName", "SerializedExecutorParameters", "DefaultGraphInputTensorShape", "DefaultGraphOutputTensorShape", }); - internal_static_tensorflow_RemoteFusedGraphExecuteInfo_TensorShapeTypeProto_descriptor = - internal_static_tensorflow_RemoteFusedGraphExecuteInfo_descriptor.getNestedTypes().get(0); - internal_static_tensorflow_RemoteFusedGraphExecuteInfo_TensorShapeTypeProto_fieldAccessorTable = new - com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( - internal_static_tensorflow_RemoteFusedGraphExecuteInfo_TensorShapeTypeProto_descriptor, - new java.lang.String[] { "Dtype", "Shape", }); - org.tensorflow.proto.framework.GraphProtos.getDescriptor(); - org.tensorflow.proto.framework.TensorShapeProtos.getDescriptor(); - org.tensorflow.proto.framework.TypesProtos.getDescriptor(); - } - - // @@protoc_insertion_point(outer_class_scope) -} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/RewriterConfig.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/RewriterConfig.java index 9665f55231c..c914aee785c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/RewriterConfig.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/RewriterConfig.java @@ -37,6 +37,7 @@ private RewriterConfig() { implementationSelector_ = 0; autoMixedPrecision_ = 0; autoMixedPrecisionMkl_ = 0; + usePluginOptimizers_ = 0; metaOptimizerIterations_ = 0; memoryOptimization_ = 0; memoryOptimizerTargetNodeNameScope_ = ""; @@ -239,6 +240,17 @@ private RewriterConfig( experimentalDisableCompressedTensorOptimization_ = input.readBool(); break; } + case 216: { + + experimentalDisableFoldingQuantizationEmulation_ = input.readBool(); + break; + } + case 224: { + int rawValue = input.readEnum(); + + usePluginOptimizers_ = rawValue; + break; + } case 400: { int rawValue = input.readEnum(); @@ -2212,6 +2224,31 @@ public boolean getDisableMetaOptimizer() { return disableMetaOptimizer_; } + public static final int USE_PLUGIN_OPTIMIZERS_FIELD_NUMBER = 28; + private int usePluginOptimizers_; + /** + *
        +   * Optimizers registered by plugin (default is ON)
        +   * 
        + * + * .tensorflow.RewriterConfig.Toggle use_plugin_optimizers = 28; + */ + public int getUsePluginOptimizersValue() { + return usePluginOptimizers_; + } + /** + *
        +   * Optimizers registered by plugin (default is ON)
        +   * 
        + * + * .tensorflow.RewriterConfig.Toggle use_plugin_optimizers = 28; + */ + public org.tensorflow.proto.framework.RewriterConfig.Toggle getUsePluginOptimizers() { + @SuppressWarnings("deprecation") + org.tensorflow.proto.framework.RewriterConfig.Toggle result = org.tensorflow.proto.framework.RewriterConfig.Toggle.valueOf(usePluginOptimizers_); + return result == null ? org.tensorflow.proto.framework.RewriterConfig.Toggle.UNRECOGNIZED : result; + } + public static final int META_OPTIMIZER_ITERATIONS_FIELD_NUMBER = 12; private int metaOptimizerIterations_; /** @@ -2269,6 +2306,24 @@ public boolean getExperimentalDisableCompressedTensorOptimization() { return experimentalDisableCompressedTensorOptimization_; } + public static final int EXPERIMENTAL_DISABLE_FOLDING_QUANTIZATION_EMULATION_FIELD_NUMBER = 27; + private boolean experimentalDisableFoldingQuantizationEmulation_; + /** + *
        +   * Disable folding quantization emulation ops such as FakeQuantWithMinMax* and
        +   * QuantizeAndDequantize*. Some compilers (e.g. the TF-to-tflite converter)
        +   * have to extract quantization configs (e.g. min/max range, number of bits,
        +   * and per-channel) from the quantization emulation ops. Note that this flag
        +   * is experimental and may be removed in the future. See b/174138564 for more
        +   * details.
        +   * 
        + * + * bool experimental_disable_folding_quantization_emulation = 27; + */ + public boolean getExperimentalDisableFoldingQuantizationEmulation() { + return experimentalDisableFoldingQuantizationEmulation_; + } + public static final int MEMORY_OPTIMIZATION_FIELD_NUMBER = 4; private int memoryOptimization_; /** @@ -2738,6 +2793,12 @@ public void writeTo(com.google.protobuf.CodedOutputStream output) if (experimentalDisableCompressedTensorOptimization_ != false) { output.writeBool(26, experimentalDisableCompressedTensorOptimization_); } + if (experimentalDisableFoldingQuantizationEmulation_ != false) { + output.writeBool(27, experimentalDisableFoldingQuantizationEmulation_); + } + if (usePluginOptimizers_ != org.tensorflow.proto.framework.RewriterConfig.Toggle.DEFAULT.getNumber()) { + output.writeEnum(28, usePluginOptimizers_); + } if (cpuLayoutConversion_ != org.tensorflow.proto.framework.RewriterConfig.CpuLayout.NO_CONVERSION_ON_CPU.getNumber()) { output.writeEnum(50, cpuLayoutConversion_); } @@ -2865,6 +2926,14 @@ public int getSerializedSize() { size += com.google.protobuf.CodedOutputStream .computeBoolSize(26, experimentalDisableCompressedTensorOptimization_); } + if (experimentalDisableFoldingQuantizationEmulation_ != false) { + size += com.google.protobuf.CodedOutputStream + .computeBoolSize(27, experimentalDisableFoldingQuantizationEmulation_); + } + if (usePluginOptimizers_ != org.tensorflow.proto.framework.RewriterConfig.Toggle.DEFAULT.getNumber()) { + size += com.google.protobuf.CodedOutputStream + .computeEnumSize(28, usePluginOptimizers_); + } if (cpuLayoutConversion_ != org.tensorflow.proto.framework.RewriterConfig.CpuLayout.NO_CONVERSION_ON_CPU.getNumber()) { size += com.google.protobuf.CodedOutputStream .computeEnumSize(50, cpuLayoutConversion_); @@ -2924,11 +2993,14 @@ public boolean equals(final java.lang.Object obj) { if (autoMixedPrecisionMkl_ != other.autoMixedPrecisionMkl_) return false; if (getDisableMetaOptimizer() != other.getDisableMetaOptimizer()) return false; + if (usePluginOptimizers_ != other.usePluginOptimizers_) return false; if (metaOptimizerIterations_ != other.metaOptimizerIterations_) return false; if (getMinGraphNodes() != other.getMinGraphNodes()) return false; if (getExperimentalDisableCompressedTensorOptimization() != other.getExperimentalDisableCompressedTensorOptimization()) return false; + if (getExperimentalDisableFoldingQuantizationEmulation() + != other.getExperimentalDisableFoldingQuantizationEmulation()) return false; if (memoryOptimization_ != other.memoryOptimization_) return false; if (!getMemoryOptimizerTargetNodeNameScope() .equals(other.getMemoryOptimizerTargetNodeNameScope())) return false; @@ -3009,6 +3081,8 @@ public int hashCode() { hash = (37 * hash) + DISABLE_META_OPTIMIZER_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashBoolean( getDisableMetaOptimizer()); + hash = (37 * hash) + USE_PLUGIN_OPTIMIZERS_FIELD_NUMBER; + hash = (53 * hash) + usePluginOptimizers_; hash = (37 * hash) + META_OPTIMIZER_ITERATIONS_FIELD_NUMBER; hash = (53 * hash) + metaOptimizerIterations_; hash = (37 * hash) + MIN_GRAPH_NODES_FIELD_NUMBER; @@ -3016,6 +3090,9 @@ public int hashCode() { hash = (37 * hash) + EXPERIMENTAL_DISABLE_COMPRESSED_TENSOR_OPTIMIZATION_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashBoolean( getExperimentalDisableCompressedTensorOptimization()); + hash = (37 * hash) + EXPERIMENTAL_DISABLE_FOLDING_QUANTIZATION_EMULATION_FIELD_NUMBER; + hash = (53 * hash) + com.google.protobuf.Internal.hashBoolean( + getExperimentalDisableFoldingQuantizationEmulation()); hash = (37 * hash) + MEMORY_OPTIMIZATION_FIELD_NUMBER; hash = (53 * hash) + memoryOptimization_; hash = (37 * hash) + MEMORY_OPTIMIZER_TARGET_NODE_NAME_SCOPE_FIELD_NUMBER; @@ -3225,12 +3302,16 @@ public Builder clear() { disableMetaOptimizer_ = false; + usePluginOptimizers_ = 0; + metaOptimizerIterations_ = 0; minGraphNodes_ = 0; experimentalDisableCompressedTensorOptimization_ = false; + experimentalDisableFoldingQuantizationEmulation_ = false; + memoryOptimization_ = 0; memoryOptimizerTargetNodeNameScope_ = ""; @@ -3316,9 +3397,11 @@ public org.tensorflow.proto.framework.RewriterConfig buildPartial() { result.autoMixedPrecision_ = autoMixedPrecision_; result.autoMixedPrecisionMkl_ = autoMixedPrecisionMkl_; result.disableMetaOptimizer_ = disableMetaOptimizer_; + result.usePluginOptimizers_ = usePluginOptimizers_; result.metaOptimizerIterations_ = metaOptimizerIterations_; result.minGraphNodes_ = minGraphNodes_; result.experimentalDisableCompressedTensorOptimization_ = experimentalDisableCompressedTensorOptimization_; + result.experimentalDisableFoldingQuantizationEmulation_ = experimentalDisableFoldingQuantizationEmulation_; result.memoryOptimization_ = memoryOptimization_; result.memoryOptimizerTargetNodeNameScope_ = memoryOptimizerTargetNodeNameScope_; result.metaOptimizerTimeoutMs_ = metaOptimizerTimeoutMs_; @@ -3459,6 +3542,9 @@ public Builder mergeFrom(org.tensorflow.proto.framework.RewriterConfig other) { if (other.getDisableMetaOptimizer() != false) { setDisableMetaOptimizer(other.getDisableMetaOptimizer()); } + if (other.usePluginOptimizers_ != 0) { + setUsePluginOptimizersValue(other.getUsePluginOptimizersValue()); + } if (other.metaOptimizerIterations_ != 0) { setMetaOptimizerIterationsValue(other.getMetaOptimizerIterationsValue()); } @@ -3468,6 +3554,9 @@ public Builder mergeFrom(org.tensorflow.proto.framework.RewriterConfig other) { if (other.getExperimentalDisableCompressedTensorOptimization() != false) { setExperimentalDisableCompressedTensorOptimization(other.getExperimentalDisableCompressedTensorOptimization()); } + if (other.getExperimentalDisableFoldingQuantizationEmulation() != false) { + setExperimentalDisableFoldingQuantizationEmulation(other.getExperimentalDisableFoldingQuantizationEmulation()); + } if (other.memoryOptimization_ != 0) { setMemoryOptimizationValue(other.getMemoryOptimizationValue()); } @@ -4750,6 +4839,71 @@ public Builder clearDisableMetaOptimizer() { return this; } + private int usePluginOptimizers_ = 0; + /** + *
        +     * Optimizers registered by plugin (default is ON)
        +     * 
        + * + * .tensorflow.RewriterConfig.Toggle use_plugin_optimizers = 28; + */ + public int getUsePluginOptimizersValue() { + return usePluginOptimizers_; + } + /** + *
        +     * Optimizers registered by plugin (default is ON)
        +     * 
        + * + * .tensorflow.RewriterConfig.Toggle use_plugin_optimizers = 28; + */ + public Builder setUsePluginOptimizersValue(int value) { + usePluginOptimizers_ = value; + onChanged(); + return this; + } + /** + *
        +     * Optimizers registered by plugin (default is ON)
        +     * 
        + * + * .tensorflow.RewriterConfig.Toggle use_plugin_optimizers = 28; + */ + public org.tensorflow.proto.framework.RewriterConfig.Toggle getUsePluginOptimizers() { + @SuppressWarnings("deprecation") + org.tensorflow.proto.framework.RewriterConfig.Toggle result = org.tensorflow.proto.framework.RewriterConfig.Toggle.valueOf(usePluginOptimizers_); + return result == null ? org.tensorflow.proto.framework.RewriterConfig.Toggle.UNRECOGNIZED : result; + } + /** + *
        +     * Optimizers registered by plugin (default is ON)
        +     * 
        + * + * .tensorflow.RewriterConfig.Toggle use_plugin_optimizers = 28; + */ + public Builder setUsePluginOptimizers(org.tensorflow.proto.framework.RewriterConfig.Toggle value) { + if (value == null) { + throw new NullPointerException(); + } + + usePluginOptimizers_ = value.getNumber(); + onChanged(); + return this; + } + /** + *
        +     * Optimizers registered by plugin (default is ON)
        +     * 
        + * + * .tensorflow.RewriterConfig.Toggle use_plugin_optimizers = 28; + */ + public Builder clearUsePluginOptimizers() { + + usePluginOptimizers_ = 0; + onChanged(); + return this; + } + private int metaOptimizerIterations_ = 0; /** *
        @@ -4908,6 +5062,59 @@ public Builder clearExperimentalDisableCompressedTensorOptimization() {
               return this;
             }
         
        +    private boolean experimentalDisableFoldingQuantizationEmulation_ ;
        +    /**
        +     * 
        +     * Disable folding quantization emulation ops such as FakeQuantWithMinMax* and
        +     * QuantizeAndDequantize*. Some compilers (e.g. the TF-to-tflite converter)
        +     * have to extract quantization configs (e.g. min/max range, number of bits,
        +     * and per-channel) from the quantization emulation ops. Note that this flag
        +     * is experimental and may be removed in the future. See b/174138564 for more
        +     * details.
        +     * 
        + * + * bool experimental_disable_folding_quantization_emulation = 27; + */ + public boolean getExperimentalDisableFoldingQuantizationEmulation() { + return experimentalDisableFoldingQuantizationEmulation_; + } + /** + *
        +     * Disable folding quantization emulation ops such as FakeQuantWithMinMax* and
        +     * QuantizeAndDequantize*. Some compilers (e.g. the TF-to-tflite converter)
        +     * have to extract quantization configs (e.g. min/max range, number of bits,
        +     * and per-channel) from the quantization emulation ops. Note that this flag
        +     * is experimental and may be removed in the future. See b/174138564 for more
        +     * details.
        +     * 
        + * + * bool experimental_disable_folding_quantization_emulation = 27; + */ + public Builder setExperimentalDisableFoldingQuantizationEmulation(boolean value) { + + experimentalDisableFoldingQuantizationEmulation_ = value; + onChanged(); + return this; + } + /** + *
        +     * Disable folding quantization emulation ops such as FakeQuantWithMinMax* and
        +     * QuantizeAndDequantize*. Some compilers (e.g. the TF-to-tflite converter)
        +     * have to extract quantization configs (e.g. min/max range, number of bits,
        +     * and per-channel) from the quantization emulation ops. Note that this flag
        +     * is experimental and may be removed in the future. See b/174138564 for more
        +     * details.
        +     * 
        + * + * bool experimental_disable_folding_quantization_emulation = 27; + */ + public Builder clearExperimentalDisableFoldingQuantizationEmulation() { + + experimentalDisableFoldingQuantizationEmulation_ = false; + onChanged(); + return this; + } + private int memoryOptimization_ = 0; /** *
        diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/RewriterConfigOrBuilder.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/RewriterConfigOrBuilder.java
        index baad17a9738..30d25886bd3 100644
        --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/RewriterConfigOrBuilder.java
        +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/RewriterConfigOrBuilder.java
        @@ -327,6 +327,23 @@ public interface RewriterConfigOrBuilder extends
            */
           boolean getDisableMetaOptimizer();
         
        +  /**
        +   * 
        +   * Optimizers registered by plugin (default is ON)
        +   * 
        + * + * .tensorflow.RewriterConfig.Toggle use_plugin_optimizers = 28; + */ + int getUsePluginOptimizersValue(); + /** + *
        +   * Optimizers registered by plugin (default is ON)
        +   * 
        + * + * .tensorflow.RewriterConfig.Toggle use_plugin_optimizers = 28; + */ + org.tensorflow.proto.framework.RewriterConfig.Toggle getUsePluginOptimizers(); + /** *
            * Controls how many times we run the optimizers in meta optimizer (default
        @@ -368,6 +385,20 @@ public interface RewriterConfigOrBuilder extends
            */
           boolean getExperimentalDisableCompressedTensorOptimization();
         
        +  /**
        +   * 
        +   * Disable folding quantization emulation ops such as FakeQuantWithMinMax* and
        +   * QuantizeAndDequantize*. Some compilers (e.g. the TF-to-tflite converter)
        +   * have to extract quantization configs (e.g. min/max range, number of bits,
        +   * and per-channel) from the quantization emulation ops. Note that this flag
        +   * is experimental and may be removed in the future. See b/174138564 for more
        +   * details.
        +   * 
        + * + * bool experimental_disable_folding_quantization_emulation = 27; + */ + boolean getExperimentalDisableFoldingQuantizationEmulation(); + /** *
            * Configures memory optimization passes through the meta-optimizer. Has no
        diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/RewriterConfigProtos.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/RewriterConfigProtos.java
        index fd75fc78d94..513dd4d850d 100644
        --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/RewriterConfigProtos.java
        +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/RewriterConfigProtos.java
        @@ -54,7 +54,7 @@ public static void registerAllExtensions(
               "e/protobuf/verifier_config.proto\";\n\023Auto" +
               "ParallelOptions\022\016\n\006enable\030\001 \001(\010\022\024\n\014num_r" +
               "eplicas\030\002 \001(\005\"+\n\026ScopedAllocatorOptions\022" +
        -      "\021\n\tenable_op\030\001 \003(\t\"\342\022\n\016RewriterConfig\022C\n" +
        +      "\021\n\tenable_op\030\001 \003(\t\"\341\023\n\016RewriterConfig\022C\n" +
               "\025cpu_layout_conversion\0302 \001(\0162$.tensorflo" +
               "w.RewriterConfig.CpuLayout\022;\n\020layout_opt" +
               "imizer\030\001 \001(\0162!.tensorflow.RewriterConfig" +
        @@ -82,43 +82,46 @@ public static void registerAllExtensions(
               "cision\030\027 \001(\0162!.tensorflow.RewriterConfig" +
               ".Toggle\022C\n\030auto_mixed_precision_mkl\030\031 \001(" +
               "\0162!.tensorflow.RewriterConfig.Toggle\022\036\n\026" +
        -      "disable_meta_optimizer\030\023 \001(\010\022O\n\031meta_opt" +
        -      "imizer_iterations\030\014 \001(\0162,.tensorflow.Rew" +
        -      "riterConfig.NumIterationsType\022\027\n\017min_gra" +
        -      "ph_nodes\030\021 \001(\005\022;\n3experimental_disable_c" +
        -      "ompressed_tensor_optimization\030\032 \001(\010\022B\n\023m" +
        -      "emory_optimization\030\004 \001(\0162%.tensorflow.Re" +
        -      "writerConfig.MemOptType\022/\n\'memory_optimi" +
        -      "zer_target_node_name_scope\030\006 \001(\t\022!\n\031meta" +
        -      "_optimizer_timeout_ms\030\024 \001(\003\0226\n\rauto_para" +
        -      "llel\030\005 \001(\0132\037.tensorflow.AutoParallelOpti" +
        -      "ons\022 \n\030fail_on_optimizer_errors\030\025 \001(\010\022A\n" +
        -      "\025scoped_allocator_opts\030\020 \001(\0132\".tensorflo" +
        -      "w.ScopedAllocatorOptions\022\022\n\noptimizers\030d" +
        -      " \003(\t\022K\n\021custom_optimizers\030\310\001 \003(\0132/.tenso" +
        -      "rflow.RewriterConfig.CustomGraphOptimize" +
        -      "r\022D\n\037inter_optimizer_verifier_config\030\254\002 " +
        -      "\001(\0132\032.tensorflow.VerifierConfig\022F\n!post_" +
        -      "optimization_verifier_config\030\255\002 \001(\0132\032.te" +
        -      "nsorflow.VerifierConfig\032\312\001\n\024CustomGraphO" +
        -      "ptimizer\022\014\n\004name\030\001 \001(\t\022X\n\rparameter_map\030" +
        -      "\002 \003(\0132A.tensorflow.RewriterConfig.Custom" +
        -      "GraphOptimizer.ParameterMapEntry\032J\n\021Para" +
        -      "meterMapEntry\022\013\n\003key\030\001 \001(\t\022$\n\005value\030\002 \001(" +
        -      "\0132\025.tensorflow.AttrValue:\0028\001\"6\n\006Toggle\022\013" +
        -      "\n\007DEFAULT\020\000\022\006\n\002ON\020\001\022\007\n\003OFF\020\002\022\016\n\nAGGRESSI" +
        -      "VE\020\003\"I\n\tCpuLayout\022\030\n\024NO_CONVERSION_ON_CP" +
        -      "U\020\000\022\020\n\014NCHW_TO_NHWC\020\001\022\020\n\014NHWC_TO_NCHW\020\002\"" +
        -      "<\n\021NumIterationsType\022\025\n\021DEFAULT_NUM_ITER" +
        -      "S\020\000\022\007\n\003ONE\020\001\022\007\n\003TWO\020\002\"\237\001\n\nMemOptType\022\023\n\017" +
        -      "DEFAULT_MEM_OPT\020\000\022\016\n\nNO_MEM_OPT\020\001\022\n\n\006MAN" +
        -      "UAL\020\002\022\027\n\023SWAPPING_HEURISTICS\020\004\022\034\n\030RECOMP" +
        -      "UTATION_HEURISTICS\020\005\022\031\n\025SCHEDULING_HEURI" +
        -      "STICS\020\006\022\016\n\nHEURISTICS\020\003B\222\001\n\036org.tensorfl" +
        -      "ow.proto.frameworkB\024RewriterConfigProtos" +
        -      "P\001ZUgithub.com/tensorflow/tensorflow/ten" +
        -      "sorflow/go/core/protobuf/for_core_protos" +
        -      "_go_proto\370\001\001b\006proto3"
        +      "disable_meta_optimizer\030\023 \001(\010\022@\n\025use_plug" +
        +      "in_optimizers\030\034 \001(\0162!.tensorflow.Rewrite" +
        +      "rConfig.Toggle\022O\n\031meta_optimizer_iterati" +
        +      "ons\030\014 \001(\0162,.tensorflow.RewriterConfig.Nu" +
        +      "mIterationsType\022\027\n\017min_graph_nodes\030\021 \001(\005" +
        +      "\022;\n3experimental_disable_compressed_tens" +
        +      "or_optimization\030\032 \001(\010\022;\n3experimental_di" +
        +      "sable_folding_quantization_emulation\030\033 \001" +
        +      "(\010\022B\n\023memory_optimization\030\004 \001(\0162%.tensor" +
        +      "flow.RewriterConfig.MemOptType\022/\n\'memory" +
        +      "_optimizer_target_node_name_scope\030\006 \001(\t\022" +
        +      "!\n\031meta_optimizer_timeout_ms\030\024 \001(\003\0226\n\rau" +
        +      "to_parallel\030\005 \001(\0132\037.tensorflow.AutoParal" +
        +      "lelOptions\022 \n\030fail_on_optimizer_errors\030\025" +
        +      " \001(\010\022A\n\025scoped_allocator_opts\030\020 \001(\0132\".te" +
        +      "nsorflow.ScopedAllocatorOptions\022\022\n\noptim" +
        +      "izers\030d \003(\t\022K\n\021custom_optimizers\030\310\001 \003(\0132" +
        +      "/.tensorflow.RewriterConfig.CustomGraphO" +
        +      "ptimizer\022D\n\037inter_optimizer_verifier_con" +
        +      "fig\030\254\002 \001(\0132\032.tensorflow.VerifierConfig\022F" +
        +      "\n!post_optimization_verifier_config\030\255\002 \001" +
        +      "(\0132\032.tensorflow.VerifierConfig\032\312\001\n\024Custo" +
        +      "mGraphOptimizer\022\014\n\004name\030\001 \001(\t\022X\n\rparamet" +
        +      "er_map\030\002 \003(\0132A.tensorflow.RewriterConfig" +
        +      ".CustomGraphOptimizer.ParameterMapEntry\032" +
        +      "J\n\021ParameterMapEntry\022\013\n\003key\030\001 \001(\t\022$\n\005val" +
        +      "ue\030\002 \001(\0132\025.tensorflow.AttrValue:\0028\001\"6\n\006T" +
        +      "oggle\022\013\n\007DEFAULT\020\000\022\006\n\002ON\020\001\022\007\n\003OFF\020\002\022\016\n\nA" +
        +      "GGRESSIVE\020\003\"I\n\tCpuLayout\022\030\n\024NO_CONVERSIO" +
        +      "N_ON_CPU\020\000\022\020\n\014NCHW_TO_NHWC\020\001\022\020\n\014NHWC_TO_" +
        +      "NCHW\020\002\"<\n\021NumIterationsType\022\025\n\021DEFAULT_N" +
        +      "UM_ITERS\020\000\022\007\n\003ONE\020\001\022\007\n\003TWO\020\002\"\237\001\n\nMemOptT" +
        +      "ype\022\023\n\017DEFAULT_MEM_OPT\020\000\022\016\n\nNO_MEM_OPT\020\001" +
        +      "\022\n\n\006MANUAL\020\002\022\027\n\023SWAPPING_HEURISTICS\020\004\022\034\n" +
        +      "\030RECOMPUTATION_HEURISTICS\020\005\022\031\n\025SCHEDULIN" +
        +      "G_HEURISTICS\020\006\022\016\n\nHEURISTICS\020\003B\222\001\n\036org.t" +
        +      "ensorflow.proto.frameworkB\024RewriterConfi" +
        +      "gProtosP\001ZUgithub.com/tensorflow/tensorf" +
        +      "low/tensorflow/go/core/protobuf/for_core" +
        +      "_protos_go_proto\370\001\001b\006proto3"
             };
             descriptor = com.google.protobuf.Descriptors.FileDescriptor
               .internalBuildGeneratedFileFrom(descriptorData,
        @@ -143,7 +146,7 @@ public static void registerAllExtensions(
             internal_static_tensorflow_RewriterConfig_fieldAccessorTable = new
               com.google.protobuf.GeneratedMessageV3.FieldAccessorTable(
                 internal_static_tensorflow_RewriterConfig_descriptor,
        -        new java.lang.String[] { "CpuLayoutConversion", "LayoutOptimizer", "ConstantFolding", "ShapeOptimization", "Remapping", "CommonSubgraphElimination", "ArithmeticOptimization", "DependencyOptimization", "LoopOptimization", "FunctionOptimization", "DebugStripper", "DisableModelPruning", "ScopedAllocatorOptimization", "PinToHostOptimization", "ImplementationSelector", "AutoMixedPrecision", "AutoMixedPrecisionMkl", "DisableMetaOptimizer", "MetaOptimizerIterations", "MinGraphNodes", "ExperimentalDisableCompressedTensorOptimization", "MemoryOptimization", "MemoryOptimizerTargetNodeNameScope", "MetaOptimizerTimeoutMs", "AutoParallel", "FailOnOptimizerErrors", "ScopedAllocatorOpts", "Optimizers", "CustomOptimizers", "InterOptimizerVerifierConfig", "PostOptimizationVerifierConfig", });
        +        new java.lang.String[] { "CpuLayoutConversion", "LayoutOptimizer", "ConstantFolding", "ShapeOptimization", "Remapping", "CommonSubgraphElimination", "ArithmeticOptimization", "DependencyOptimization", "LoopOptimization", "FunctionOptimization", "DebugStripper", "DisableModelPruning", "ScopedAllocatorOptimization", "PinToHostOptimization", "ImplementationSelector", "AutoMixedPrecision", "AutoMixedPrecisionMkl", "DisableMetaOptimizer", "UsePluginOptimizers", "MetaOptimizerIterations", "MinGraphNodes", "ExperimentalDisableCompressedTensorOptimization", "ExperimentalDisableFoldingQuantizationEmulation", "MemoryOptimization", "MemoryOptimizerTargetNodeNameScope", "MetaOptimizerTimeoutMs", "AutoParallel", "FailOnOptimizerErrors", "ScopedAllocatorOpts", "Optimizers", "CustomOptimizers", "InterOptimizerVerifierConfig", "PostOptimizationVerifierConfig", });
             internal_static_tensorflow_RewriterConfig_CustomGraphOptimizer_descriptor =
               internal_static_tensorflow_RewriterConfig_descriptor.getNestedTypes().get(0);
             internal_static_tensorflow_RewriterConfig_CustomGraphOptimizer_fieldAccessorTable = new
        diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/SavedObject.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/SavedObject.java
        index d38d76b85a1..fc2595a31ce 100644
        --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/SavedObject.java
        +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/SavedObject.java
        @@ -284,7 +284,7 @@ public int getNumber() {
            * 
            * Objects which this object depends on: named edges in the dependency
            * graph.
        -   * Note: currently only valid if kind == "user_object".
        +   * Note: currently only valid if kind == "user_object" or "resource".
            * 
        * * repeated .tensorflow.TrackableObjectGraph.TrackableObject.ObjectReference children = 1; @@ -296,7 +296,7 @@ public java.util.List * Objects which this object depends on: named edges in the dependency * graph. - * Note: currently only valid if kind == "user_object". + * Note: currently only valid if kind == "user_object" or "resource". *
        * * repeated .tensorflow.TrackableObjectGraph.TrackableObject.ObjectReference children = 1; @@ -309,7 +309,7 @@ public java.util.List * Objects which this object depends on: named edges in the dependency * graph. - * Note: currently only valid if kind == "user_object". + * Note: currently only valid if kind == "user_object" or "resource". *
        * * repeated .tensorflow.TrackableObjectGraph.TrackableObject.ObjectReference children = 1; @@ -321,7 +321,7 @@ public int getChildrenCount() { *
            * Objects which this object depends on: named edges in the dependency
            * graph.
        -   * Note: currently only valid if kind == "user_object".
        +   * Note: currently only valid if kind == "user_object" or "resource".
            * 
        * * repeated .tensorflow.TrackableObjectGraph.TrackableObject.ObjectReference children = 1; @@ -333,7 +333,7 @@ public org.tensorflow.proto.framework.TrackableObjectGraph.TrackableObject.Objec *
            * Objects which this object depends on: named edges in the dependency
            * graph.
        -   * Note: currently only valid if kind == "user_object".
        +   * Note: currently only valid if kind == "user_object" or "resource".
            * 
        * * repeated .tensorflow.TrackableObjectGraph.TrackableObject.ObjectReference children = 1; @@ -1347,7 +1347,7 @@ private void ensureChildrenIsMutable() { *
              * Objects which this object depends on: named edges in the dependency
              * graph.
        -     * Note: currently only valid if kind == "user_object".
        +     * Note: currently only valid if kind == "user_object" or "resource".
              * 
        * * repeated .tensorflow.TrackableObjectGraph.TrackableObject.ObjectReference children = 1; @@ -1363,7 +1363,7 @@ public java.util.List * Objects which this object depends on: named edges in the dependency * graph. - * Note: currently only valid if kind == "user_object". + * Note: currently only valid if kind == "user_object" or "resource". *
        * * repeated .tensorflow.TrackableObjectGraph.TrackableObject.ObjectReference children = 1; @@ -1379,7 +1379,7 @@ public int getChildrenCount() { *
              * Objects which this object depends on: named edges in the dependency
              * graph.
        -     * Note: currently only valid if kind == "user_object".
        +     * Note: currently only valid if kind == "user_object" or "resource".
              * 
        * * repeated .tensorflow.TrackableObjectGraph.TrackableObject.ObjectReference children = 1; @@ -1395,7 +1395,7 @@ public org.tensorflow.proto.framework.TrackableObjectGraph.TrackableObject.Objec *
              * Objects which this object depends on: named edges in the dependency
              * graph.
        -     * Note: currently only valid if kind == "user_object".
        +     * Note: currently only valid if kind == "user_object" or "resource".
              * 
        * * repeated .tensorflow.TrackableObjectGraph.TrackableObject.ObjectReference children = 1; @@ -1418,7 +1418,7 @@ public Builder setChildren( *
              * Objects which this object depends on: named edges in the dependency
              * graph.
        -     * Note: currently only valid if kind == "user_object".
        +     * Note: currently only valid if kind == "user_object" or "resource".
              * 
        * * repeated .tensorflow.TrackableObjectGraph.TrackableObject.ObjectReference children = 1; @@ -1438,7 +1438,7 @@ public Builder setChildren( *
              * Objects which this object depends on: named edges in the dependency
              * graph.
        -     * Note: currently only valid if kind == "user_object".
        +     * Note: currently only valid if kind == "user_object" or "resource".
              * 
        * * repeated .tensorflow.TrackableObjectGraph.TrackableObject.ObjectReference children = 1; @@ -1460,7 +1460,7 @@ public Builder addChildren(org.tensorflow.proto.framework.TrackableObjectGraph.T *
              * Objects which this object depends on: named edges in the dependency
              * graph.
        -     * Note: currently only valid if kind == "user_object".
        +     * Note: currently only valid if kind == "user_object" or "resource".
              * 
        * * repeated .tensorflow.TrackableObjectGraph.TrackableObject.ObjectReference children = 1; @@ -1483,7 +1483,7 @@ public Builder addChildren( *
              * Objects which this object depends on: named edges in the dependency
              * graph.
        -     * Note: currently only valid if kind == "user_object".
        +     * Note: currently only valid if kind == "user_object" or "resource".
              * 
        * * repeated .tensorflow.TrackableObjectGraph.TrackableObject.ObjectReference children = 1; @@ -1503,7 +1503,7 @@ public Builder addChildren( *
              * Objects which this object depends on: named edges in the dependency
              * graph.
        -     * Note: currently only valid if kind == "user_object".
        +     * Note: currently only valid if kind == "user_object" or "resource".
              * 
        * * repeated .tensorflow.TrackableObjectGraph.TrackableObject.ObjectReference children = 1; @@ -1523,7 +1523,7 @@ public Builder addChildren( *
              * Objects which this object depends on: named edges in the dependency
              * graph.
        -     * Note: currently only valid if kind == "user_object".
        +     * Note: currently only valid if kind == "user_object" or "resource".
              * 
        * * repeated .tensorflow.TrackableObjectGraph.TrackableObject.ObjectReference children = 1; @@ -1544,7 +1544,7 @@ public Builder addAllChildren( *
              * Objects which this object depends on: named edges in the dependency
              * graph.
        -     * Note: currently only valid if kind == "user_object".
        +     * Note: currently only valid if kind == "user_object" or "resource".
              * 
        * * repeated .tensorflow.TrackableObjectGraph.TrackableObject.ObjectReference children = 1; @@ -1563,7 +1563,7 @@ public Builder clearChildren() { *
              * Objects which this object depends on: named edges in the dependency
              * graph.
        -     * Note: currently only valid if kind == "user_object".
        +     * Note: currently only valid if kind == "user_object" or "resource".
              * 
        * * repeated .tensorflow.TrackableObjectGraph.TrackableObject.ObjectReference children = 1; @@ -1582,7 +1582,7 @@ public Builder removeChildren(int index) { *
              * Objects which this object depends on: named edges in the dependency
              * graph.
        -     * Note: currently only valid if kind == "user_object".
        +     * Note: currently only valid if kind == "user_object" or "resource".
              * 
        * * repeated .tensorflow.TrackableObjectGraph.TrackableObject.ObjectReference children = 1; @@ -1595,7 +1595,7 @@ public org.tensorflow.proto.framework.TrackableObjectGraph.TrackableObject.Objec *
              * Objects which this object depends on: named edges in the dependency
              * graph.
        -     * Note: currently only valid if kind == "user_object".
        +     * Note: currently only valid if kind == "user_object" or "resource".
              * 
        * * repeated .tensorflow.TrackableObjectGraph.TrackableObject.ObjectReference children = 1; @@ -1611,7 +1611,7 @@ public org.tensorflow.proto.framework.TrackableObjectGraph.TrackableObject.Objec *
              * Objects which this object depends on: named edges in the dependency
              * graph.
        -     * Note: currently only valid if kind == "user_object".
        +     * Note: currently only valid if kind == "user_object" or "resource".
              * 
        * * repeated .tensorflow.TrackableObjectGraph.TrackableObject.ObjectReference children = 1; @@ -1628,7 +1628,7 @@ public org.tensorflow.proto.framework.TrackableObjectGraph.TrackableObject.Objec *
              * Objects which this object depends on: named edges in the dependency
              * graph.
        -     * Note: currently only valid if kind == "user_object".
        +     * Note: currently only valid if kind == "user_object" or "resource".
              * 
        * * repeated .tensorflow.TrackableObjectGraph.TrackableObject.ObjectReference children = 1; @@ -1641,7 +1641,7 @@ public org.tensorflow.proto.framework.TrackableObjectGraph.TrackableObject.Objec *
              * Objects which this object depends on: named edges in the dependency
              * graph.
        -     * Note: currently only valid if kind == "user_object".
        +     * Note: currently only valid if kind == "user_object" or "resource".
              * 
        * * repeated .tensorflow.TrackableObjectGraph.TrackableObject.ObjectReference children = 1; @@ -1655,7 +1655,7 @@ public org.tensorflow.proto.framework.TrackableObjectGraph.TrackableObject.Objec *
              * Objects which this object depends on: named edges in the dependency
              * graph.
        -     * Note: currently only valid if kind == "user_object".
        +     * Note: currently only valid if kind == "user_object" or "resource".
              * 
        * * repeated .tensorflow.TrackableObjectGraph.TrackableObject.ObjectReference children = 1; diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/SavedObjectGraphProtos.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/SavedObjectGraphProtos.java index 9405d43b87d..42f43aee942 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/SavedObjectGraphProtos.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/SavedObjectGraphProtos.java @@ -149,20 +149,20 @@ public static void registerAllExtensions( "sorflow.VariableAggregation\022\014\n\004name\030\006 \001(" + "\t\022\016\n\006device\030\007 \001(\t\022O\n,experimental_distri" + "buted_variable_components\030\010 \003(\0132\031.tensor" + - "flow.SavedVariable\"\226\002\n\014FunctionSpec\0220\n\013f" + + "flow.SavedVariable\"\373\001\n\014FunctionSpec\0220\n\013f" + "ullargspec\030\001 \001(\0132\033.tensorflow.Structured" + "Value\022\021\n\tis_method\030\002 \001(\010\0224\n\017input_signat" + - "ure\030\005 \001(\0132\033.tensorflow.StructuredValue\022J" + - "\n\024experimental_compile\030\006 \001(\0162,.tensorflo" + - "w.FunctionSpec.ExperimentalCompile\"3\n\023Ex" + - "perimentalCompile\022\013\n\007DEFAULT\020\000\022\006\n\002ON\020\001\022\007" + - "\n\003OFF\020\002J\004\010\003\020\004J\004\010\004\020\005\"\037\n\rSavedResource\022\016\n\006" + - "device\030\001 \001(\t\"A\n\016SaveableObject\022\025\n\rsave_f" + - "unction\030\002 \001(\005\022\030\n\020restore_function\030\003 \001(\005B" + - "\224\001\n\036org.tensorflow.proto.frameworkB\026Save" + - "dObjectGraphProtosP\001ZUgithub.com/tensorf" + - "low/tensorflow/tensorflow/go/core/protob" + - "uf/for_core_protos_go_proto\370\001\001b\006proto3" + "ure\030\005 \001(\0132\033.tensorflow.StructuredValue\0228" + + "\n\013jit_compile\030\006 \001(\0162#.tensorflow.Functio" + + "nSpec.JitCompile\"*\n\nJitCompile\022\013\n\007DEFAUL" + + "T\020\000\022\006\n\002ON\020\001\022\007\n\003OFF\020\002J\004\010\003\020\004J\004\010\004\020\005\"\037\n\rSave" + + "dResource\022\016\n\006device\030\001 \001(\t\"A\n\016SaveableObj" + + "ect\022\025\n\rsave_function\030\002 \001(\005\022\030\n\020restore_fu" + + "nction\030\003 \001(\005B\224\001\n\036org.tensorflow.proto.fr" + + "ameworkB\026SavedObjectGraphProtosP\001ZUgithu" + + "b.com/tensorflow/tensorflow/tensorflow/g" + + "o/core/protobuf/for_core_protos_go_proto" + + "\370\001\001b\006proto3" }; descriptor = com.google.protobuf.Descriptors.FileDescriptor .internalBuildGeneratedFileFrom(descriptorData, @@ -245,7 +245,7 @@ public static void registerAllExtensions( internal_static_tensorflow_FunctionSpec_fieldAccessorTable = new com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( internal_static_tensorflow_FunctionSpec_descriptor, - new java.lang.String[] { "Fullargspec", "IsMethod", "InputSignature", "ExperimentalCompile", }); + new java.lang.String[] { "Fullargspec", "IsMethod", "InputSignature", "JitCompile", }); internal_static_tensorflow_SavedResource_descriptor = getDescriptor().getMessageTypes().get(10); internal_static_tensorflow_SavedResource_fieldAccessorTable = new diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/SavedObjectOrBuilder.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/SavedObjectOrBuilder.java index 269ee74c9f2..79283c86bce 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/SavedObjectOrBuilder.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/SavedObjectOrBuilder.java @@ -11,7 +11,7 @@ public interface SavedObjectOrBuilder extends *
            * Objects which this object depends on: named edges in the dependency
            * graph.
        -   * Note: currently only valid if kind == "user_object".
        +   * Note: currently only valid if kind == "user_object" or "resource".
            * 
        * * repeated .tensorflow.TrackableObjectGraph.TrackableObject.ObjectReference children = 1; @@ -22,7 +22,7 @@ public interface SavedObjectOrBuilder extends *
            * Objects which this object depends on: named edges in the dependency
            * graph.
        -   * Note: currently only valid if kind == "user_object".
        +   * Note: currently only valid if kind == "user_object" or "resource".
            * 
        * * repeated .tensorflow.TrackableObjectGraph.TrackableObject.ObjectReference children = 1; @@ -32,7 +32,7 @@ public interface SavedObjectOrBuilder extends *
            * Objects which this object depends on: named edges in the dependency
            * graph.
        -   * Note: currently only valid if kind == "user_object".
        +   * Note: currently only valid if kind == "user_object" or "resource".
            * 
        * * repeated .tensorflow.TrackableObjectGraph.TrackableObject.ObjectReference children = 1; @@ -42,7 +42,7 @@ public interface SavedObjectOrBuilder extends *
            * Objects which this object depends on: named edges in the dependency
            * graph.
        -   * Note: currently only valid if kind == "user_object".
        +   * Note: currently only valid if kind == "user_object" or "resource".
            * 
        * * repeated .tensorflow.TrackableObjectGraph.TrackableObject.ObjectReference children = 1; @@ -53,7 +53,7 @@ public interface SavedObjectOrBuilder extends *
            * Objects which this object depends on: named edges in the dependency
            * graph.
        -   * Note: currently only valid if kind == "user_object".
        +   * Note: currently only valid if kind == "user_object" or "resource".
            * 
        * * repeated .tensorflow.TrackableObjectGraph.TrackableObject.ObjectReference children = 1; diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/SavedUserObject.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/SavedUserObject.java index f66874096f5..888f24bb867 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/SavedUserObject.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/SavedUserObject.java @@ -194,6 +194,9 @@ public org.tensorflow.proto.framework.VersionDefOrBuilder getVersionOrBuilder() private volatile java.lang.Object metadata_; /** *
        +   * Deprecated! At the time of deprecation, Keras was the only user of this
        +   * field, and its saving and loading code will be updated shortly.
        +   * Please save your application-specific metadata to separate file
            * Initialization-related metadata.
            * 
        * @@ -213,6 +216,9 @@ public java.lang.String getMetadata() { } /** *
        +   * Deprecated! At the time of deprecation, Keras was the only user of this
        +   * field, and its saving and loading code will be updated shortly.
        +   * Please save your application-specific metadata to separate file
            * Initialization-related metadata.
            * 
        * @@ -834,6 +840,9 @@ public org.tensorflow.proto.framework.VersionDefOrBuilder getVersionOrBuilder() private java.lang.Object metadata_ = ""; /** *
        +     * Deprecated! At the time of deprecation, Keras was the only user of this
        +     * field, and its saving and loading code will be updated shortly.
        +     * Please save your application-specific metadata to separate file
              * Initialization-related metadata.
              * 
        * @@ -853,6 +862,9 @@ public java.lang.String getMetadata() { } /** *
        +     * Deprecated! At the time of deprecation, Keras was the only user of this
        +     * field, and its saving and loading code will be updated shortly.
        +     * Please save your application-specific metadata to separate file
              * Initialization-related metadata.
              * 
        * @@ -873,6 +885,9 @@ public java.lang.String getMetadata() { } /** *
        +     * Deprecated! At the time of deprecation, Keras was the only user of this
        +     * field, and its saving and loading code will be updated shortly.
        +     * Please save your application-specific metadata to separate file
              * Initialization-related metadata.
              * 
        * @@ -890,6 +905,9 @@ public Builder setMetadata( } /** *
        +     * Deprecated! At the time of deprecation, Keras was the only user of this
        +     * field, and its saving and loading code will be updated shortly.
        +     * Please save your application-specific metadata to separate file
              * Initialization-related metadata.
              * 
        * @@ -903,6 +921,9 @@ public Builder clearMetadata() { } /** *
        +     * Deprecated! At the time of deprecation, Keras was the only user of this
        +     * field, and its saving and loading code will be updated shortly.
        +     * Please save your application-specific metadata to separate file
              * Initialization-related metadata.
              * 
        * diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/SavedUserObjectOrBuilder.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/SavedUserObjectOrBuilder.java index bd7cbadcbd3..91d00aa1861 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/SavedUserObjectOrBuilder.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/SavedUserObjectOrBuilder.java @@ -52,6 +52,9 @@ public interface SavedUserObjectOrBuilder extends /** *
        +   * Deprecated! At the time of deprecation, Keras was the only user of this
        +   * field, and its saving and loading code will be updated shortly.
        +   * Please save your application-specific metadata to separate file
            * Initialization-related metadata.
            * 
        * @@ -60,6 +63,9 @@ public interface SavedUserObjectOrBuilder extends java.lang.String getMetadata(); /** *
        +   * Deprecated! At the time of deprecation, Keras was the only user of this
        +   * field, and its saving and loading code will be updated shortly.
        +   * Please save your application-specific metadata to separate file
            * Initialization-related metadata.
            * 
        * diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/SessionInfo.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/SessionInfo.java new file mode 100644 index 00000000000..f44e0f0e52d --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/SessionInfo.java @@ -0,0 +1,485 @@ +// Generated by the protocol buffer compiler. DO NOT EDIT! +// source: tensorflow/core/grappler/costs/op_performance_data.proto + +package org.tensorflow.proto.framework; + +/** + *
        + * Description of the session when an op is run.
        + * 
        + * + * Protobuf type {@code tensorflow.SessionInfo} + */ +public final class SessionInfo extends + com.google.protobuf.GeneratedMessageV3 implements + // @@protoc_insertion_point(message_implements:tensorflow.SessionInfo) + SessionInfoOrBuilder { +private static final long serialVersionUID = 0L; + // Use SessionInfo.newBuilder() to construct. + private SessionInfo(com.google.protobuf.GeneratedMessageV3.Builder builder) { + super(builder); + } + private SessionInfo() { + } + + @java.lang.Override + @SuppressWarnings({"unused"}) + protected java.lang.Object newInstance( + UnusedPrivateParameter unused) { + return new SessionInfo(); + } + + @java.lang.Override + public final com.google.protobuf.UnknownFieldSet + getUnknownFields() { + return this.unknownFields; + } + private SessionInfo( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + this(); + if (extensionRegistry == null) { + throw new java.lang.NullPointerException(); + } + com.google.protobuf.UnknownFieldSet.Builder unknownFields = + com.google.protobuf.UnknownFieldSet.newBuilder(); + try { + boolean done = false; + while (!done) { + int tag = input.readTag(); + switch (tag) { + case 0: + done = true; + break; + case 8: { + + intraOpParallelism_ = input.readInt64(); + break; + } + default: { + if (!parseUnknownField( + input, unknownFields, extensionRegistry, tag)) { + done = true; + } + break; + } + } + } + } catch (com.google.protobuf.InvalidProtocolBufferException e) { + throw e.setUnfinishedMessage(this); + } catch (java.io.IOException e) { + throw new com.google.protobuf.InvalidProtocolBufferException( + e).setUnfinishedMessage(this); + } finally { + this.unknownFields = unknownFields.build(); + makeExtensionsImmutable(); + } + } + public static final com.google.protobuf.Descriptors.Descriptor + getDescriptor() { + return org.tensorflow.proto.framework.OpPerformanceDataProtos.internal_static_tensorflow_SessionInfo_descriptor; + } + + @java.lang.Override + protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable + internalGetFieldAccessorTable() { + return org.tensorflow.proto.framework.OpPerformanceDataProtos.internal_static_tensorflow_SessionInfo_fieldAccessorTable + .ensureFieldAccessorsInitialized( + org.tensorflow.proto.framework.SessionInfo.class, org.tensorflow.proto.framework.SessionInfo.Builder.class); + } + + public static final int INTRA_OP_PARALLELISM_FIELD_NUMBER = 1; + private long intraOpParallelism_; + /** + * int64 intra_op_parallelism = 1; + */ + public long getIntraOpParallelism() { + return intraOpParallelism_; + } + + private byte memoizedIsInitialized = -1; + @java.lang.Override + public final boolean isInitialized() { + byte isInitialized = memoizedIsInitialized; + if (isInitialized == 1) return true; + if (isInitialized == 0) return false; + + memoizedIsInitialized = 1; + return true; + } + + @java.lang.Override + public void writeTo(com.google.protobuf.CodedOutputStream output) + throws java.io.IOException { + if (intraOpParallelism_ != 0L) { + output.writeInt64(1, intraOpParallelism_); + } + unknownFields.writeTo(output); + } + + @java.lang.Override + public int getSerializedSize() { + int size = memoizedSize; + if (size != -1) return size; + + size = 0; + if (intraOpParallelism_ != 0L) { + size += com.google.protobuf.CodedOutputStream + .computeInt64Size(1, intraOpParallelism_); + } + size += unknownFields.getSerializedSize(); + memoizedSize = size; + return size; + } + + @java.lang.Override + public boolean equals(final java.lang.Object obj) { + if (obj == this) { + return true; + } + if (!(obj instanceof org.tensorflow.proto.framework.SessionInfo)) { + return super.equals(obj); + } + org.tensorflow.proto.framework.SessionInfo other = (org.tensorflow.proto.framework.SessionInfo) obj; + + if (getIntraOpParallelism() + != other.getIntraOpParallelism()) return false; + if (!unknownFields.equals(other.unknownFields)) return false; + return true; + } + + @java.lang.Override + public int hashCode() { + if (memoizedHashCode != 0) { + return memoizedHashCode; + } + int hash = 41; + hash = (19 * hash) + getDescriptor().hashCode(); + hash = (37 * hash) + INTRA_OP_PARALLELISM_FIELD_NUMBER; + hash = (53 * hash) + com.google.protobuf.Internal.hashLong( + getIntraOpParallelism()); + hash = (29 * hash) + unknownFields.hashCode(); + memoizedHashCode = hash; + return hash; + } + + public static org.tensorflow.proto.framework.SessionInfo parseFrom( + java.nio.ByteBuffer data) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data); + } + public static org.tensorflow.proto.framework.SessionInfo parseFrom( + java.nio.ByteBuffer data, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data, extensionRegistry); + } + public static org.tensorflow.proto.framework.SessionInfo parseFrom( + com.google.protobuf.ByteString data) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data); + } + public static org.tensorflow.proto.framework.SessionInfo parseFrom( + com.google.protobuf.ByteString data, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data, extensionRegistry); + } + public static org.tensorflow.proto.framework.SessionInfo parseFrom(byte[] data) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data); + } + public static org.tensorflow.proto.framework.SessionInfo parseFrom( + byte[] data, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data, extensionRegistry); + } + public static org.tensorflow.proto.framework.SessionInfo parseFrom(java.io.InputStream input) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input); + } + public static org.tensorflow.proto.framework.SessionInfo parseFrom( + java.io.InputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input, extensionRegistry); + } + public static org.tensorflow.proto.framework.SessionInfo parseDelimitedFrom(java.io.InputStream input) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseDelimitedWithIOException(PARSER, input); + } + public static org.tensorflow.proto.framework.SessionInfo parseDelimitedFrom( + java.io.InputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseDelimitedWithIOException(PARSER, input, extensionRegistry); + } + public static org.tensorflow.proto.framework.SessionInfo parseFrom( + com.google.protobuf.CodedInputStream input) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input); + } + public static org.tensorflow.proto.framework.SessionInfo parseFrom( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input, extensionRegistry); + } + + @java.lang.Override + public Builder newBuilderForType() { return newBuilder(); } + public static Builder newBuilder() { + return DEFAULT_INSTANCE.toBuilder(); + } + public static Builder newBuilder(org.tensorflow.proto.framework.SessionInfo prototype) { + return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); + } + @java.lang.Override + public Builder toBuilder() { + return this == DEFAULT_INSTANCE + ? new Builder() : new Builder().mergeFrom(this); + } + + @java.lang.Override + protected Builder newBuilderForType( + com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { + Builder builder = new Builder(parent); + return builder; + } + /** + *
        +   * Description of the session when an op is run.
        +   * 
        + * + * Protobuf type {@code tensorflow.SessionInfo} + */ + public static final class Builder extends + com.google.protobuf.GeneratedMessageV3.Builder implements + // @@protoc_insertion_point(builder_implements:tensorflow.SessionInfo) + org.tensorflow.proto.framework.SessionInfoOrBuilder { + public static final com.google.protobuf.Descriptors.Descriptor + getDescriptor() { + return org.tensorflow.proto.framework.OpPerformanceDataProtos.internal_static_tensorflow_SessionInfo_descriptor; + } + + @java.lang.Override + protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable + internalGetFieldAccessorTable() { + return org.tensorflow.proto.framework.OpPerformanceDataProtos.internal_static_tensorflow_SessionInfo_fieldAccessorTable + .ensureFieldAccessorsInitialized( + org.tensorflow.proto.framework.SessionInfo.class, org.tensorflow.proto.framework.SessionInfo.Builder.class); + } + + // Construct using org.tensorflow.proto.framework.SessionInfo.newBuilder() + private Builder() { + maybeForceBuilderInitialization(); + } + + private Builder( + com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { + super(parent); + maybeForceBuilderInitialization(); + } + private void maybeForceBuilderInitialization() { + if (com.google.protobuf.GeneratedMessageV3 + .alwaysUseFieldBuilders) { + } + } + @java.lang.Override + public Builder clear() { + super.clear(); + intraOpParallelism_ = 0L; + + return this; + } + + @java.lang.Override + public com.google.protobuf.Descriptors.Descriptor + getDescriptorForType() { + return org.tensorflow.proto.framework.OpPerformanceDataProtos.internal_static_tensorflow_SessionInfo_descriptor; + } + + @java.lang.Override + public org.tensorflow.proto.framework.SessionInfo getDefaultInstanceForType() { + return org.tensorflow.proto.framework.SessionInfo.getDefaultInstance(); + } + + @java.lang.Override + public org.tensorflow.proto.framework.SessionInfo build() { + org.tensorflow.proto.framework.SessionInfo result = buildPartial(); + if (!result.isInitialized()) { + throw newUninitializedMessageException(result); + } + return result; + } + + @java.lang.Override + public org.tensorflow.proto.framework.SessionInfo buildPartial() { + org.tensorflow.proto.framework.SessionInfo result = new org.tensorflow.proto.framework.SessionInfo(this); + result.intraOpParallelism_ = intraOpParallelism_; + onBuilt(); + return result; + } + + @java.lang.Override + public Builder clone() { + return super.clone(); + } + @java.lang.Override + public Builder setField( + com.google.protobuf.Descriptors.FieldDescriptor field, + java.lang.Object value) { + return super.setField(field, value); + } + @java.lang.Override + public Builder clearField( + com.google.protobuf.Descriptors.FieldDescriptor field) { + return super.clearField(field); + } + @java.lang.Override + public Builder clearOneof( + com.google.protobuf.Descriptors.OneofDescriptor oneof) { + return super.clearOneof(oneof); + } + @java.lang.Override + public Builder setRepeatedField( + com.google.protobuf.Descriptors.FieldDescriptor field, + int index, java.lang.Object value) { + return super.setRepeatedField(field, index, value); + } + @java.lang.Override + public Builder addRepeatedField( + com.google.protobuf.Descriptors.FieldDescriptor field, + java.lang.Object value) { + return super.addRepeatedField(field, value); + } + @java.lang.Override + public Builder mergeFrom(com.google.protobuf.Message other) { + if (other instanceof org.tensorflow.proto.framework.SessionInfo) { + return mergeFrom((org.tensorflow.proto.framework.SessionInfo)other); + } else { + super.mergeFrom(other); + return this; + } + } + + public Builder mergeFrom(org.tensorflow.proto.framework.SessionInfo other) { + if (other == org.tensorflow.proto.framework.SessionInfo.getDefaultInstance()) return this; + if (other.getIntraOpParallelism() != 0L) { + setIntraOpParallelism(other.getIntraOpParallelism()); + } + this.mergeUnknownFields(other.unknownFields); + onChanged(); + return this; + } + + @java.lang.Override + public final boolean isInitialized() { + return true; + } + + @java.lang.Override + public Builder mergeFrom( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + org.tensorflow.proto.framework.SessionInfo parsedMessage = null; + try { + parsedMessage = PARSER.parsePartialFrom(input, extensionRegistry); + } catch (com.google.protobuf.InvalidProtocolBufferException e) { + parsedMessage = (org.tensorflow.proto.framework.SessionInfo) e.getUnfinishedMessage(); + throw e.unwrapIOException(); + } finally { + if (parsedMessage != null) { + mergeFrom(parsedMessage); + } + } + return this; + } + + private long intraOpParallelism_ ; + /** + * int64 intra_op_parallelism = 1; + */ + public long getIntraOpParallelism() { + return intraOpParallelism_; + } + /** + * int64 intra_op_parallelism = 1; + */ + public Builder setIntraOpParallelism(long value) { + + intraOpParallelism_ = value; + onChanged(); + return this; + } + /** + * int64 intra_op_parallelism = 1; + */ + public Builder clearIntraOpParallelism() { + + intraOpParallelism_ = 0L; + onChanged(); + return this; + } + @java.lang.Override + public final Builder setUnknownFields( + final com.google.protobuf.UnknownFieldSet unknownFields) { + return super.setUnknownFields(unknownFields); + } + + @java.lang.Override + public final Builder mergeUnknownFields( + final com.google.protobuf.UnknownFieldSet unknownFields) { + return super.mergeUnknownFields(unknownFields); + } + + + // @@protoc_insertion_point(builder_scope:tensorflow.SessionInfo) + } + + // @@protoc_insertion_point(class_scope:tensorflow.SessionInfo) + private static final org.tensorflow.proto.framework.SessionInfo DEFAULT_INSTANCE; + static { + DEFAULT_INSTANCE = new org.tensorflow.proto.framework.SessionInfo(); + } + + public static org.tensorflow.proto.framework.SessionInfo getDefaultInstance() { + return DEFAULT_INSTANCE; + } + + private static final com.google.protobuf.Parser + PARSER = new com.google.protobuf.AbstractParser() { + @java.lang.Override + public SessionInfo parsePartialFrom( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return new SessionInfo(input, extensionRegistry); + } + }; + + public static com.google.protobuf.Parser parser() { + return PARSER; + } + + @java.lang.Override + public com.google.protobuf.Parser getParserForType() { + return PARSER; + } + + @java.lang.Override + public org.tensorflow.proto.framework.SessionInfo getDefaultInstanceForType() { + return DEFAULT_INSTANCE; + } + +} + diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/SessionInfoOrBuilder.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/SessionInfoOrBuilder.java new file mode 100644 index 00000000000..43181b82317 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/SessionInfoOrBuilder.java @@ -0,0 +1,14 @@ +// Generated by the protocol buffer compiler. DO NOT EDIT! +// source: tensorflow/core/grappler/costs/op_performance_data.proto + +package org.tensorflow.proto.framework; + +public interface SessionInfoOrBuilder extends + // @@protoc_insertion_point(interface_extends:tensorflow.SessionInfo) + com.google.protobuf.MessageOrBuilder { + + /** + * int64 intra_op_parallelism = 1; + */ + long getIntraOpParallelism(); +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/SignatureDef.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/SignatureDef.java index fe588917c86..73e8cf42672 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/SignatureDef.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/SignatureDef.java @@ -8,7 +8,7 @@ * SignatureDef defines the signature of a computation supported by a TensorFlow * graph. * For example, a model with two loss computations, sharing a single input, - * might have the following signature_def map. + * might have the following signature_def map, in a MetaGraphDef message. * Note that across the two SignatureDefs "loss_A" and "loss_B", the input key, * output key, and method_name are identical, and will be used by system(s) that * implement or rely upon this particular loss method. The output tensor names @@ -32,9 +32,9 @@ * tensor_shape: ... * } * } + * method_name: "some/package/compute_loss" * } * ... - * method_name: "some/package/compute_loss" * } * signature_def { * key: "loss_B" @@ -55,9 +55,9 @@ * tensor_shape: ... * } * } + * method_name: "some/package/compute_loss" * } * ... - * method_name: "some/package/compute_loss" * } *
        * @@ -626,7 +626,7 @@ protected Builder newBuilderForType( * SignatureDef defines the signature of a computation supported by a TensorFlow * graph. * For example, a model with two loss computations, sharing a single input, - * might have the following signature_def map. + * might have the following signature_def map, in a MetaGraphDef message. * Note that across the two SignatureDefs "loss_A" and "loss_B", the input key, * output key, and method_name are identical, and will be used by system(s) that * implement or rely upon this particular loss method. The output tensor names @@ -650,9 +650,9 @@ protected Builder newBuilderForType( * tensor_shape: ... * } * } + * method_name: "some/package/compute_loss" * } * ... - * method_name: "some/package/compute_loss" * } * signature_def { * key: "loss_B" @@ -673,9 +673,9 @@ protected Builder newBuilderForType( * tensor_shape: ... * } * } + * method_name: "some/package/compute_loss" * } * ... - * method_name: "some/package/compute_loss" * } *
        * diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/SpecializedType.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/SpecializedType.java index 8af9cfa82cc..1237f97c862 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/SpecializedType.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/SpecializedType.java @@ -31,6 +31,14 @@ public enum SpecializedType * ST_TENSOR_LIST = 1; */ ST_TENSOR_LIST(1), + /** + *
        +   * "tensorflow::data::Optional" in the variant type registry.
        +   * 
        + * + * ST_OPTIONAL = 2; + */ + ST_OPTIONAL(2), UNRECOGNIZED(-1), ; @@ -50,6 +58,14 @@ public enum SpecializedType * ST_TENSOR_LIST = 1; */ public static final int ST_TENSOR_LIST_VALUE = 1; + /** + *
        +   * "tensorflow::data::Optional" in the variant type registry.
        +   * 
        + * + * ST_OPTIONAL = 2; + */ + public static final int ST_OPTIONAL_VALUE = 2; public final int getNumber() { @@ -72,6 +88,7 @@ public static SpecializedType forNumber(int value) { switch (value) { case 0: return ST_INVALID; case 1: return ST_TENSOR_LIST; + case 2: return ST_OPTIONAL; default: return null; } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/StructProtos.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/StructProtos.java index f5b217be8b1..f2f04f9c9ed 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/StructProtos.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/StructProtos.java @@ -117,21 +117,21 @@ public static void registerAllExtensions( "hapeProto\022#\n\005dtype\030\003 \001(\0162\024.tensorflow.Da" + "taType\022(\n\007minimum\030\004 \001(\0132\027.tensorflow.Ten" + "sorProto\022(\n\007maximum\030\005 \001(\0132\027.tensorflow.T" + - "ensorProto\"\264\003\n\rTypeSpecProto\022@\n\017type_spe" + + "ensorProto\"\250\003\n\rTypeSpecProto\022@\n\017type_spe" + "c_class\030\001 \001(\0162\'.tensorflow.TypeSpecProto" + ".TypeSpecClass\022/\n\ntype_state\030\002 \001(\0132\033.ten" + "sorflow.StructuredValue\022\034\n\024type_spec_cla" + - "ss_name\030\003 \001(\t\"\221\002\n\rTypeSpecClass\022\013\n\007UNKNO" + + "ss_name\030\003 \001(\t\"\205\002\n\rTypeSpecClass\022\013\n\007UNKNO" + "WN\020\000\022\026\n\022SPARSE_TENSOR_SPEC\020\001\022\027\n\023INDEXED_" + "SLICES_SPEC\020\002\022\026\n\022RAGGED_TENSOR_SPEC\020\003\022\025\n" + "\021TENSOR_ARRAY_SPEC\020\004\022\025\n\021DATA_DATASET_SPE" + "C\020\005\022\026\n\022DATA_ITERATOR_SPEC\020\006\022\021\n\rOPTIONAL_" + "SPEC\020\007\022\024\n\020PER_REPLICA_SPEC\020\010\022\021\n\rVARIABLE" + - "_SPEC\020\t\022\026\n\022ROW_PARTITION_SPEC\020\n\022\020\n\014NDARR" + - "AY_SPEC\020\013B\207\001\n\036org.tensorflow.proto.frame" + - "workB\014StructProtosP\001ZUgithub.com/tensorf" + - "low/tensorflow/tensorflow/go/core/protob" + - "uf/for_core_protos_go_protob\006proto3" + "_SPEC\020\t\022\026\n\022ROW_PARTITION_SPEC\020\n\"\004\010\013\020\013B\207\001" + + "\n\036org.tensorflow.proto.frameworkB\014Struct" + + "ProtosP\001ZUgithub.com/tensorflow/tensorfl" + + "ow/tensorflow/go/core/protobuf/for_core_" + + "protos_go_protob\006proto3" }; descriptor = com.google.protobuf.Descriptors.FileDescriptor .internalBuildGeneratedFileFrom(descriptorData, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/TypeSpecProto.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/TypeSpecProto.java index da8535cd530..10c64eeb41c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/TypeSpecProto.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/TypeSpecProto.java @@ -200,14 +200,6 @@ public enum TypeSpecClass * ROW_PARTITION_SPEC = 10; */ ROW_PARTITION_SPEC(10), - /** - *
        -     * TF Numpy NDarray spec
        -     * 
        - * - * NDARRAY_SPEC = 11; - */ - NDARRAY_SPEC(11), UNRECOGNIZED(-1), ; @@ -295,14 +287,6 @@ public enum TypeSpecClass * ROW_PARTITION_SPEC = 10; */ public static final int ROW_PARTITION_SPEC_VALUE = 10; - /** - *
        -     * TF Numpy NDarray spec
        -     * 
        - * - * NDARRAY_SPEC = 11; - */ - public static final int NDARRAY_SPEC_VALUE = 11; public final int getNumber() { @@ -334,7 +318,6 @@ public static TypeSpecClass forNumber(int value) { case 8: return PER_REPLICA_SPEC; case 9: return VARIABLE_SPEC; case 10: return ROW_PARTITION_SPEC; - case 11: return NDARRAY_SPEC; default: return null; } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/TypesProtos.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/TypesProtos.java index b575702424b..869330204e7 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/TypesProtos.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/framework/TypesProtos.java @@ -44,12 +44,12 @@ public static void registerAllExtensions( "_REF\020t\022\021\n\rDT_UINT16_REF\020u\022\025\n\021DT_COMPLEX1" + "28_REF\020v\022\017\n\013DT_HALF_REF\020w\022\023\n\017DT_RESOURCE" + "_REF\020x\022\022\n\016DT_VARIANT_REF\020y\022\021\n\rDT_UINT32_" + - "REF\020z\022\021\n\rDT_UINT64_REF\020{*5\n\017SpecializedT" + - "ype\022\016\n\nST_INVALID\020\000\022\022\n\016ST_TENSOR_LIST\020\001B" + - "\200\001\n\036org.tensorflow.proto.frameworkB\013Type" + - "sProtosP\001ZLgithub.com/tensorflow/tensorf" + - "low/tensorflow/go/core/framework/types_g" + - "o_proto\370\001\001b\006proto3" + "REF\020z\022\021\n\rDT_UINT64_REF\020{*F\n\017SpecializedT" + + "ype\022\016\n\nST_INVALID\020\000\022\022\n\016ST_TENSOR_LIST\020\001\022" + + "\017\n\013ST_OPTIONAL\020\002B\200\001\n\036org.tensorflow.prot" + + "o.frameworkB\013TypesProtosP\001ZLgithub.com/t" + + "ensorflow/tensorflow/tensorflow/go/core/" + + "framework/types_go_proto\370\001\001b\006proto3" }; descriptor = com.google.protobuf.Descriptors.FileDescriptor .internalBuildGeneratedFileFrom(descriptorData, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/profiler/XEventMetadata.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/profiler/XEventMetadata.java index 1085ab6ecce..f06bc4c25b7 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/profiler/XEventMetadata.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/profiler/XEventMetadata.java @@ -7,7 +7,7 @@ *
          * Metadata for an XEvent, corresponds to an event type and is shared by
          * all XEvents with the same metadata_id.
        - * Next ID: 6
        + * Next ID: 7
          * 
        * * Protobuf type {@code tensorflow.profiler.XEventMetadata} @@ -26,6 +26,7 @@ private XEventMetadata() { displayName_ = ""; metadata_ = com.google.protobuf.ByteString.EMPTY; stats_ = java.util.Collections.emptyList(); + childId_ = emptyLongList(); } @java.lang.Override @@ -90,6 +91,27 @@ private XEventMetadata( input.readMessage(org.tensorflow.proto.profiler.XStat.parser(), extensionRegistry)); break; } + case 48: { + if (!((mutable_bitField0_ & 0x00000002) != 0)) { + childId_ = newLongList(); + mutable_bitField0_ |= 0x00000002; + } + childId_.addLong(input.readInt64()); + break; + } + case 50: { + int length = input.readRawVarint32(); + int limit = input.pushLimit(length); + if (!((mutable_bitField0_ & 0x00000002) != 0) && input.getBytesUntilLimit() > 0) { + childId_ = newLongList(); + mutable_bitField0_ |= 0x00000002; + } + while (input.getBytesUntilLimit() > 0) { + childId_.addLong(input.readInt64()); + } + input.popLimit(limit); + break; + } default: { if (!parseUnknownField( input, unknownFields, extensionRegistry, tag)) { @@ -108,6 +130,9 @@ private XEventMetadata( if (((mutable_bitField0_ & 0x00000001) != 0)) { stats_ = java.util.Collections.unmodifiableList(stats_); } + if (((mutable_bitField0_ & 0x00000002) != 0)) { + childId_.makeImmutable(); // C + } this.unknownFields = unknownFields.build(); makeExtensionsImmutable(); } @@ -295,6 +320,41 @@ public org.tensorflow.proto.profiler.XStatOrBuilder getStatsOrBuilder( return stats_.get(index); } + public static final int CHILD_ID_FIELD_NUMBER = 6; + private com.google.protobuf.Internal.LongList childId_; + /** + *
        +   * XPlane.event_metadata map key for children events.
        +   * 
        + * + * repeated int64 child_id = 6; + */ + public java.util.List + getChildIdList() { + return childId_; + } + /** + *
        +   * XPlane.event_metadata map key for children events.
        +   * 
        + * + * repeated int64 child_id = 6; + */ + public int getChildIdCount() { + return childId_.size(); + } + /** + *
        +   * XPlane.event_metadata map key for children events.
        +   * 
        + * + * repeated int64 child_id = 6; + */ + public long getChildId(int index) { + return childId_.getLong(index); + } + private int childIdMemoizedSerializedSize = -1; + private byte memoizedIsInitialized = -1; @java.lang.Override public final boolean isInitialized() { @@ -309,6 +369,7 @@ public final boolean isInitialized() { @java.lang.Override public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { + getSerializedSize(); if (id_ != 0L) { output.writeInt64(1, id_); } @@ -324,6 +385,13 @@ public void writeTo(com.google.protobuf.CodedOutputStream output) for (int i = 0; i < stats_.size(); i++) { output.writeMessage(5, stats_.get(i)); } + if (getChildIdList().size() > 0) { + output.writeUInt32NoTag(50); + output.writeUInt32NoTag(childIdMemoizedSerializedSize); + } + for (int i = 0; i < childId_.size(); i++) { + output.writeInt64NoTag(childId_.getLong(i)); + } unknownFields.writeTo(output); } @@ -351,6 +419,20 @@ public int getSerializedSize() { size += com.google.protobuf.CodedOutputStream .computeMessageSize(5, stats_.get(i)); } + { + int dataSize = 0; + for (int i = 0; i < childId_.size(); i++) { + dataSize += com.google.protobuf.CodedOutputStream + .computeInt64SizeNoTag(childId_.getLong(i)); + } + size += dataSize; + if (!getChildIdList().isEmpty()) { + size += 1; + size += com.google.protobuf.CodedOutputStream + .computeInt32SizeNoTag(dataSize); + } + childIdMemoizedSerializedSize = dataSize; + } size += unknownFields.getSerializedSize(); memoizedSize = size; return size; @@ -376,6 +458,8 @@ public boolean equals(final java.lang.Object obj) { .equals(other.getMetadata())) return false; if (!getStatsList() .equals(other.getStatsList())) return false; + if (!getChildIdList() + .equals(other.getChildIdList())) return false; if (!unknownFields.equals(other.unknownFields)) return false; return true; } @@ -400,6 +484,10 @@ public int hashCode() { hash = (37 * hash) + STATS_FIELD_NUMBER; hash = (53 * hash) + getStatsList().hashCode(); } + if (getChildIdCount() > 0) { + hash = (37 * hash) + CHILD_ID_FIELD_NUMBER; + hash = (53 * hash) + getChildIdList().hashCode(); + } hash = (29 * hash) + unknownFields.hashCode(); memoizedHashCode = hash; return hash; @@ -499,7 +587,7 @@ protected Builder newBuilderForType( *
            * Metadata for an XEvent, corresponds to an event type and is shared by
            * all XEvents with the same metadata_id.
        -   * Next ID: 6
        +   * Next ID: 7
            * 
        * * Protobuf type {@code tensorflow.profiler.XEventMetadata} @@ -554,6 +642,8 @@ public Builder clear() { } else { statsBuilder_.clear(); } + childId_ = emptyLongList(); + bitField0_ = (bitField0_ & ~0x00000002); return this; } @@ -594,6 +684,11 @@ public org.tensorflow.proto.profiler.XEventMetadata buildPartial() { } else { result.stats_ = statsBuilder_.build(); } + if (((bitField0_ & 0x00000002) != 0)) { + childId_.makeImmutable(); + bitField0_ = (bitField0_ & ~0x00000002); + } + result.childId_ = childId_; onBuilt(); return result; } @@ -682,6 +777,16 @@ public Builder mergeFrom(org.tensorflow.proto.profiler.XEventMetadata other) { } } } + if (!other.childId_.isEmpty()) { + if (childId_.isEmpty()) { + childId_ = other.childId_; + bitField0_ = (bitField0_ & ~0x00000002); + } else { + ensureChildIdIsMutable(); + childId_.addAll(other.childId_); + } + onChanged(); + } this.mergeUnknownFields(other.unknownFields); onChanged(); return this; @@ -1298,6 +1403,101 @@ public org.tensorflow.proto.profiler.XStat.Builder addStatsBuilder( } return statsBuilder_; } + + private com.google.protobuf.Internal.LongList childId_ = emptyLongList(); + private void ensureChildIdIsMutable() { + if (!((bitField0_ & 0x00000002) != 0)) { + childId_ = mutableCopy(childId_); + bitField0_ |= 0x00000002; + } + } + /** + *
        +     * XPlane.event_metadata map key for children events.
        +     * 
        + * + * repeated int64 child_id = 6; + */ + public java.util.List + getChildIdList() { + return ((bitField0_ & 0x00000002) != 0) ? + java.util.Collections.unmodifiableList(childId_) : childId_; + } + /** + *
        +     * XPlane.event_metadata map key for children events.
        +     * 
        + * + * repeated int64 child_id = 6; + */ + public int getChildIdCount() { + return childId_.size(); + } + /** + *
        +     * XPlane.event_metadata map key for children events.
        +     * 
        + * + * repeated int64 child_id = 6; + */ + public long getChildId(int index) { + return childId_.getLong(index); + } + /** + *
        +     * XPlane.event_metadata map key for children events.
        +     * 
        + * + * repeated int64 child_id = 6; + */ + public Builder setChildId( + int index, long value) { + ensureChildIdIsMutable(); + childId_.setLong(index, value); + onChanged(); + return this; + } + /** + *
        +     * XPlane.event_metadata map key for children events.
        +     * 
        + * + * repeated int64 child_id = 6; + */ + public Builder addChildId(long value) { + ensureChildIdIsMutable(); + childId_.addLong(value); + onChanged(); + return this; + } + /** + *
        +     * XPlane.event_metadata map key for children events.
        +     * 
        + * + * repeated int64 child_id = 6; + */ + public Builder addAllChildId( + java.lang.Iterable values) { + ensureChildIdIsMutable(); + com.google.protobuf.AbstractMessageLite.Builder.addAll( + values, childId_); + onChanged(); + return this; + } + /** + *
        +     * XPlane.event_metadata map key for children events.
        +     * 
        + * + * repeated int64 child_id = 6; + */ + public Builder clearChildId() { + childId_ = emptyLongList(); + bitField0_ = (bitField0_ & ~0x00000002); + onChanged(); + return this; + } @java.lang.Override public final Builder setUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/profiler/XEventMetadataOrBuilder.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/profiler/XEventMetadataOrBuilder.java index 4f865d87b0e..3fbae52ad47 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/profiler/XEventMetadataOrBuilder.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/profiler/XEventMetadataOrBuilder.java @@ -109,4 +109,29 @@ public interface XEventMetadataOrBuilder extends */ org.tensorflow.proto.profiler.XStatOrBuilder getStatsOrBuilder( int index); + + /** + *
        +   * XPlane.event_metadata map key for children events.
        +   * 
        + * + * repeated int64 child_id = 6; + */ + java.util.List getChildIdList(); + /** + *
        +   * XPlane.event_metadata map key for children events.
        +   * 
        + * + * repeated int64 child_id = 6; + */ + int getChildIdCount(); + /** + *
        +   * XPlane.event_metadata map key for children events.
        +   * 
        + * + * repeated int64 child_id = 6; + */ + long getChildId(int index); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/profiler/XPlaneProtos.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/profiler/XPlaneProtos.java index 4da0ce0a22e..041babd2d79 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/profiler/XPlaneProtos.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/profiler/XPlaneProtos.java @@ -96,13 +96,14 @@ public static void registerAllExtensions( "ouble_value\030\002 \001(\001H\000\022\026\n\014uint64_value\030\003 \001(" + "\004H\000\022\025\n\013int64_value\030\004 \001(\003H\000\022\023\n\tstr_value\030" + "\005 \001(\tH\000\022\025\n\013bytes_value\030\006 \001(\014H\000\022\023\n\tref_va" + - "lue\030\007 \001(\004H\000B\007\n\005value\"}\n\016XEventMetadata\022\n" + - "\n\002id\030\001 \001(\003\022\014\n\004name\030\002 \001(\t\022\024\n\014display_name" + - "\030\004 \001(\t\022\020\n\010metadata\030\003 \001(\014\022)\n\005stats\030\005 \003(\0132" + - "\032.tensorflow.profiler.XStat\">\n\rXStatMeta" + - "data\022\n\n\002id\030\001 \001(\003\022\014\n\004name\030\002 \001(\t\022\023\n\013descri" + - "ption\030\003 \001(\tB2\n\035org.tensorflow.proto.prof" + - "ilerB\014XPlaneProtosP\001\370\001\001b\006proto3" + "lue\030\007 \001(\004H\000B\007\n\005value\"\217\001\n\016XEventMetadata\022" + + "\n\n\002id\030\001 \001(\003\022\014\n\004name\030\002 \001(\t\022\024\n\014display_nam" + + "e\030\004 \001(\t\022\020\n\010metadata\030\003 \001(\014\022)\n\005stats\030\005 \003(\013" + + "2\032.tensorflow.profiler.XStat\022\020\n\010child_id" + + "\030\006 \003(\003\">\n\rXStatMetadata\022\n\n\002id\030\001 \001(\003\022\014\n\004n" + + "ame\030\002 \001(\t\022\023\n\013description\030\003 \001(\tB2\n\035org.te" + + "nsorflow.proto.profilerB\014XPlaneProtosP\001\370" + + "\001\001b\006proto3" }; descriptor = com.google.protobuf.Descriptors.FileDescriptor .internalBuildGeneratedFileFrom(descriptorData, @@ -155,7 +156,7 @@ public static void registerAllExtensions( internal_static_tensorflow_profiler_XEventMetadata_fieldAccessorTable = new com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( internal_static_tensorflow_profiler_XEventMetadata_descriptor, - new java.lang.String[] { "Id", "Name", "DisplayName", "Metadata", "Stats", }); + new java.lang.String[] { "Id", "Name", "DisplayName", "Metadata", "Stats", "ChildId", }); internal_static_tensorflow_profiler_XStatMetadata_descriptor = getDescriptor().getMessageTypes().get(6); internal_static_tensorflow_profiler_XStatMetadata_fieldAccessorTable = new diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/util/Event.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/util/Event.java index 9b30419c091..b43e146b202 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/util/Event.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/util/Event.java @@ -174,7 +174,7 @@ public enum WhatCase FILE_VERSION(3), GRAPH_DEF(4), SUMMARY(5), - LOG_MESSAGE(6), + @java.lang.Deprecated LOG_MESSAGE(6), SESSION_LOG(7), TAGGED_RUN_METADATA(8), META_GRAPH_DEF(9), @@ -354,24 +354,26 @@ public org.tensorflow.proto.framework.SummaryOrBuilder getSummaryOrBuilder() { public static final int LOG_MESSAGE_FIELD_NUMBER = 6; /** *
        -   * The user output a log message. Not all messages are logged, only ones
        -   * generated via the Python tensorboard_logging module.
        +   * The user output a log message. This was theoretically used by the defunct
        +   * tensorboard_logging module, which has since been removed; this field is
        +   * now deprecated and should not be used.
            * 
        * - * .tensorflow.LogMessage log_message = 6; + * .tensorflow.LogMessage log_message = 6 [deprecated = true]; */ - public boolean hasLogMessage() { + @java.lang.Deprecated public boolean hasLogMessage() { return whatCase_ == 6; } /** *
        -   * The user output a log message. Not all messages are logged, only ones
        -   * generated via the Python tensorboard_logging module.
        +   * The user output a log message. This was theoretically used by the defunct
        +   * tensorboard_logging module, which has since been removed; this field is
        +   * now deprecated and should not be used.
            * 
        * - * .tensorflow.LogMessage log_message = 6; + * .tensorflow.LogMessage log_message = 6 [deprecated = true]; */ - public org.tensorflow.proto.util.LogMessage getLogMessage() { + @java.lang.Deprecated public org.tensorflow.proto.util.LogMessage getLogMessage() { if (whatCase_ == 6) { return (org.tensorflow.proto.util.LogMessage) what_; } @@ -379,13 +381,14 @@ public org.tensorflow.proto.util.LogMessage getLogMessage() { } /** *
        -   * The user output a log message. Not all messages are logged, only ones
        -   * generated via the Python tensorboard_logging module.
        +   * The user output a log message. This was theoretically used by the defunct
        +   * tensorboard_logging module, which has since been removed; this field is
        +   * now deprecated and should not be used.
            * 
        * - * .tensorflow.LogMessage log_message = 6; + * .tensorflow.LogMessage log_message = 6 [deprecated = true]; */ - public org.tensorflow.proto.util.LogMessageOrBuilder getLogMessageOrBuilder() { + @java.lang.Deprecated public org.tensorflow.proto.util.LogMessageOrBuilder getLogMessageOrBuilder() { if (whatCase_ == 6) { return (org.tensorflow.proto.util.LogMessage) what_; } @@ -1429,24 +1432,26 @@ public org.tensorflow.proto.framework.SummaryOrBuilder getSummaryOrBuilder() { org.tensorflow.proto.util.LogMessage, org.tensorflow.proto.util.LogMessage.Builder, org.tensorflow.proto.util.LogMessageOrBuilder> logMessageBuilder_; /** *
        -     * The user output a log message. Not all messages are logged, only ones
        -     * generated via the Python tensorboard_logging module.
        +     * The user output a log message. This was theoretically used by the defunct
        +     * tensorboard_logging module, which has since been removed; this field is
        +     * now deprecated and should not be used.
              * 
        * - * .tensorflow.LogMessage log_message = 6; + * .tensorflow.LogMessage log_message = 6 [deprecated = true]; */ - public boolean hasLogMessage() { + @java.lang.Deprecated public boolean hasLogMessage() { return whatCase_ == 6; } /** *
        -     * The user output a log message. Not all messages are logged, only ones
        -     * generated via the Python tensorboard_logging module.
        +     * The user output a log message. This was theoretically used by the defunct
        +     * tensorboard_logging module, which has since been removed; this field is
        +     * now deprecated and should not be used.
              * 
        * - * .tensorflow.LogMessage log_message = 6; + * .tensorflow.LogMessage log_message = 6 [deprecated = true]; */ - public org.tensorflow.proto.util.LogMessage getLogMessage() { + @java.lang.Deprecated public org.tensorflow.proto.util.LogMessage getLogMessage() { if (logMessageBuilder_ == null) { if (whatCase_ == 6) { return (org.tensorflow.proto.util.LogMessage) what_; @@ -1461,13 +1466,14 @@ public org.tensorflow.proto.util.LogMessage getLogMessage() { } /** *
        -     * The user output a log message. Not all messages are logged, only ones
        -     * generated via the Python tensorboard_logging module.
        +     * The user output a log message. This was theoretically used by the defunct
        +     * tensorboard_logging module, which has since been removed; this field is
        +     * now deprecated and should not be used.
              * 
        * - * .tensorflow.LogMessage log_message = 6; + * .tensorflow.LogMessage log_message = 6 [deprecated = true]; */ - public Builder setLogMessage(org.tensorflow.proto.util.LogMessage value) { + @java.lang.Deprecated public Builder setLogMessage(org.tensorflow.proto.util.LogMessage value) { if (logMessageBuilder_ == null) { if (value == null) { throw new NullPointerException(); @@ -1482,13 +1488,14 @@ public Builder setLogMessage(org.tensorflow.proto.util.LogMessage value) { } /** *
        -     * The user output a log message. Not all messages are logged, only ones
        -     * generated via the Python tensorboard_logging module.
        +     * The user output a log message. This was theoretically used by the defunct
        +     * tensorboard_logging module, which has since been removed; this field is
        +     * now deprecated and should not be used.
              * 
        * - * .tensorflow.LogMessage log_message = 6; + * .tensorflow.LogMessage log_message = 6 [deprecated = true]; */ - public Builder setLogMessage( + @java.lang.Deprecated public Builder setLogMessage( org.tensorflow.proto.util.LogMessage.Builder builderForValue) { if (logMessageBuilder_ == null) { what_ = builderForValue.build(); @@ -1501,13 +1508,14 @@ public Builder setLogMessage( } /** *
        -     * The user output a log message. Not all messages are logged, only ones
        -     * generated via the Python tensorboard_logging module.
        +     * The user output a log message. This was theoretically used by the defunct
        +     * tensorboard_logging module, which has since been removed; this field is
        +     * now deprecated and should not be used.
              * 
        * - * .tensorflow.LogMessage log_message = 6; + * .tensorflow.LogMessage log_message = 6 [deprecated = true]; */ - public Builder mergeLogMessage(org.tensorflow.proto.util.LogMessage value) { + @java.lang.Deprecated public Builder mergeLogMessage(org.tensorflow.proto.util.LogMessage value) { if (logMessageBuilder_ == null) { if (whatCase_ == 6 && what_ != org.tensorflow.proto.util.LogMessage.getDefaultInstance()) { @@ -1528,13 +1536,14 @@ public Builder mergeLogMessage(org.tensorflow.proto.util.LogMessage value) { } /** *
        -     * The user output a log message. Not all messages are logged, only ones
        -     * generated via the Python tensorboard_logging module.
        +     * The user output a log message. This was theoretically used by the defunct
        +     * tensorboard_logging module, which has since been removed; this field is
        +     * now deprecated and should not be used.
              * 
        * - * .tensorflow.LogMessage log_message = 6; + * .tensorflow.LogMessage log_message = 6 [deprecated = true]; */ - public Builder clearLogMessage() { + @java.lang.Deprecated public Builder clearLogMessage() { if (logMessageBuilder_ == null) { if (whatCase_ == 6) { whatCase_ = 0; @@ -1552,24 +1561,26 @@ public Builder clearLogMessage() { } /** *
        -     * The user output a log message. Not all messages are logged, only ones
        -     * generated via the Python tensorboard_logging module.
        +     * The user output a log message. This was theoretically used by the defunct
        +     * tensorboard_logging module, which has since been removed; this field is
        +     * now deprecated and should not be used.
              * 
        * - * .tensorflow.LogMessage log_message = 6; + * .tensorflow.LogMessage log_message = 6 [deprecated = true]; */ - public org.tensorflow.proto.util.LogMessage.Builder getLogMessageBuilder() { + @java.lang.Deprecated public org.tensorflow.proto.util.LogMessage.Builder getLogMessageBuilder() { return getLogMessageFieldBuilder().getBuilder(); } /** *
        -     * The user output a log message. Not all messages are logged, only ones
        -     * generated via the Python tensorboard_logging module.
        +     * The user output a log message. This was theoretically used by the defunct
        +     * tensorboard_logging module, which has since been removed; this field is
        +     * now deprecated and should not be used.
              * 
        * - * .tensorflow.LogMessage log_message = 6; + * .tensorflow.LogMessage log_message = 6 [deprecated = true]; */ - public org.tensorflow.proto.util.LogMessageOrBuilder getLogMessageOrBuilder() { + @java.lang.Deprecated public org.tensorflow.proto.util.LogMessageOrBuilder getLogMessageOrBuilder() { if ((whatCase_ == 6) && (logMessageBuilder_ != null)) { return logMessageBuilder_.getMessageOrBuilder(); } else { @@ -1581,11 +1592,12 @@ public org.tensorflow.proto.util.LogMessageOrBuilder getLogMessageOrBuilder() { } /** *
        -     * The user output a log message. Not all messages are logged, only ones
        -     * generated via the Python tensorboard_logging module.
        +     * The user output a log message. This was theoretically used by the defunct
        +     * tensorboard_logging module, which has since been removed; this field is
        +     * now deprecated and should not be used.
              * 
        * - * .tensorflow.LogMessage log_message = 6; + * .tensorflow.LogMessage log_message = 6 [deprecated = true]; */ private com.google.protobuf.SingleFieldBuilderV3< org.tensorflow.proto.util.LogMessage, org.tensorflow.proto.util.LogMessage.Builder, org.tensorflow.proto.util.LogMessageOrBuilder> diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/util/EventOrBuilder.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/util/EventOrBuilder.java index dbe86dad114..c318fe32cb6 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/util/EventOrBuilder.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/util/EventOrBuilder.java @@ -85,31 +85,34 @@ public interface EventOrBuilder extends /** *
        -   * The user output a log message. Not all messages are logged, only ones
        -   * generated via the Python tensorboard_logging module.
        +   * The user output a log message. This was theoretically used by the defunct
        +   * tensorboard_logging module, which has since been removed; this field is
        +   * now deprecated and should not be used.
            * 
        * - * .tensorflow.LogMessage log_message = 6; + * .tensorflow.LogMessage log_message = 6 [deprecated = true]; */ - boolean hasLogMessage(); + @java.lang.Deprecated boolean hasLogMessage(); /** *
        -   * The user output a log message. Not all messages are logged, only ones
        -   * generated via the Python tensorboard_logging module.
        +   * The user output a log message. This was theoretically used by the defunct
        +   * tensorboard_logging module, which has since been removed; this field is
        +   * now deprecated and should not be used.
            * 
        * - * .tensorflow.LogMessage log_message = 6; + * .tensorflow.LogMessage log_message = 6 [deprecated = true]; */ - org.tensorflow.proto.util.LogMessage getLogMessage(); + @java.lang.Deprecated org.tensorflow.proto.util.LogMessage getLogMessage(); /** *
        -   * The user output a log message. Not all messages are logged, only ones
        -   * generated via the Python tensorboard_logging module.
        +   * The user output a log message. This was theoretically used by the defunct
        +   * tensorboard_logging module, which has since been removed; this field is
        +   * now deprecated and should not be used.
            * 
        * - * .tensorflow.LogMessage log_message = 6; + * .tensorflow.LogMessage log_message = 6 [deprecated = true]; */ - org.tensorflow.proto.util.LogMessageOrBuilder getLogMessageOrBuilder(); + @java.lang.Deprecated org.tensorflow.proto.util.LogMessageOrBuilder getLogMessageOrBuilder(); /** *
        diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/util/EventProtos.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/util/EventProtos.java
        index 7259855e6f4..74fc5501c1f 100644
        --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/util/EventProtos.java
        +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/util/EventProtos.java
        @@ -65,43 +65,43 @@ public static void registerAllExtensions(
             java.lang.String[] descriptorData = {
               "\n tensorflow/core/util/event.proto\022\ntens" +
               "orflow\032\'tensorflow/core/framework/summar" +
        -      "y.proto\"\273\002\n\005Event\022\021\n\twall_time\030\001 \001(\001\022\014\n\004" +
        +      "y.proto\"\277\002\n\005Event\022\021\n\twall_time\030\001 \001(\001\022\014\n\004" +
               "step\030\002 \001(\003\022\026\n\014file_version\030\003 \001(\tH\000\022\023\n\tgr" +
               "aph_def\030\004 \001(\014H\000\022&\n\007summary\030\005 \001(\0132\023.tenso" +
        -      "rflow.SummaryH\000\022-\n\013log_message\030\006 \001(\0132\026.t" +
        -      "ensorflow.LogMessageH\000\022-\n\013session_log\030\007 " +
        -      "\001(\0132\026.tensorflow.SessionLogH\000\022<\n\023tagged_" +
        -      "run_metadata\030\010 \001(\0132\035.tensorflow.TaggedRu" +
        -      "nMetadataH\000\022\030\n\016meta_graph_def\030\t \001(\014H\000B\006\n" +
        -      "\004what\"\231\001\n\nLogMessage\022+\n\005level\030\001 \001(\0162\034.te" +
        -      "nsorflow.LogMessage.Level\022\017\n\007message\030\002 \001" +
        -      "(\t\"M\n\005Level\022\013\n\007UNKNOWN\020\000\022\r\n\tDEBUGGING\020\n\022" +
        -      "\010\n\004INFO\020\024\022\010\n\004WARN\020\036\022\t\n\005ERROR\020(\022\t\n\005FATAL\020" +
        -      "2\"\266\001\n\nSessionLog\0224\n\006status\030\001 \001(\0162$.tenso" +
        -      "rflow.SessionLog.SessionStatus\022\027\n\017checkp" +
        -      "oint_path\030\002 \001(\t\022\013\n\003msg\030\003 \001(\t\"L\n\rSessionS" +
        -      "tatus\022\026\n\022STATUS_UNSPECIFIED\020\000\022\t\n\005START\020\001" +
        -      "\022\010\n\004STOP\020\002\022\016\n\nCHECKPOINT\020\003\"6\n\021TaggedRunM" +
        -      "etadata\022\013\n\003tag\030\001 \001(\t\022\024\n\014run_metadata\030\002 \001" +
        -      "(\014\"$\n\016WatchdogConfig\022\022\n\ntimeout_ms\030\001 \001(\003" +
        -      "\"&\n\021RequestedExitCode\022\021\n\texit_code\030\001 \001(\005" +
        -      "\"\266\001\n\026WorkerHeartbeatRequest\0225\n\rshutdown_" +
        -      "mode\030\001 \001(\0162\036.tensorflow.WorkerShutdownMo" +
        -      "de\0223\n\017watchdog_config\030\002 \001(\0132\032.tensorflow" +
        -      ".WatchdogConfig\0220\n\texit_code\030\003 \001(\0132\035.ten" +
        -      "sorflow.RequestedExitCode\"\203\001\n\027WorkerHear" +
        -      "tbeatResponse\022/\n\rhealth_status\030\001 \001(\0162\030.t" +
        -      "ensorflow.WorkerHealth\022%\n\nworker_log\030\002 \003" +
        -      "(\0132\021.tensorflow.Event\022\020\n\010hostname\030\003 \001(\t*" +
        -      "[\n\014WorkerHealth\022\006\n\002OK\020\000\022\034\n\030RECEIVED_SHUT" +
        -      "DOWN_SIGNAL\020\001\022\022\n\016INTERNAL_ERROR\020\002\022\021\n\rSHU" +
        -      "TTING_DOWN\020\003*k\n\022WorkerShutdownMode\022\013\n\007DE" +
        -      "FAULT\020\000\022\022\n\016NOT_CONFIGURED\020\001\022\030\n\024WAIT_FOR_" +
        -      "COORDINATOR\020\002\022\032\n\026SHUTDOWN_AFTER_TIMEOUT\020" +
        -      "\003Bv\n\031org.tensorflow.proto.utilB\013EventPro" +
        -      "tosP\001ZGgithub.com/tensorflow/tensorflow/" +
        -      "tensorflow/go/core/util/event_go_proto\370\001" +
        -      "\001b\006proto3"
        +      "rflow.SummaryH\000\0221\n\013log_message\030\006 \001(\0132\026.t" +
        +      "ensorflow.LogMessageB\002\030\001H\000\022-\n\013session_lo" +
        +      "g\030\007 \001(\0132\026.tensorflow.SessionLogH\000\022<\n\023tag" +
        +      "ged_run_metadata\030\010 \001(\0132\035.tensorflow.Tagg" +
        +      "edRunMetadataH\000\022\030\n\016meta_graph_def\030\t \001(\014H" +
        +      "\000B\006\n\004what\"\241\001\n\nLogMessage\022+\n\005level\030\001 \001(\0162" +
        +      "\034.tensorflow.LogMessage.Level\022\017\n\007message" +
        +      "\030\002 \001(\t\"Q\n\005Level\022\013\n\007UNKNOWN\020\000\022\r\n\tDEBUGGIN" +
        +      "G\020\n\022\010\n\004INFO\020\024\022\010\n\004WARN\020\036\022\t\n\005ERROR\020(\022\t\n\005FA" +
        +      "TAL\0202\032\002\030\001:\002\030\001\"\266\001\n\nSessionLog\0224\n\006status\030\001" +
        +      " \001(\0162$.tensorflow.SessionLog.SessionStat" +
        +      "us\022\027\n\017checkpoint_path\030\002 \001(\t\022\013\n\003msg\030\003 \001(\t" +
        +      "\"L\n\rSessionStatus\022\026\n\022STATUS_UNSPECIFIED\020" +
        +      "\000\022\t\n\005START\020\001\022\010\n\004STOP\020\002\022\016\n\nCHECKPOINT\020\003\"6" +
        +      "\n\021TaggedRunMetadata\022\013\n\003tag\030\001 \001(\t\022\024\n\014run_" +
        +      "metadata\030\002 \001(\014\"$\n\016WatchdogConfig\022\022\n\ntime" +
        +      "out_ms\030\001 \001(\003\"&\n\021RequestedExitCode\022\021\n\texi" +
        +      "t_code\030\001 \001(\005\"\266\001\n\026WorkerHeartbeatRequest\022" +
        +      "5\n\rshutdown_mode\030\001 \001(\0162\036.tensorflow.Work" +
        +      "erShutdownMode\0223\n\017watchdog_config\030\002 \001(\0132" +
        +      "\032.tensorflow.WatchdogConfig\0220\n\texit_code" +
        +      "\030\003 \001(\0132\035.tensorflow.RequestedExitCode\"\203\001" +
        +      "\n\027WorkerHeartbeatResponse\022/\n\rhealth_stat" +
        +      "us\030\001 \001(\0162\030.tensorflow.WorkerHealth\022%\n\nwo" +
        +      "rker_log\030\002 \003(\0132\021.tensorflow.Event\022\020\n\010hos" +
        +      "tname\030\003 \001(\t*[\n\014WorkerHealth\022\006\n\002OK\020\000\022\034\n\030R" +
        +      "ECEIVED_SHUTDOWN_SIGNAL\020\001\022\022\n\016INTERNAL_ER" +
        +      "ROR\020\002\022\021\n\rSHUTTING_DOWN\020\003*k\n\022WorkerShutdo" +
        +      "wnMode\022\013\n\007DEFAULT\020\000\022\022\n\016NOT_CONFIGURED\020\001\022" +
        +      "\030\n\024WAIT_FOR_COORDINATOR\020\002\022\032\n\026SHUTDOWN_AF" +
        +      "TER_TIMEOUT\020\003Bv\n\031org.tensorflow.proto.ut" +
        +      "ilB\013EventProtosP\001ZGgithub.com/tensorflow" +
        +      "/tensorflow/tensorflow/go/core/util/even" +
        +      "t_go_proto\370\001\001b\006proto3"
             };
             descriptor = com.google.protobuf.Descriptors.FileDescriptor
               .internalBuildGeneratedFileFrom(descriptorData,
        diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/util/LogMessage.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/util/LogMessage.java
        index 3a7dd55b4c8..4104327961a 100644
        --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/util/LogMessage.java
        +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/util/LogMessage.java
        @@ -6,11 +6,13 @@
         /**
          * 
          * Protocol buffer used for logging messages to the events file.
        + * This was theoretically used by the defunct tensorboard_logging module, which
        + * has been removed; this message is now deprecated and should not be used.
          * 
        * * Protobuf type {@code tensorflow.LogMessage} */ -public final class LogMessage extends +@java.lang.Deprecated public final class LogMessage extends com.google.protobuf.GeneratedMessageV3 implements // @@protoc_insertion_point(message_implements:tensorflow.LogMessage) LogMessageOrBuilder { @@ -464,6 +466,8 @@ protected Builder newBuilderForType( /** *
            * Protocol buffer used for logging messages to the events file.
        +   * This was theoretically used by the defunct tensorboard_logging module, which
        +   * has been removed; this message is now deprecated and should not be used.
            * 
        * * Protobuf type {@code tensorflow.LogMessage} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/util/LogMessageOrBuilder.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/util/LogMessageOrBuilder.java index a19c21eebdf..bb57ab21916 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/util/LogMessageOrBuilder.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/proto/util/LogMessageOrBuilder.java @@ -3,7 +3,7 @@ package org.tensorflow.proto.util; -public interface LogMessageOrBuilder extends +@java.lang.Deprecated public interface LogMessageOrBuilder extends // @@protoc_insertion_point(interface_extends:tensorflow.LogMessage) com.google.protobuf.MessageOrBuilder { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/resources/ops.pb b/tensorflow-core/tensorflow-core-api/src/gen/resources/ops.pb index 5472f5f8839..4c3e6bef038 100644 Binary files a/tensorflow-core/tensorflow-core-api/src/gen/resources/ops.pb and b/tensorflow-core/tensorflow-core-api/src/gen/resources/ops.pb differ diff --git a/tensorflow-core/tensorflow-core-api/src/gen/resources/ops.pbtxt b/tensorflow-core/tensorflow-core-api/src/gen/resources/ops.pbtxt index ba7f37f2ccf..8190bcc9dc7 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/resources/ops.pbtxt +++ b/tensorflow-core/tensorflow-core-api/src/gen/resources/ops.pbtxt @@ -432,9 +432,11 @@ op { type: DT_FLOAT type: DT_DOUBLE type: DT_UINT8 + type: DT_UINT16 + type: DT_UINT32 + type: DT_UINT64 type: DT_INT8 type: DT_INT16 - type: DT_UINT32 type: DT_INT32 type: DT_INT64 type: DT_COMPLEX64 @@ -2278,6 +2280,7 @@ op { type: DT_FLOAT type: DT_DOUBLE type: DT_BOOL + type: DT_VARIANT } } } @@ -7440,6 +7443,71 @@ op { } is_stateful: true } +op { + name: "CollectiveBcastRecvV2" + input_arg { + name: "group_size" + type: DT_INT32 + } + input_arg { + name: "group_key" + type: DT_INT32 + } + input_arg { + name: "instance_key" + type: DT_INT32 + } + input_arg { + name: "shape" + type_attr: "Tshape" + } + output_arg { + name: "data" + type_attr: "T" + } + attr { + name: "T" + type: "type" + allowed_values { + list { + type: DT_BOOL + type: DT_FLOAT + type: DT_HALF + type: DT_DOUBLE + type: DT_INT32 + type: DT_INT64 + } + } + } + attr { + name: "Tshape" + type: "type" + default_value { + type: DT_INT32 + } + allowed_values { + list { + type: DT_INT32 + type: DT_INT64 + } + } + } + attr { + name: "communication_hint" + type: "string" + default_value { + s: "auto" + } + } + attr { + name: "timeout_seconds" + type: "float" + default_value { + f: 0 + } + } + is_stateful: true +} op { name: "CollectiveBcastSend" input_arg { @@ -7496,6 +7564,58 @@ op { } is_stateful: true } +op { + name: "CollectiveBcastSendV2" + input_arg { + name: "input" + type_attr: "T" + } + input_arg { + name: "group_size" + type: DT_INT32 + } + input_arg { + name: "group_key" + type: DT_INT32 + } + input_arg { + name: "instance_key" + type: DT_INT32 + } + output_arg { + name: "data" + type_attr: "T" + } + attr { + name: "T" + type: "type" + allowed_values { + list { + type: DT_BOOL + type: DT_FLOAT + type: DT_HALF + type: DT_DOUBLE + type: DT_INT32 + type: DT_INT64 + } + } + } + attr { + name: "communication_hint" + type: "string" + default_value { + s: "auto" + } + } + attr { + name: "timeout_seconds" + type: "float" + default_value { + f: 0 + } + } + is_stateful: true +} op { name: "CollectiveGather" input_arg { @@ -7569,6 +7689,11 @@ op { name: "instance_key" type: DT_INT32 } + input_arg { + name: "ordering_token" + type: DT_RESOURCE + number_attr: "Nordering_token" + } output_arg { name: "data" type_attr: "T" @@ -7600,6 +7725,14 @@ op { f: 0 } } + attr { + name: "Nordering_token" + type: "int" + default_value { + i: 0 + } + has_minimum: true + } is_stateful: true } op { @@ -7745,6 +7878,11 @@ op { name: "instance_key" type: DT_INT32 } + input_arg { + name: "ordering_token" + type: DT_RESOURCE + number_attr: "Nordering_token" + } output_arg { name: "data" type_attr: "T" @@ -7798,6 +7936,14 @@ op { f: 0 } } + attr { + name: "Nordering_token" + type: "int" + default_value { + i: 0 + } + has_minimum: true + } is_stateful: true } op { @@ -11072,6 +11218,83 @@ op { has_minimum: true minimum: 1 } + attr { + name: "data_transfer_protocol" + type: "string" + default_value { + s: "" + } + } + is_stateful: true +} +op { + name: "DataServiceDatasetV2" + input_arg { + name: "dataset_id" + type: DT_INT64 + } + input_arg { + name: "processing_mode" + type: DT_STRING + } + input_arg { + name: "address" + type: DT_STRING + } + input_arg { + name: "protocol" + type: DT_STRING + } + input_arg { + name: "job_name" + type: DT_STRING + } + input_arg { + name: "consumer_index" + type: DT_INT64 + } + input_arg { + name: "num_consumers" + type: DT_INT64 + } + input_arg { + name: "max_outstanding_requests" + type: DT_INT64 + } + input_arg { + name: "iteration_counter" + type: DT_RESOURCE + } + output_arg { + name: "handle" + type: DT_VARIANT + } + attr { + name: "task_refresh_interval_hint_ms" + type: "int" + default_value { + i: -1 + } + } + attr { + name: "output_types" + type: "list(type)" + has_minimum: true + minimum: 1 + } + attr { + name: "output_shapes" + type: "list(shape)" + has_minimum: true + minimum: 1 + } + attr { + name: "data_transfer_protocol" + type: "string" + default_value { + s: "" + } + } is_stateful: true } op { @@ -13128,6 +13351,8 @@ op { type: DT_UINT16 type: DT_INT16 type: DT_INT32 + type: DT_UINT32 + type: DT_UINT64 type: DT_INT64 type: DT_COMPLEX64 type: DT_COMPLEX128 @@ -13875,6 +14100,14 @@ op { } } } + attr { + name: "num_features" + type: "list(int)" + default_value { + list { + } + } + } is_stateful: true } op { @@ -14053,6 +14286,14 @@ op { } } } + attr { + name: "num_features" + type: "list(int)" + default_value { + list { + } + } + } is_stateful: true } op { @@ -16408,6 +16649,36 @@ op { minimum: 1 } } +op { + name: "FinalizeDataset" + input_arg { + name: "input_dataset" + type: DT_VARIANT + } + output_arg { + name: "handle" + type: DT_VARIANT + } + attr { + name: "has_captured_ref" + type: "bool" + default_value { + b: false + } + } + attr { + name: "output_types" + type: "list(type)" + has_minimum: true + minimum: 1 + } + attr { + name: "output_shapes" + type: "list(shape)" + has_minimum: true + minimum: 1 + } +} op { name: "Fingerprint" input_arg { @@ -16782,6 +17053,8 @@ op { type: DT_UINT16 type: DT_INT16 type: DT_INT32 + type: DT_UINT32 + type: DT_UINT64 type: DT_INT64 type: DT_COMPLEX64 type: DT_COMPLEX128 @@ -18185,6 +18458,17 @@ op { } is_stateful: true } +op { + name: "GetOptions" + input_arg { + name: "input_dataset" + type: DT_VARIANT + } + output_arg { + name: "serialized_options" + type: DT_STRING + } +} op { name: "GetSessionHandle" input_arg { @@ -19554,6 +19838,13 @@ op { s: "\t" } } + attr { + name: "offset" + type: "int" + default_value { + i: 0 + } + } } op { name: "InitializeTableFromTextFileV2" @@ -19593,6 +19884,13 @@ op { s: "\t" } } + attr { + name: "offset" + type: "int" + default_value { + i: 0 + } + } is_stateful: true } op { @@ -21568,6 +21866,92 @@ op { } is_stateful: true } +op { + name: "LoadTPUEmbeddingFrequencyEstimatorParameters" + input_arg { + name: "parameters" + type: DT_FLOAT + } + input_arg { + name: "last_hit_step" + type: DT_FLOAT + } + attr { + name: "table_id" + type: "int" + default_value { + i: -1 + } + } + attr { + name: "table_name" + type: "string" + default_value { + s: "" + } + } + attr { + name: "num_shards" + type: "int" + } + attr { + name: "shard_id" + type: "int" + } + attr { + name: "config" + type: "string" + default_value { + s: "" + } + } + is_stateful: true +} +op { + name: "LoadTPUEmbeddingFrequencyEstimatorParametersGradAccumDebug" + input_arg { + name: "parameters" + type: DT_FLOAT + } + input_arg { + name: "last_hit_step" + type: DT_FLOAT + } + input_arg { + name: "gradient_accumulators" + type: DT_FLOAT + } + attr { + name: "table_id" + type: "int" + default_value { + i: -1 + } + } + attr { + name: "table_name" + type: "string" + default_value { + s: "" + } + } + attr { + name: "num_shards" + type: "int" + } + attr { + name: "shard_id" + type: "int" + } + attr { + name: "config" + type: "string" + default_value { + s: "" + } + } + is_stateful: true +} op { name: "LoadTPUEmbeddingMDLAdagradLightParameters" input_arg { @@ -24692,10 +25076,14 @@ op { type: DT_HALF type: DT_FLOAT type: DT_DOUBLE - type: DT_UINT8 + type: DT_INT8 type: DT_INT16 type: DT_INT32 type: DT_INT64 + type: DT_UINT8 + type: DT_UINT16 + type: DT_UINT32 + type: DT_UINT64 } } } @@ -25168,6 +25556,8 @@ op { type: DT_UINT16 type: DT_INT16 type: DT_INT32 + type: DT_UINT32 + type: DT_UINT64 type: DT_INT64 type: DT_COMPLEX64 type: DT_COMPLEX128 @@ -26654,6 +27044,33 @@ op { type: DT_VARIANT } } +op { + name: "OptionsDataset" + input_arg { + name: "input_dataset" + type: DT_VARIANT + } + output_arg { + name: "handle" + type: DT_VARIANT + } + attr { + name: "serialized_options" + type: "string" + } + attr { + name: "output_types" + type: "list(type)" + has_minimum: true + minimum: 1 + } + attr { + name: "output_shapes" + type: "list(shape)" + has_minimum: true + minimum: 1 + } +} op { name: "OrderedMapClear" attr { @@ -27385,6 +27802,48 @@ op { } is_stateful: true } +op { + name: "ParallelBatchDataset" + input_arg { + name: "input_dataset" + type: DT_VARIANT + } + input_arg { + name: "batch_size" + type: DT_INT64 + } + input_arg { + name: "num_parallel_calls" + type: DT_INT64 + } + input_arg { + name: "drop_remainder" + type: DT_BOOL + } + output_arg { + name: "handle" + type: DT_VARIANT + } + attr { + name: "output_types" + type: "list(type)" + has_minimum: true + minimum: 1 + } + attr { + name: "output_shapes" + type: "list(shape)" + has_minimum: true + minimum: 1 + } + attr { + name: "deterministic" + type: "string" + default_value { + s: "default" + } + } +} op { name: "ParallelConcat" input_arg { @@ -29202,6 +29661,8 @@ op { type: DT_FLOAT type: DT_HALF type: DT_DOUBLE + type: DT_INT8 + type: DT_INT16 type: DT_INT32 type: DT_INT64 type: DT_COMPLEX64 @@ -35432,6 +35893,8 @@ op { type: DT_HALF type: DT_FLOAT type: DT_DOUBLE + type: DT_INT8 + type: DT_INT16 type: DT_INT32 type: DT_INT64 } @@ -35779,6 +36242,8 @@ op { type: DT_UINT16 type: DT_INT16 type: DT_INT32 + type: DT_UINT32 + type: DT_UINT64 type: DT_INT64 type: DT_COMPLEX64 type: DT_COMPLEX128 @@ -36499,31 +36964,6 @@ op { } is_stateful: true } -op { - name: "RemoteFusedGraphExecute" - input_arg { - name: "inputs" - type_list_attr: "Tinputs" - } - output_arg { - name: "outputs" - type_list_attr: "Toutputs" - } - attr { - name: "Tinputs" - type: "list(type)" - has_minimum: true - } - attr { - name: "Toutputs" - type: "list(type)" - has_minimum: true - } - attr { - name: "serialized_remote_fused_graph_execute_info" - type: "string" - } -} op { name: "RepeatDataset" input_arg { @@ -37077,6 +37517,7 @@ op { type: DT_HALF type: DT_FLOAT type: DT_DOUBLE + type: DT_BFLOAT16 } } } @@ -40620,21 +41061,13 @@ op { is_stateful: true } op { - name: "RetrieveTPUEmbeddingMDLAdagradLightParameters" + name: "RetrieveTPUEmbeddingFrequencyEstimatorParameters" output_arg { name: "parameters" type: DT_FLOAT } output_arg { - name: "accumulators" - type: DT_FLOAT - } - output_arg { - name: "weights" - type: DT_FLOAT - } - output_arg { - name: "benefits" + name: "last_hit_step" type: DT_FLOAT } attr { @@ -40669,13 +41102,17 @@ op { is_stateful: true } op { - name: "RetrieveTPUEmbeddingMomentumParameters" + name: "RetrieveTPUEmbeddingFrequencyEstimatorParametersGradAccumDebug" output_arg { name: "parameters" type: DT_FLOAT } output_arg { - name: "momenta" + name: "last_hit_step" + type: DT_FLOAT + } + output_arg { + name: "gradient_accumulators" type: DT_FLOAT } attr { @@ -40710,17 +41147,21 @@ op { is_stateful: true } op { - name: "RetrieveTPUEmbeddingMomentumParametersGradAccumDebug" + name: "RetrieveTPUEmbeddingMDLAdagradLightParameters" output_arg { name: "parameters" type: DT_FLOAT } output_arg { - name: "momenta" + name: "accumulators" type: DT_FLOAT } output_arg { - name: "gradient_accumulators" + name: "weights" + type: DT_FLOAT + } + output_arg { + name: "benefits" type: DT_FLOAT } attr { @@ -40755,13 +41196,13 @@ op { is_stateful: true } op { - name: "RetrieveTPUEmbeddingProximalAdagradParameters" + name: "RetrieveTPUEmbeddingMomentumParameters" output_arg { name: "parameters" type: DT_FLOAT } output_arg { - name: "accumulators" + name: "momenta" type: DT_FLOAT } attr { @@ -40796,13 +41237,13 @@ op { is_stateful: true } op { - name: "RetrieveTPUEmbeddingProximalAdagradParametersGradAccumDebug" + name: "RetrieveTPUEmbeddingMomentumParametersGradAccumDebug" output_arg { name: "parameters" type: DT_FLOAT } output_arg { - name: "accumulators" + name: "momenta" type: DT_FLOAT } output_arg { @@ -40841,17 +41282,13 @@ op { is_stateful: true } op { - name: "RetrieveTPUEmbeddingProximalYogiParameters" + name: "RetrieveTPUEmbeddingProximalAdagradParameters" output_arg { name: "parameters" type: DT_FLOAT } output_arg { - name: "v" - type: DT_FLOAT - } - output_arg { - name: "m" + name: "accumulators" type: DT_FLOAT } attr { @@ -40886,17 +41323,107 @@ op { is_stateful: true } op { - name: "RetrieveTPUEmbeddingProximalYogiParametersGradAccumDebug" + name: "RetrieveTPUEmbeddingProximalAdagradParametersGradAccumDebug" output_arg { name: "parameters" type: DT_FLOAT } output_arg { - name: "v" - type: DT_FLOAT - } - output_arg { - name: "m" + name: "accumulators" + type: DT_FLOAT + } + output_arg { + name: "gradient_accumulators" + type: DT_FLOAT + } + attr { + name: "table_id" + type: "int" + default_value { + i: -1 + } + } + attr { + name: "table_name" + type: "string" + default_value { + s: "" + } + } + attr { + name: "num_shards" + type: "int" + } + attr { + name: "shard_id" + type: "int" + } + attr { + name: "config" + type: "string" + default_value { + s: "" + } + } + is_stateful: true +} +op { + name: "RetrieveTPUEmbeddingProximalYogiParameters" + output_arg { + name: "parameters" + type: DT_FLOAT + } + output_arg { + name: "v" + type: DT_FLOAT + } + output_arg { + name: "m" + type: DT_FLOAT + } + attr { + name: "table_id" + type: "int" + default_value { + i: -1 + } + } + attr { + name: "table_name" + type: "string" + default_value { + s: "" + } + } + attr { + name: "num_shards" + type: "int" + } + attr { + name: "shard_id" + type: "int" + } + attr { + name: "config" + type: "string" + default_value { + s: "" + } + } + is_stateful: true +} +op { + name: "RetrieveTPUEmbeddingProximalYogiParametersGradAccumDebug" + output_arg { + name: "parameters" + type: DT_FLOAT + } + output_arg { + name: "v" + type: DT_FLOAT + } + output_arg { + name: "m" type: DT_FLOAT } output_arg { @@ -40977,147 +41504,1733 @@ op { s: "" } } - is_stateful: true + is_stateful: true +} +op { + name: "RetrieveTPUEmbeddingRMSPropParametersGradAccumDebug" + output_arg { + name: "parameters" + type: DT_FLOAT + } + output_arg { + name: "ms" + type: DT_FLOAT + } + output_arg { + name: "mom" + type: DT_FLOAT + } + output_arg { + name: "gradient_accumulators" + type: DT_FLOAT + } + attr { + name: "table_id" + type: "int" + default_value { + i: -1 + } + } + attr { + name: "table_name" + type: "string" + default_value { + s: "" + } + } + attr { + name: "num_shards" + type: "int" + } + attr { + name: "shard_id" + type: "int" + } + attr { + name: "config" + type: "string" + default_value { + s: "" + } + } + is_stateful: true +} +op { + name: "RetrieveTPUEmbeddingStochasticGradientDescentParameters" + output_arg { + name: "parameters" + type: DT_FLOAT + } + attr { + name: "table_id" + type: "int" + default_value { + i: -1 + } + } + attr { + name: "table_name" + type: "string" + default_value { + s: "" + } + } + attr { + name: "num_shards" + type: "int" + } + attr { + name: "shard_id" + type: "int" + } + attr { + name: "config" + type: "string" + default_value { + s: "" + } + } + is_stateful: true +} +op { + name: "RetrieveTPUEmbeddingStochasticGradientDescentParametersGradAccumDebug" + output_arg { + name: "parameters" + type: DT_FLOAT + } + output_arg { + name: "gradient_accumulators" + type: DT_FLOAT + } + attr { + name: "table_id" + type: "int" + default_value { + i: -1 + } + } + attr { + name: "table_name" + type: "string" + default_value { + s: "" + } + } + attr { + name: "num_shards" + type: "int" + } + attr { + name: "shard_id" + type: "int" + } + attr { + name: "config" + type: "string" + default_value { + s: "" + } + } + is_stateful: true +} +op { + name: "Reverse" + input_arg { + name: "tensor" + type_attr: "T" + } + input_arg { + name: "dims" + type: DT_BOOL + } + output_arg { + name: "output" + type_attr: "T" + } + attr { + name: "T" + type: "type" + allowed_values { + list { + type: DT_UINT8 + type: DT_INT8 + type: DT_UINT16 + type: DT_INT16 + type: DT_INT32 + type: DT_INT64 + type: DT_BOOL + type: DT_BFLOAT16 + type: DT_HALF + type: DT_FLOAT + type: DT_DOUBLE + type: DT_COMPLEX64 + type: DT_COMPLEX128 + type: DT_STRING + } + } + } +} +op { + name: "ReverseSequence" + input_arg { + name: "input" + type_attr: "T" + } + input_arg { + name: "seq_lengths" + type_attr: "Tlen" + } + output_arg { + name: "output" + type_attr: "T" + } + attr { + name: "seq_dim" + type: "int" + } + attr { + name: "batch_dim" + type: "int" + default_value { + i: 0 + } + } + attr { + name: "T" + type: "type" + } + attr { + name: "Tlen" + type: "type" + default_value { + type: DT_INT64 + } + allowed_values { + list { + type: DT_INT32 + type: DT_INT64 + } + } + } +} +op { + name: "ReverseV2" + input_arg { + name: "tensor" + type_attr: "T" + } + input_arg { + name: "axis" + type_attr: "Tidx" + } + output_arg { + name: "output" + type_attr: "T" + } + attr { + name: "Tidx" + type: "type" + default_value { + type: DT_INT32 + } + allowed_values { + list { + type: DT_INT32 + type: DT_INT64 + } + } + } + attr { + name: "T" + type: "type" + allowed_values { + list { + type: DT_UINT8 + type: DT_INT8 + type: DT_UINT16 + type: DT_INT16 + type: DT_INT32 + type: DT_INT64 + type: DT_BOOL + type: DT_BFLOAT16 + type: DT_HALF + type: DT_FLOAT + type: DT_DOUBLE + type: DT_COMPLEX64 + type: DT_COMPLEX128 + type: DT_STRING + } + } + } +} +op { + name: "RightShift" + input_arg { + name: "x" + type_attr: "T" + } + input_arg { + name: "y" + type_attr: "T" + } + output_arg { + name: "z" + type_attr: "T" + } + attr { + name: "T" + type: "type" + allowed_values { + list { + type: DT_INT8 + type: DT_INT16 + type: DT_INT32 + type: DT_INT64 + type: DT_UINT8 + type: DT_UINT16 + type: DT_UINT32 + type: DT_UINT64 + } + } + } +} +op { + name: "Rint" + input_arg { + name: "x" + type_attr: "T" + } + output_arg { + name: "y" + type_attr: "T" + } + attr { + name: "T" + type: "type" + allowed_values { + list { + type: DT_BFLOAT16 + type: DT_HALF + type: DT_FLOAT + type: DT_DOUBLE + } + } + } +} +op { + name: "RiscAbs" + input_arg { + name: "x" + type_attr: "T" + } + output_arg { + name: "y" + type_attr: "T" + } + attr { + name: "T" + type: "type" + allowed_values { + list { + type: DT_BFLOAT16 + type: DT_HALF + type: DT_FLOAT + type: DT_DOUBLE + } + } + } +} +op { + name: "RiscAdd" + input_arg { + name: "x" + type_attr: "T" + } + input_arg { + name: "y" + type_attr: "T" + } + output_arg { + name: "z" + type_attr: "T" + } + attr { + name: "T" + type: "type" + allowed_values { + list { + type: DT_BFLOAT16 + type: DT_HALF + type: DT_FLOAT + type: DT_DOUBLE + } + } + } + is_aggregate: true + is_commutative: true +} +op { + name: "RiscBinaryArithmetic" + input_arg { + name: "x" + type_attr: "T" + } + input_arg { + name: "y" + type_attr: "T" + } + output_arg { + name: "z" + type_attr: "T" + } + attr { + name: "op_type" + type: "string" + allowed_values { + list { + s: "ADD" + s: "SUB" + s: "MUL" + s: "DIV" + s: "REM" + s: "MIN" + s: "POW" + } + } + } + attr { + name: "T" + type: "type" + allowed_values { + list { + type: DT_BFLOAT16 + type: DT_HALF + type: DT_FLOAT + type: DT_DOUBLE + } + } + } +} +op { + name: "RiscBinaryComparison" + input_arg { + name: "x" + type_attr: "T" + } + input_arg { + name: "y" + type_attr: "T" + } + output_arg { + name: "z" + type: DT_BOOL + } + attr { + name: "op_type" + type: "string" + allowed_values { + list { + s: "EQ" + s: "NE" + s: "GE" + s: "GT" + s: "LE" + s: "LT" + } + } + } + attr { + name: "T" + type: "type" + allowed_values { + list { + type: DT_BFLOAT16 + type: DT_HALF + type: DT_FLOAT + type: DT_DOUBLE + } + } + } +} +op { + name: "RiscBitcast" + input_arg { + name: "x" + type_attr: "SrcT" + } + output_arg { + name: "y" + type_attr: "DstT" + } + attr { + name: "SrcT" + type: "type" + } + attr { + name: "DstT" + type: "type" + } +} +op { + name: "RiscBroadcast" + input_arg { + name: "input" + type_attr: "T" + } + input_arg { + name: "shape" + type_attr: "Tidx" + } + output_arg { + name: "output" + type_attr: "T" + } + attr { + name: "T" + type: "type" + } + attr { + name: "Tidx" + type: "type" + default_value { + type: DT_INT32 + } + allowed_values { + list { + type: DT_INT32 + type: DT_INT64 + } + } + } +} +op { + name: "RiscCast" + input_arg { + name: "x" + type_attr: "SrcT" + } + output_arg { + name: "y" + type_attr: "DstT" + } + attr { + name: "SrcT" + type: "type" + } + attr { + name: "DstT" + type: "type" + } +} +op { + name: "RiscCeil" + input_arg { + name: "x" + type_attr: "T" + } + output_arg { + name: "y" + type_attr: "T" + } + attr { + name: "T" + type: "type" + allowed_values { + list { + type: DT_BFLOAT16 + type: DT_HALF + type: DT_FLOAT + type: DT_DOUBLE + } + } + } +} +op { + name: "RiscCholesky" + input_arg { + name: "input" + type_attr: "T" + } + output_arg { + name: "output" + type_attr: "T" + } + attr { + name: "T" + type: "type" + allowed_values { + list { + type: DT_BFLOAT16 + type: DT_HALF + type: DT_FLOAT + type: DT_DOUBLE + } + } + } +} +op { + name: "RiscConcat" + input_arg { + name: "values" + type_attr: "T" + number_attr: "N" + } + input_arg { + name: "axis" + type_attr: "Tidx" + } + output_arg { + name: "output" + type_attr: "T" + } + attr { + name: "N" + type: "int" + has_minimum: true + minimum: 2 + } + attr { + name: "T" + type: "type" + } + attr { + name: "Tidx" + type: "type" + default_value { + type: DT_INT32 + } + allowed_values { + list { + type: DT_INT32 + type: DT_INT64 + } + } + } +} +op { + name: "RiscCondition" + input_arg { + name: "pred" + type: DT_BOOL + } + input_arg { + name: "input_true" + type_attr: "SrcT" + } + input_arg { + name: "input_false" + type_attr: "SrcT" + } + output_arg { + name: "output" + type_attr: "DstT" + } + attr { + name: "func_true" + type: "func" + } + attr { + name: "func_false" + type: "func" + } + attr { + name: "SrcT" + type: "type" + allowed_values { + list { + type: DT_BFLOAT16 + type: DT_HALF + type: DT_FLOAT + type: DT_DOUBLE + } + } + } + attr { + name: "DstT" + type: "type" + allowed_values { + list { + type: DT_BFLOAT16 + type: DT_HALF + type: DT_FLOAT + type: DT_DOUBLE + } + } + } +} +op { + name: "RiscConv" + input_arg { + name: "input" + type_attr: "T" + } + input_arg { + name: "filter" + type_attr: "T" + } + output_arg { + name: "output" + type_attr: "T" + } + attr { + name: "T" + type: "type" + allowed_values { + list { + type: DT_BFLOAT16 + type: DT_HALF + type: DT_FLOAT + type: DT_DOUBLE + } + } + } + attr { + name: "strides" + type: "list(int)" + } + attr { + name: "data_format" + type: "string" + default_value { + s: "NHWC" + } + allowed_values { + list { + s: "NHWC" + s: "NCHW" + } + } + } + attr { + name: "dilations" + type: "list(int)" + default_value { + list { + i: 1 + i: 1 + i: 1 + i: 1 + } + } + } +} +op { + name: "RiscCos" + input_arg { + name: "x" + type_attr: "T" + } + output_arg { + name: "y" + type_attr: "T" + } + attr { + name: "T" + type: "type" + allowed_values { + list { + type: DT_BFLOAT16 + type: DT_HALF + type: DT_FLOAT + type: DT_DOUBLE + } + } + } +} +op { + name: "RiscDiv" + input_arg { + name: "x" + type_attr: "T" + } + input_arg { + name: "y" + type_attr: "T" + } + output_arg { + name: "z" + type_attr: "T" + } + attr { + name: "T" + type: "type" + allowed_values { + list { + type: DT_BFLOAT16 + type: DT_HALF + type: DT_FLOAT + type: DT_DOUBLE + } + } + } +} +op { + name: "RiscDot" + input_arg { + name: "a" + type_attr: "T" + } + input_arg { + name: "b" + type_attr: "T" + } + output_arg { + name: "product" + type_attr: "T" + } + attr { + name: "transpose_a" + type: "bool" + default_value { + b: false + } + } + attr { + name: "transpose_b" + type: "bool" + default_value { + b: false + } + } + attr { + name: "T" + type: "type" + allowed_values { + list { + type: DT_BFLOAT16 + type: DT_HALF + type: DT_FLOAT + type: DT_DOUBLE + } + } + } +} +op { + name: "RiscExp" + input_arg { + name: "x" + type_attr: "T" + } + output_arg { + name: "y" + type_attr: "T" + } + attr { + name: "T" + type: "type" + allowed_values { + list { + type: DT_BFLOAT16 + type: DT_HALF + type: DT_FLOAT + type: DT_DOUBLE + } + } + } +} +op { + name: "RiscFft" + input_arg { + name: "input" + type_attr: "Tcomplex" + } + output_arg { + name: "output" + type_attr: "Tcomplex" + } + attr { + name: "Tcomplex" + type: "type" + default_value { + type: DT_COMPLEX64 + } + allowed_values { + list { + type: DT_COMPLEX64 + type: DT_COMPLEX128 + } + } + } +} +op { + name: "RiscFloor" + input_arg { + name: "x" + type_attr: "T" + } + output_arg { + name: "y" + type_attr: "T" + } + attr { + name: "T" + type: "type" + allowed_values { + list { + type: DT_BFLOAT16 + type: DT_HALF + type: DT_FLOAT + type: DT_DOUBLE + } + } + } +} +op { + name: "RiscGather" + input_arg { + name: "params" + type_attr: "Tparams" + } + input_arg { + name: "indices" + type_attr: "Tindices" + } + input_arg { + name: "axis" + type_attr: "Taxis" + } + output_arg { + name: "output" + type_attr: "Tparams" + } + attr { + name: "batch_dims" + type: "int" + default_value { + i: 0 + } + } + attr { + name: "Tparams" + type: "type" + } + attr { + name: "Tindices" + type: "type" + allowed_values { + list { + type: DT_INT32 + type: DT_INT64 + } + } + } + attr { + name: "Taxis" + type: "type" + allowed_values { + list { + type: DT_INT32 + type: DT_INT64 + } + } + } +} +op { + name: "RiscImag" + input_arg { + name: "input" + type_attr: "T" + } + output_arg { + name: "output" + type_attr: "Tout" + } + attr { + name: "T" + type: "type" + default_value { + type: DT_COMPLEX64 + } + allowed_values { + list { + type: DT_COMPLEX64 + type: DT_COMPLEX128 + } + } + } + attr { + name: "Tout" + type: "type" + default_value { + type: DT_FLOAT + } + allowed_values { + list { + type: DT_FLOAT + type: DT_DOUBLE + } + } + } +} +op { + name: "RiscIsFinite" + input_arg { + name: "x" + type_attr: "T" + } + output_arg { + name: "y" + type: DT_BOOL + } + attr { + name: "T" + type: "type" + allowed_values { + list { + type: DT_BFLOAT16 + type: DT_HALF + type: DT_FLOAT + type: DT_DOUBLE + } + } + } +} +op { + name: "RiscLog" + input_arg { + name: "x" + type_attr: "T" + } + output_arg { + name: "y" + type_attr: "T" + } + attr { + name: "T" + type: "type" + allowed_values { + list { + type: DT_BFLOAT16 + type: DT_HALF + type: DT_FLOAT + type: DT_DOUBLE + } + } + } +} +op { + name: "RiscLogicalAnd" + input_arg { + name: "x" + type: DT_BOOL + } + input_arg { + name: "y" + type: DT_BOOL + } + output_arg { + name: "z" + type: DT_BOOL + } +} +op { + name: "RiscLogicalNot" + input_arg { + name: "x" + type: DT_BOOL + } + output_arg { + name: "z" + type: DT_BOOL + } +} +op { + name: "RiscLogicalOr" + input_arg { + name: "x" + type: DT_BOOL + } + input_arg { + name: "y" + type: DT_BOOL + } + output_arg { + name: "z" + type: DT_BOOL + } +} +op { + name: "RiscMax" + input_arg { + name: "x" + type_attr: "T" + } + input_arg { + name: "y" + type_attr: "T" + } + output_arg { + name: "max" + type_attr: "T" + } + attr { + name: "T" + type: "type" + allowed_values { + list { + type: DT_BFLOAT16 + type: DT_HALF + type: DT_FLOAT + type: DT_DOUBLE + } + } + } +} +op { + name: "RiscMin" + input_arg { + name: "x" + type_attr: "T" + } + input_arg { + name: "y" + type_attr: "T" + } + output_arg { + name: "z" + type_attr: "T" + } + attr { + name: "T" + type: "type" + allowed_values { + list { + type: DT_BFLOAT16 + type: DT_HALF + type: DT_FLOAT + type: DT_DOUBLE + } + } + } +} +op { + name: "RiscMul" + input_arg { + name: "x" + type_attr: "T" + } + input_arg { + name: "y" + type_attr: "T" + } + output_arg { + name: "z" + type_attr: "T" + } + attr { + name: "T" + type: "type" + allowed_values { + list { + type: DT_BFLOAT16 + type: DT_HALF + type: DT_FLOAT + type: DT_DOUBLE + } + } + } +} +op { + name: "RiscNeg" + input_arg { + name: "x" + type_attr: "T" + } + output_arg { + name: "y" + type_attr: "T" + } + attr { + name: "T" + type: "type" + allowed_values { + list { + type: DT_BFLOAT16 + type: DT_HALF + type: DT_FLOAT + type: DT_DOUBLE + } + } + } +} +op { + name: "RiscPad" + input_arg { + name: "input" + type_attr: "T" + } + input_arg { + name: "paddings" + type_attr: "Tpaddings" + } + input_arg { + name: "constant_values" + type_attr: "T" + } + output_arg { + name: "output" + type_attr: "T" + } + attr { + name: "T" + type: "type" + allowed_values { + list { + type: DT_BFLOAT16 + type: DT_HALF + type: DT_FLOAT + type: DT_DOUBLE + } + } + } + attr { + name: "Tpaddings" + type: "type" + default_value { + type: DT_INT32 + } + allowed_values { + list { + type: DT_INT32 + type: DT_INT64 + } + } + } +} +op { + name: "RiscPool" + input_arg { + name: "value" + type_attr: "T" + } + output_arg { + name: "output" + type_attr: "T" + } + attr { + name: "ksize" + type: "list(int)" + has_minimum: true + minimum: 4 + } + attr { + name: "strides" + type: "list(int)" + has_minimum: true + minimum: 4 + } + attr { + name: "pooling_type" + type: "string" + allowed_values { + list { + s: "AVG" + s: "MAX" + } + } + } + attr { + name: "data_format" + type: "string" + default_value { + s: "NHWC" + } + allowed_values { + list { + s: "NHWC" + s: "NCHW" + } + } + } + attr { + name: "T" + type: "type" + allowed_values { + list { + type: DT_BFLOAT16 + type: DT_HALF + type: DT_FLOAT + type: DT_DOUBLE + } + } + } +} +op { + name: "RiscPow" + input_arg { + name: "x" + type_attr: "T" + } + input_arg { + name: "y" + type_attr: "T" + } + output_arg { + name: "z" + type_attr: "T" + } + attr { + name: "T" + type: "type" + allowed_values { + list { + type: DT_BFLOAT16 + type: DT_HALF + type: DT_FLOAT + type: DT_DOUBLE + } + } + } +} +op { + name: "RiscRandomUniform" + input_arg { + name: "shape" + type_attr: "T" + } + output_arg { + name: "output" + type: DT_FLOAT + } + attr { + name: "seed" + type: "int" + default_value { + i: 0 + } + } + attr { + name: "T" + type: "type" + allowed_values { + list { + type: DT_INT32 + type: DT_INT64 + } + } + } +} +op { + name: "RiscReal" + input_arg { + name: "input" + type_attr: "T" + } + output_arg { + name: "output" + type_attr: "Tout" + } + attr { + name: "T" + type: "type" + default_value { + type: DT_COMPLEX64 + } + allowed_values { + list { + type: DT_COMPLEX64 + type: DT_COMPLEX128 + } + } + } + attr { + name: "Tout" + type: "type" + default_value { + type: DT_FLOAT + } + allowed_values { + list { + type: DT_FLOAT + type: DT_DOUBLE + } + } + } +} +op { + name: "RiscReduce" + input_arg { + name: "tensor" + type_attr: "T" + } + input_arg { + name: "axis" + type_attr: "Index" + } + output_arg { + name: "output" + type_attr: "T" + } + attr { + name: "reduce_type" + type: "string" + allowed_values { + list { + s: "MEAN" + s: "SUM" + } + } + } + attr { + name: "Index" + type: "type" + default_value { + type: DT_INT32 + } + allowed_values { + list { + type: DT_INT32 + type: DT_INT64 + } + } + } + attr { + name: "T" + type: "type" + allowed_values { + list { + type: DT_BFLOAT16 + type: DT_HALF + type: DT_FLOAT + type: DT_DOUBLE + } + } + } +} +op { + name: "RiscRem" + input_arg { + name: "x" + type_attr: "T" + } + input_arg { + name: "y" + type_attr: "T" + } + output_arg { + name: "z" + type_attr: "T" + } + attr { + name: "T" + type: "type" + allowed_values { + list { + type: DT_BFLOAT16 + type: DT_HALF + type: DT_FLOAT + type: DT_DOUBLE + } + } + } +} +op { + name: "RiscReshape" + input_arg { + name: "tensor" + type_attr: "T" + } + input_arg { + name: "shape" + type_attr: "Tshape" + } + output_arg { + name: "output" + type_attr: "T" + } + attr { + name: "T" + type: "type" + allowed_values { + list { + type: DT_BFLOAT16 + type: DT_HALF + type: DT_FLOAT + type: DT_DOUBLE + } + } + } + attr { + name: "Tshape" + type: "type" + default_value { + type: DT_INT32 + } + allowed_values { + list { + type: DT_INT32 + type: DT_INT64 + } + } + } +} +op { + name: "RiscReverse" + input_arg { + name: "tensor" + type_attr: "T" + } + input_arg { + name: "axis" + type_attr: "Tidx" + } + output_arg { + name: "output" + type_attr: "T" + } + attr { + name: "Tidx" + type: "type" + default_value { + type: DT_INT32 + } + allowed_values { + list { + type: DT_INT32 + type: DT_INT64 + } + } + } + attr { + name: "T" + type: "type" + allowed_values { + list { + type: DT_BFLOAT16 + type: DT_HALF + type: DT_FLOAT + type: DT_DOUBLE + } + } + } +} +op { + name: "RiscScatter" + input_arg { + name: "indices" + type_attr: "Tindices" + } + input_arg { + name: "updates" + type_attr: "T" + } + input_arg { + name: "shape" + type_attr: "Tindices" + } + output_arg { + name: "output" + type_attr: "T" + } + attr { + name: "T" + type: "type" + allowed_values { + list { + type: DT_BFLOAT16 + type: DT_HALF + type: DT_FLOAT + type: DT_DOUBLE + } + } + } + attr { + name: "Tindices" + type: "type" + allowed_values { + list { + type: DT_INT32 + type: DT_INT64 + } + } + } } op { - name: "RetrieveTPUEmbeddingRMSPropParametersGradAccumDebug" - output_arg { - name: "parameters" - type: DT_FLOAT - } - output_arg { - name: "ms" - type: DT_FLOAT - } - output_arg { - name: "mom" - type: DT_FLOAT + name: "RiscShape" + input_arg { + name: "input" + type_attr: "T" } output_arg { - name: "gradient_accumulators" - type: DT_FLOAT + name: "output" + type_attr: "out_type" } attr { - name: "table_id" - type: "int" - default_value { - i: -1 + name: "T" + type: "type" + allowed_values { + list { + type: DT_BFLOAT16 + type: DT_HALF + type: DT_FLOAT + type: DT_DOUBLE + } } } attr { - name: "table_name" - type: "string" + name: "out_type" + type: "type" default_value { - s: "" + type: DT_INT32 + } + allowed_values { + list { + type: DT_INT32 + type: DT_INT64 + } } } - attr { - name: "num_shards" - type: "int" +} +op { + name: "RiscSign" + input_arg { + name: "x" + type_attr: "T" } - attr { - name: "shard_id" - type: "int" + output_arg { + name: "y" + type_attr: "T" } attr { - name: "config" - type: "string" - default_value { - s: "" + name: "T" + type: "type" + allowed_values { + list { + type: DT_BFLOAT16 + type: DT_HALF + type: DT_FLOAT + type: DT_DOUBLE + } } } - is_stateful: true } op { - name: "RetrieveTPUEmbeddingStochasticGradientDescentParameters" - output_arg { - name: "parameters" - type: DT_FLOAT + name: "RiscSlice" + input_arg { + name: "input" + type_attr: "T" } - attr { - name: "table_id" - type: "int" - default_value { - i: -1 - } + input_arg { + name: "begin" + type_attr: "Index" } - attr { - name: "table_name" - type: "string" - default_value { - s: "" - } + input_arg { + name: "size" + type_attr: "Index" } - attr { - name: "num_shards" - type: "int" + output_arg { + name: "output" + type_attr: "T" } attr { - name: "shard_id" - type: "int" + name: "T" + type: "type" + allowed_values { + list { + type: DT_BFLOAT16 + type: DT_HALF + type: DT_FLOAT + type: DT_DOUBLE + } + } } attr { - name: "config" - type: "string" - default_value { - s: "" + name: "Index" + type: "type" + allowed_values { + list { + type: DT_INT32 + type: DT_INT64 + } } } - is_stateful: true } op { - name: "RetrieveTPUEmbeddingStochasticGradientDescentParametersGradAccumDebug" - output_arg { - name: "parameters" - type: DT_FLOAT + name: "RiscSort" + input_arg { + name: "input" + type_attr: "T" + } + input_arg { + name: "axis" + type_attr: "Index" } output_arg { - name: "gradient_accumulators" - type: DT_FLOAT + name: "output" + type_attr: "T" } attr { - name: "table_id" - type: "int" + name: "Index" + type: "type" default_value { - i: -1 + type: DT_INT32 + } + allowed_values { + list { + type: DT_INT32 + type: DT_INT64 + } } } attr { - name: "table_name" - type: "string" - default_value { - s: "" + name: "T" + type: "type" + allowed_values { + list { + type: DT_BFLOAT16 + type: DT_HALF + type: DT_FLOAT + type: DT_DOUBLE + } } } attr { - name: "num_shards" - type: "int" + name: "direction" + type: "string" + allowed_values { + list { + s: "ASCENDING" + s: "DESCENDING" + } + } + } +} +op { + name: "RiscSqueeze" + input_arg { + name: "input" + type_attr: "T" + } + output_arg { + name: "output" + type_attr: "T" } attr { - name: "shard_id" - type: "int" + name: "T" + type: "type" } attr { - name: "config" - type: "string" + name: "squeeze_dims" + type: "list(int)" default_value { - s: "" + list { + } } + has_minimum: true } - is_stateful: true } op { - name: "Reverse" + name: "RiscSub" input_arg { - name: "tensor" + name: "x" type_attr: "T" } input_arg { - name: "dims" - type: DT_BOOL + name: "y" + type_attr: "T" } output_arg { - name: "output" + name: "z" type_attr: "T" } attr { @@ -41125,57 +43238,37 @@ op { type: "type" allowed_values { list { - type: DT_UINT8 - type: DT_INT8 - type: DT_UINT16 - type: DT_INT16 - type: DT_INT32 - type: DT_INT64 - type: DT_BOOL + type: DT_BFLOAT16 type: DT_HALF type: DT_FLOAT type: DT_DOUBLE - type: DT_COMPLEX64 - type: DT_COMPLEX128 - type: DT_STRING } } } } op { - name: "ReverseSequence" + name: "RiscTranspose" input_arg { - name: "input" + name: "x" type_attr: "T" } input_arg { - name: "seq_lengths" - type_attr: "Tlen" + name: "perm" + type_attr: "Tperm" } output_arg { - name: "output" + name: "y" type_attr: "T" } - attr { - name: "seq_dim" - type: "int" - } - attr { - name: "batch_dim" - type: "int" - default_value { - i: 0 - } - } attr { name: "T" type: "type" } attr { - name: "Tlen" + name: "Tperm" type: "type" default_value { - type: DT_INT64 + type: DT_INT32 } allowed_values { list { @@ -41186,30 +43279,31 @@ op { } } op { - name: "ReverseV2" + name: "RiscTriangularSolve" input_arg { - name: "tensor" + name: "matrix" type_attr: "T" } input_arg { - name: "axis" - type_attr: "Tidx" + name: "rhs" + type_attr: "T" } output_arg { name: "output" type_attr: "T" } attr { - name: "Tidx" - type: "type" + name: "lower" + type: "bool" default_value { - type: DT_INT32 + b: true } - allowed_values { - list { - type: DT_INT32 - type: DT_INT64 - } + } + attr { + name: "adjoint" + type: "bool" + default_value { + b: false } } attr { @@ -41217,77 +43311,94 @@ op { type: "type" allowed_values { list { - type: DT_UINT8 - type: DT_INT8 - type: DT_UINT16 - type: DT_INT16 - type: DT_INT32 - type: DT_INT64 - type: DT_BOOL type: DT_BFLOAT16 type: DT_HALF type: DT_FLOAT type: DT_DOUBLE - type: DT_COMPLEX64 - type: DT_COMPLEX128 - type: DT_STRING } } } } op { - name: "RightShift" + name: "RiscUnary" input_arg { name: "x" type_attr: "T" } - input_arg { + output_arg { name: "y" type_attr: "T" } - output_arg { - name: "z" - type_attr: "T" + attr { + name: "op_type" + type: "string" + allowed_values { + list { + s: "ABL" + s: "CEIL" + s: "COS" + s: "EXP" + s: "FLOOR" + s: "IMAG" + s: "LOG" + s: "NEG" + s: "REAL" + s: "SIGN" + } + } } attr { name: "T" type: "type" allowed_values { list { - type: DT_INT8 - type: DT_INT16 - type: DT_INT32 - type: DT_INT64 - type: DT_UINT8 - type: DT_UINT16 - type: DT_UINT32 - type: DT_UINT64 + type: DT_BFLOAT16 + type: DT_HALF + type: DT_FLOAT + type: DT_DOUBLE } } } } op { - name: "Rint" + name: "RiscWhile" input_arg { - name: "x" - type_attr: "T" + name: "input" + type_list_attr: "T" } output_arg { - name: "y" - type_attr: "T" + name: "output" + type_list_attr: "T" } attr { name: "T" - type: "type" - allowed_values { + type: "list(type)" + has_minimum: true + } + attr { + name: "cond" + type: "func" + } + attr { + name: "body" + type: "func" + } + attr { + name: "output_shapes" + type: "list(shape)" + default_value { list { - type: DT_BFLOAT16 - type: DT_HALF - type: DT_FLOAT - type: DT_DOUBLE } } } + attr { + name: "parallel_iterations" + type: "int" + default_value { + i: 10 + } + } + is_stateful: true } op { name: "RngReadAndSkip" @@ -41397,47 +43508,6 @@ op { } } } -op { - name: "Rpc" - input_arg { - name: "address" - type: DT_STRING - } - input_arg { - name: "method" - type: DT_STRING - } - input_arg { - name: "request" - type: DT_STRING - } - output_arg { - name: "response" - type: DT_STRING - } - attr { - name: "protocol" - type: "string" - default_value { - s: "" - } - } - attr { - name: "fail_fast" - type: "bool" - default_value { - b: true - } - } - attr { - name: "timeout_in_ms" - type: "int" - default_value { - i: 0 - } - } - is_stateful: true -} op { name: "Rsqrt" input_arg { @@ -44468,152 +46538,166 @@ op { } } attr { - name: "reader_path_prefix" + name: "reader_path_prefix" + type: "string" + default_value { + s: "" + } + } + attr { + name: "writer_path_prefix" + type: "string" + default_value { + s: "" + } + } + attr { + name: "shard_size_bytes" + type: "int" + default_value { + i: 10737418240 + } + } + attr { + name: "pending_snapshot_expiry_seconds" + type: "int" + default_value { + i: 86400 + } + } + attr { + name: "num_reader_threads" + type: "int" + default_value { + i: 1 + } + } + attr { + name: "reader_buffer_size" + type: "int" + default_value { + i: 1 + } + } + attr { + name: "num_writer_threads" + type: "int" + default_value { + i: 1 + } + } + attr { + name: "writer_buffer_size" + type: "int" + default_value { + i: 1 + } + } + attr { + name: "shuffle_on_read" + type: "bool" + default_value { + b: false + } + } + attr { + name: "seed" + type: "int" + default_value { + i: 0 + } + } + attr { + name: "seed2" + type: "int" + default_value { + i: 0 + } + } + attr { + name: "mode" + type: "string" + default_value { + s: "auto" + } + } + attr { + name: "snapshot_name" + type: "string" + default_value { + s: "" + } + } +} +op { + name: "SnapshotDatasetV2" + input_arg { + name: "input_dataset" + type: DT_VARIANT + } + input_arg { + name: "path" + type: DT_STRING + } + input_arg { + name: "reader_func_other_args" + type_list_attr: "Treader_func_args" + } + input_arg { + name: "shard_func_other_args" + type_list_attr: "Tshard_func_args" + } + output_arg { + name: "handle" + type: DT_VARIANT + } + attr { + name: "output_types" + type: "list(type)" + has_minimum: true + minimum: 1 + } + attr { + name: "output_shapes" + type: "list(shape)" + has_minimum: true + minimum: 1 + } + attr { + name: "compression" + type: "string" + default_value { + s: "" + } + } + attr { + name: "reader_prefix" type: "string" default_value { s: "" } } attr { - name: "writer_path_prefix" + name: "writer_prefix" type: "string" default_value { s: "" } } attr { - name: "shard_size_bytes" - type: "int" - default_value { - i: 10737418240 - } - } - attr { - name: "pending_snapshot_expiry_seconds" - type: "int" - default_value { - i: 86400 - } - } - attr { - name: "num_reader_threads" - type: "int" - default_value { - i: 1 - } - } - attr { - name: "reader_buffer_size" - type: "int" - default_value { - i: 1 - } - } - attr { - name: "num_writer_threads" - type: "int" - default_value { - i: 1 - } - } - attr { - name: "writer_buffer_size" - type: "int" - default_value { - i: 1 - } - } - attr { - name: "shuffle_on_read" + name: "hash_valid" type: "bool" default_value { b: false } } attr { - name: "seed" - type: "int" - default_value { - i: 0 - } - } - attr { - name: "seed2" + name: "hash" type: "int" default_value { i: 0 } } - attr { - name: "mode" - type: "string" - default_value { - s: "auto" - } - } - attr { - name: "snapshot_name" - type: "string" - default_value { - s: "" - } - } -} -op { - name: "SnapshotDatasetV2" - input_arg { - name: "input_dataset" - type: DT_VARIANT - } - input_arg { - name: "path" - type: DT_STRING - } - input_arg { - name: "reader_func_other_args" - type_list_attr: "Treader_func_args" - } - input_arg { - name: "shard_func_other_args" - type_list_attr: "Tshard_func_args" - } - output_arg { - name: "handle" - type: DT_VARIANT - } - attr { - name: "output_types" - type: "list(type)" - has_minimum: true - minimum: 1 - } - attr { - name: "output_shapes" - type: "list(shape)" - has_minimum: true - minimum: 1 - } - attr { - name: "compression" - type: "string" - default_value { - s: "" - } - } - attr { - name: "reader_prefix" - type: "string" - default_value { - s: "" - } - } - attr { - name: "writer_prefix" - type: "string" - default_value { - s: "" - } - } attr { name: "reader_func" type: "func" @@ -49846,6 +51930,43 @@ op { } } } +op { + name: "StatelessRandomGetAlg" + output_arg { + name: "alg" + type: DT_INT32 + } + is_stateful: true +} +op { + name: "StatelessRandomGetKeyCounter" + input_arg { + name: "seed" + type_attr: "Tseed" + } + output_arg { + name: "key" + type: DT_UINT64 + } + output_arg { + name: "counter" + type: DT_UINT64 + } + attr { + name: "Tseed" + type: "type" + default_value { + type: DT_INT64 + } + allowed_values { + list { + type: DT_INT32 + type: DT_INT64 + } + } + } + is_stateful: true +} op { name: "StatelessRandomGetKeyCounterAlg" input_arg { @@ -49877,7 +51998,6 @@ op { } } } - is_stateful: true } op { name: "StatelessRandomNormal" @@ -51329,6 +53449,7 @@ op { type: DT_COMPLEX64 type: DT_COMPLEX128 type: DT_UINT32 + type: DT_UINT64 } } } @@ -52037,6 +54158,28 @@ op { type: "type" } } +op { + name: "TPUReshardVariables" + input_arg { + name: "vars" + type: DT_RESOURCE + number_attr: "N" + } + input_arg { + name: "new_format_key" + type: DT_STRING + } + input_arg { + name: "format_state_var" + type: DT_RESOURCE + } + attr { + name: "N" + type: "int" + has_minimum: true + } + is_stateful: true +} op { name: "TakeDataset" input_arg { @@ -53235,108 +55378,6 @@ op { } is_stateful: true } -op { - name: "TensorForestCreateTreeVariable" - input_arg { - name: "tree_handle" - type: DT_RESOURCE - } - input_arg { - name: "tree_config" - type: DT_STRING - } - is_stateful: true -} -op { - name: "TensorForestTreeDeserialize" - input_arg { - name: "tree_handle" - type: DT_RESOURCE - } - input_arg { - name: "tree_config" - type: DT_STRING - } - is_stateful: true -} -op { - name: "TensorForestTreeIsInitializedOp" - input_arg { - name: "tree_handle" - type: DT_RESOURCE - } - output_arg { - name: "is_initialized" - type: DT_BOOL - } - is_stateful: true -} -op { - name: "TensorForestTreePredict" - input_arg { - name: "tree_handle" - type: DT_RESOURCE - } - input_arg { - name: "dense_features" - type: DT_FLOAT - } - output_arg { - name: "logits" - type: DT_FLOAT - } - attr { - name: "logits_dimension" - type: "int" - } - is_stateful: true -} -op { - name: "TensorForestTreeResourceHandleOp" - output_arg { - name: "resource" - type: DT_RESOURCE - } - attr { - name: "container" - type: "string" - default_value { - s: "" - } - } - attr { - name: "shared_name" - type: "string" - default_value { - s: "" - } - } - is_stateful: true -} -op { - name: "TensorForestTreeSerialize" - input_arg { - name: "tree_handle" - type: DT_RESOURCE - } - output_arg { - name: "tree_config" - type: DT_STRING - } - is_stateful: true -} -op { - name: "TensorForestTreeSize" - input_arg { - name: "tree_handle" - type: DT_RESOURCE - } - output_arg { - name: "tree_size" - type: DT_INT32 - } - is_stateful: true -} op { name: "TensorListConcat" input_arg { @@ -54797,6 +56838,8 @@ op { type: DT_UINT16 type: DT_INT16 type: DT_INT32 + type: DT_UINT32 + type: DT_UINT64 type: DT_INT64 type: DT_COMPLEX64 type: DT_COMPLEX128 @@ -54881,55 +56924,6 @@ op { } is_stateful: true } -op { - name: "TryRpc" - input_arg { - name: "address" - type: DT_STRING - } - input_arg { - name: "method" - type: DT_STRING - } - input_arg { - name: "request" - type: DT_STRING - } - output_arg { - name: "response" - type: DT_STRING - } - output_arg { - name: "status_code" - type: DT_INT32 - } - output_arg { - name: "status_message" - type: DT_STRING - } - attr { - name: "protocol" - type: "string" - default_value { - s: "" - } - } - attr { - name: "fail_fast" - type: "bool" - default_value { - b: true - } - } - attr { - name: "timeout_in_ms" - type: "int" - default_value { - i: 0 - } - } - is_stateful: true -} op { name: "Unbatch" input_arg { @@ -56763,6 +58757,146 @@ op { summary: "Wraps the XLA ConvGeneralDilated operator, documented at" description: " https://www.tensorflow.org/performance/xla/operation_semantics#conv_convolution\n." } +op { + name: "XlaConvV2" + input_arg { + name: "lhs" + description: "the input tensor" + type_attr: "LhsT" + } + input_arg { + name: "rhs" + description: "the kernel tensor" + type_attr: "RhsT" + } + input_arg { + name: "window_strides" + description: "the inter-window strides" + type_attr: "Tindices" + } + input_arg { + name: "padding" + description: "the padding to apply at the start and end of each input dimensions" + type_attr: "Tindices" + } + input_arg { + name: "lhs_dilation" + description: "dilation to apply between input elements" + type_attr: "Tindices" + } + input_arg { + name: "rhs_dilation" + description: "dilation to apply between kernel elements" + type_attr: "Tindices" + } + input_arg { + name: "feature_group_count" + description: "number of feature groups for grouped convolution." + type_attr: "Tindices" + } + output_arg { + name: "output" + type_attr: "preferred_element_type" + } + attr { + name: "LhsT" + type: "type" + allowed_values { + list { + type: DT_FLOAT + type: DT_DOUBLE + type: DT_INT32 + type: DT_UINT8 + type: DT_INT16 + type: DT_INT8 + type: DT_COMPLEX64 + type: DT_INT64 + type: DT_QINT8 + type: DT_QUINT8 + type: DT_QINT32 + type: DT_BFLOAT16 + type: DT_UINT16 + type: DT_COMPLEX128 + type: DT_HALF + type: DT_UINT32 + type: DT_UINT64 + } + } + } + attr { + name: "RhsT" + type: "type" + allowed_values { + list { + type: DT_FLOAT + type: DT_DOUBLE + type: DT_INT32 + type: DT_UINT8 + type: DT_INT16 + type: DT_INT8 + type: DT_COMPLEX64 + type: DT_INT64 + type: DT_QINT8 + type: DT_QUINT8 + type: DT_QINT32 + type: DT_BFLOAT16 + type: DT_UINT16 + type: DT_COMPLEX128 + type: DT_HALF + type: DT_UINT32 + type: DT_UINT64 + } + } + } + attr { + name: "Tindices" + type: "type" + allowed_values { + list { + type: DT_INT32 + type: DT_INT64 + } + } + } + attr { + name: "dimension_numbers" + type: "string" + description: "a serialized xla::ConvolutionDimensionNumbers proto." + } + attr { + name: "precision_config" + type: "string" + description: "a serialized xla::PrecisionConfig proto." + } + attr { + name: "preferred_element_type" + type: "type" + description: "The type of the tensor." + allowed_values { + list { + type: DT_FLOAT + type: DT_DOUBLE + type: DT_INT32 + type: DT_UINT8 + type: DT_INT16 + type: DT_INT8 + type: DT_COMPLEX64 + type: DT_INT64 + type: DT_QINT8 + type: DT_QUINT8 + type: DT_QINT32 + type: DT_BFLOAT16 + type: DT_UINT16 + type: DT_COMPLEX128 + type: DT_HALF + type: DT_UINT32 + type: DT_UINT64 + } + } + } + summary: "Wraps the XLA ConvGeneralDilated operator, documented at" + description: " https://www.tensorflow.org/performance/xla/operation_semantics#conv_convolution\n." +} op { name: "XlaDequantize" input_arg { @@ -56853,6 +58987,111 @@ op { summary: "Wraps the XLA DotGeneral operator, documented at" description: " https://www.tensorflow.org/performance/xla/operation_semantics#dotgeneral\n." } +op { + name: "XlaDotV2" + input_arg { + name: "lhs" + description: "the LHS tensor" + type_attr: "LhsT" + } + input_arg { + name: "rhs" + description: "the RHS tensor" + type_attr: "RhsT" + } + output_arg { + name: "output" + type_attr: "preferred_element_type" + } + attr { + name: "LhsT" + type: "type" + allowed_values { + list { + type: DT_FLOAT + type: DT_DOUBLE + type: DT_INT32 + type: DT_UINT8 + type: DT_INT16 + type: DT_INT8 + type: DT_COMPLEX64 + type: DT_INT64 + type: DT_QINT8 + type: DT_QUINT8 + type: DT_QINT32 + type: DT_BFLOAT16 + type: DT_UINT16 + type: DT_COMPLEX128 + type: DT_HALF + type: DT_UINT32 + type: DT_UINT64 + } + } + } + attr { + name: "RhsT" + type: "type" + allowed_values { + list { + type: DT_FLOAT + type: DT_DOUBLE + type: DT_INT32 + type: DT_UINT8 + type: DT_INT16 + type: DT_INT8 + type: DT_COMPLEX64 + type: DT_INT64 + type: DT_QINT8 + type: DT_QUINT8 + type: DT_QINT32 + type: DT_BFLOAT16 + type: DT_UINT16 + type: DT_COMPLEX128 + type: DT_HALF + type: DT_UINT32 + type: DT_UINT64 + } + } + } + attr { + name: "dimension_numbers" + type: "string" + description: "a serialized xla::DotDimensionNumbers proto." + } + attr { + name: "precision_config" + type: "string" + description: "a serialized xla::PrecisionConfig proto." + } + attr { + name: "preferred_element_type" + type: "type" + description: "The type of the tensor." + allowed_values { + list { + type: DT_FLOAT + type: DT_DOUBLE + type: DT_INT32 + type: DT_UINT8 + type: DT_INT16 + type: DT_INT8 + type: DT_COMPLEX64 + type: DT_INT64 + type: DT_QINT8 + type: DT_QUINT8 + type: DT_QINT32 + type: DT_BFLOAT16 + type: DT_UINT16 + type: DT_COMPLEX128 + type: DT_HALF + type: DT_UINT32 + type: DT_UINT64 + } + } + } + summary: "Wraps the XLA DotGeneral operator, documented at" + description: " https://www.tensorflow.org/performance/xla/operation_semantics#dotgeneral\n." +} op { name: "XlaDynamicSlice" input_arg { @@ -57069,6 +59308,20 @@ op { name: "key" type: "string" } + attr { + name: "send_key" + type: "string" + default_value { + s: "" + } + } + attr { + name: "recv_key" + type: "string" + default_value { + s: "" + } + } attr { name: "cost_estimate_ns" type: "int" @@ -57238,17 +59491,17 @@ op { } input_arg { name: "padding_low" - description: "the padding to apply at the start of each input dimensions" + description: "the padding to apply at the start of each input dimensions. Must\nbe a compile-time constant 1D tensor of length equal to rank of input." type_attr: "Tindices" } input_arg { name: "padding_high" - description: "the padding to apply at the end of each input dimension." + description: "the padding to apply at the end of each input dimension. Must\nbe a compile-time constant 1D tensor of length equal to rank of input." type_attr: "Tindices" } input_arg { name: "padding_interior" - description: "the padding to apply between each input element." + description: "the padding to apply between each input element. Must\nbe a compile-time constant 1D tensor of length equal to rank of input,\ncontaining only non-negative values." type_attr: "Tindices" } output_arg { @@ -57735,6 +59988,31 @@ op { summary: "Set a bound for the given input value as a hint to Xla compiler," description: " returns the same value." } +op { + name: "XlaSetDynamicDimensionSize" + input_arg { + name: "input" + type_attr: "T" + } + input_arg { + name: "dim_index" + type: DT_INT32 + } + input_arg { + name: "size" + type: DT_INT32 + } + output_arg { + name: "output" + type_attr: "T" + } + attr { + name: "T" + type: "type" + } + summary: "Make a static dimension into a xla bounded dynamic dimension." + description: " The current static dimension size will become the bound and the second\n operand becomes the dynamic size of the dimension." +} op { name: "XlaSharding" input_arg { @@ -57749,6 +60027,13 @@ op { name: "T" type: "type" } + attr { + name: "sharding" + type: "string" + default_value { + s: "" + } + } summary: "An op which shards the input based on the given sharding attribute." } op { @@ -57941,8 +60226,44 @@ op { type: "func" description: "a reducer function to apply" } - summary: "Wraps the variadic XLA Reduce operator, documented at" - description: " https://www.tensorflow.org/performance/xla/operation_semantics#variadic_reduce." + summary: "Wraps the variadic XLA Reduce operator." + description: "Semantics are documented at\n https://www.tensorflow.org/performance/xla/operation_semantics#variadic_reduce." +} +op { + name: "XlaVariadicSort" + input_arg { + name: "inputs" + description: "A list of `Tensor` of identical shape but possibly different types." + type_list_attr: "T" + } + input_arg { + name: "dimension" + description: "The dimension along which to sort. Must be a compile-time constant." + type: DT_INT32 + } + output_arg { + name: "outputs" + description: "A list of `Tensor` of same shape and types as the `input`." + type_list_attr: "T" + } + attr { + name: "T" + type: "list(type)" + has_minimum: true + minimum: 1 + } + attr { + name: "comparator" + type: "func" + description: "A comparator function to apply to 2*N scalars and returning a\nboolean. N is the number of sort inputs. If you want to sort in ascending\norder then the comparator should perform a less-than comparison." + } + attr { + name: "is_stable" + type: "bool" + description: "Whether to use stable sort." + } + summary: "Wraps the XLA Sort operator, documented at" + description: " https://www.tensorflow.org/performance/xla/operation_semantics#sort\n.\n\nSorts one or more tensors, with support for custom comparator, dimension, and\nis_stable attributes." } op { name: "XlaWhile" diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/internal/c_api/presets/tensorflow.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/internal/c_api/presets/tensorflow.java index 66dead59967..b6924ff1dc4 100644 --- a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/internal/c_api/presets/tensorflow.java +++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/internal/c_api/presets/tensorflow.java @@ -1,18 +1,18 @@ /* Copyright 2019-2021 The TensorFlow Authors. All Rights Reserved. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. - ======================================================================= - */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +======================================================================= +*/ package org.tensorflow.internal.c_api.presets; import java.util.List; @@ -379,6 +379,7 @@ public void map(InfoMap infoMap) { new Info("TFE_TensorHandle") .pointerTypes("TFE_TensorHandle") .base("org.tensorflow.internal.c_api.AbstractTFE_TensorHandle")) + .put(new Info("SP_Stream").cast().pointerTypes("Pointer")) .put( new Info( "TF_ShapeInferenceContextDimValueKnown",