-
Notifications
You must be signed in to change notification settings - Fork 299
/
Copy pathtrain-autoencoder.lua
395 lines (322 loc) · 12.3 KB
/
train-autoencoder.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
----------------------------------------------------------------------
-- This script shows how to train autoencoders on natural images,
-- using the unsup package.
--
-- Borrowed from Koray Kavukcuoglu's unsup demos
--
-- In this script, we demonstrate the use of different types of
-- autoencoders. Learned filters can be visualized by providing the
-- flag -display.
--
-- Note: simple auto-encoders (with no sparsity constraint on the code) typically
-- don't yield filters that are visually appealing, although they might be
-- minimizing the reconstruction error correctly.
--
-- We demonstrate 2 types of auto-encoders:
-- * plain: regular auto-encoder
-- * predictive sparse decomposition (PSD): the encoder is trained
-- to predict an optimal sparse decomposition of the input
--
-- Both types of auto-encoders can use linear or convolutional
-- encoders/decoders. The convolutional version typically yields more
-- interesting, less redundant filters for images.
--
-- Koray Kavukcuoglu, Clement Farabet
----------------------------------------------------------------------
require 'unsup'
require 'image'
require 'optim'
require 'autoencoder-data'
----------------------------------------------------------------------
-- parse command-line options
--
cmd = torch.CmdLine()
cmd:text()
cmd:text('Training a simple sparse coding dictionary on Berkeley images')
cmd:text()
cmd:text('Options')
-- general options:
cmd:option('-dir', 'outputs', 'subdirectory to save experiments in')
cmd:option('-seed', 1, 'initial random seed')
cmd:option('-threads', 2, 'threads')
-- for all models:
cmd:option('-model', 'conv-psd', 'auto-encoder class: linear | linear-psd | conv | conv-psd')
cmd:option('-inputsize', 25, 'size of each input patch')
cmd:option('-nfiltersin', 1, 'number of input convolutional filters')
cmd:option('-nfiltersout', 16, 'number of output convolutional filters')
cmd:option('-lambda', 1, 'sparsity coefficient')
cmd:option('-beta', 1, 'prediction error coefficient')
cmd:option('-eta', 2e-3, 'learning rate')
cmd:option('-batchsize', 1, 'batch size')
cmd:option('-etadecay', 1e-5, 'learning rate decay')
cmd:option('-momentum', 0, 'gradient momentum')
cmd:option('-maxiter', 1000000, 'max number of updates')
-- use hessian information for training:
cmd:option('-hessian', true, 'compute diagonal hessian coefficients to condition learning rates')
cmd:option('-hessiansamples', 500, 'number of samples to use to estimate hessian')
cmd:option('-hessianinterval', 10000, 'compute diagonal hessian coefs at every this many samples')
cmd:option('-minhessian', 0.02, 'min hessian to avoid extreme speed up')
cmd:option('-maxhessian', 500, 'max hessian to avoid extreme slow down')
-- for conv models:
cmd:option('-kernelsize', 9, 'size of convolutional kernels')
-- logging:
cmd:option('-datafile', 'http://torch7.s3-website-us-east-1.amazonaws.com/data/tr-berkeley-N5K-M56x56-lcn.ascii', 'Dataset URL')
cmd:option('-statinterval', 5000, 'interval for saving stats and models')
cmd:option('-v', false, 'be verbose')
cmd:option('-display', false, 'display stuff')
cmd:option('-wcar', '', 'additional flag to differentiate this run')
cmd:text()
params = cmd:parse(arg)
rundir = cmd:string('psd', params, {dir=true})
params.rundir = params.dir .. '/' .. rundir
if paths.dirp(params.rundir) then
os.execute('rm -r ' .. params.rundir)
end
os.execute('mkdir -p ' .. params.rundir)
cmd:addTime('psd')
cmd:log(params.rundir .. '/log.txt', params)
torch.manualSeed(params.seed)
torch.setnumthreads(params.threads)
----------------------------------------------------------------------
-- load data
--
filename = paths.basename(params.datafile)
if not paths.filep(filename) then
os.execute('wget ' .. params.datafile .. '; '.. 'tar xvf ' .. filename)
end
dataset = getdata(filename, params.inputsize)
if params.display then
displayData(dataset, 100, 10, 2)
end
----------------------------------------------------------------------
-- create model
--
if params.model == 'linear' then
-- params
inputSize = params.inputsize*params.inputsize
outputSize = params.nfiltersout
-- encoder
encoder = nn.Sequential()
encoder:add(nn.Linear(inputSize,outputSize))
encoder:add(nn.Tanh())
encoder:add(nn.Diag(outputSize))
-- decoder
decoder = nn.Sequential()
decoder:add(nn.Linear(outputSize,inputSize))
-- complete model
module = unsup.AutoEncoder(encoder, decoder, params.beta)
-- verbose
print('==> constructed linear auto-encoder')
elseif params.model == 'conv' then
-- params:
conntable = nn.tables.full(params.nfiltersin, params.nfiltersout)
kw, kh = params.kernelsize, params.kernelsize
iw, ih = params.inputsize, params.inputsize
-- connection table:
local decodertable = conntable:clone()
decodertable[{ {},1 }] = conntable[{ {},2 }]
decodertable[{ {},2 }] = conntable[{ {},1 }]
local outputFeatures = conntable[{ {},2 }]:max()
-- encoder:
encoder = nn.Sequential()
encoder:add(nn.SpatialConvolutionMap(conntable, kw, kh, 1, 1))
encoder:add(nn.Tanh())
encoder:add(nn.Diag(outputFeatures))
-- decoder:
decoder = nn.Sequential()
decoder:add(nn.SpatialFullConvolutionMap(decodertable, kw, kh, 1, 1))
-- complete model
module = unsup.AutoEncoder(encoder, decoder, params.beta)
-- convert dataset to convolutional (returns 1xKxK tensors (3D), instead of K*K (1D))
dataset:conv()
-- verbose
print('==> constructed convolutional auto-encoder')
elseif params.model == 'linear-psd' then
-- params
inputSize = params.inputsize*params.inputsize
outputSize = params.nfiltersout
-- encoder
encoder = nn.Sequential()
encoder:add(nn.Linear(inputSize,outputSize))
encoder:add(nn.Tanh())
encoder:add(nn.Diag(outputSize))
-- decoder is L1 solution
decoder = unsup.LinearFistaL1(inputSize, outputSize, params.lambda)
-- PSD autoencoder
module = unsup.PSD(encoder, decoder, params.beta)
-- verbose
print('==> constructed linear predictive sparse decomposition (PSD) auto-encoder')
elseif params.model == 'conv-psd' then
-- params:
conntable = nn.tables.full(params.nfiltersin, params.nfiltersout)
kw, kh = params.kernelsize, params.kernelsize
iw, ih = params.inputsize, params.inputsize
-- connection table:
local decodertable = conntable:clone()
decodertable[{ {},1 }] = conntable[{ {},2 }]
decodertable[{ {},2 }] = conntable[{ {},1 }]
local outputFeatures = conntable[{ {},2 }]:max()
-- encoder:
encoder = nn.Sequential()
encoder:add(nn.SpatialConvolutionMap(conntable, kw, kh, 1, 1))
encoder:add(nn.Tanh())
encoder:add(nn.Diag(outputFeatures))
-- decoder is L1 solution:
decoder = unsup.SpatialConvFistaL1(decodertable, kw, kh, iw, ih, params.lambda)
-- PSD autoencoder
module = unsup.PSD(encoder, decoder, params.beta)
-- convert dataset to convolutional (returns 1xKxK tensors (3D), instead of K*K (1D))
dataset:conv()
-- verbose
print('==> constructed convolutional predictive sparse decomposition (PSD) auto-encoder')
else
print('==> unknown model: ' .. params.model)
os.exit()
end
----------------------------------------------------------------------
-- trainable parameters
--
-- are we using the hessian?
if params.hessian then
nn.hessian.enable()
module:initDiagHessianParameters()
end
-- get all parameters
x,dl_dx,ddl_ddx = module:getParameters()
----------------------------------------------------------------------
-- train model
--
print('==> training model')
local avTrainingError = torch.FloatTensor(math.ceil(params.maxiter/params.statinterval)):zero()
local err = 0
local iter = 0
for t = 1,params.maxiter,params.batchsize do
--------------------------------------------------------------------
-- update diagonal hessian parameters
--
if params.hessian and math.fmod(t , params.hessianinterval) == 1 then
-- some extra vars:
local hessiansamples = params.hessiansamples
local minhessian = params.minhessian
local maxhessian = params.maxhessian
local ddl_ddx_avg = ddl_ddx:clone(ddl_ddx):zero()
etas = etas or ddl_ddx:clone()
print('==> estimating diagonal hessian elements')
for i = 1,hessiansamples do
-- next
local ex = dataset[i]
local input = ex[1]
local target = ex[2]
module:updateOutput(input, target)
-- gradient
dl_dx:zero()
module:updateGradInput(input, target)
module:accGradParameters(input, target)
-- hessian
ddl_ddx:zero()
module:updateDiagHessianInput(input, target)
module:accDiagHessianParameters(input, target)
-- accumulate
ddl_ddx_avg:add(1/hessiansamples, ddl_ddx)
end
-- cap hessian params
print('==> ddl/ddx : min/max = ' .. ddl_ddx_avg:min() .. '/' .. ddl_ddx_avg:max())
ddl_ddx_avg[torch.lt(ddl_ddx_avg,minhessian)] = minhessian
ddl_ddx_avg[torch.gt(ddl_ddx_avg,maxhessian)] = maxhessian
print('==> corrected ddl/ddx : min/max = ' .. ddl_ddx_avg:min() .. '/' .. ddl_ddx_avg:max())
-- generate learning rates
etas:fill(1):cdiv(ddl_ddx_avg)
end
--------------------------------------------------------------------
-- progress
--
iter = iter+1
xlua.progress(iter, params.statinterval)
--------------------------------------------------------------------
-- create mini-batch
--
local example = dataset[t]
local inputs = {}
local targets = {}
for i = t,t+params.batchsize-1 do
-- load new sample
local sample = dataset[i]
local input = sample[1]:clone()
local target = sample[2]:clone()
table.insert(inputs, input)
table.insert(targets, target)
end
--------------------------------------------------------------------
-- define eval closure
--
local feval = function()
-- reset gradient/f
local f = 0
dl_dx:zero()
-- estimate f and gradients, for minibatch
for i = 1,#inputs do
-- f
f = f + module:updateOutput(inputs[i], targets[i])
-- gradients
module:updateGradInput(inputs[i], targets[i])
module:accGradParameters(inputs[i], targets[i])
end
-- normalize
dl_dx:div(#inputs)
f = f/#inputs
-- return f and df/dx
return f,dl_dx
end
--------------------------------------------------------------------
-- one SGD step
--
sgdconf = sgdconf or {learningRate = params.eta,
learningRateDecay = params.etadecay,
learningRates = etas,
momentum = params.momentum}
_,fs = optim.sgd(feval, x, sgdconf)
err = err + fs[1]
-- normalize
if params.model:find('psd') then
module:normalize()
end
--------------------------------------------------------------------
-- compute statistics / report error
--
if math.fmod(t , params.statinterval) == 0 then
-- report
print('==> iteration = ' .. t .. ', average loss = ' .. err/params.statinterval)
-- get weights
eweight = module.encoder.modules[1].weight
if module.decoder.D then
dweight = module.decoder.D.weight
else
dweight = module.decoder.modules[1].weight
end
-- reshape weights if linear matrix is used
if params.model:find('linear') then
dweight = dweight:transpose(1,2):unfold(2,params.inputsize,params.inputsize)
eweight = eweight:unfold(2,params.inputsize,params.inputsize)
end
-- render filters
dd = image.toDisplayTensor{input=dweight,
padding=2,
nrow=math.floor(math.sqrt(params.nfiltersout)),
symmetric=true}
de = image.toDisplayTensor{input=eweight,
padding=2,
nrow=math.floor(math.sqrt(params.nfiltersout)),
symmetric=true}
-- live display
if params.display then
_win1_ = image.display{image=dd, win=_win1_, legend='Decoder filters', zoom=2}
_win2_ = image.display{image=de, win=_win2_, legend='Encoder filters', zoom=2}
end
-- save stuff
image.save(params.rundir .. '/filters_dec_' .. t .. '.jpg', dd)
image.save(params.rundir .. '/filters_enc_' .. t .. '.jpg', de)
torch.save(params.rundir .. '/model_' .. t .. '.bin', module)
-- reset counters
err = 0; iter = 0
end
end