diff --git a/.travis.yml b/.travis.yml index 0466db939..7fed3b0b6 100644 --- a/.travis.yml +++ b/.travis.yml @@ -10,9 +10,6 @@ cran: https://cran.rstudio.com warnings_are_errors: false r: - - 3.2 - - 3.3 - - 3.4 - 3.5 - 3.6 - devel @@ -24,34 +21,6 @@ matrix: - r: 3.2 # partykit install failure (libcoin needs >= 3.4.0) - r: 3.4 # mvtnorm requires >= 3.5.0 -r_binary_packages: - - RCurl - - dplyr - - glue - - magrittr - - stringi - - stringr - - munsell - - rlang - - reshape2 - - scales - - tibble - - ggplot2 - - Rcpp - - RcppEigen - - BH - - glmnet - - earth - - sparklyr - - flexsurv - - ranger - - randomforest - - xgboost - - C50 - - reticulate - - scales - - dials - cache: packages: true diff --git a/DESCRIPTION b/DESCRIPTION index 2ff8ed495..d9c46830b 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -1,5 +1,5 @@ Package: parsnip -Version: 0.0.3 +Version: 0.0.3.9000 Title: A Common API to Modeling and Analysis Functions Description: A common interface is provided to allow users to specify a model without having to remember the different argument names across different functions or computational engines (e.g. 'R', 'Spark', 'Stan', etc). Authors@R: c( diff --git a/NEWS.md b/NEWS.md index a505a745f..024f4f38d 100644 --- a/NEWS.md +++ b/NEWS.md @@ -1,3 +1,5 @@ +# parsnip 0.0.3.9000 + # parsnip 0.0.3 Unplanned release based on CRAN requirements for Solaris. diff --git a/docs/articles/articles/Classification.html b/docs/articles/articles/Classification.html index 2ec6a523f..2dc96fcc0 100644 --- a/docs/articles/articles/Classification.html +++ b/docs/articles/articles/Classification.html @@ -105,25 +105,24 @@
To demonstrate parsnip
for classification models, the credit data will be used.
library(tidymodels)
-#> ── Attaching packages ─────────────────────────────────────── tidymodels 0.0.2 ──
-#> ✔ broom 0.5.1 ✔ purrr 0.3.2
-#> ✔ dials 0.0.2.9000 ✔ recipes 0.1.6
-#> ✔ dplyr 0.8.3 ✔ rsample 0.0.5
-#> ✔ infer 0.4.0 ✔ yardstick 0.0.3.9000
-#> ── Conflicts ────────────────────────────────────────── tidymodels_conflicts() ──
+#> ── Attaching packages ───────────────────────────────────────────── tidymodels 0.0.2 ──
+#> ✔ broom 0.5.2 ✔ purrr 0.3.2
+#> ✔ dials 0.0.2 ✔ recipes 0.1.6
+#> ✔ dplyr 0.8.3 ✔ rsample 0.0.5
+#> ✔ infer 0.4.0.1 ✔ yardstick 0.0.3
+#> ── Conflicts ──────────────────────────────────────────────── tidymodels_conflicts() ──
#> ✖ purrr::discard() masks scales::discard()
#> ✖ dplyr::filter() masks stats::filter()
#> ✖ dplyr::lag() masks stats::lag()
-#> ✖ dials::margin() masks ggplot2::margin()
-#> ✖ recipes::step() masks stats::step()
-
-data(credit_data)
-
-set.seed(7075)
-data_split <- initial_split(credit_data, strata = "Status", p = 0.75)
-
-credit_train <- training(data_split)
-credit_test <- testing(data_split)
A single hidden layer neural network will be used to predict a person’s credit status. To do so, the columns of the predictor matrix should be numeric and on a common scale. recipes
will be used to do so.
credit_rec <-
recipe(Status ~ ., data = credit_train) %>%
@@ -185,12 +184,12 @@ Classification Example
#> # A tibble: 1 x 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
-#> 1 accuracy binary 0.804
+#> 1 accuracy binary 0.803
test_results %>% conf_mat(truth = Status, nnet_class)
#> Truth
#> Prediction bad good
-#> bad 191 96
-#> good 122 704