Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Request to Include cats.data.Coproduct and cats.free.Inject #671

Merged
merged 20 commits into from
Nov 19, 2015
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
20 commits
Select commit Hold shift + click to select a range
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 10 additions & 0 deletions core/src/main/scala/cats/arrow/NaturalTransformation.scala
Original file line number Diff line number Diff line change
@@ -1,6 +1,8 @@
package cats
package arrow

import cats.data.{Xor, Coproduct}

trait NaturalTransformation[F[_], G[_]] extends Serializable { self =>
def apply[A](fa: F[A]): G[A]

Expand All @@ -18,4 +20,12 @@ object NaturalTransformation {
new NaturalTransformation[F, F] {
def apply[A](fa: F[A]): F[A] = fa
}

def or[F[_], G[_], H[_]](f: F ~> H, g: G ~> H): Coproduct[F, G, ?] ~> H =
new (Coproduct[F, G, ?] ~> H) {
def apply[A](fa: Coproduct[F, G, A]): H[A] = fa.run match {
case Xor.Left(ff) => f(ff)
case Xor.Right(gg) => g(gg)
}
}
}
217 changes: 217 additions & 0 deletions core/src/main/scala/cats/data/Coproduct.scala
Original file line number Diff line number Diff line change
@@ -0,0 +1,217 @@
package cats
package data

import cats.functor.Contravariant

/** `F` on the left and `G` on the right of [[Xor]].
*
* @param run The underlying [[Xor]]. */
final case class Coproduct[F[_], G[_], A](run: F[A] Xor G[A]) {

import Coproduct._

def map[B](f: A => B)(implicit F: Functor[F], G: Functor[G]): Coproduct[F, G, B] =
Coproduct(run.bimap(F.lift(f), G.lift(f)))

def coflatMap[B](f: Coproduct[F, G, A] => B)(implicit F: CoflatMap[F], G: CoflatMap[G]): Coproduct[F, G, B] =
Coproduct(
run.bimap(a => F.coflatMap(a)(x => f(leftc(x))), a => G.coflatMap(a)(x => f(rightc(x))))
)

def duplicate(implicit F: CoflatMap[F], G: CoflatMap[G]): Coproduct[F, G, Coproduct[F, G, A]] =
Coproduct(run.bimap(
x => F.coflatMap(x)(a => leftc(a))
, x => G.coflatMap(x)(a => rightc(a)))
)

def extract(implicit F: Comonad[F], G: Comonad[G]): A =
run.fold(F.extract, G.extract)

def contramap[B](f: B => A)(implicit F: Contravariant[F], G: Contravariant[G]): Coproduct[F, G, B] =
Coproduct(run.bimap(F.contramap(_)(f), G.contramap(_)(f)))

def foldRight[B](z: Eval[B])(f: (A, Eval[B]) => Eval[B])(implicit F: Foldable[F], G: Foldable[G]): Eval[B] =
run.fold(a => F.foldRight(a, z)(f), a => G.foldRight(a, z)(f))

def foldLeft[B](z: B)(f: (B, A) => B)(implicit F: Foldable[F], G: Foldable[G]): B =
run.fold(a => F.foldLeft(a, z)(f), a => G.foldLeft(a, z)(f))

def foldMap[B](f: A => B)(implicit F: Foldable[F], G: Foldable[G], M: Monoid[B]): B =
run.fold(F.foldMap(_)(f), G.foldMap(_)(f))

def traverse[X[_], B](g: A => X[B])(implicit F: Traverse[F], G: Traverse[G], A: Applicative[X]): X[Coproduct[F, G, B]] =
run.fold(
x => A.map(F.traverse(x)(g))(leftc(_))
, x => A.map(G.traverse(x)(g))(rightc(_))
)

def isLeft: Boolean =
run.isLeft

def isRight: Boolean =
run.isRight

def swap: Coproduct[G, F, A] =
Coproduct(run.swap)

def toValidated: Validated[F[A], G[A]] =
run.toValidated

}

object Coproduct extends CoproductInstances {

def leftc[F[_], G[_], A](x: F[A]): Coproduct[F, G, A] =
Coproduct(Xor.left(x))

def rightc[F[_], G[_], A](x: G[A]): Coproduct[F, G, A] =
Coproduct(Xor.right(x))

final class CoproductLeft[G[_]] private[Coproduct] {
def apply[F[_], A](fa: F[A]): Coproduct[F, G, A] = Coproduct(Xor.left(fa))
}

final class CoproductRight[F[_]] private[Coproduct] {
def apply[G[_], A](ga: G[A]): Coproduct[F, G, A] = Coproduct(Xor.right(ga))
}

def left[G[_]]: CoproductLeft[G] = new CoproductLeft[G]

def right[F[_]]: CoproductRight[F] = new CoproductRight[F]

}

private[data] sealed abstract class CoproductInstances3 {

implicit def coproductEq[F[_], G[_], A](implicit E: Eq[F[A] Xor G[A]]): Eq[Coproduct[F, G, A]] =
Eq.by(_.run)

implicit def coproductFunctor[F[_], G[_]](implicit F0: Functor[F], G0: Functor[G]): Functor[Coproduct[F, G, ?]] =
new CoproductFunctor[F, G] {
implicit def F: Functor[F] = F0

implicit def G: Functor[G] = G0
}

implicit def coproductFoldable[F[_], G[_]](implicit F0: Foldable[F], G0: Foldable[G]): Foldable[Coproduct[F, G, ?]] =
new CoproductFoldable[F, G] {
implicit def F: Foldable[F] = F0

implicit def G: Foldable[G] = G0
}
}

private[data] sealed abstract class CoproductInstances2 extends CoproductInstances3 {

implicit def coproductContravariant[F[_], G[_]](implicit F0: Contravariant[F], G0: Contravariant[G]): Contravariant[Coproduct[F, G, ?]] =
new CoproductContravariant[F, G] {
implicit def F: Contravariant[F] = F0

implicit def G: Contravariant[G] = G0
}
}

private[data] sealed abstract class CoproductInstances1 extends CoproductInstances2 {
implicit def coproductCoflatMap[F[_], G[_]](implicit F0: CoflatMap[F], G0: CoflatMap[G]): CoflatMap[Coproduct[F, G, ?]] =
new CoproductCoflatMap[F, G] {
implicit def F: CoflatMap[F] = F0

implicit def G: CoflatMap[G] = G0
}
}

private[data] sealed abstract class CoproductInstances0 extends CoproductInstances1 {
implicit def coproductTraverse[F[_], G[_]](implicit F0: Traverse[F], G0: Traverse[G]): Traverse[Coproduct[F, G, ?]] =
new CoproductTraverse[F, G] {
implicit def F: Traverse[F] = F0

implicit def G: Traverse[G] = G0
}
}

sealed abstract class CoproductInstances extends CoproductInstances0 {

implicit def coproductComonad[F[_], G[_]](implicit F0: Comonad[F], G0: Comonad[G]): Comonad[Coproduct[F, G, ?]] =
new CoproductComonad[F, G] {
implicit def F: Comonad[F] = F0

implicit def G: Comonad[G] = G0
}
}

private[data] trait CoproductFunctor[F[_], G[_]] extends Functor[Coproduct[F, G, ?]] {
implicit def F: Functor[F]

implicit def G: Functor[G]

def map[A, B](a: Coproduct[F, G, A])(f: A => B): Coproduct[F, G, B] =
a map f
}

private[data] trait CoproductContravariant[F[_], G[_]] extends Contravariant[Coproduct[F, G, ?]] {
implicit def F: Contravariant[F]

implicit def G: Contravariant[G]

def contramap[A, B](a: Coproduct[F, G, A])(f: B => A): Coproduct[F, G, B] =
a contramap f
}

private[data] trait CoproductFoldable[F[_], G[_]] extends Foldable[Coproduct[F, G, ?]] {
implicit def F: Foldable[F]

implicit def G: Foldable[G]

def foldRight[A, B](fa: Coproduct[F, G, A], z: Eval[B])(f: (A, Eval[B]) => Eval[B]): Eval[B] =
fa.foldRight(z)(f)

def foldLeft[A, B](fa: Coproduct[F, G, A], z: B)(f: (B, A) => B): B =
fa.foldLeft(z)(f)

override def foldMap[A, B](fa: Coproduct[F, G, A])(f: A => B)(implicit M: Monoid[B]): B =
fa foldMap f
}

private[data] trait CoproductTraverse[F[_], G[_]] extends CoproductFoldable[F, G] with Traverse[Coproduct[F, G, ?]] {
implicit def F: Traverse[F]

implicit def G: Traverse[G]

override def map[A, B](a: Coproduct[F, G, A])(f: A => B): Coproduct[F, G, B] =
a map f

override def traverse[X[_] : Applicative, A, B](fa: Coproduct[F, G, A])(f: A => X[B]): X[Coproduct[F, G, B]] =
fa traverse f
}

private[data] trait CoproductCoflatMap[F[_], G[_]] extends CoflatMap[Coproduct[F, G, ?]] {
implicit def F: CoflatMap[F]

implicit def G: CoflatMap[G]

def map[A, B](a: Coproduct[F, G, A])(f: A => B): Coproduct[F, G, B] =
a map f

def coflatMap[A, B](a: Coproduct[F, G, A])(f: Coproduct[F, G, A] => B): Coproduct[F, G, B] =
a coflatMap f

}

private[data] trait CoproductComonad[F[_], G[_]] extends Comonad[Coproduct[F, G, ?]] {
implicit def F: Comonad[F]

implicit def G: Comonad[G]

def map[A, B](a: Coproduct[F, G, A])(f: A => B): Coproduct[F, G, B] =
a map f

def extract[A](p: Coproduct[F, G, A]): A =
p.extract

def coflatMap[A, B](a: Coproduct[F, G, A])(f: Coproduct[F, G, A] => B): Coproduct[F, G, B] =
a coflatMap f

def duplicate[A](a: Coproduct[F, G, A]): Coproduct[F, G, Coproduct[F, G, A]] =
a.duplicate
}

1 change: 1 addition & 0 deletions core/src/main/scala/cats/syntax/all.scala
Original file line number Diff line number Diff line change
Expand Up @@ -32,3 +32,4 @@ trait AllSyntax
with TraverseSyntax
with XorSyntax
with ValidatedSyntax
with CoproductSyntax
13 changes: 13 additions & 0 deletions core/src/main/scala/cats/syntax/coproduct.scala
Original file line number Diff line number Diff line change
@@ -0,0 +1,13 @@
package cats
package syntax

import cats.data.Coproduct

trait CoproductSyntax {
implicit def coproductSyntax[F[_], A](a: F[A]): CoproductOps[F, A] = new CoproductOps(a)
}

final class CoproductOps[F[_], A](val a: F[A]) extends AnyVal {
def leftc[G[_]]: Coproduct[F, G, A] = Coproduct.leftc(a)
def rightc[G[_]]: Coproduct[G, F, A] = Coproduct.rightc(a)
}
103 changes: 103 additions & 0 deletions docs/src/main/tut/freemonad.md
Original file line number Diff line number Diff line change
Expand Up @@ -348,6 +348,109 @@ it's not too hard to get around.)
val result: Map[String, Int] = compilePure(program, Map.empty)
```

## Composing Free monads ADTs.

Real world applications often time combine different algebras.
The `Inject` typeclass described by Swierstra in [Data types à la carte](http://www.staff.science.uu.nl/~swier004/Publications/DataTypesALaCarte.pdf)
lets us compose different algebras in the context of `Free`.

Let's see a trivial example of unrelated ADT's getting composed as a `Coproduct` that can form a more complex program.

```tut
import cats.arrow.NaturalTransformation
import cats.data.{Xor, Coproduct}
import cats.free.{Inject, Free}
import cats.{Id, ~>}
import scala.collection.mutable.ListBuffer
```

```tut
/* Handles user interaction */
sealed trait Interact[A]
case class Ask(prompt: String) extends Interact[String]
case class Tell(msg: String) extends Interact[Unit]

/* Represents persistence operations */
sealed trait DataOp[A]
case class AddCat(a: String) extends DataOp[Unit]
case class GetAllCats() extends DataOp[List[String]]
```

Once the ADTs are defined we can formally state that a `Free` program is the Coproduct of it's Algebras.

```tut
type CatsApp[A] = Coproduct[DataOp, Interact, A]
```

In order to take advantage of monadic composition we use smart constructors to lift our Algebra to the `Free` context.

```tut
class Interacts[F[_]](implicit I: Inject[Interact, F]) {
def tell(msg: String): Free[F, Unit] = Free.inject[Interact, F](Tell(msg))
def ask(prompt: String): Free[F, String] = Free.inject[Interact, F](Ask(prompt))
}

object Interacts {
implicit def interacts[F[_]](implicit I: Inject[Interact, F]): Interacts[F] = new Interacts[F]
}

class DataSource[F[_]](implicit I: Inject[DataOp, F]) {
def addCat(a: String): Free[F, Unit] = Free.inject[DataOp, F](AddCat(a))
def getAllCats: Free[F, List[String]] = Free.inject[DataOp, F](GetAllCats())
}

object DataSource {
implicit def dataSource[F[_]](implicit I: Inject[DataOp, F]): DataSource[F] = new DataSource[F]
}
```

ADTs are now easily composed and trivially intertwined inside monadic contexts.

```tut
def program(implicit I : Interacts[CatsApp], D : DataSource[CatsApp]) = {

import I._, D._

for {
cat <- ask("What's the kitty's name")
_ <- addCat(cat)
cats <- getAllCats
_ <- tell(cats.toString)
} yield ()
}
```

Finally we write one interpreter per ADT and combine them with a `NaturalTransformation` to `Coproduct` so they can be
compiled and applied to our `Free` program.

```scala
object ConsoleCatsInterpreter extends (Interact ~> Id) {
def apply[A](i: Interact[A]) = i match {
case Ask(prompt) =>
println(prompt)
scala.io.StdIn.readLine()
case Tell(msg) =>
println(msg)
}
}

object InMemoryDatasourceInterpreter extends (DataOp ~> Id) {

private[this] val memDataSet = new ListBuffer[String]

def apply[A](fa: DataOp[A]) = fa match {
case AddCat(a) => memDataSet.append(a); ()
case GetAllCats() => memDataSet.toList
}
}

val interpreter: CatsApp ~> Id = NaturalTransformation.or(InMemoryDatasourceInterpreter, ConsoleCatsInterpreter)

import DataSource._, Interacts._

val evaled = program.foldMap(interpreter)
```

## <a name="what-is-free-in-theory"></a>For the curious ones: what is Free in theory?

Mathematically-speaking, a *free monad* (at least in the programming
Expand Down
7 changes: 7 additions & 0 deletions free/src/main/scala/cats/free/Free.scala
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,13 @@ object Free {
/** Lift a pure value into Free */
def pure[S[_], A](a: A): Free[S, A] = Pure(a)

final class FreeInjectPartiallyApplied[F[_], G[_]] private[free] {
def apply[A](fa: F[A])(implicit I : Inject[F, G]): Free[G, A] =
Free.liftF(I.inj(fa))
}

def inject[F[_], G[_]]: FreeInjectPartiallyApplied[F, G] = new FreeInjectPartiallyApplied

/**
* `Free[S, ?]` has a monad for any type constructor `S[_]`.
*/
Expand Down
Loading