From 0c23026781aa3305db26b64c95ceaf15725123fe Mon Sep 17 00:00:00 2001 From: William Chargin Date: Tue, 3 Dec 2019 18:42:41 -0800 Subject: [PATCH] data: define `convert_*_event` at module level Summary: Per suggestion of @nfelt in post-review comment on #2980. This way, the functions are only defined once. Test Plan: Unit tests pass. wchargin-branch: mux-toplevel-read-helpers --- .../backend/event_processing/data_provider.py | 38 ++++++++++--------- 1 file changed, 20 insertions(+), 18 deletions(-) diff --git a/tensorboard/backend/event_processing/data_provider.py b/tensorboard/backend/event_processing/data_provider.py index 687c4a62e8..0c410acd7e 100644 --- a/tensorboard/backend/event_processing/data_provider.py +++ b/tensorboard/backend/event_processing/data_provider.py @@ -87,15 +87,7 @@ def read_scalars( index = self.list_scalars( experiment_id, plugin_name, run_tag_filter=run_tag_filter ) - - def convert_scalar_event(event): - return provider.ScalarDatum( - step=event.step, - wall_time=event.wall_time, - value=tensor_util.make_ndarray(event.tensor_proto).item(), - ) - - return self._read(convert_scalar_event, index) + return self._read(_convert_scalar_event, index) def list_tensors(self, experiment_id, plugin_name, run_tag_filter=None): run_tag_content = self._multiplexer.PluginRunToTagToContent(plugin_name) @@ -113,15 +105,7 @@ def read_tensors( index = self.list_tensors( experiment_id, plugin_name, run_tag_filter=run_tag_filter ) - - def convert_tensor_event(event): - return provider.TensorDatum( - step=event.step, - wall_time=event.wall_time, - numpy=tensor_util.make_ndarray(event.tensor_proto), - ) - - return self._read(convert_tensor_event, index) + return self._read(_convert_tensor_event, index) def _list(self, construct_time_series, run_tag_content, run_tag_filter): """Helper to list scalar or tensor time series. @@ -181,3 +165,21 @@ def _read(self, convert_event, index): events = self._multiplexer.Tensors(run, tag) result_for_run[tag] = [convert_event(e) for e in events] return result + + +def _convert_scalar_event(event): + """Helper for `read_scalars`.""" + return provider.ScalarDatum( + step=event.step, + wall_time=event.wall_time, + value=tensor_util.make_ndarray(event.tensor_proto).item(), + ) + + +def _convert_tensor_event(event): + """Helper for `read_tensors`.""" + return provider.TensorDatum( + step=event.step, + wall_time=event.wall_time, + numpy=tensor_util.make_ndarray(event.tensor_proto), + )