diff --git a/.github/ISSUE_TEMPLATE/bug-report.md b/.github/ISSUE_TEMPLATE/bug-report.md
index b7fc7c5a8838..62a02a3a6948 100644
--- a/.github/ISSUE_TEMPLATE/bug-report.md
+++ b/.github/ISSUE_TEMPLATE/bug-report.md
@@ -7,21 +7,24 @@ assignees: ''
---
-Before submitting a bug report, please be aware that your issue **must be reproducible** with all of the following, otherwise it is non-actionable, and we can not help you:
- - **Current repo**: run `git fetch && git status -uno` to check and `git pull` to update repo
- - **Common dataset**: coco.yaml or coco128.yaml
- - **Common environment**: Colab, Google Cloud, or Docker image. See https://github.com/ultralytics/yolov5#environments
-
-If this is a custom dataset/training question you **must include** your `train*.jpg`, `val*.jpg` and `results.png` figures, or we can not help you. You can generate these with `utils.plot_results()`.
+Before submitting a bug report, please be aware that your issue **must be reproducible** with all of the following,
+otherwise it is non-actionable, and we can not help you:
+- **Current repo**: run `git fetch && git status -uno` to check and `git pull` to update repo
+- **Common dataset**: coco.yaml or coco128.yaml
+- **Common environment**: Colab, Google Cloud, or Docker image. See https://github.com/ultralytics/yolov5#environments
+
+If this is a custom dataset/training question you **must include** your `train*.jpg`, `val*.jpg` and `results.png`
+figures, or we can not help you. You can generate these with `utils.plot_results()`.
## π Bug
-A clear and concise description of what the bug is.
+A clear and concise description of what the bug is.
## To Reproduce (REQUIRED)
Input:
+
```
import torch
@@ -30,6 +33,7 @@ c = a / 0
```
Output:
+
```
Traceback (most recent call last):
File "/Users/glennjocher/opt/anaconda3/envs/env1/lib/python3.7/site-packages/IPython/core/interactiveshell.py", line 3331, in run_code
@@ -39,17 +43,17 @@ Traceback (most recent call last):
RuntimeError: ZeroDivisionError
```
-
## Expected behavior
-A clear and concise description of what you expected to happen.
+A clear and concise description of what you expected to happen.
## Environment
-If applicable, add screenshots to help explain your problem.
- - OS: [e.g. Ubuntu]
- - GPU [e.g. 2080 Ti]
+If applicable, add screenshots to help explain your problem.
+- OS: [e.g. Ubuntu]
+- GPU [e.g. 2080 Ti]
## Additional context
+
Add any other context about the problem here.
diff --git a/.github/ISSUE_TEMPLATE/feature-request.md b/.github/ISSUE_TEMPLATE/feature-request.md
index 02320771b5f5..1fdf99045488 100644
--- a/.github/ISSUE_TEMPLATE/feature-request.md
+++ b/.github/ISSUE_TEMPLATE/feature-request.md
@@ -13,7 +13,8 @@ assignees: ''
## Motivation
-
+
## Pitch
diff --git a/.github/ISSUE_TEMPLATE/question.md b/.github/ISSUE_TEMPLATE/question.md
index 2c22aea70a7b..2892cfe262fb 100644
--- a/.github/ISSUE_TEMPLATE/question.md
+++ b/.github/ISSUE_TEMPLATE/question.md
@@ -9,5 +9,4 @@ assignees: ''
## βQuestion
-
## Additional context
diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md
index 7c0ba3ae9f18..38601775caeb 100644
--- a/CONTRIBUTING.md
+++ b/CONTRIBUTING.md
@@ -8,32 +8,44 @@ We love your input! We want to make contributing to YOLOv5 as easy and transpare
- Proposing a new feature
- Becoming a maintainer
-YOLOv5 works so well due to our combined community effort, and for every small improvement you contribute you will be helping push the frontiers of what's possible in AI π!
-
+YOLOv5 works so well due to our combined community effort, and for every small improvement you contribute you will be
+helping push the frontiers of what's possible in AI π!
## Submitting a Pull Request (PR) π οΈ
+
Submitting a PR is easy! This example shows how to submit a PR for updating `requirements.txt` in 4 steps:
### 1. Select File to Update
+
Select `requirements.txt` to update by clicking on it in GitHub.
### 2. Click 'Edit this file'
+
Button is in top-right corner.
### 3. Make Changes
+
Change `matplotlib` version from `3.2.2` to `3.3`.
### 4. Preview Changes and Submit PR
-Click on the **Preview changes** tab to verify your updates. At the bottom of the screen select 'Create a **new branch** for this commit', assign your branch a descriptive name such as `fix/matplotlib_version` and click the green **Propose changes** button. All done, your PR is now submitted to YOLOv5 for review and approval π!
+
+Click on the **Preview changes** tab to verify your updates. At the bottom of the screen select 'Create a **new branch**
+for this commit', assign your branch a descriptive name such as `fix/matplotlib_version` and click the green **Propose
+changes** button. All done, your PR is now submitted to YOLOv5 for review and approval π!
### PR recommendations
To allow your work to be integrated as seamlessly as possible, we advise you to:
-- β
Verify your PR is **up-to-date with origin/master.** If your PR is behind origin/master an automatic [GitHub actions](https://github.com/ultralytics/yolov5/blob/master/.github/workflows/rebase.yml) rebase may be attempted by including the /rebase command in a comment body, or by running the following code, replacing 'feature' with the name of your local branch:
+
+- β
Verify your PR is **up-to-date with origin/master.** If your PR is behind origin/master an
+ automatic [GitHub actions](https://github.com/ultralytics/yolov5/blob/master/.github/workflows/rebase.yml) rebase may
+ be attempted by including the /rebase command in a comment body, or by running the following code, replacing 'feature'
+ with the name of your local branch:
+
```bash
git remote add upstream https://github.com/ultralytics/yolov5.git
git fetch upstream
@@ -41,30 +53,42 @@ git checkout feature # <----- replace 'feature' with local branch name
git merge upstream/master
git push -u origin -f
```
-- β
Verify all Continuous Integration (CI) **checks are passing**.
-- β
Reduce changes to the absolute **minimum** required for your bug fix or feature addition. _"It is not daily increase but daily decrease, hack away the unessential. The closer to the source, the less wastage there is."_ -Bruce Lee
+- β
Verify all Continuous Integration (CI) **checks are passing**.
+- β
Reduce changes to the absolute **minimum** required for your bug fix or feature addition. _"It is not daily increase
+ but daily decrease, hack away the unessential. The closer to the source, the less wastage there is."_ -Bruce Lee
## Submitting a Bug Report π
If you spot a problem with YOLOv5 please submit a Bug Report!
-For us to start investigating a possibel problem we need to be able to reproduce it ourselves first. We've created a few short guidelines below to help users provide what we need in order to get started.
+For us to start investigating a possibel problem we need to be able to reproduce it ourselves first. We've created a few
+short guidelines below to help users provide what we need in order to get started.
-When asking a question, people will be better able to provide help if you provide **code** that they can easily understand and use to **reproduce** the problem. This is referred to by community members as creating a [minimum reproducible example](https://stackoverflow.com/help/minimal-reproducible-example). Your code that reproduces the problem should be:
+When asking a question, people will be better able to provide help if you provide **code** that they can easily
+understand and use to **reproduce** the problem. This is referred to by community members as creating
+a [minimum reproducible example](https://stackoverflow.com/help/minimal-reproducible-example). Your code that reproduces
+the problem should be:
* β
**Minimal** β Use as little code as possible that still produces the same problem
* β
**Complete** β Provide **all** parts someone else needs to reproduce your problem in the question itself
* β
**Reproducible** β Test the code you're about to provide to make sure it reproduces the problem
-In addition to the above requirements, for [Ultralytics](https://ultralytics.com/) to provide assistance your code should be:
-
-* β
**Current** β Verify that your code is up-to-date with current GitHub [master](https://github.com/ultralytics/yolov5/tree/master), and if necessary `git pull` or `git clone` a new copy to ensure your problem has not already been resolved by previous commits.
-* β
**Unmodified** β Your problem must be reproducible without any modifications to the codebase in this repository. [Ultralytics](https://ultralytics.com/) does not provide support for custom code β οΈ.
+In addition to the above requirements, for [Ultralytics](https://ultralytics.com/) to provide assistance your code
+should be:
-If you believe your problem meets all of the above criteria, please close this issue and raise a new one using the π **Bug Report** [template](https://github.com/ultralytics/yolov5/issues/new/choose) and providing a [minimum reproducible example](https://stackoverflow.com/help/minimal-reproducible-example) to help us better understand and diagnose your problem.
+* β
**Current** β Verify that your code is up-to-date with current
+ GitHub [master](https://github.com/ultralytics/yolov5/tree/master), and if necessary `git pull` or `git clone` a new
+ copy to ensure your problem has not already been resolved by previous commits.
+* β
**Unmodified** β Your problem must be reproducible without any modifications to the codebase in this
+ repository. [Ultralytics](https://ultralytics.com/) does not provide support for custom code β οΈ.
+If you believe your problem meets all of the above criteria, please close this issue and raise a new one using the π **
+Bug Report** [template](https://github.com/ultralytics/yolov5/issues/new/choose) and providing
+a [minimum reproducible example](https://stackoverflow.com/help/minimal-reproducible-example) to help us better
+understand and diagnose your problem.
## License
-By contributing, you agree that your contributions will be licensed under the [GPL-3.0 license](https://choosealicense.com/licenses/gpl-3.0/)
+By contributing, you agree that your contributions will be licensed under
+the [GPL-3.0 license](https://choosealicense.com/licenses/gpl-3.0/)
diff --git a/README.md b/README.md
index b4aacd78b0ca..df4e9add519d 100644
--- a/README.md
+++ b/README.md
@@ -52,31 +52,33 @@ YOLOv5 π is a family of object detection architectures and models pretrained
-
## Documentation
See the [YOLOv5 Docs](https://docs.ultralytics.com) for full documentation on training, testing and deployment.
-
## Quick Start Examples
-
Install
-[**Python>=3.6.0**](https://www.python.org/) is required with all [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) installed including [**PyTorch>=1.7**](https://pytorch.org/get-started/locally/):
+[**Python>=3.6.0**](https://www.python.org/) is required with all
+[requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) installed including
+[**PyTorch>=1.7**](https://pytorch.org/get-started/locally/):
+
```bash
$ git clone https://github.com/ultralytics/yolov5
$ cd yolov5
$ pip install -r requirements.txt
```
+
Inference
-Inference with YOLOv5 and [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36). Models automatically download from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases).
+Inference with YOLOv5 and [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36). Models automatically download
+from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases).
```python
import torch
@@ -85,7 +87,7 @@ import torch
model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # or yolov5m, yolov5l, yolov5x, custom
# Images
-img = 'https://ultralytics.com/images/zidane.jpg' # or PosixPath, PIL, OpenCV, numpy, list
+img = 'https://ultralytics.com/images/zidane.jpg' # or file, Path, PIL, OpenCV, numpy, list
# Inference
results = model(img)
@@ -101,7 +103,9 @@ results.print() # or .show(), .save(), .crop(), .pandas(), etc.
Inference with detect.py
-`detect.py` runs inference on a variety of sources, downloading models automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
+`detect.py` runs inference on a variety of sources, downloading models automatically from
+the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
+
```bash
$ python detect.py --source 0 # webcam
file.jpg # image
@@ -117,13 +121,18 @@ $ python detect.py --source 0 # webcam
Training
-Run commands below to reproduce results on [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh) dataset (dataset auto-downloads on first use). Training times for YOLOv5s/m/l/x are 2/4/6/8 days on a single V100 (multi-GPU times faster). Use the largest `--batch-size` your GPU allows (batch sizes shown for 16 GB devices).
+Run commands below to reproduce results
+on [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh) dataset (dataset auto-downloads on
+first use). Training times for YOLOv5s/m/l/x are 2/4/6/8 days on a single V100 (multi-GPU times faster). Use the
+largest `--batch-size` your GPU allows (batch sizes shown for 16 GB devices).
+
```bash
$ python train.py --data coco.yaml --cfg yolov5s.yaml --weights '' --batch-size 64
yolov5m 40
yolov5l 24
yolov5x 16
```
+
@@ -132,7 +141,8 @@ $ python train.py --data coco.yaml --cfg yolov5s.yaml --weights '' --batch-size
Tutorials
* [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data) π RECOMMENDED
-* [Tips for Best Training Results](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results) βοΈ RECOMMENDED
+* [Tips for Best Training Results](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results) βοΈ
+ RECOMMENDED
* [Weights & Biases Logging](https://github.com/ultralytics/yolov5/issues/1289) π NEW
* [Supervisely Ecosystem](https://github.com/ultralytics/yolov5/issues/2518) π NEW
* [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475)
@@ -147,10 +157,11 @@ $ python train.py --data coco.yaml --cfg yolov5s.yaml --weights '' --batch-size
-
## Environments and Integrations
-Get started in seconds with our verified environments and integrations, including [Weights & Biases](https://wandb.ai/site?utm_campaign=repo_yolo_readme) for automatic YOLOv5 experiment logging. Click each icon below for details.
+Get started in seconds with our verified environments and integrations,
+including [Weights & Biases](https://wandb.ai/site?utm_campaign=repo_yolo_readme) for automatic YOLOv5 experiment
+logging. Click each icon below for details.
-
## Compete and Win
-We are super excited about our first-ever Ultralytics YOLOv5 π EXPORT Competition with **$10,000** in cash prizes!
+We are super excited about our first-ever Ultralytics YOLOv5 π EXPORT Competition with **$10,000** in cash prizes!
-
## Why YOLOv5
YOLOv5-P5 640 Figure (click to expand)
-
+
Figure Notes (click to expand)
-
- * GPU Speed measures end-to-end time per image averaged over 5000 COCO val2017 images using a V100 GPU with batch size 32, and includes image preprocessing, PyTorch FP16 inference, postprocessing and NMS.
- * EfficientDet data from [google/automl](https://github.com/google/automl) at batch size 8.
- * **Reproduce** by `python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt`
-
+* GPU Speed measures end-to-end time per image averaged over 5000 COCO val2017 images using a V100 GPU with batch size
+ 32, and includes image preprocessing, PyTorch FP16 inference, postprocessing and NMS.
+* EfficientDet data from [google/automl](https://github.com/google/automl) at batch size 8.
+* **Reproduce** by
+ `python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt`
+
+
### Pretrained Checkpoints
@@ -221,24 +232,30 @@ We are super excited about our first-ever Ultralytics YOLOv5 π EXPORT Competi
Table Notes (click to expand)
-
- * APtest denotes COCO [test-dev2017](http://cocodataset.org/#upload) server results, all other AP results denote val2017 accuracy.
- * AP values are for single-model single-scale unless otherwise noted. **Reproduce mAP** by `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
- * SpeedGPU averaged over 5000 COCO val2017 images using a GCP [n1-standard-16](https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types) V100 instance, and includes FP16 inference, postprocessing and NMS. **Reproduce speed** by `python val.py --data coco.yaml --img 640 --conf 0.25 --iou 0.45 --half`
- * All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation).
- * Test Time Augmentation ([TTA](https://github.com/ultralytics/yolov5/issues/303)) includes reflection and scale augmentation. **Reproduce TTA** by `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment`
-
+* APtest denotes COCO [test-dev2017](http://cocodataset.org/#upload) server results, all other AP results
+ denote val2017 accuracy.
+* AP values are for single-model single-scale unless otherwise noted. **Reproduce mAP**
+ by `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
+* SpeedGPU averaged over 5000 COCO val2017 images using a
+ GCP [n1-standard-16](https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types) V100 instance, and
+ includes FP16 inference, postprocessing and NMS. **Reproduce speed**
+ by `python val.py --data coco.yaml --img 640 --conf 0.25 --iou 0.45 --half`
+* All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation).
+* Test Time Augmentation ([TTA](https://github.com/ultralytics/yolov5/issues/303)) includes reflection and scale
+ augmentation. **Reproduce TTA** by `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment`
-## Contribute
+
-We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible. Please see our [Contributing Guide](CONTRIBUTING.md) to get started.
+## Contribute
+We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible. Please see
+our [Contributing Guide](CONTRIBUTING.md) to get started.
## Contact
-For issues running YOLOv5 please visit [GitHub Issues](https://github.com/ultralytics/yolov5/issues). For business or professional support requests please visit
-[https://ultralytics.com/contact](https://ultralytics.com/contact).
+For issues running YOLOv5 please visit [GitHub Issues](https://github.com/ultralytics/yolov5/issues). For business or
+professional support requests please visit [https://ultralytics.com/contact](https://ultralytics.com/contact).
diff --git a/data/Argoverse.yaml b/data/Argoverse.yaml
index c42624c5783f..3bf91ce7d504 100644
--- a/data/Argoverse.yaml
+++ b/data/Argoverse.yaml
@@ -15,7 +15,7 @@ test: Argoverse-1.1/images/test/ # test images (optional) https://eval.ai/web/c
# Classes
nc: 8 # number of classes
-names: [ 'person', 'bicycle', 'car', 'motorcycle', 'bus', 'truck', 'traffic_light', 'stop_sign' ] # class names
+names: ['person', 'bicycle', 'car', 'motorcycle', 'bus', 'truck', 'traffic_light', 'stop_sign'] # class names
# Download script/URL (optional) ---------------------------------------------------------------------------------------
diff --git a/data/GlobalWheat2020.yaml b/data/GlobalWheat2020.yaml
index 842456047953..de9c7837cf57 100644
--- a/data/GlobalWheat2020.yaml
+++ b/data/GlobalWheat2020.yaml
@@ -27,7 +27,7 @@ test: # test images (optional) 1276 images
# Classes
nc: 1 # number of classes
-names: [ 'wheat_head' ] # class names
+names: ['wheat_head'] # class names
# Download script/URL (optional) ---------------------------------------------------------------------------------------
diff --git a/data/Objects365.yaml b/data/Objects365.yaml
index 52577581d7bb..457b9fd9bf69 100644
--- a/data/Objects365.yaml
+++ b/data/Objects365.yaml
@@ -15,47 +15,47 @@ test: # test images (optional)
# Classes
nc: 365 # number of classes
-names: [ 'Person', 'Sneakers', 'Chair', 'Other Shoes', 'Hat', 'Car', 'Lamp', 'Glasses', 'Bottle', 'Desk', 'Cup',
- 'Street Lights', 'Cabinet/shelf', 'Handbag/Satchel', 'Bracelet', 'Plate', 'Picture/Frame', 'Helmet', 'Book',
- 'Gloves', 'Storage box', 'Boat', 'Leather Shoes', 'Flower', 'Bench', 'Potted Plant', 'Bowl/Basin', 'Flag',
- 'Pillow', 'Boots', 'Vase', 'Microphone', 'Necklace', 'Ring', 'SUV', 'Wine Glass', 'Belt', 'Monitor/TV',
- 'Backpack', 'Umbrella', 'Traffic Light', 'Speaker', 'Watch', 'Tie', 'Trash bin Can', 'Slippers', 'Bicycle',
- 'Stool', 'Barrel/bucket', 'Van', 'Couch', 'Sandals', 'Basket', 'Drum', 'Pen/Pencil', 'Bus', 'Wild Bird',
- 'High Heels', 'Motorcycle', 'Guitar', 'Carpet', 'Cell Phone', 'Bread', 'Camera', 'Canned', 'Truck',
- 'Traffic cone', 'Cymbal', 'Lifesaver', 'Towel', 'Stuffed Toy', 'Candle', 'Sailboat', 'Laptop', 'Awning',
- 'Bed', 'Faucet', 'Tent', 'Horse', 'Mirror', 'Power outlet', 'Sink', 'Apple', 'Air Conditioner', 'Knife',
- 'Hockey Stick', 'Paddle', 'Pickup Truck', 'Fork', 'Traffic Sign', 'Balloon', 'Tripod', 'Dog', 'Spoon', 'Clock',
- 'Pot', 'Cow', 'Cake', 'Dinning Table', 'Sheep', 'Hanger', 'Blackboard/Whiteboard', 'Napkin', 'Other Fish',
- 'Orange/Tangerine', 'Toiletry', 'Keyboard', 'Tomato', 'Lantern', 'Machinery Vehicle', 'Fan',
- 'Green Vegetables', 'Banana', 'Baseball Glove', 'Airplane', 'Mouse', 'Train', 'Pumpkin', 'Soccer', 'Skiboard',
- 'Luggage', 'Nightstand', 'Tea pot', 'Telephone', 'Trolley', 'Head Phone', 'Sports Car', 'Stop Sign',
- 'Dessert', 'Scooter', 'Stroller', 'Crane', 'Remote', 'Refrigerator', 'Oven', 'Lemon', 'Duck', 'Baseball Bat',
- 'Surveillance Camera', 'Cat', 'Jug', 'Broccoli', 'Piano', 'Pizza', 'Elephant', 'Skateboard', 'Surfboard',
- 'Gun', 'Skating and Skiing shoes', 'Gas stove', 'Donut', 'Bow Tie', 'Carrot', 'Toilet', 'Kite', 'Strawberry',
- 'Other Balls', 'Shovel', 'Pepper', 'Computer Box', 'Toilet Paper', 'Cleaning Products', 'Chopsticks',
- 'Microwave', 'Pigeon', 'Baseball', 'Cutting/chopping Board', 'Coffee Table', 'Side Table', 'Scissors',
- 'Marker', 'Pie', 'Ladder', 'Snowboard', 'Cookies', 'Radiator', 'Fire Hydrant', 'Basketball', 'Zebra', 'Grape',
- 'Giraffe', 'Potato', 'Sausage', 'Tricycle', 'Violin', 'Egg', 'Fire Extinguisher', 'Candy', 'Fire Truck',
- 'Billiards', 'Converter', 'Bathtub', 'Wheelchair', 'Golf Club', 'Briefcase', 'Cucumber', 'Cigar/Cigarette',
- 'Paint Brush', 'Pear', 'Heavy Truck', 'Hamburger', 'Extractor', 'Extension Cord', 'Tong', 'Tennis Racket',
- 'Folder', 'American Football', 'earphone', 'Mask', 'Kettle', 'Tennis', 'Ship', 'Swing', 'Coffee Machine',
- 'Slide', 'Carriage', 'Onion', 'Green beans', 'Projector', 'Frisbee', 'Washing Machine/Drying Machine',
- 'Chicken', 'Printer', 'Watermelon', 'Saxophone', 'Tissue', 'Toothbrush', 'Ice cream', 'Hot-air balloon',
- 'Cello', 'French Fries', 'Scale', 'Trophy', 'Cabbage', 'Hot dog', 'Blender', 'Peach', 'Rice', 'Wallet/Purse',
- 'Volleyball', 'Deer', 'Goose', 'Tape', 'Tablet', 'Cosmetics', 'Trumpet', 'Pineapple', 'Golf Ball',
- 'Ambulance', 'Parking meter', 'Mango', 'Key', 'Hurdle', 'Fishing Rod', 'Medal', 'Flute', 'Brush', 'Penguin',
- 'Megaphone', 'Corn', 'Lettuce', 'Garlic', 'Swan', 'Helicopter', 'Green Onion', 'Sandwich', 'Nuts',
- 'Speed Limit Sign', 'Induction Cooker', 'Broom', 'Trombone', 'Plum', 'Rickshaw', 'Goldfish', 'Kiwi fruit',
- 'Router/modem', 'Poker Card', 'Toaster', 'Shrimp', 'Sushi', 'Cheese', 'Notepaper', 'Cherry', 'Pliers', 'CD',
- 'Pasta', 'Hammer', 'Cue', 'Avocado', 'Hamimelon', 'Flask', 'Mushroom', 'Screwdriver', 'Soap', 'Recorder',
- 'Bear', 'Eggplant', 'Board Eraser', 'Coconut', 'Tape Measure/Ruler', 'Pig', 'Showerhead', 'Globe', 'Chips',
- 'Steak', 'Crosswalk Sign', 'Stapler', 'Camel', 'Formula 1', 'Pomegranate', 'Dishwasher', 'Crab',
- 'Hoverboard', 'Meat ball', 'Rice Cooker', 'Tuba', 'Calculator', 'Papaya', 'Antelope', 'Parrot', 'Seal',
- 'Butterfly', 'Dumbbell', 'Donkey', 'Lion', 'Urinal', 'Dolphin', 'Electric Drill', 'Hair Dryer', 'Egg tart',
- 'Jellyfish', 'Treadmill', 'Lighter', 'Grapefruit', 'Game board', 'Mop', 'Radish', 'Baozi', 'Target', 'French',
- 'Spring Rolls', 'Monkey', 'Rabbit', 'Pencil Case', 'Yak', 'Red Cabbage', 'Binoculars', 'Asparagus', 'Barbell',
- 'Scallop', 'Noddles', 'Comb', 'Dumpling', 'Oyster', 'Table Tennis paddle', 'Cosmetics Brush/Eyeliner Pencil',
- 'Chainsaw', 'Eraser', 'Lobster', 'Durian', 'Okra', 'Lipstick', 'Cosmetics Mirror', 'Curling', 'Table Tennis' ]
+names: ['Person', 'Sneakers', 'Chair', 'Other Shoes', 'Hat', 'Car', 'Lamp', 'Glasses', 'Bottle', 'Desk', 'Cup',
+ 'Street Lights', 'Cabinet/shelf', 'Handbag/Satchel', 'Bracelet', 'Plate', 'Picture/Frame', 'Helmet', 'Book',
+ 'Gloves', 'Storage box', 'Boat', 'Leather Shoes', 'Flower', 'Bench', 'Potted Plant', 'Bowl/Basin', 'Flag',
+ 'Pillow', 'Boots', 'Vase', 'Microphone', 'Necklace', 'Ring', 'SUV', 'Wine Glass', 'Belt', 'Monitor/TV',
+ 'Backpack', 'Umbrella', 'Traffic Light', 'Speaker', 'Watch', 'Tie', 'Trash bin Can', 'Slippers', 'Bicycle',
+ 'Stool', 'Barrel/bucket', 'Van', 'Couch', 'Sandals', 'Basket', 'Drum', 'Pen/Pencil', 'Bus', 'Wild Bird',
+ 'High Heels', 'Motorcycle', 'Guitar', 'Carpet', 'Cell Phone', 'Bread', 'Camera', 'Canned', 'Truck',
+ 'Traffic cone', 'Cymbal', 'Lifesaver', 'Towel', 'Stuffed Toy', 'Candle', 'Sailboat', 'Laptop', 'Awning',
+ 'Bed', 'Faucet', 'Tent', 'Horse', 'Mirror', 'Power outlet', 'Sink', 'Apple', 'Air Conditioner', 'Knife',
+ 'Hockey Stick', 'Paddle', 'Pickup Truck', 'Fork', 'Traffic Sign', 'Balloon', 'Tripod', 'Dog', 'Spoon', 'Clock',
+ 'Pot', 'Cow', 'Cake', 'Dinning Table', 'Sheep', 'Hanger', 'Blackboard/Whiteboard', 'Napkin', 'Other Fish',
+ 'Orange/Tangerine', 'Toiletry', 'Keyboard', 'Tomato', 'Lantern', 'Machinery Vehicle', 'Fan',
+ 'Green Vegetables', 'Banana', 'Baseball Glove', 'Airplane', 'Mouse', 'Train', 'Pumpkin', 'Soccer', 'Skiboard',
+ 'Luggage', 'Nightstand', 'Tea pot', 'Telephone', 'Trolley', 'Head Phone', 'Sports Car', 'Stop Sign',
+ 'Dessert', 'Scooter', 'Stroller', 'Crane', 'Remote', 'Refrigerator', 'Oven', 'Lemon', 'Duck', 'Baseball Bat',
+ 'Surveillance Camera', 'Cat', 'Jug', 'Broccoli', 'Piano', 'Pizza', 'Elephant', 'Skateboard', 'Surfboard',
+ 'Gun', 'Skating and Skiing shoes', 'Gas stove', 'Donut', 'Bow Tie', 'Carrot', 'Toilet', 'Kite', 'Strawberry',
+ 'Other Balls', 'Shovel', 'Pepper', 'Computer Box', 'Toilet Paper', 'Cleaning Products', 'Chopsticks',
+ 'Microwave', 'Pigeon', 'Baseball', 'Cutting/chopping Board', 'Coffee Table', 'Side Table', 'Scissors',
+ 'Marker', 'Pie', 'Ladder', 'Snowboard', 'Cookies', 'Radiator', 'Fire Hydrant', 'Basketball', 'Zebra', 'Grape',
+ 'Giraffe', 'Potato', 'Sausage', 'Tricycle', 'Violin', 'Egg', 'Fire Extinguisher', 'Candy', 'Fire Truck',
+ 'Billiards', 'Converter', 'Bathtub', 'Wheelchair', 'Golf Club', 'Briefcase', 'Cucumber', 'Cigar/Cigarette',
+ 'Paint Brush', 'Pear', 'Heavy Truck', 'Hamburger', 'Extractor', 'Extension Cord', 'Tong', 'Tennis Racket',
+ 'Folder', 'American Football', 'earphone', 'Mask', 'Kettle', 'Tennis', 'Ship', 'Swing', 'Coffee Machine',
+ 'Slide', 'Carriage', 'Onion', 'Green beans', 'Projector', 'Frisbee', 'Washing Machine/Drying Machine',
+ 'Chicken', 'Printer', 'Watermelon', 'Saxophone', 'Tissue', 'Toothbrush', 'Ice cream', 'Hot-air balloon',
+ 'Cello', 'French Fries', 'Scale', 'Trophy', 'Cabbage', 'Hot dog', 'Blender', 'Peach', 'Rice', 'Wallet/Purse',
+ 'Volleyball', 'Deer', 'Goose', 'Tape', 'Tablet', 'Cosmetics', 'Trumpet', 'Pineapple', 'Golf Ball',
+ 'Ambulance', 'Parking meter', 'Mango', 'Key', 'Hurdle', 'Fishing Rod', 'Medal', 'Flute', 'Brush', 'Penguin',
+ 'Megaphone', 'Corn', 'Lettuce', 'Garlic', 'Swan', 'Helicopter', 'Green Onion', 'Sandwich', 'Nuts',
+ 'Speed Limit Sign', 'Induction Cooker', 'Broom', 'Trombone', 'Plum', 'Rickshaw', 'Goldfish', 'Kiwi fruit',
+ 'Router/modem', 'Poker Card', 'Toaster', 'Shrimp', 'Sushi', 'Cheese', 'Notepaper', 'Cherry', 'Pliers', 'CD',
+ 'Pasta', 'Hammer', 'Cue', 'Avocado', 'Hamimelon', 'Flask', 'Mushroom', 'Screwdriver', 'Soap', 'Recorder',
+ 'Bear', 'Eggplant', 'Board Eraser', 'Coconut', 'Tape Measure/Ruler', 'Pig', 'Showerhead', 'Globe', 'Chips',
+ 'Steak', 'Crosswalk Sign', 'Stapler', 'Camel', 'Formula 1', 'Pomegranate', 'Dishwasher', 'Crab',
+ 'Hoverboard', 'Meat ball', 'Rice Cooker', 'Tuba', 'Calculator', 'Papaya', 'Antelope', 'Parrot', 'Seal',
+ 'Butterfly', 'Dumbbell', 'Donkey', 'Lion', 'Urinal', 'Dolphin', 'Electric Drill', 'Hair Dryer', 'Egg tart',
+ 'Jellyfish', 'Treadmill', 'Lighter', 'Grapefruit', 'Game board', 'Mop', 'Radish', 'Baozi', 'Target', 'French',
+ 'Spring Rolls', 'Monkey', 'Rabbit', 'Pencil Case', 'Yak', 'Red Cabbage', 'Binoculars', 'Asparagus', 'Barbell',
+ 'Scallop', 'Noddles', 'Comb', 'Dumpling', 'Oyster', 'Table Tennis paddle', 'Cosmetics Brush/Eyeliner Pencil',
+ 'Chainsaw', 'Eraser', 'Lobster', 'Durian', 'Okra', 'Lipstick', 'Cosmetics Mirror', 'Curling', 'Table Tennis']
# Download script/URL (optional) ---------------------------------------------------------------------------------------
diff --git a/data/SKU-110K.yaml b/data/SKU-110K.yaml
index 01bf36c0d870..c85fa81d2e03 100644
--- a/data/SKU-110K.yaml
+++ b/data/SKU-110K.yaml
@@ -15,7 +15,7 @@ test: test.txt # test images (optional) 2936 images
# Classes
nc: 1 # number of classes
-names: [ 'object' ] # class names
+names: ['object'] # class names
# Download script/URL (optional) ---------------------------------------------------------------------------------------
diff --git a/data/VOC.yaml b/data/VOC.yaml
index 55f39d852d31..e59fb6afd2fd 100644
--- a/data/VOC.yaml
+++ b/data/VOC.yaml
@@ -21,8 +21,8 @@ test: # test images (optional)
# Classes
nc: 20 # number of classes
-names: [ 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog',
- 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor' ] # class names
+names: ['aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog',
+ 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor'] # class names
# Download script/URL (optional) ---------------------------------------------------------------------------------------
diff --git a/data/VisDrone.yaml b/data/VisDrone.yaml
index 12e0e7c4a009..fe6cb9199ce1 100644
--- a/data/VisDrone.yaml
+++ b/data/VisDrone.yaml
@@ -15,7 +15,7 @@ test: VisDrone2019-DET-test-dev/images # test images (optional) 1610 images
# Classes
nc: 10 # number of classes
-names: [ 'pedestrian', 'people', 'bicycle', 'car', 'van', 'truck', 'tricycle', 'awning-tricycle', 'bus', 'motor' ]
+names: ['pedestrian', 'people', 'bicycle', 'car', 'van', 'truck', 'tricycle', 'awning-tricycle', 'bus', 'motor']
# Download script/URL (optional) ---------------------------------------------------------------------------------------
diff --git a/data/coco.yaml b/data/coco.yaml
index cab1a0171963..acf8e84f3e21 100644
--- a/data/coco.yaml
+++ b/data/coco.yaml
@@ -15,15 +15,15 @@ test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.
# Classes
nc: 80 # number of classes
-names: [ 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
- 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
- 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
- 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
- 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
- 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
- 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
- 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
- 'hair drier', 'toothbrush' ] # class names
+names: ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
+ 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
+ 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
+ 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
+ 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
+ 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
+ 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
+ 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
+ 'hair drier', 'toothbrush'] # class names
# Download script/URL (optional)
diff --git a/data/coco128.yaml b/data/coco128.yaml
index 6902eb9397a1..eda39dcdaa8d 100644
--- a/data/coco128.yaml
+++ b/data/coco128.yaml
@@ -15,15 +15,15 @@ test: # test images (optional)
# Classes
nc: 80 # number of classes
-names: [ 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
- 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
- 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
- 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
- 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
- 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
- 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
- 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
- 'hair drier', 'toothbrush' ] # class names
+names: ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
+ 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
+ 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
+ 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
+ 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
+ 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
+ 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
+ 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
+ 'hair drier', 'toothbrush'] # class names
# Download script/URL (optional)
diff --git a/data/scripts/get_coco.sh b/data/scripts/get_coco.sh
index 1f484beee34c..f6c075689709 100755
--- a/data/scripts/get_coco.sh
+++ b/data/scripts/get_coco.sh
@@ -12,7 +12,7 @@ d='../datasets' # unzip directory
url=https://github.com/ultralytics/yolov5/releases/download/v1.0/
f='coco2017labels.zip' # or 'coco2017labels-segments.zip', 68 MB
echo 'Downloading' $url$f ' ...'
-curl -L $url$f -o $f && unzip -q $f -d $d && rm $f & # download, unzip, remove in background
+curl -L $url$f -o $f && unzip -q $f -d $d && rm $f &
# Download/unzip images
d='../datasets/coco/images' # unzip directory
@@ -22,6 +22,6 @@ f2='val2017.zip' # 1G, 5k images
f3='test2017.zip' # 7G, 41k images (optional)
for f in $f1 $f2; do
echo 'Downloading' $url$f '...'
- curl -L $url$f -o $f && unzip -q $f -d $d && rm $f & # download, unzip, remove in background
+ curl -L $url$f -o $f && unzip -q $f -d $d && rm $f &
done
wait # finish background tasks
diff --git a/data/scripts/get_coco128.sh b/data/scripts/get_coco128.sh
index 3d705890b56d..6eb47bfe5595 100644
--- a/data/scripts/get_coco128.sh
+++ b/data/scripts/get_coco128.sh
@@ -12,6 +12,6 @@ d='../datasets' # unzip directory
url=https://github.com/ultralytics/yolov5/releases/download/v1.0/
f='coco128.zip' # or 'coco2017labels-segments.zip', 68 MB
echo 'Downloading' $url$f ' ...'
-curl -L $url$f -o $f && unzip -q $f -d $d && rm $f & # download, unzip, remove in background
+curl -L $url$f -o $f && unzip -q $f -d $d && rm $f &
wait # finish background tasks
diff --git a/data/xView.yaml b/data/xView.yaml
index f4f27bfbc8ec..e191188da0f0 100644
--- a/data/xView.yaml
+++ b/data/xView.yaml
@@ -15,15 +15,15 @@ val: images/autosplit_val.txt # train images (relative to 'path') 10% of 847 tr
# Classes
nc: 60 # number of classes
-names: [ 'Fixed-wing Aircraft', 'Small Aircraft', 'Cargo Plane', 'Helicopter', 'Passenger Vehicle', 'Small Car', 'Bus',
- 'Pickup Truck', 'Utility Truck', 'Truck', 'Cargo Truck', 'Truck w/Box', 'Truck Tractor', 'Trailer',
- 'Truck w/Flatbed', 'Truck w/Liquid', 'Crane Truck', 'Railway Vehicle', 'Passenger Car', 'Cargo Car',
- 'Flat Car', 'Tank car', 'Locomotive', 'Maritime Vessel', 'Motorboat', 'Sailboat', 'Tugboat', 'Barge',
- 'Fishing Vessel', 'Ferry', 'Yacht', 'Container Ship', 'Oil Tanker', 'Engineering Vehicle', 'Tower crane',
- 'Container Crane', 'Reach Stacker', 'Straddle Carrier', 'Mobile Crane', 'Dump Truck', 'Haul Truck',
- 'Scraper/Tractor', 'Front loader/Bulldozer', 'Excavator', 'Cement Mixer', 'Ground Grader', 'Hut/Tent', 'Shed',
- 'Building', 'Aircraft Hangar', 'Damaged Building', 'Facility', 'Construction Site', 'Vehicle Lot', 'Helipad',
- 'Storage Tank', 'Shipping container lot', 'Shipping Container', 'Pylon', 'Tower' ] # class names
+names: ['Fixed-wing Aircraft', 'Small Aircraft', 'Cargo Plane', 'Helicopter', 'Passenger Vehicle', 'Small Car', 'Bus',
+ 'Pickup Truck', 'Utility Truck', 'Truck', 'Cargo Truck', 'Truck w/Box', 'Truck Tractor', 'Trailer',
+ 'Truck w/Flatbed', 'Truck w/Liquid', 'Crane Truck', 'Railway Vehicle', 'Passenger Car', 'Cargo Car',
+ 'Flat Car', 'Tank car', 'Locomotive', 'Maritime Vessel', 'Motorboat', 'Sailboat', 'Tugboat', 'Barge',
+ 'Fishing Vessel', 'Ferry', 'Yacht', 'Container Ship', 'Oil Tanker', 'Engineering Vehicle', 'Tower crane',
+ 'Container Crane', 'Reach Stacker', 'Straddle Carrier', 'Mobile Crane', 'Dump Truck', 'Haul Truck',
+ 'Scraper/Tractor', 'Front loader/Bulldozer', 'Excavator', 'Cement Mixer', 'Ground Grader', 'Hut/Tent', 'Shed',
+ 'Building', 'Aircraft Hangar', 'Damaged Building', 'Facility', 'Construction Site', 'Vehicle Lot', 'Helipad',
+ 'Storage Tank', 'Shipping container lot', 'Shipping Container', 'Pylon', 'Tower'] # class names
# Download script/URL (optional) ---------------------------------------------------------------------------------------
diff --git a/models/hub/anchors.yaml b/models/hub/anchors.yaml
index a07a4dc72387..57512955ac1f 100644
--- a/models/hub/anchors.yaml
+++ b/models/hub/anchors.yaml
@@ -4,55 +4,55 @@
# P5 -------------------------------------------------------------------------------------------------------------------
# P5-640:
anchors_p5_640:
- - [ 10,13, 16,30, 33,23 ] # P3/8
- - [ 30,61, 62,45, 59,119 ] # P4/16
- - [ 116,90, 156,198, 373,326 ] # P5/32
+ - [10,13, 16,30, 33,23] # P3/8
+ - [30,61, 62,45, 59,119] # P4/16
+ - [116,90, 156,198, 373,326] # P5/32
# P6 -------------------------------------------------------------------------------------------------------------------
# P6-640: thr=0.25: 0.9964 BPR, 5.54 anchors past thr, n=12, img_size=640, metric_all=0.281/0.716-mean/best, past_thr=0.469-mean: 9,11, 21,19, 17,41, 43,32, 39,70, 86,64, 65,131, 134,130, 120,265, 282,180, 247,354, 512,387
anchors_p6_640:
- - [ 9,11, 21,19, 17,41 ] # P3/8
- - [ 43,32, 39,70, 86,64 ] # P4/16
- - [ 65,131, 134,130, 120,265 ] # P5/32
- - [ 282,180, 247,354, 512,387 ] # P6/64
+ - [9,11, 21,19, 17,41] # P3/8
+ - [43,32, 39,70, 86,64] # P4/16
+ - [65,131, 134,130, 120,265] # P5/32
+ - [282,180, 247,354, 512,387] # P6/64
# P6-1280: thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1280, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 19,27, 44,40, 38,94, 96,68, 86,152, 180,137, 140,301, 303,264, 238,542, 436,615, 739,380, 925,792
anchors_p6_1280:
- - [ 19,27, 44,40, 38,94 ] # P3/8
- - [ 96,68, 86,152, 180,137 ] # P4/16
- - [ 140,301, 303,264, 238,542 ] # P5/32
- - [ 436,615, 739,380, 925,792 ] # P6/64
+ - [19,27, 44,40, 38,94] # P3/8
+ - [96,68, 86,152, 180,137] # P4/16
+ - [140,301, 303,264, 238,542] # P5/32
+ - [436,615, 739,380, 925,792] # P6/64
# P6-1920: thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1920, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 28,41, 67,59, 57,141, 144,103, 129,227, 270,205, 209,452, 455,396, 358,812, 653,922, 1109,570, 1387,1187
anchors_p6_1920:
- - [ 28,41, 67,59, 57,141 ] # P3/8
- - [ 144,103, 129,227, 270,205 ] # P4/16
- - [ 209,452, 455,396, 358,812 ] # P5/32
- - [ 653,922, 1109,570, 1387,1187 ] # P6/64
+ - [28,41, 67,59, 57,141] # P3/8
+ - [144,103, 129,227, 270,205] # P4/16
+ - [209,452, 455,396, 358,812] # P5/32
+ - [653,922, 1109,570, 1387,1187] # P6/64
# P7 -------------------------------------------------------------------------------------------------------------------
# P7-640: thr=0.25: 0.9962 BPR, 6.76 anchors past thr, n=15, img_size=640, metric_all=0.275/0.733-mean/best, past_thr=0.466-mean: 11,11, 13,30, 29,20, 30,46, 61,38, 39,92, 78,80, 146,66, 79,163, 149,150, 321,143, 157,303, 257,402, 359,290, 524,372
anchors_p7_640:
- - [ 11,11, 13,30, 29,20 ] # P3/8
- - [ 30,46, 61,38, 39,92 ] # P4/16
- - [ 78,80, 146,66, 79,163 ] # P5/32
- - [ 149,150, 321,143, 157,303 ] # P6/64
- - [ 257,402, 359,290, 524,372 ] # P7/128
+ - [11,11, 13,30, 29,20] # P3/8
+ - [30,46, 61,38, 39,92] # P4/16
+ - [78,80, 146,66, 79,163] # P5/32
+ - [149,150, 321,143, 157,303] # P6/64
+ - [257,402, 359,290, 524,372] # P7/128
# P7-1280: thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1280, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 19,22, 54,36, 32,77, 70,83, 138,71, 75,173, 165,159, 148,334, 375,151, 334,317, 251,626, 499,474, 750,326, 534,814, 1079,818
anchors_p7_1280:
- - [ 19,22, 54,36, 32,77 ] # P3/8
- - [ 70,83, 138,71, 75,173 ] # P4/16
- - [ 165,159, 148,334, 375,151 ] # P5/32
- - [ 334,317, 251,626, 499,474 ] # P6/64
- - [ 750,326, 534,814, 1079,818 ] # P7/128
+ - [19,22, 54,36, 32,77] # P3/8
+ - [70,83, 138,71, 75,173] # P4/16
+ - [165,159, 148,334, 375,151] # P5/32
+ - [334,317, 251,626, 499,474] # P6/64
+ - [750,326, 534,814, 1079,818] # P7/128
# P7-1920: thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1920, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 29,34, 81,55, 47,115, 105,124, 207,107, 113,259, 247,238, 222,500, 563,227, 501,476, 376,939, 749,711, 1126,489, 801,1222, 1618,1227
anchors_p7_1920:
- - [ 29,34, 81,55, 47,115 ] # P3/8
- - [ 105,124, 207,107, 113,259 ] # P4/16
- - [ 247,238, 222,500, 563,227 ] # P5/32
- - [ 501,476, 376,939, 749,711 ] # P6/64
- - [ 1126,489, 801,1222, 1618,1227 ] # P7/128
+ - [29,34, 81,55, 47,115] # P3/8
+ - [105,124, 207,107, 113,259] # P4/16
+ - [247,238, 222,500, 563,227] # P5/32
+ - [501,476, 376,939, 749,711] # P6/64
+ - [1126,489, 801,1222, 1618,1227] # P7/128
diff --git a/models/hub/yolov3-spp.yaml b/models/hub/yolov3-spp.yaml
index 0ca7b7f6577b..ddc0549f50d6 100644
--- a/models/hub/yolov3-spp.yaml
+++ b/models/hub/yolov3-spp.yaml
@@ -3,47 +3,47 @@ nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple
anchors:
- - [ 10,13, 16,30, 33,23 ] # P3/8
- - [ 30,61, 62,45, 59,119 ] # P4/16
- - [ 116,90, 156,198, 373,326 ] # P5/32
+ - [10,13, 16,30, 33,23] # P3/8
+ - [30,61, 62,45, 59,119] # P4/16
+ - [116,90, 156,198, 373,326] # P5/32
# darknet53 backbone
backbone:
# [from, number, module, args]
- [ [ -1, 1, Conv, [ 32, 3, 1 ] ], # 0
- [ -1, 1, Conv, [ 64, 3, 2 ] ], # 1-P1/2
- [ -1, 1, Bottleneck, [ 64 ] ],
- [ -1, 1, Conv, [ 128, 3, 2 ] ], # 3-P2/4
- [ -1, 2, Bottleneck, [ 128 ] ],
- [ -1, 1, Conv, [ 256, 3, 2 ] ], # 5-P3/8
- [ -1, 8, Bottleneck, [ 256 ] ],
- [ -1, 1, Conv, [ 512, 3, 2 ] ], # 7-P4/16
- [ -1, 8, Bottleneck, [ 512 ] ],
- [ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P5/32
- [ -1, 4, Bottleneck, [ 1024 ] ], # 10
+ [[-1, 1, Conv, [32, 3, 1]], # 0
+ [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
+ [-1, 1, Bottleneck, [64]],
+ [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
+ [-1, 2, Bottleneck, [128]],
+ [-1, 1, Conv, [256, 3, 2]], # 5-P3/8
+ [-1, 8, Bottleneck, [256]],
+ [-1, 1, Conv, [512, 3, 2]], # 7-P4/16
+ [-1, 8, Bottleneck, [512]],
+ [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
+ [-1, 4, Bottleneck, [1024]], # 10
]
# YOLOv3-SPP head
head:
- [ [ -1, 1, Bottleneck, [ 1024, False ] ],
- [ -1, 1, SPP, [ 512, [ 5, 9, 13 ] ] ],
- [ -1, 1, Conv, [ 1024, 3, 1 ] ],
- [ -1, 1, Conv, [ 512, 1, 1 ] ],
- [ -1, 1, Conv, [ 1024, 3, 1 ] ], # 15 (P5/32-large)
+ [[-1, 1, Bottleneck, [1024, False]],
+ [-1, 1, SPP, [512, [5, 9, 13]]],
+ [-1, 1, Conv, [1024, 3, 1]],
+ [-1, 1, Conv, [512, 1, 1]],
+ [-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
- [ -2, 1, Conv, [ 256, 1, 1 ] ],
- [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
- [ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P4
- [ -1, 1, Bottleneck, [ 512, False ] ],
- [ -1, 1, Bottleneck, [ 512, False ] ],
- [ -1, 1, Conv, [ 256, 1, 1 ] ],
- [ -1, 1, Conv, [ 512, 3, 1 ] ], # 22 (P4/16-medium)
+ [-2, 1, Conv, [256, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 8], 1, Concat, [1]], # cat backbone P4
+ [-1, 1, Bottleneck, [512, False]],
+ [-1, 1, Bottleneck, [512, False]],
+ [-1, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
- [ -2, 1, Conv, [ 128, 1, 1 ] ],
- [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
- [ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P3
- [ -1, 1, Bottleneck, [ 256, False ] ],
- [ -1, 2, Bottleneck, [ 256, False ] ], # 27 (P3/8-small)
+ [-2, 1, Conv, [128, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 6], 1, Concat, [1]], # cat backbone P3
+ [-1, 1, Bottleneck, [256, False]],
+ [-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
- [ [ 27, 22, 15 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5)
+ [[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]
diff --git a/models/hub/yolov3-tiny.yaml b/models/hub/yolov3-tiny.yaml
index d39a6b1f581c..537ad755b166 100644
--- a/models/hub/yolov3-tiny.yaml
+++ b/models/hub/yolov3-tiny.yaml
@@ -3,37 +3,37 @@ nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple
anchors:
- - [ 10,14, 23,27, 37,58 ] # P4/16
- - [ 81,82, 135,169, 344,319 ] # P5/32
+ - [10,14, 23,27, 37,58] # P4/16
+ - [81,82, 135,169, 344,319] # P5/32
# YOLOv3-tiny backbone
backbone:
# [from, number, module, args]
- [ [ -1, 1, Conv, [ 16, 3, 1 ] ], # 0
- [ -1, 1, nn.MaxPool2d, [ 2, 2, 0 ] ], # 1-P1/2
- [ -1, 1, Conv, [ 32, 3, 1 ] ],
- [ -1, 1, nn.MaxPool2d, [ 2, 2, 0 ] ], # 3-P2/4
- [ -1, 1, Conv, [ 64, 3, 1 ] ],
- [ -1, 1, nn.MaxPool2d, [ 2, 2, 0 ] ], # 5-P3/8
- [ -1, 1, Conv, [ 128, 3, 1 ] ],
- [ -1, 1, nn.MaxPool2d, [ 2, 2, 0 ] ], # 7-P4/16
- [ -1, 1, Conv, [ 256, 3, 1 ] ],
- [ -1, 1, nn.MaxPool2d, [ 2, 2, 0 ] ], # 9-P5/32
- [ -1, 1, Conv, [ 512, 3, 1 ] ],
- [ -1, 1, nn.ZeroPad2d, [ [ 0, 1, 0, 1 ] ] ], # 11
- [ -1, 1, nn.MaxPool2d, [ 2, 1, 0 ] ], # 12
+ [[-1, 1, Conv, [16, 3, 1]], # 0
+ [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 1-P1/2
+ [-1, 1, Conv, [32, 3, 1]],
+ [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 3-P2/4
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 5-P3/8
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 7-P4/16
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 9-P5/32
+ [-1, 1, Conv, [512, 3, 1]],
+ [-1, 1, nn.ZeroPad2d, [[0, 1, 0, 1]]], # 11
+ [-1, 1, nn.MaxPool2d, [2, 1, 0]], # 12
]
# YOLOv3-tiny head
head:
- [ [ -1, 1, Conv, [ 1024, 3, 1 ] ],
- [ -1, 1, Conv, [ 256, 1, 1 ] ],
- [ -1, 1, Conv, [ 512, 3, 1 ] ], # 15 (P5/32-large)
+ [[-1, 1, Conv, [1024, 3, 1]],
+ [-1, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [512, 3, 1]], # 15 (P5/32-large)
- [ -2, 1, Conv, [ 128, 1, 1 ] ],
- [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
- [ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P4
- [ -1, 1, Conv, [ 256, 3, 1 ] ], # 19 (P4/16-medium)
+ [-2, 1, Conv, [128, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 8], 1, Concat, [1]], # cat backbone P4
+ [-1, 1, Conv, [256, 3, 1]], # 19 (P4/16-medium)
- [ [ 19, 15 ], 1, Detect, [ nc, anchors ] ], # Detect(P4, P5)
+ [[19, 15], 1, Detect, [nc, anchors]], # Detect(P4, P5)
]
diff --git a/models/hub/yolov3.yaml b/models/hub/yolov3.yaml
index 09df0d9ef362..3adfc2c6d2f9 100644
--- a/models/hub/yolov3.yaml
+++ b/models/hub/yolov3.yaml
@@ -3,47 +3,47 @@ nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple
anchors:
- - [ 10,13, 16,30, 33,23 ] # P3/8
- - [ 30,61, 62,45, 59,119 ] # P4/16
- - [ 116,90, 156,198, 373,326 ] # P5/32
+ - [10,13, 16,30, 33,23] # P3/8
+ - [30,61, 62,45, 59,119] # P4/16
+ - [116,90, 156,198, 373,326] # P5/32
# darknet53 backbone
backbone:
# [from, number, module, args]
- [ [ -1, 1, Conv, [ 32, 3, 1 ] ], # 0
- [ -1, 1, Conv, [ 64, 3, 2 ] ], # 1-P1/2
- [ -1, 1, Bottleneck, [ 64 ] ],
- [ -1, 1, Conv, [ 128, 3, 2 ] ], # 3-P2/4
- [ -1, 2, Bottleneck, [ 128 ] ],
- [ -1, 1, Conv, [ 256, 3, 2 ] ], # 5-P3/8
- [ -1, 8, Bottleneck, [ 256 ] ],
- [ -1, 1, Conv, [ 512, 3, 2 ] ], # 7-P4/16
- [ -1, 8, Bottleneck, [ 512 ] ],
- [ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P5/32
- [ -1, 4, Bottleneck, [ 1024 ] ], # 10
+ [[-1, 1, Conv, [32, 3, 1]], # 0
+ [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
+ [-1, 1, Bottleneck, [64]],
+ [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
+ [-1, 2, Bottleneck, [128]],
+ [-1, 1, Conv, [256, 3, 2]], # 5-P3/8
+ [-1, 8, Bottleneck, [256]],
+ [-1, 1, Conv, [512, 3, 2]], # 7-P4/16
+ [-1, 8, Bottleneck, [512]],
+ [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
+ [-1, 4, Bottleneck, [1024]], # 10
]
# YOLOv3 head
head:
- [ [ -1, 1, Bottleneck, [ 1024, False ] ],
- [ -1, 1, Conv, [ 512, [ 1, 1 ] ] ],
- [ -1, 1, Conv, [ 1024, 3, 1 ] ],
- [ -1, 1, Conv, [ 512, 1, 1 ] ],
- [ -1, 1, Conv, [ 1024, 3, 1 ] ], # 15 (P5/32-large)
+ [[-1, 1, Bottleneck, [1024, False]],
+ [-1, 1, Conv, [512, [1, 1]]],
+ [-1, 1, Conv, [1024, 3, 1]],
+ [-1, 1, Conv, [512, 1, 1]],
+ [-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
- [ -2, 1, Conv, [ 256, 1, 1 ] ],
- [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
- [ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P4
- [ -1, 1, Bottleneck, [ 512, False ] ],
- [ -1, 1, Bottleneck, [ 512, False ] ],
- [ -1, 1, Conv, [ 256, 1, 1 ] ],
- [ -1, 1, Conv, [ 512, 3, 1 ] ], # 22 (P4/16-medium)
+ [-2, 1, Conv, [256, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 8], 1, Concat, [1]], # cat backbone P4
+ [-1, 1, Bottleneck, [512, False]],
+ [-1, 1, Bottleneck, [512, False]],
+ [-1, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
- [ -2, 1, Conv, [ 128, 1, 1 ] ],
- [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
- [ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P3
- [ -1, 1, Bottleneck, [ 256, False ] ],
- [ -1, 2, Bottleneck, [ 256, False ] ], # 27 (P3/8-small)
+ [-2, 1, Conv, [128, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 6], 1, Concat, [1]], # cat backbone P3
+ [-1, 1, Bottleneck, [256, False]],
+ [-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
- [ [ 27, 22, 15 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5)
+ [[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]
diff --git a/models/hub/yolov5-fpn.yaml b/models/hub/yolov5-fpn.yaml
index b8b7fc1a23d4..217e4ca6ac96 100644
--- a/models/hub/yolov5-fpn.yaml
+++ b/models/hub/yolov5-fpn.yaml
@@ -3,38 +3,38 @@ nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple
anchors:
- - [ 10,13, 16,30, 33,23 ] # P3/8
- - [ 30,61, 62,45, 59,119 ] # P4/16
- - [ 116,90, 156,198, 373,326 ] # P5/32
+ - [10,13, 16,30, 33,23] # P3/8
+ - [30,61, 62,45, 59,119] # P4/16
+ - [116,90, 156,198, 373,326] # P5/32
# YOLOv5 backbone
backbone:
# [from, number, module, args]
- [ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2
- [ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4
- [ -1, 3, Bottleneck, [ 128 ] ],
- [ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8
- [ -1, 9, BottleneckCSP, [ 256 ] ],
- [ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16
- [ -1, 9, BottleneckCSP, [ 512 ] ],
- [ -1, 1, Conv, [ 1024, 3, 2 ] ], # 7-P5/32
- [ -1, 1, SPP, [ 1024, [ 5, 9, 13 ] ] ],
- [ -1, 6, BottleneckCSP, [ 1024 ] ], # 9
+ [[-1, 1, Focus, [64, 3]], # 0-P1/2
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
+ [-1, 3, Bottleneck, [128]],
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
+ [-1, 9, BottleneckCSP, [256]],
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
+ [-1, 9, BottleneckCSP, [512]],
+ [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
+ [-1, 1, SPP, [1024, [5, 9, 13]]],
+ [-1, 6, BottleneckCSP, [1024]], # 9
]
# YOLOv5 FPN head
head:
- [ [ -1, 3, BottleneckCSP, [ 1024, False ] ], # 10 (P5/32-large)
+ [[-1, 3, BottleneckCSP, [1024, False]], # 10 (P5/32-large)
- [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
- [ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4
- [ -1, 1, Conv, [ 512, 1, 1 ] ],
- [ -1, 3, BottleneckCSP, [ 512, False ] ], # 14 (P4/16-medium)
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
+ [-1, 1, Conv, [512, 1, 1]],
+ [-1, 3, BottleneckCSP, [512, False]], # 14 (P4/16-medium)
- [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
- [ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3
- [ -1, 1, Conv, [ 256, 1, 1 ] ],
- [ -1, 3, BottleneckCSP, [ 256, False ] ], # 18 (P3/8-small)
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
+ [-1, 1, Conv, [256, 1, 1]],
+ [-1, 3, BottleneckCSP, [256, False]], # 18 (P3/8-small)
- [ [ 18, 14, 10 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5)
+ [[18, 14, 10], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]
diff --git a/models/hub/yolov5-p2.yaml b/models/hub/yolov5-p2.yaml
index 62122363df2d..6a932a868229 100644
--- a/models/hub/yolov5-p2.yaml
+++ b/models/hub/yolov5-p2.yaml
@@ -7,46 +7,46 @@ anchors: 3
# YOLOv5 backbone
backbone:
# [from, number, module, args]
- [ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2
- [ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4
- [ -1, 3, C3, [ 128 ] ],
- [ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8
- [ -1, 9, C3, [ 256 ] ],
- [ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16
- [ -1, 9, C3, [ 512 ] ],
- [ -1, 1, Conv, [ 1024, 3, 2 ] ], # 7-P5/32
- [ -1, 1, SPP, [ 1024, [ 5, 9, 13 ] ] ],
- [ -1, 3, C3, [ 1024, False ] ], # 9
+ [[-1, 1, Focus, [64, 3]], # 0-P1/2
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
+ [-1, 3, C3, [128]],
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
+ [-1, 9, C3, [256]],
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
+ [-1, 9, C3, [512]],
+ [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
+ [-1, 1, SPP, [1024, [5, 9, 13]]],
+ [-1, 3, C3, [1024, False]], # 9
]
# YOLOv5 head
head:
- [ [ -1, 1, Conv, [ 512, 1, 1 ] ],
- [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
- [ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4
- [ -1, 3, C3, [ 512, False ] ], # 13
-
- [ -1, 1, Conv, [ 256, 1, 1 ] ],
- [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
- [ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3
- [ -1, 3, C3, [ 256, False ] ], # 17 (P3/8-small)
-
- [ -1, 1, Conv, [ 128, 1, 1 ] ],
- [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
- [ [ -1, 2 ], 1, Concat, [ 1 ] ], # cat backbone P2
- [ -1, 1, C3, [ 128, False ] ], # 21 (P2/4-xsmall)
-
- [ -1, 1, Conv, [ 128, 3, 2 ] ],
- [ [ -1, 18 ], 1, Concat, [ 1 ] ], # cat head P3
- [ -1, 3, C3, [ 256, False ] ], # 24 (P3/8-small)
-
- [ -1, 1, Conv, [ 256, 3, 2 ] ],
- [ [ -1, 14 ], 1, Concat, [ 1 ] ], # cat head P4
- [ -1, 3, C3, [ 512, False ] ], # 27 (P4/16-medium)
-
- [ -1, 1, Conv, [ 512, 3, 2 ] ],
- [ [ -1, 10 ], 1, Concat, [ 1 ] ], # cat head P5
- [ -1, 3, C3, [ 1024, False ] ], # 30 (P5/32-large)
-
- [ [ 24, 27, 30 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5)
+ [[-1, 1, Conv, [512, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
+ [-1, 3, C3, [512, False]], # 13
+
+ [-1, 1, Conv, [256, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
+ [-1, 3, C3, [256, False]], # 17 (P3/8-small)
+
+ [-1, 1, Conv, [128, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 2], 1, Concat, [1]], # cat backbone P2
+ [-1, 1, C3, [128, False]], # 21 (P2/4-xsmall)
+
+ [-1, 1, Conv, [128, 3, 2]],
+ [[-1, 18], 1, Concat, [1]], # cat head P3
+ [-1, 3, C3, [256, False]], # 24 (P3/8-small)
+
+ [-1, 1, Conv, [256, 3, 2]],
+ [[-1, 14], 1, Concat, [1]], # cat head P4
+ [-1, 3, C3, [512, False]], # 27 (P4/16-medium)
+
+ [-1, 1, Conv, [512, 3, 2]],
+ [[-1, 10], 1, Concat, [1]], # cat head P5
+ [-1, 3, C3, [1024, False]], # 30 (P5/32-large)
+
+ [[24, 27, 30], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]
diff --git a/models/hub/yolov5-p6.yaml b/models/hub/yolov5-p6.yaml
index c5ef5177f0c8..58b86b0ca892 100644
--- a/models/hub/yolov5-p6.yaml
+++ b/models/hub/yolov5-p6.yaml
@@ -7,48 +7,48 @@ anchors: 3
# YOLOv5 backbone
backbone:
# [from, number, module, args]
- [ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2
- [ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4
- [ -1, 3, C3, [ 128 ] ],
- [ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8
- [ -1, 9, C3, [ 256 ] ],
- [ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16
- [ -1, 9, C3, [ 512 ] ],
- [ -1, 1, Conv, [ 768, 3, 2 ] ], # 7-P5/32
- [ -1, 3, C3, [ 768 ] ],
- [ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P6/64
- [ -1, 1, SPP, [ 1024, [ 3, 5, 7 ] ] ],
- [ -1, 3, C3, [ 1024, False ] ], # 11
+ [[-1, 1, Focus, [64, 3]], # 0-P1/2
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
+ [-1, 3, C3, [128]],
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
+ [-1, 9, C3, [256]],
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
+ [-1, 9, C3, [512]],
+ [-1, 1, Conv, [768, 3, 2]], # 7-P5/32
+ [-1, 3, C3, [768]],
+ [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
+ [-1, 1, SPP, [1024, [3, 5, 7]]],
+ [-1, 3, C3, [1024, False]], # 11
]
# YOLOv5 head
head:
- [ [ -1, 1, Conv, [ 768, 1, 1 ] ],
- [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
- [ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P5
- [ -1, 3, C3, [ 768, False ] ], # 15
-
- [ -1, 1, Conv, [ 512, 1, 1 ] ],
- [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
- [ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4
- [ -1, 3, C3, [ 512, False ] ], # 19
-
- [ -1, 1, Conv, [ 256, 1, 1 ] ],
- [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
- [ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3
- [ -1, 3, C3, [ 256, False ] ], # 23 (P3/8-small)
-
- [ -1, 1, Conv, [ 256, 3, 2 ] ],
- [ [ -1, 20 ], 1, Concat, [ 1 ] ], # cat head P4
- [ -1, 3, C3, [ 512, False ] ], # 26 (P4/16-medium)
-
- [ -1, 1, Conv, [ 512, 3, 2 ] ],
- [ [ -1, 16 ], 1, Concat, [ 1 ] ], # cat head P5
- [ -1, 3, C3, [ 768, False ] ], # 29 (P5/32-large)
-
- [ -1, 1, Conv, [ 768, 3, 2 ] ],
- [ [ -1, 12 ], 1, Concat, [ 1 ] ], # cat head P6
- [ -1, 3, C3, [ 1024, False ] ], # 32 (P5/64-xlarge)
-
- [ [ 23, 26, 29, 32 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5, P6)
+ [[-1, 1, Conv, [768, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 8], 1, Concat, [1]], # cat backbone P5
+ [-1, 3, C3, [768, False]], # 15
+
+ [-1, 1, Conv, [512, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
+ [-1, 3, C3, [512, False]], # 19
+
+ [-1, 1, Conv, [256, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
+ [-1, 3, C3, [256, False]], # 23 (P3/8-small)
+
+ [-1, 1, Conv, [256, 3, 2]],
+ [[-1, 20], 1, Concat, [1]], # cat head P4
+ [-1, 3, C3, [512, False]], # 26 (P4/16-medium)
+
+ [-1, 1, Conv, [512, 3, 2]],
+ [[-1, 16], 1, Concat, [1]], # cat head P5
+ [-1, 3, C3, [768, False]], # 29 (P5/32-large)
+
+ [-1, 1, Conv, [768, 3, 2]],
+ [[-1, 12], 1, Concat, [1]], # cat head P6
+ [-1, 3, C3, [1024, False]], # 32 (P5/64-xlarge)
+
+ [[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
]
diff --git a/models/hub/yolov5-p7.yaml b/models/hub/yolov5-p7.yaml
index 505c590ca168..f6e8fc7928cc 100644
--- a/models/hub/yolov5-p7.yaml
+++ b/models/hub/yolov5-p7.yaml
@@ -7,59 +7,59 @@ anchors: 3
# YOLOv5 backbone
backbone:
# [from, number, module, args]
- [ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2
- [ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4
- [ -1, 3, C3, [ 128 ] ],
- [ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8
- [ -1, 9, C3, [ 256 ] ],
- [ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16
- [ -1, 9, C3, [ 512 ] ],
- [ -1, 1, Conv, [ 768, 3, 2 ] ], # 7-P5/32
- [ -1, 3, C3, [ 768 ] ],
- [ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P6/64
- [ -1, 3, C3, [ 1024 ] ],
- [ -1, 1, Conv, [ 1280, 3, 2 ] ], # 11-P7/128
- [ -1, 1, SPP, [ 1280, [ 3, 5 ] ] ],
- [ -1, 3, C3, [ 1280, False ] ], # 13
+ [[-1, 1, Focus, [64, 3]], # 0-P1/2
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
+ [-1, 3, C3, [128]],
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
+ [-1, 9, C3, [256]],
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
+ [-1, 9, C3, [512]],
+ [-1, 1, Conv, [768, 3, 2]], # 7-P5/32
+ [-1, 3, C3, [768]],
+ [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
+ [-1, 3, C3, [1024]],
+ [-1, 1, Conv, [1280, 3, 2]], # 11-P7/128
+ [-1, 1, SPP, [1280, [3, 5]]],
+ [-1, 3, C3, [1280, False]], # 13
]
# YOLOv5 head
head:
- [ [ -1, 1, Conv, [ 1024, 1, 1 ] ],
- [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
- [ [ -1, 10 ], 1, Concat, [ 1 ] ], # cat backbone P6
- [ -1, 3, C3, [ 1024, False ] ], # 17
+ [[-1, 1, Conv, [1024, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 10], 1, Concat, [1]], # cat backbone P6
+ [-1, 3, C3, [1024, False]], # 17
- [ -1, 1, Conv, [ 768, 1, 1 ] ],
- [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
- [ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P5
- [ -1, 3, C3, [ 768, False ] ], # 21
+ [-1, 1, Conv, [768, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 8], 1, Concat, [1]], # cat backbone P5
+ [-1, 3, C3, [768, False]], # 21
- [ -1, 1, Conv, [ 512, 1, 1 ] ],
- [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
- [ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4
- [ -1, 3, C3, [ 512, False ] ], # 25
+ [-1, 1, Conv, [512, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
+ [-1, 3, C3, [512, False]], # 25
- [ -1, 1, Conv, [ 256, 1, 1 ] ],
- [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
- [ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3
- [ -1, 3, C3, [ 256, False ] ], # 29 (P3/8-small)
+ [-1, 1, Conv, [256, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
+ [-1, 3, C3, [256, False]], # 29 (P3/8-small)
- [ -1, 1, Conv, [ 256, 3, 2 ] ],
- [ [ -1, 26 ], 1, Concat, [ 1 ] ], # cat head P4
- [ -1, 3, C3, [ 512, False ] ], # 32 (P4/16-medium)
+ [-1, 1, Conv, [256, 3, 2]],
+ [[-1, 26], 1, Concat, [1]], # cat head P4
+ [-1, 3, C3, [512, False]], # 32 (P4/16-medium)
- [ -1, 1, Conv, [ 512, 3, 2 ] ],
- [ [ -1, 22 ], 1, Concat, [ 1 ] ], # cat head P5
- [ -1, 3, C3, [ 768, False ] ], # 35 (P5/32-large)
+ [-1, 1, Conv, [512, 3, 2]],
+ [[-1, 22], 1, Concat, [1]], # cat head P5
+ [-1, 3, C3, [768, False]], # 35 (P5/32-large)
- [ -1, 1, Conv, [ 768, 3, 2 ] ],
- [ [ -1, 18 ], 1, Concat, [ 1 ] ], # cat head P6
- [ -1, 3, C3, [ 1024, False ] ], # 38 (P6/64-xlarge)
+ [-1, 1, Conv, [768, 3, 2]],
+ [[-1, 18], 1, Concat, [1]], # cat head P6
+ [-1, 3, C3, [1024, False]], # 38 (P6/64-xlarge)
- [ -1, 1, Conv, [ 1024, 3, 2 ] ],
- [ [ -1, 14 ], 1, Concat, [ 1 ] ], # cat head P7
- [ -1, 3, C3, [ 1280, False ] ], # 41 (P7/128-xxlarge)
+ [-1, 1, Conv, [1024, 3, 2]],
+ [[-1, 14], 1, Concat, [1]], # cat head P7
+ [-1, 3, C3, [1280, False]], # 41 (P7/128-xxlarge)
- [ [ 29, 32, 35, 38, 41 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5, P6, P7)
+ [[29, 32, 35, 38, 41], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6, P7)
]
diff --git a/models/hub/yolov5-panet.yaml b/models/hub/yolov5-panet.yaml
index aee5dab01fa1..c5f3b4817102 100644
--- a/models/hub/yolov5-panet.yaml
+++ b/models/hub/yolov5-panet.yaml
@@ -3,44 +3,44 @@ nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple
anchors:
- - [ 10,13, 16,30, 33,23 ] # P3/8
- - [ 30,61, 62,45, 59,119 ] # P4/16
- - [ 116,90, 156,198, 373,326 ] # P5/32
+ - [10,13, 16,30, 33,23] # P3/8
+ - [30,61, 62,45, 59,119] # P4/16
+ - [116,90, 156,198, 373,326] # P5/32
# YOLOv5 backbone
backbone:
# [from, number, module, args]
- [ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2
- [ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4
- [ -1, 3, BottleneckCSP, [ 128 ] ],
- [ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8
- [ -1, 9, BottleneckCSP, [ 256 ] ],
- [ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16
- [ -1, 9, BottleneckCSP, [ 512 ] ],
- [ -1, 1, Conv, [ 1024, 3, 2 ] ], # 7-P5/32
- [ -1, 1, SPP, [ 1024, [ 5, 9, 13 ] ] ],
- [ -1, 3, BottleneckCSP, [ 1024, False ] ], # 9
+ [[-1, 1, Focus, [64, 3]], # 0-P1/2
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
+ [-1, 3, BottleneckCSP, [128]],
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
+ [-1, 9, BottleneckCSP, [256]],
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
+ [-1, 9, BottleneckCSP, [512]],
+ [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
+ [-1, 1, SPP, [1024, [5, 9, 13]]],
+ [-1, 3, BottleneckCSP, [1024, False]], # 9
]
# YOLOv5 PANet head
head:
- [ [ -1, 1, Conv, [ 512, 1, 1 ] ],
- [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
- [ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4
- [ -1, 3, BottleneckCSP, [ 512, False ] ], # 13
+ [[-1, 1, Conv, [512, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
+ [-1, 3, BottleneckCSP, [512, False]], # 13
- [ -1, 1, Conv, [ 256, 1, 1 ] ],
- [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
- [ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3
- [ -1, 3, BottleneckCSP, [ 256, False ] ], # 17 (P3/8-small)
+ [-1, 1, Conv, [256, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
+ [-1, 3, BottleneckCSP, [256, False]], # 17 (P3/8-small)
- [ -1, 1, Conv, [ 256, 3, 2 ] ],
- [ [ -1, 14 ], 1, Concat, [ 1 ] ], # cat head P4
- [ -1, 3, BottleneckCSP, [ 512, False ] ], # 20 (P4/16-medium)
+ [-1, 1, Conv, [256, 3, 2]],
+ [[-1, 14], 1, Concat, [1]], # cat head P4
+ [-1, 3, BottleneckCSP, [512, False]], # 20 (P4/16-medium)
- [ -1, 1, Conv, [ 512, 3, 2 ] ],
- [ [ -1, 10 ], 1, Concat, [ 1 ] ], # cat head P5
- [ -1, 3, BottleneckCSP, [ 1024, False ] ], # 23 (P5/32-large)
+ [-1, 1, Conv, [512, 3, 2]],
+ [[-1, 10], 1, Concat, [1]], # cat head P5
+ [-1, 3, BottleneckCSP, [1024, False]], # 23 (P5/32-large)
- [ [ 17, 20, 23 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5)
+ [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]
diff --git a/models/hub/yolov5l6.yaml b/models/hub/yolov5l6.yaml
index 91c57da1939e..d5afd7d84100 100644
--- a/models/hub/yolov5l6.yaml
+++ b/models/hub/yolov5l6.yaml
@@ -3,56 +3,56 @@ nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple
anchors:
- - [ 19,27, 44,40, 38,94 ] # P3/8
- - [ 96,68, 86,152, 180,137 ] # P4/16
- - [ 140,301, 303,264, 238,542 ] # P5/32
- - [ 436,615, 739,380, 925,792 ] # P6/64
+ - [19,27, 44,40, 38,94] # P3/8
+ - [96,68, 86,152, 180,137] # P4/16
+ - [140,301, 303,264, 238,542] # P5/32
+ - [436,615, 739,380, 925,792] # P6/64
# YOLOv5 backbone
backbone:
# [from, number, module, args]
- [ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2
- [ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4
- [ -1, 3, C3, [ 128 ] ],
- [ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8
- [ -1, 9, C3, [ 256 ] ],
- [ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16
- [ -1, 9, C3, [ 512 ] ],
- [ -1, 1, Conv, [ 768, 3, 2 ] ], # 7-P5/32
- [ -1, 3, C3, [ 768 ] ],
- [ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P6/64
- [ -1, 1, SPP, [ 1024, [ 3, 5, 7 ] ] ],
- [ -1, 3, C3, [ 1024, False ] ], # 11
+ [[-1, 1, Focus, [64, 3]], # 0-P1/2
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
+ [-1, 3, C3, [128]],
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
+ [-1, 9, C3, [256]],
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
+ [-1, 9, C3, [512]],
+ [-1, 1, Conv, [768, 3, 2]], # 7-P5/32
+ [-1, 3, C3, [768]],
+ [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
+ [-1, 1, SPP, [1024, [3, 5, 7]]],
+ [-1, 3, C3, [1024, False]], # 11
]
# YOLOv5 head
head:
- [ [ -1, 1, Conv, [ 768, 1, 1 ] ],
- [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
- [ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P5
- [ -1, 3, C3, [ 768, False ] ], # 15
-
- [ -1, 1, Conv, [ 512, 1, 1 ] ],
- [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
- [ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4
- [ -1, 3, C3, [ 512, False ] ], # 19
-
- [ -1, 1, Conv, [ 256, 1, 1 ] ],
- [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
- [ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3
- [ -1, 3, C3, [ 256, False ] ], # 23 (P3/8-small)
-
- [ -1, 1, Conv, [ 256, 3, 2 ] ],
- [ [ -1, 20 ], 1, Concat, [ 1 ] ], # cat head P4
- [ -1, 3, C3, [ 512, False ] ], # 26 (P4/16-medium)
-
- [ -1, 1, Conv, [ 512, 3, 2 ] ],
- [ [ -1, 16 ], 1, Concat, [ 1 ] ], # cat head P5
- [ -1, 3, C3, [ 768, False ] ], # 29 (P5/32-large)
-
- [ -1, 1, Conv, [ 768, 3, 2 ] ],
- [ [ -1, 12 ], 1, Concat, [ 1 ] ], # cat head P6
- [ -1, 3, C3, [ 1024, False ] ], # 32 (P6/64-xlarge)
-
- [ [ 23, 26, 29, 32 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5, P6)
+ [[-1, 1, Conv, [768, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 8], 1, Concat, [1]], # cat backbone P5
+ [-1, 3, C3, [768, False]], # 15
+
+ [-1, 1, Conv, [512, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
+ [-1, 3, C3, [512, False]], # 19
+
+ [-1, 1, Conv, [256, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
+ [-1, 3, C3, [256, False]], # 23 (P3/8-small)
+
+ [-1, 1, Conv, [256, 3, 2]],
+ [[-1, 20], 1, Concat, [1]], # cat head P4
+ [-1, 3, C3, [512, False]], # 26 (P4/16-medium)
+
+ [-1, 1, Conv, [512, 3, 2]],
+ [[-1, 16], 1, Concat, [1]], # cat head P5
+ [-1, 3, C3, [768, False]], # 29 (P5/32-large)
+
+ [-1, 1, Conv, [768, 3, 2]],
+ [[-1, 12], 1, Concat, [1]], # cat head P6
+ [-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
+
+ [[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
]
diff --git a/models/hub/yolov5m6.yaml b/models/hub/yolov5m6.yaml
index 4bef2e074a96..16a841a0b4b0 100644
--- a/models/hub/yolov5m6.yaml
+++ b/models/hub/yolov5m6.yaml
@@ -3,56 +3,56 @@ nc: 80 # number of classes
depth_multiple: 0.67 # model depth multiple
width_multiple: 0.75 # layer channel multiple
anchors:
- - [ 19,27, 44,40, 38,94 ] # P3/8
- - [ 96,68, 86,152, 180,137 ] # P4/16
- - [ 140,301, 303,264, 238,542 ] # P5/32
- - [ 436,615, 739,380, 925,792 ] # P6/64
+ - [19,27, 44,40, 38,94] # P3/8
+ - [96,68, 86,152, 180,137] # P4/16
+ - [140,301, 303,264, 238,542] # P5/32
+ - [436,615, 739,380, 925,792] # P6/64
# YOLOv5 backbone
backbone:
# [from, number, module, args]
- [ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2
- [ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4
- [ -1, 3, C3, [ 128 ] ],
- [ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8
- [ -1, 9, C3, [ 256 ] ],
- [ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16
- [ -1, 9, C3, [ 512 ] ],
- [ -1, 1, Conv, [ 768, 3, 2 ] ], # 7-P5/32
- [ -1, 3, C3, [ 768 ] ],
- [ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P6/64
- [ -1, 1, SPP, [ 1024, [ 3, 5, 7 ] ] ],
- [ -1, 3, C3, [ 1024, False ] ], # 11
+ [[-1, 1, Focus, [64, 3]], # 0-P1/2
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
+ [-1, 3, C3, [128]],
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
+ [-1, 9, C3, [256]],
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
+ [-1, 9, C3, [512]],
+ [-1, 1, Conv, [768, 3, 2]], # 7-P5/32
+ [-1, 3, C3, [768]],
+ [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
+ [-1, 1, SPP, [1024, [3, 5, 7]]],
+ [-1, 3, C3, [1024, False]], # 11
]
# YOLOv5 head
head:
- [ [ -1, 1, Conv, [ 768, 1, 1 ] ],
- [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
- [ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P5
- [ -1, 3, C3, [ 768, False ] ], # 15
-
- [ -1, 1, Conv, [ 512, 1, 1 ] ],
- [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
- [ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4
- [ -1, 3, C3, [ 512, False ] ], # 19
-
- [ -1, 1, Conv, [ 256, 1, 1 ] ],
- [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
- [ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3
- [ -1, 3, C3, [ 256, False ] ], # 23 (P3/8-small)
-
- [ -1, 1, Conv, [ 256, 3, 2 ] ],
- [ [ -1, 20 ], 1, Concat, [ 1 ] ], # cat head P4
- [ -1, 3, C3, [ 512, False ] ], # 26 (P4/16-medium)
-
- [ -1, 1, Conv, [ 512, 3, 2 ] ],
- [ [ -1, 16 ], 1, Concat, [ 1 ] ], # cat head P5
- [ -1, 3, C3, [ 768, False ] ], # 29 (P5/32-large)
-
- [ -1, 1, Conv, [ 768, 3, 2 ] ],
- [ [ -1, 12 ], 1, Concat, [ 1 ] ], # cat head P6
- [ -1, 3, C3, [ 1024, False ] ], # 32 (P6/64-xlarge)
-
- [ [ 23, 26, 29, 32 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5, P6)
+ [[-1, 1, Conv, [768, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 8], 1, Concat, [1]], # cat backbone P5
+ [-1, 3, C3, [768, False]], # 15
+
+ [-1, 1, Conv, [512, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
+ [-1, 3, C3, [512, False]], # 19
+
+ [-1, 1, Conv, [256, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
+ [-1, 3, C3, [256, False]], # 23 (P3/8-small)
+
+ [-1, 1, Conv, [256, 3, 2]],
+ [[-1, 20], 1, Concat, [1]], # cat head P4
+ [-1, 3, C3, [512, False]], # 26 (P4/16-medium)
+
+ [-1, 1, Conv, [512, 3, 2]],
+ [[-1, 16], 1, Concat, [1]], # cat head P5
+ [-1, 3, C3, [768, False]], # 29 (P5/32-large)
+
+ [-1, 1, Conv, [768, 3, 2]],
+ [[-1, 12], 1, Concat, [1]], # cat head P6
+ [-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
+
+ [[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
]
diff --git a/models/hub/yolov5s-transformer.yaml b/models/hub/yolov5s-transformer.yaml
index 8023ba480d24..b999ebb7583d 100644
--- a/models/hub/yolov5s-transformer.yaml
+++ b/models/hub/yolov5s-transformer.yaml
@@ -3,44 +3,44 @@ nc: 80 # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.50 # layer channel multiple
anchors:
- - [ 10,13, 16,30, 33,23 ] # P3/8
- - [ 30,61, 62,45, 59,119 ] # P4/16
- - [ 116,90, 156,198, 373,326 ] # P5/32
+ - [10,13, 16,30, 33,23] # P3/8
+ - [30,61, 62,45, 59,119] # P4/16
+ - [116,90, 156,198, 373,326] # P5/32
# YOLOv5 backbone
backbone:
# [from, number, module, args]
- [ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2
- [ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4
- [ -1, 3, C3, [ 128 ] ],
- [ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8
- [ -1, 9, C3, [ 256 ] ],
- [ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16
- [ -1, 9, C3, [ 512 ] ],
- [ -1, 1, Conv, [ 1024, 3, 2 ] ], # 7-P5/32
- [ -1, 1, SPP, [ 1024, [ 5, 9, 13 ] ] ],
- [ -1, 3, C3TR, [ 1024, False ] ], # 9 <-------- C3TR() Transformer module
+ [[-1, 1, Focus, [64, 3]], # 0-P1/2
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
+ [-1, 3, C3, [128]],
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
+ [-1, 9, C3, [256]],
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
+ [-1, 9, C3, [512]],
+ [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
+ [-1, 1, SPP, [1024, [5, 9, 13]]],
+ [-1, 3, C3TR, [1024, False]], # 9 <-------- C3TR() Transformer module
]
# YOLOv5 head
head:
- [ [ -1, 1, Conv, [ 512, 1, 1 ] ],
- [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
- [ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4
- [ -1, 3, C3, [ 512, False ] ], # 13
+ [[-1, 1, Conv, [512, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
+ [-1, 3, C3, [512, False]], # 13
- [ -1, 1, Conv, [ 256, 1, 1 ] ],
- [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
- [ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3
- [ -1, 3, C3, [ 256, False ] ], # 17 (P3/8-small)
+ [-1, 1, Conv, [256, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
+ [-1, 3, C3, [256, False]], # 17 (P3/8-small)
- [ -1, 1, Conv, [ 256, 3, 2 ] ],
- [ [ -1, 14 ], 1, Concat, [ 1 ] ], # cat head P4
- [ -1, 3, C3, [ 512, False ] ], # 20 (P4/16-medium)
+ [-1, 1, Conv, [256, 3, 2]],
+ [[-1, 14], 1, Concat, [1]], # cat head P4
+ [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
- [ -1, 1, Conv, [ 512, 3, 2 ] ],
- [ [ -1, 10 ], 1, Concat, [ 1 ] ], # cat head P5
- [ -1, 3, C3, [ 1024, False ] ], # 23 (P5/32-large)
+ [-1, 1, Conv, [512, 3, 2]],
+ [[-1, 10], 1, Concat, [1]], # cat head P5
+ [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
- [ [ 17, 20, 23 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5)
+ [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]
diff --git a/models/hub/yolov5s6.yaml b/models/hub/yolov5s6.yaml
index ba1025ec87ad..2fb245050053 100644
--- a/models/hub/yolov5s6.yaml
+++ b/models/hub/yolov5s6.yaml
@@ -3,56 +3,56 @@ nc: 80 # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.50 # layer channel multiple
anchors:
- - [ 19,27, 44,40, 38,94 ] # P3/8
- - [ 96,68, 86,152, 180,137 ] # P4/16
- - [ 140,301, 303,264, 238,542 ] # P5/32
- - [ 436,615, 739,380, 925,792 ] # P6/64
+ - [19,27, 44,40, 38,94] # P3/8
+ - [96,68, 86,152, 180,137] # P4/16
+ - [140,301, 303,264, 238,542] # P5/32
+ - [436,615, 739,380, 925,792] # P6/64
# YOLOv5 backbone
backbone:
# [from, number, module, args]
- [ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2
- [ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4
- [ -1, 3, C3, [ 128 ] ],
- [ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8
- [ -1, 9, C3, [ 256 ] ],
- [ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16
- [ -1, 9, C3, [ 512 ] ],
- [ -1, 1, Conv, [ 768, 3, 2 ] ], # 7-P5/32
- [ -1, 3, C3, [ 768 ] ],
- [ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P6/64
- [ -1, 1, SPP, [ 1024, [ 3, 5, 7 ] ] ],
- [ -1, 3, C3, [ 1024, False ] ], # 11
+ [[-1, 1, Focus, [64, 3]], # 0-P1/2
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
+ [-1, 3, C3, [128]],
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
+ [-1, 9, C3, [256]],
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
+ [-1, 9, C3, [512]],
+ [-1, 1, Conv, [768, 3, 2]], # 7-P5/32
+ [-1, 3, C3, [768]],
+ [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
+ [-1, 1, SPP, [1024, [3, 5, 7]]],
+ [-1, 3, C3, [1024, False]], # 11
]
# YOLOv5 head
head:
- [ [ -1, 1, Conv, [ 768, 1, 1 ] ],
- [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
- [ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P5
- [ -1, 3, C3, [ 768, False ] ], # 15
-
- [ -1, 1, Conv, [ 512, 1, 1 ] ],
- [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
- [ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4
- [ -1, 3, C3, [ 512, False ] ], # 19
-
- [ -1, 1, Conv, [ 256, 1, 1 ] ],
- [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
- [ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3
- [ -1, 3, C3, [ 256, False ] ], # 23 (P3/8-small)
-
- [ -1, 1, Conv, [ 256, 3, 2 ] ],
- [ [ -1, 20 ], 1, Concat, [ 1 ] ], # cat head P4
- [ -1, 3, C3, [ 512, False ] ], # 26 (P4/16-medium)
-
- [ -1, 1, Conv, [ 512, 3, 2 ] ],
- [ [ -1, 16 ], 1, Concat, [ 1 ] ], # cat head P5
- [ -1, 3, C3, [ 768, False ] ], # 29 (P5/32-large)
-
- [ -1, 1, Conv, [ 768, 3, 2 ] ],
- [ [ -1, 12 ], 1, Concat, [ 1 ] ], # cat head P6
- [ -1, 3, C3, [ 1024, False ] ], # 32 (P6/64-xlarge)
-
- [ [ 23, 26, 29, 32 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5, P6)
+ [[-1, 1, Conv, [768, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 8], 1, Concat, [1]], # cat backbone P5
+ [-1, 3, C3, [768, False]], # 15
+
+ [-1, 1, Conv, [512, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
+ [-1, 3, C3, [512, False]], # 19
+
+ [-1, 1, Conv, [256, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
+ [-1, 3, C3, [256, False]], # 23 (P3/8-small)
+
+ [-1, 1, Conv, [256, 3, 2]],
+ [[-1, 20], 1, Concat, [1]], # cat head P4
+ [-1, 3, C3, [512, False]], # 26 (P4/16-medium)
+
+ [-1, 1, Conv, [512, 3, 2]],
+ [[-1, 16], 1, Concat, [1]], # cat head P5
+ [-1, 3, C3, [768, False]], # 29 (P5/32-large)
+
+ [-1, 1, Conv, [768, 3, 2]],
+ [[-1, 12], 1, Concat, [1]], # cat head P6
+ [-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
+
+ [[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
]
diff --git a/models/hub/yolov5x6.yaml b/models/hub/yolov5x6.yaml
index 4fc9c9a119b8..c5187101072b 100644
--- a/models/hub/yolov5x6.yaml
+++ b/models/hub/yolov5x6.yaml
@@ -3,56 +3,56 @@ nc: 80 # number of classes
depth_multiple: 1.33 # model depth multiple
width_multiple: 1.25 # layer channel multiple
anchors:
- - [ 19,27, 44,40, 38,94 ] # P3/8
- - [ 96,68, 86,152, 180,137 ] # P4/16
- - [ 140,301, 303,264, 238,542 ] # P5/32
- - [ 436,615, 739,380, 925,792 ] # P6/64
+ - [19,27, 44,40, 38,94] # P3/8
+ - [96,68, 86,152, 180,137] # P4/16
+ - [140,301, 303,264, 238,542] # P5/32
+ - [436,615, 739,380, 925,792] # P6/64
# YOLOv5 backbone
backbone:
# [from, number, module, args]
- [ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2
- [ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4
- [ -1, 3, C3, [ 128 ] ],
- [ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8
- [ -1, 9, C3, [ 256 ] ],
- [ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16
- [ -1, 9, C3, [ 512 ] ],
- [ -1, 1, Conv, [ 768, 3, 2 ] ], # 7-P5/32
- [ -1, 3, C3, [ 768 ] ],
- [ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P6/64
- [ -1, 1, SPP, [ 1024, [ 3, 5, 7 ] ] ],
- [ -1, 3, C3, [ 1024, False ] ], # 11
+ [[-1, 1, Focus, [64, 3]], # 0-P1/2
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
+ [-1, 3, C3, [128]],
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
+ [-1, 9, C3, [256]],
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
+ [-1, 9, C3, [512]],
+ [-1, 1, Conv, [768, 3, 2]], # 7-P5/32
+ [-1, 3, C3, [768]],
+ [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
+ [-1, 1, SPP, [1024, [3, 5, 7]]],
+ [-1, 3, C3, [1024, False]], # 11
]
# YOLOv5 head
head:
- [ [ -1, 1, Conv, [ 768, 1, 1 ] ],
- [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
- [ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P5
- [ -1, 3, C3, [ 768, False ] ], # 15
-
- [ -1, 1, Conv, [ 512, 1, 1 ] ],
- [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
- [ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4
- [ -1, 3, C3, [ 512, False ] ], # 19
-
- [ -1, 1, Conv, [ 256, 1, 1 ] ],
- [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
- [ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3
- [ -1, 3, C3, [ 256, False ] ], # 23 (P3/8-small)
-
- [ -1, 1, Conv, [ 256, 3, 2 ] ],
- [ [ -1, 20 ], 1, Concat, [ 1 ] ], # cat head P4
- [ -1, 3, C3, [ 512, False ] ], # 26 (P4/16-medium)
-
- [ -1, 1, Conv, [ 512, 3, 2 ] ],
- [ [ -1, 16 ], 1, Concat, [ 1 ] ], # cat head P5
- [ -1, 3, C3, [ 768, False ] ], # 29 (P5/32-large)
-
- [ -1, 1, Conv, [ 768, 3, 2 ] ],
- [ [ -1, 12 ], 1, Concat, [ 1 ] ], # cat head P6
- [ -1, 3, C3, [ 1024, False ] ], # 32 (P6/64-xlarge)
-
- [ [ 23, 26, 29, 32 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5, P6)
+ [[-1, 1, Conv, [768, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 8], 1, Concat, [1]], # cat backbone P5
+ [-1, 3, C3, [768, False]], # 15
+
+ [-1, 1, Conv, [512, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
+ [-1, 3, C3, [512, False]], # 19
+
+ [-1, 1, Conv, [256, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
+ [-1, 3, C3, [256, False]], # 23 (P3/8-small)
+
+ [-1, 1, Conv, [256, 3, 2]],
+ [[-1, 20], 1, Concat, [1]], # cat head P4
+ [-1, 3, C3, [512, False]], # 26 (P4/16-medium)
+
+ [-1, 1, Conv, [512, 3, 2]],
+ [[-1, 16], 1, Concat, [1]], # cat head P5
+ [-1, 3, C3, [768, False]], # 29 (P5/32-large)
+
+ [-1, 1, Conv, [768, 3, 2]],
+ [[-1, 12], 1, Concat, [1]], # cat head P6
+ [-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
+
+ [[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
]
diff --git a/train.py b/train.py
index 7a8c15a6551a..3f5b5ed1195b 100644
--- a/train.py
+++ b/train.py
@@ -74,7 +74,7 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
with open(save_dir / 'opt.yaml', 'w') as f:
yaml.safe_dump(vars(opt), f, sort_keys=False)
data_dict = None
-
+
# Loggers
if RANK in [-1, 0]:
loggers = Loggers(save_dir, weights, opt, hyp, LOGGER).start() # loggers dict
@@ -83,7 +83,6 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
if resume:
weights, epochs, hyp = opt.weights, opt.epochs, opt.hyp
-
# Config
plots = not evolve # create plots
cuda = device.type != 'cpu'
@@ -96,7 +95,6 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
assert len(names) == nc, f'{len(names)} names found for nc={nc} dataset in {data}' # check
is_coco = data.endswith('coco.yaml') and nc == 80 # COCO dataset
-
# Model
pretrained = weights.endswith('.pt')
if pretrained:
diff --git a/utils/downloads.py b/utils/downloads.py
index 00156962380b..588db5170e0e 100644
--- a/utils/downloads.py
+++ b/utils/downloads.py
@@ -115,7 +115,6 @@ def get_token(cookie="./cookie"):
return line.split()[-1]
return ""
-
# Google utils: https://cloud.google.com/storage/docs/reference/libraries ----------------------------------------------
#
#
diff --git a/utils/loggers/__init__.py b/utils/loggers/__init__.py
index 603837d57052..06d562d60f99 100644
--- a/utils/loggers/__init__.py
+++ b/utils/loggers/__init__.py
@@ -1,7 +1,8 @@
# YOLOv5 experiment logging utils
-import torch
import warnings
from threading import Thread
+
+import torch
from torch.utils.tensorboard import SummaryWriter
from utils.general import colorstr, emojis
diff --git a/utils/loggers/wandb/log_dataset.py b/utils/loggers/wandb/log_dataset.py
index 1328e20806ef..8447272cdb48 100644
--- a/utils/loggers/wandb/log_dataset.py
+++ b/utils/loggers/wandb/log_dataset.py
@@ -1,5 +1,4 @@
import argparse
-import yaml
from wandb_utils import WandbLogger
diff --git a/utils/loggers/wandb/sweep.py b/utils/loggers/wandb/sweep.py
index a0c76a10caa1..8e952d03c085 100644
--- a/utils/loggers/wandb/sweep.py
+++ b/utils/loggers/wandb/sweep.py
@@ -1,7 +1,8 @@
import sys
-import wandb
from pathlib import Path
+import wandb
+
FILE = Path(__file__).absolute()
sys.path.append(FILE.parents[2].as_posix()) # add utils/ to path
diff --git a/utils/loggers/wandb/sweep.yaml b/utils/loggers/wandb/sweep.yaml
index dcc95264f8cd..c3727de82d4a 100644
--- a/utils/loggers/wandb/sweep.yaml
+++ b/utils/loggers/wandb/sweep.yaml
@@ -25,9 +25,9 @@ parameters:
data:
value: "data/coco128.yaml"
batch_size:
- values: [ 64 ]
+ values: [64]
epochs:
- values: [ 10 ]
+ values: [10]
lr0:
distribution: uniform
diff --git a/utils/loggers/wandb/wandb_utils.py b/utils/loggers/wandb/wandb_utils.py
index c978e3ea838d..66fa8f85ec4e 100644
--- a/utils/loggers/wandb/wandb_utils.py
+++ b/utils/loggers/wandb/wandb_utils.py
@@ -3,9 +3,10 @@
import logging
import os
import sys
-import yaml
from contextlib import contextmanager
from pathlib import Path
+
+import yaml
from tqdm import tqdm
FILE = Path(__file__).absolute()
diff --git a/val.py b/val.py
index ee2287644b92..06b2501515b5 100644
--- a/val.py
+++ b/val.py
@@ -13,7 +13,6 @@
import numpy as np
import torch
-import yaml
from tqdm import tqdm
FILE = Path(__file__).absolute()