
A Haskell Perspective on a general perspective on the

Metropolis–Hastings kernel

Dominic Steinitz

November 14, 2022

Todo list

I think I have squared some of this but need to write this down . 8

This needs a bit more explanation . 9

This needs a bit more explanation . 10

It should make no difference what we return in the momentum position; yet it does? Maybe not
but at least investigate it. 11

It’s not clear this is a useful section but who knows? . 11

1 Introduction

Remarkably (to me at least) all1 MCMC algorithms can be captured by one general algorithm. At the
moment you are expected to know how MCMC works to be able to read what follows. I may add a
section introducing MCMC later.

Here’s Algorithm 1 from [1]:

algo1 :: Show a ⇒ Show b ⇒ (MonadDistribution m,Fractional t)⇒
(a, c)→ (a → m b)→ ((a, b)→ (a, b))→ (t → Double)→ ((a, b)→ t)→ m (a, b)

algo1 (ξ0,) µξ0 φ a ρ = do
µξ−0

← µξ0 ξ0
let ξ = (ξ0, µξ−0

)
let α = a $ (ρ ◦ φ) ξ / ρ ξ
u ← random
if u < α
then return $ φ ξ
else return ξ

Something very similar seems to have been discovered in [3] and [5]. Serendipitously, all three papers
call this algorithm 1!.

1well almost all

1

2 An Example with an Analytical Solution

In Bayesian statistics we have a prior distribution for the unknown mean which we also take to be normal

µ ∼ N
(
µ0, σ

2
0

)
and then use a sample

x | µ ∼ N
(
µ, σ2

)
to produce a posterior distribution for it

µ | x ∼ N

(
σ2
0

σ2 + σ2
0

x+
σ2

σ2 + σ2
0

µ0,

(
1

σ2
0

+
1

σ2

)−1)
If we continue to take samples then the posterior distribution becomes

µ | x1, x2, · · · , xn ∼ N

(
σ2
0

σ2

n + σ2
0

x̄+
σ2

σ2

n + σ2
0

µ0,

(
1

σ2
0

+
n

σ2

)−1)
Note that if we take σ0 to be very large (we have little prior information about the value of µ) then

µ | x1, x2, · · · , xn ∼ N

(
x̄,

(
1

σ2
0

+
n

σ2

)−1)
and if we take n to be very large then

µ | x1, x2, · · · , xn ∼ N
(
x̄,

σ√
n

)
which ties up with the classical estimate.

Let’s illustrate this with a few numbers.

µ0, σ0, σ, σP , z :: Floating a ⇒ a
µ0 = 0.0
σ0 = 1.0
σ = 1.0
σP = 0.2
z = 4.0

µ̂ :: Double
µ̂ = z ∗ σ0 ↑ 2 / (σ ↑ 2 + σ0 ↑ 2) + µ0 ∗ σ ↑ 2 / (σ ↑ 2 + σ0 ↑ 2)

σ̂ :: Double
σ̂ = sqrt $ recip (recip σ0 ↑ 2 + recip σ ↑ 2)

This gives µ̂ = 2.0 and σ̂ = 0.7071067811865476 which is what we would expect: we thought the mean
was µ0 = 0.0 but we have an observation z = 4.0 and also the variance is now less.

2

3 Using MCMC

For us, we want the posterior

$(µ) =
1

Z
exp

(x− µ)2

2σ2
exp

(µ− µ0)2

2σ2
0

where x, µ0, σ and σ0 are all given but Z is unknown.

3.1 Random Walk Metropolis

Let’s implement a traditional random walk. Here’s the proposal distribution:

Q :: Double → Double → Double
Q w w ′ = exp (−(w − w ′) ↑ 2 / (2 ∗ σP ↑ 2))

And here’s the specification for ρ:

ρ̃ :: (a → Double)→ (a → b → Double)→ (a, b)→ Double
ρ̃ ϕ q (w ,w ′) = ϕ w ∗ q w w ′

Here’s the un-normalised posterior:

ϕ̃ :: Floating a ⇒ a → a
ϕ̃ µ = exp (−(z − µ) ↑ 2 / (2 ∗ σ ↑ 2)) ∗ exp (−(µ− µ0) ↑ 2 / (2 ∗ σ0 ↑ 2))

We can now use one step of the algorithm and then run it for as many times as we wish:

testRwmOneStep :: MonadDistribution m ⇒ (Double,Double)→ m (Double,Double)
testRwmOneStep (ξ0,) = algo1 (ξ0,⊥) µξ0 φ a ρ
where
φ = λ(x , y)→ (y , x)
a = min 1.0
ρ = ρ̃ ϕ̃ Q
µξ0 = λζ → normal ζ σP

testRwm :: (Eq a,Num a,MonadDistribution m)⇒
a → m [(Double,Double)]

testRwm n = unfoldM f (n, (1.0, 0.0 / 0.0))
where

f (0,) = return Nothing
f (m, s) = do x ← testRwmOneStep s

return $ Just (s, (m − 1, x))

And we can see the results in Figure 1. A bit skewed but we didn’t burn in and the starting value is 1.0.

3

Figure 1: Random Walk Metropolis

3.2 Random walk Metropolis ratio

Here’s a different algorithm expressed using the generalised approach. The results are in Figure 2.

testMwMrOneStep :: MonadDistribution m ⇒ (Double,Double)→ m (Double,Double)
testMwMrOneStep (ξ0,) = algo1 (ξ0,⊥) µξ0 φ a ρ
where
φ = λ(x , y)→ (x + y ,−y)
a = min 1.0
ρ = ρ̃ ϕ̃ (\ → \ → 1.0)
µξ0 = const (quantile (normalDistr 0.0 1.0)< $ > random)

testMwMr :: (Eq a,Num a,MonadDistribution m)⇒
a → m [(Double,Double)]

testMwMr n = unfoldM f (n, (1.0, 0.0 / 0.0))
where

f (0,) = return Nothing
f (m, s) = do x ← testMwMrOneStep s

return $ Just (s, (m − 1, x))

3.3 What monad-bayes does

Here’s our toy problem expressed in monad-bayes:

singleObs :: (MonadDistribution m,MonadFactor m)⇒ m Double
singleObs = do

4

Figure 2: Random walk Metropolis ratio

µ← normal µ0 σ0
factor $ normalPdf µ σ z
return µ

Here’s what I think monad-bayes does with this using the General Perspective. The results are in
Figure 3.

testMbOneStep :: MonadDistribution m ⇒ (Double,Double)→ m (Double,Double)
testMbOneStep (ξ0,) = algo1 (ξ0,⊥) µξ0 φ a ρ
where
φ = λ(x , y)→ (y , x)
a = min 1.0
ρ = ρ̃ (λµ→ exp (−(z − µ) ↑ 2 / (2 ∗ σ ↑ 2))) (\ → \ → 1.0)
µξ0 = const (quantile (normalDistr µ0 σ0)< $ > random)

testMb :: (Eq a,Num a,MonadDistribution m)⇒
a → m [(Double,Double)]

testMb n = unfoldM f (n, (1.0, 0.0 / 0.0))
where

f (0,) = return Nothing
f (m, s) = do x ← testMbOneStep s

return $ Just (s, (m − 1, x))

5

Figure 3: monad-bayes

4 Some Mathematical Notes

Suppose we don’t know the classical MCMC algorithm. We can derive it from [1]:

r (z, z′) =
$ (z′) q (z′, z)

$(z)q (z, z′)

But where does this come from? We define µ:

µ(dξ) , π (dξ0)µξ0 (dξ−0)

µ(d(z, z′)) , $ (z) dz qz (z′) dz′

Let µ be a finite measure on (E,E), φ : E → E an involution, let λ� µ be a σ-finite measure satisfying
λ ≡ λφ and let ρ = dµ/dλ. Then we can take S = S

(
µ, µφ

)
to be S = {ξ : ρ(ξ) ∧ ρ ◦ φ(ξ) > 0} and

r(ξ) =

{
ρ◦φ
ρ (ξ)dλφ

dλ (ξ) ξ ∈ S,
0 otherwise

So

ρ(z, z′) , $ (z) qz (z′)

6

and with φ(z, z′) = (z′, z) we regain the familiar

r (z, z′) =
$ (z′) q (z′, z)

$(z)q (z, z′)

5 Student’s T

Let’s try running it on Student’s T with 5 degrees of freedeom using what I hope the textbook presenta-
tion of Metropolis—Hastings. The probability density function (aka the Radon-Nikodym derivative wrt
Lebesgue measure) is

f(t) =
8

3π
√

5
(
1 + t2

5

)3
It’s traditional to have qz(·) ∼ N (z, σ2

p) for some given σp.

Here’s the density function for Student’s T with 5 degrees of freedom. We’ve defined it in terms of an
un-normalised density so that we can pretend we don’t know the normalisation constant but still sample
from the distribution via MCMC.

student5U :: Floating a ⇒ a → a
student5U t = 1 / (1 + t ↑ 2 / 5) ↑ 3

student5 :: Floating a ⇒ a → a
student5 t = student5U t ∗ 8 / (3 ∗ pi ∗ sqrt 5)

Again, we can now use one step of the algorithm and then run it for as many times as we wish. We
instantiate the algorithm to be a Random Walk Metropolis.

testStudentRwmOneStep :: MonadDistribution m ⇒
(Double,Double)→ m (Double,Double)

testStudentRwmOneStep (ξ0,) = algo1 (ξ0,⊥) (λζ → normal ζ σP)
(λ(x , y)→ (y , x)) (min 1.0) (ρ̃ student5U Q)

testStudentRwm :: (Eq a,Num a,MonadDistribution m)⇒
a → m [(Double,Double)]

testStudentRwm n = unfoldM f (n, (0.0, 0.0 / 0.0))
where

f (0,) = return Nothing
f (m, s) = do x ← testStudentRwmOneStep s

return $ Just (s, (m − 1, x))

We can also instantiate it with what I think monad-bayes does.

testStudentMbOneStep :: MonadDistribution m ⇒ (Double, b)→ m (Double,Double)
testStudentMbOneStep (ξ0,) = algo1 (ξ0,⊥) (const ((quantile (studentT 5))< $ > random))

7

(λ(x , y)→ (x + y ,−y)) (min 1.0) (student5U ◦ fst)
testStudentMb :: (Eq a,Num a,MonadDistribution m)⇒
a → m [(Double,Double)]

testStudentMb n = unfoldM f (n, (0.0, 0.0 / 0.0))
where

f (0,) = return Nothing
f (m, s) = do x ← testStudentMbOneStep s

return $ Just (s, (m − 1, x))

The results are shown in Figure 4 and Figure 5.

Figure 4: Random Walk Metropolis Student’s T 5

6 Hamiltonian Monte Carlo

We’d like to put HMC into the same general framework but at the moment, I am having trouble squaring
Example 14 in [1] with the algorithm given in [4] (and I haven’t even looked in [2]). Here’s as far as
I got with Student’s t-distribution of degree 5. There’s something going on with exponentiating the
Hamiltonian which I don’t understand yet either.

I think I have squared
some of this but need to
write this down

I think I have squared
some of this but need to
write this down

Here’s Student’s T again:

f(t) =
8

3π
√

5
(
1 + t2

5

)3
8

Figure 5: Monad Bayes Student’s T 5

Unnormalised:

g(t) =
1(

1 + t2

5

)3
And as the potential energy part of the Hamiltonian:

U(t) = − log g(t) = 3 log (1 +
r2

5
)

Here’s a version of the leapfrog algorithm:

This needs a bit more ex-
planation
This needs a bit more ex-
planation

leapfrog :: Fractional a ⇒ a → Int → (a → a)→ (a, a)→ (a, a)
leapfrog epsilon l gradU (qPrev , p) = (q1 , p3)
where
p′ = p − epsilon ∗ gradU qPrev / 2
f 0 (qOld , pOld) = r
where
qNew = qOld + epsilon ∗ pOld
pNew = pOld
r = (qNew , pNew)

f (qOld , pOld) = r
where

9

qNew = qOld + epsilon ∗ pOld
pNew = pOld − epsilon ∗ gradU qNew
r = (qNew , pNew)

(q1 , p1) = foldr f (qPrev , p′) ([0 . . l − 1])
p2 = p1 − epsilon ∗ gradU q1 / 2

-- Is this necessary?
p3 = negate p2

This is the Hamiltonian: This needs a bit more ex-
planation
This needs a bit more ex-
planation

rhoHmc :: Floating a ⇒ (b → a)→ (b, a)→ a
rhoHmc u (q , p) = pU ∗ pK
where

pU = recip $ u q
pK = exp $ p ↑ 2 / 2

We need the derivative of the potential energy for the leapfrog method. We could use automatic differ-
entiation of course.

gradU :: Fractional a ⇒ a → a
gradU r = 3 ∗ (2 ∗ r / 5) / (1 + (r ↑ 2) / 5)

bigU :: Floating a ⇒ a → a
bigU = negate ◦ log ◦ student5U
gradUAD :: Floating a ⇒ a → a
gradUAD w = case grad (λ[x]→ bigU x) $ [w] of

[y]→ y
→ error "Whatever"

And now we can run the sampler. The results are in 6.

eta :: Fractional a ⇒ a
eta = 0.3

bigL :: Int
bigL = 10

testHmcOneStep :: MonadDistribution m ⇒ (Double,Double)→ m (Double,Double)
testHmcOneStep (ξ0,) = algo1 (ξ0,⊥) µξ0 φ a ρ
where
φ = leapfrog eta bigL gradU
a = min 1.0
ρ = rhoHmc student5U
µξ0 = const $ normal 0.0 1.0

testHmc :: (Eq a,MonadDistribution m,Num a)⇒
a → m [(Double,Double)]

testHmc n = unfoldM f (n, (0.0, 0.0))
where

10

Figure 6: Hamiltonian Monte Carlo Student’s T 5

f (0,) = return Nothing
f (m, s) = do a ← testHmcOneStep s

return $ Just (s, (m − 1, a))

It should make no differ-
ence what we return in the
momentum position; yet
it does? Maybe not but at
least investigate it.

It should make no differ-
ence what we return in the
momentum position; yet
it does? Maybe not but at
least investigate it.

7 Gen

Gen is a probabilistic programming language. I’ve taken the example from [3] and converted it to use
monad-bayes.

It’s not clear this is a
useful section but who
knows?

It’s not clear this is a
useful section but who
knows?genEg :: MonadDistribution m ⇒ Int → m [Double]

genEg n = do
k ← (+1)< $ > poisson 1.0
means ← replicate k < $ > normal 0.0 10.0
gammas ← replicate k < $ > gamma 1.0 10.0
let invGammas = map recip gammas
weights ← dirichlet (V .replicate k 2.0)
replicate n < $ > (categorical weights >>= λi → normal (means !! i) (invGammas !! i))

8 Bibliography

11

References

[1] Christophe Andrieu, Anthony Lee, and Sam Livingstone. A general perspective on the metropolis-
hastings kernel. arXiv, December 2020. 1, 6, 8

[2] M. J. Betancourt, Simon Byrne, Samuel Livingstone, and Mark Girolami. The geometric foundations
of hamiltonian monte carlo, 2014. 8

[3] Marco Cusumano-Towner, Alexander K Lew, and Vikash K Mansinghka. Automating involutive
mcmc using probabilistic and differentiable programming. arXiv preprint arXiv:2007.09871, 2020.
1, 11

[4] Radford M. Neal. Mcmc using hamiltonian dynamics. arXiv: Computation, pages 139–188, 2011. 8

[5] Kirill Neklyudov, Max Welling, Evgenii Egorov, and Dmitry Vetrov. Involutive mcmc: a unifying
framework. In International Conference on Machine Learning, pages 7273–7282. PMLR, 2020. 1

12

	Introduction
	An Example with an Analytical Solution
	Using MCMC
	Random Walk Metropolis
	Random walk Metropolis ratio
	What monad-bayes does

	Some Mathematical Notes
	Student's T
	Hamiltonian Monte Carlo
	Gen
	Bibliography

