diff --git a/core/src/main/scala/cats/MonoidK.scala b/core/src/main/scala/cats/MonoidK.scala
index 2b57b7d785..621a0bc182 100644
--- a/core/src/main/scala/cats/MonoidK.scala
+++ b/core/src/main/scala/cats/MonoidK.scala
@@ -8,7 +8,7 @@ import simulacrum.typeclass
  * This type class is useful when its type parameter F[_] has a
  * structure that can be combined for any particular type, and which
  * also has an "empty" representation. Thus, MonoidK is like a Monoid
- * for kinds (i.e. parameterized types).
+ * for kinds (i.e. parametrized types).
  *
  * A MonoidK[F] can produce a Monoid[F[A]] for any type A.
  *
diff --git a/core/src/main/scala/cats/SemigroupK.scala b/core/src/main/scala/cats/SemigroupK.scala
index 56ff6456d4..98164b0a79 100644
--- a/core/src/main/scala/cats/SemigroupK.scala
+++ b/core/src/main/scala/cats/SemigroupK.scala
@@ -7,7 +7,7 @@ import simulacrum.typeclass
  *
  * This type class is useful when its type parameter F[_] has a
  * structure that can be combined for any particular type. Thus,
- * SemigroupK is like a Semigroup for kinds (i.e. parameterized
+ * SemigroupK is like a Semigroup for kinds (i.e. parametrized
  * types).
  *
  * A SemigroupK[F] can produce a Semigroup[F[A]] for any type A.
diff --git a/docs/src/main/tut/typeclasses/monoidk.md b/docs/src/main/tut/typeclasses/monoidk.md
index 4c3fe2f78b..69dda92bd5 100644
--- a/docs/src/main/tut/typeclasses/monoidk.md
+++ b/docs/src/main/tut/typeclasses/monoidk.md
@@ -12,7 +12,7 @@ scaladoc: "#cats.MonoidK"
 This type class is useful when its type parameter `F[_]` has a
 structure that can be combined for any particular type, and which
 also has an "empty" representation. Thus, `MonoidK` is like a `Monoid`
-for kinds (i.e. parameterized types).
+for kinds (i.e. parametrized types).
 
 A `MonoidK[F]` can produce a `Monoid[F[A]]` for any type `A`.
 
@@ -35,7 +35,7 @@ import cats.{Monoid, MonoidK}
 import cats.implicits._
 ```
 
-Just like `Monoid[A]`, `MonoidK[F]` has an `empty` method, but it is parameterized on the type of the element contained in `F`:
+Just like `Monoid[A]`, `MonoidK[F]` has an `empty` method, but it is parametrized on the type of the element contained in `F`:
 
 ```tut:book
 Monoid[List[String]].empty
diff --git a/docs/src/main/tut/typeclasses/typeclasses.md b/docs/src/main/tut/typeclasses/typeclasses.md
index 2066ea8676..3d0180c130 100644
--- a/docs/src/main/tut/typeclasses/typeclasses.md
+++ b/docs/src/main/tut/typeclasses/typeclasses.md
@@ -199,7 +199,7 @@ combine(x, combine(y, z)) = combine(combine(x, y), z)
 combine(x, id) = combine(id, x) = x
 ```
 
-With these laws in place, functions parameterized over a `Monoid` can leverage them for say, performance
+With these laws in place, functions parametrized over a `Monoid` can leverage them for say, performance
 reasons. A function that collapses a `List[A]` into a single `A` can do so with `foldLeft` or
 `foldRight` since `combine` is assumed to be associative, or it can break apart the list into smaller
 lists and collapse in parallel, such as