diff --git a/examples/amd/example_amd_flash_attn_fwd.py b/examples/amd/example_amd_flash_attn_fwd.py deleted file mode 100644 index 874494ef1..000000000 --- a/examples/amd/example_amd_flash_attn_fwd.py +++ /dev/null @@ -1,270 +0,0 @@ -# Copyright (c) Tile-AI Corporation. -# Licensed under the MIT License. -# -# Modified to implement FlashAttention-2 forward pass principles. -# Corrected loop implementation using T.while_loop. - -import torch -import torch.nn.functional as F -import tilelang -import tilelang.language as T -import itertools -import argparse -from functools import partial - - -# PyTorch 参考实现保持不变 -def ref_program(Q, K, V, is_causal, groups=1): - assert Q.size( - 2) == K.size(2) * groups, f"Q heads {Q.size(2)} K heads {K.size(2)} groups {groups}" - assert Q.size( - 2) == V.size(2) * groups, f"Q heads {Q.size(2)} V heads {V.size(2)} groups {groups}" - dim = Q.size(-1) - K = K.repeat_interleave(groups, dim=2) - V = V.repeat_interleave(groups, dim=2) - scores = torch.einsum('bqhd,bkhd->bhqk', Q, K) - scores = scores / torch.sqrt(torch.tensor(dim, dtype=scores.dtype)) - if is_causal: - seq_len = Q.size(1) - mask = torch.tril(torch.ones(seq_len, seq_len, device=scores.device)) - mask = mask.unsqueeze(0).unsqueeze(0) - scores = scores.masked_fill(mask == 0, float('-inf')) - attention_weights = F.softmax(scores, dim=-1) - output = torch.einsum('bhqk,bkhd->bqhd', attention_weights, V) - return output - - -def get_v2_configs(): - """Generates configurations for the autotuner, tailored for FA-2 style parallelism.""" - block_M = [64, 128, 256] - block_N = [32, 64, 128] - threads = [128, 256, 512] - num_split_q = [32, 64, 128] - num_stages = [1, 2, 3] - enable_rasterization = [True] - k_pack = [2] - - valid_configs = [] - - for m, n, s, t, stages, r, k in itertools.product(block_M, block_N, num_split_q, threads, - num_stages, enable_rasterization, k_pack): - valid_configs.append({ - "block_M": m, - "block_N": n, - "num_split_q": s, - "threads": t, - "num_stages": stages, - "enable_rasterization": r, - "k_pack": k - }) - if not valid_configs: - valid_configs.append({ - 'block_M': 64, - 'block_N': 64, - 'num_split_q': 64, - 'threads': 256, - 'num_stages': 1, - 'enable_rasterization': True, - 'k_pack': 2 - }) - return valid_configs - - -@tilelang.autotune(configs=get_v2_configs(), cache_input_tensors=True) -@tilelang.jit(out_idx=[3]) -def fast_flashattn_v2( - batch, - heads, - seq_len, - dim, - is_causal, - groups, - block_M: int, - block_N: int, - num_split_q: int, - threads: int, - num_stages: int, - enable_rasterization: bool, - k_pack: int, -): - scale = (1.0 / dim)**0.5 * 1.44269504 - head_kv = heads // groups - q_shape = [batch, seq_len, heads, dim] - kv_shape = [batch, seq_len, head_kv, dim] - dtype = "float16" - accum_dtype = "float" - - v_vec_size = 4 - - vec_size = 4 * k_pack - - @T.macro - def compute_block( - bz, - by, - bx, - Q: T.Tensor(q_shape, dtype), - K: T.Tensor(kv_shape, dtype), - V: T.Tensor(kv_shape, dtype), - acc_o: T.FragmentBuffer([block_M, dim], accum_dtype), - m_i: T.FragmentBuffer([block_M], accum_dtype), - l_i: T.FragmentBuffer([block_M], accum_dtype), - ): - Q_shared = T.alloc_shared([block_M, dim], dtype) - K_shared = T.alloc_shared([block_N, dim], dtype) - V_shared = T.alloc_shared([block_N, dim], dtype) - P_shared = T.alloc_shared([block_M, block_N], dtype) - - acc_s = T.alloc_fragment([block_M, block_N], accum_dtype) - m_prev = T.alloc_fragment([block_M], accum_dtype) - scale_factor = T.alloc_fragment([block_M], accum_dtype) - - q_block_offset = bx * block_M - T.copy( - Q[bz, q_block_offset:q_block_offset + block_M, by, :], - Q_shared, - coalesced_width=vec_size) - - loop_end_k = T.ceildiv(q_block_offset + - block_M, block_N) if is_causal else T.ceildiv(seq_len, block_N) - for k in T.Pipelined(loop_end_k, num_stages=num_stages): - kv_idx = k * block_N - T.copy( - K[bz, kv_idx:kv_idx + block_N, by // groups, :], K_shared, coalesced_width=vec_size) - T.copy( - V[bz, kv_idx:kv_idx + block_N, by // groups, :], - V_shared, - coalesced_width=v_vec_size) - - T.clear(acc_s) - T.gemm(Q_shared, K_shared, acc_s, transpose_B=True, k_pack=k_pack) - - if is_causal: - for i, j in T.Parallel(block_M, block_N): - acc_s[i, j] = T.if_then_else(q_block_offset + i >= kv_idx + j, acc_s[i, j], - -T.infinity(acc_s.dtype)) - - T.copy(m_i, m_prev) - T.reduce_max(acc_s, m_i, dim=1, clear=False) - - for i in T.Parallel(block_M): - sf = T.exp2(m_prev[i] * scale - m_i[i] * scale) - l_i[i] *= sf - scale_factor[i] = sf - - for i, j in T.Parallel(block_M, dim): - acc_o[i, j] *= scale_factor[i] - - for i, j in T.Parallel(block_M, block_N): - acc_s[i, j] = T.exp2(acc_s[i, j] * scale - m_i[i] * scale) - - row_sum = T.alloc_fragment([block_M], accum_dtype) - T.reduce_sum(acc_s, row_sum, dim=1) - for i in T.Parallel(block_M): - l_i[i] += row_sum[i] - - T.copy(acc_s, P_shared) - T.sync_threads() - - T.gemm(P_shared, V_shared, acc_o) - - # 修复:将宏移至内核外部,以实现清晰的代码结构。 - @T.macro - def scale_and_write_back(src_buffer, scale_vector, dest_tensor, bz, by, q_block_offset): - # 此宏执行融合的缩放和写回操作,这对性能至关重要。 - for i, j in T.Parallel(block_M, dim): - dest_tensor[bz, q_block_offset + i, by, j] = src_buffer[i, j] * scale_vector[i] - - @T.macro - def flash_attn_forward_kernel(Q: T.Tensor(q_shape, dtype), K: T.Tensor(kv_shape, dtype), - V: T.Tensor(kv_shape, dtype), Output: T.Tensor(q_shape, dtype)): - with T.Kernel(num_split_q, batch * heads, threads=threads) as (b_split, byz_combined): - T.use_swizzle(10, enable=enable_rasterization) - - bz = byz_combined // heads - by = byz_combined % heads - - num_q_blocks = T.ceildiv(seq_len, block_M) - - bx = T.alloc_var("int32") - bx[0] = b_split - - with T.While(bx[0] < num_q_blocks): - acc_o = T.alloc_fragment([block_M, dim], accum_dtype) - m_i = T.alloc_fragment([block_M], accum_dtype) - l_i = T.alloc_fragment([block_M], accum_dtype) - T.fill(acc_o, 0) - T.fill(m_i, -T.infinity(accum_dtype)) - T.fill(l_i, 0) - - current_bx = bx[0] - - compute_block(bz, by, current_bx, Q, K, V, acc_o, m_i, l_i) - - l_inv = T.alloc_fragment([block_M], accum_dtype) - for i in T.Parallel(block_M): - safe_l = T.if_then_else(l_i[i] > 1e-6, l_i[i], 1.0) - l_inv[i] = 1.0 / safe_l - - # 修复:现在对宏的调用对编译器来说更清晰。 - q_block_offset = current_bx * block_M - scale_and_write_back(acc_o, l_inv, Output, bz, by, q_block_offset) - - bx[0] = current_bx + num_split_q - - @T.prim_func - def main( - Q: T.Tensor(q_shape, dtype), - K: T.Tensor(kv_shape, dtype), - V: T.Tensor(kv_shape, dtype), - Output: T.Tensor(q_shape, dtype), - ): - flash_attn_forward_kernel(Q, K, V, Output) - - return main - - -# main 函数保持不变 -def main_v2(batch: int = 1, - heads: int = 8, - seq_len: int = 4096, - dim: int = 128, - is_causal: bool = False, - groups: int = 1): - - flops_per_matmul = 2.0 * batch * heads * seq_len * seq_len * dim - total_flops = 2 * flops_per_matmul - if is_causal: - total_flops *= 0.5 - - print("Starting autotuning for FlashAttention-V2...") - kernel = fast_flashattn_v2(batch, heads, seq_len, dim, is_causal, groups=groups) - print(f"Autotuning finished. Best Configuration: {kernel.config}") - - ref_program_processed = partial(ref_program, is_causal=is_causal, groups=groups) - - profiler = kernel.get_profiler(tensor_supply_type=tilelang.TensorSupplyType.Normal) - - print("Verifying correctness...") - profiler.assert_allclose(ref_program_processed, rtol=0.01, atol=0.01) - print("All checks pass.") - - latency = profiler.do_bench(ref_program_processed, warmup=100) - print(f"Reference (PyTorch): {latency:.2f} ms | {total_flops / latency * 1e-9:.2f} TFlops") - - latency = profiler.do_bench(warmup=100) - print( - f"Fast Flash Attention V2 (Tile-lang): {latency:.2f} ms | {total_flops / latency * 1e-9:.2f} TFlops" - ) - - -if __name__ == "__main__": - parser = argparse.ArgumentParser() - parser.add_argument('--batch', type=int, default=1, help='batch size') - parser.add_argument('--heads', type=int, default=8, help='heads') - parser.add_argument('--seq_len', type=int, default=4096, help='sequence length') - parser.add_argument('--dim', type=int, default=128, help='dim') - parser.add_argument('--is_causal', action='store_true', help='causal') - parser.add_argument('--groups', type=int, default=1, help='groups') - args = parser.parse_args() - main_v2(args.batch, args.heads, args.seq_len, args.dim, args.is_causal, args.groups)