diff --git a/README.md b/README.md index 233fc17f1c35..b7129e80adfe 100755 --- a/README.md +++ b/README.md @@ -89,17 +89,15 @@ To run inference on example images in `data/images`: ```bash $ python detect.py --source data/images --weights yolov5s.pt --conf 0.25 -Namespace(agnostic_nms=False, augment=False, classes=None, conf_thres=0.25, device='', img_size=640, iou_thres=0.45, save_conf=False, save_dir='runs/detect', save_txt=False, source='data/images/', update=False, view_img=False, weights=['yolov5s.pt']) -Using torch 1.7.0+cu101 CUDA:0 (Tesla V100-SXM2-16GB, 16130MB) - -Downloading https://github.com/ultralytics/yolov5/releases/download/v3.1/yolov5s.pt to yolov5s.pt... 100%|██████████████| 14.5M/14.5M [00:00<00:00, 21.3MB/s] +Namespace(agnostic_nms=False, augment=False, classes=None, conf_thres=0.25, device='', exist_ok=False, img_size=640, iou_thres=0.45, name='exp', project='runs/detect', save_conf=False, save_txt=False, source='data/images/', update=False, view_img=False, weights=['yolov5s.pt']) +YOLOv5 v4.0-96-g83dc1b4 torch 1.7.0+cu101 CUDA:0 (Tesla V100-SXM2-16GB, 16160.5MB) Fusing layers... -Model Summary: 232 layers, 7459581 parameters, 0 gradients -image 1/2 data/images/bus.jpg: 640x480 4 persons, 1 buss, 1 skateboards, Done. (0.012s) -image 2/2 data/images/zidane.jpg: 384x640 2 persons, 2 ties, Done. (0.012s) -Results saved to runs/detect/exp -Done. (0.113s) +Model Summary: 224 layers, 7266973 parameters, 0 gradients, 17.0 GFLOPS +image 1/2 /content/yolov5/data/images/bus.jpg: 640x480 4 persons, 1 bus, Done. (0.010s) +image 2/2 /content/yolov5/data/images/zidane.jpg: 384x640 2 persons, 1 tie, Done. (0.011s) +Results saved to runs/detect/exp2 +Done. (0.103s) ``` @@ -108,18 +106,17 @@ Done. (0.113s) To run **batched inference** with YOLOv5 and [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36): ```python import torch -from PIL import Image # Model model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True) # Images -img1 = Image.open('zidane.jpg') -img2 = Image.open('bus.jpg') -imgs = [img1, img2] # batched list of images +dir = 'https://github.com/ultralytics/yolov5/raw/master/data/images/' +imgs = [dir + f for f in ('zidane.jpg', 'bus.jpg')] # batched list of images # Inference -result = model(imgs) +results = model(imgs) +results.print() # or .show(), .save() ```