From 6d0f10fcc47eb3be6d40318ba9bf5b20387dbb70 Mon Sep 17 00:00:00 2001 From: Glenn Jocher Date: Tue, 19 Jan 2021 13:26:21 -0800 Subject: [PATCH] Add xywhn2xyxy() --- utils/datasets.py | 35 ++++++++++------------------------- utils/general.py | 10 ++++++++++ 2 files changed, 20 insertions(+), 25 deletions(-) diff --git a/utils/datasets.py b/utils/datasets.py index 6e6e3253771b..a6e3d3f56b9f 100755 --- a/utils/datasets.py +++ b/utils/datasets.py @@ -20,7 +20,7 @@ from torch.utils.data import Dataset from tqdm import tqdm -from utils.general import xyxy2xywh, xywh2xyxy, clean_str +from utils.general import xyxy2xywh, xywh2xyxy, xywhn2xyxy, clean_str from utils.torch_utils import torch_distributed_zero_first # Parameters @@ -515,16 +515,9 @@ def __getitem__(self, index): img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment) shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling - # Load labels - labels = [] - x = self.labels[index] - if x.size > 0: - # Normalized xywh to pixel xyxy format - labels = x.copy() - labels[:, 1] = ratio[0] * w * (x[:, 1] - x[:, 3] / 2) + pad[0] # pad width - labels[:, 2] = ratio[1] * h * (x[:, 2] - x[:, 4] / 2) + pad[1] # pad height - labels[:, 3] = ratio[0] * w * (x[:, 1] + x[:, 3] / 2) + pad[0] - labels[:, 4] = ratio[1] * h * (x[:, 2] + x[:, 4] / 2) + pad[1] + labels = self.labels[index].copy() + if labels.size: # normalized xywh to pixel xyxy format + labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1]) if self.augment: # Augment imagespace @@ -674,13 +667,9 @@ def load_mosaic(self, index): padh = y1a - y1b # Labels - x = self.labels[index] - labels = x.copy() - if x.size > 0: # Normalized xywh to pixel xyxy format - labels[:, 1] = w * (x[:, 1] - x[:, 3] / 2) + padw - labels[:, 2] = h * (x[:, 2] - x[:, 4] / 2) + padh - labels[:, 3] = w * (x[:, 1] + x[:, 3] / 2) + padw - labels[:, 4] = h * (x[:, 2] + x[:, 4] / 2) + padh + labels = self.labels[index].copy() + if labels.size: + labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh) # normalized xywh to pixel xyxy format labels4.append(labels) # Concat/clip labels @@ -737,13 +726,9 @@ def load_mosaic9(self, index): x1, y1, x2, y2 = [max(x, 0) for x in c] # allocate coords # Labels - x = self.labels[index] - labels = x.copy() - if x.size > 0: # Normalized xywh to pixel xyxy format - labels[:, 1] = w * (x[:, 1] - x[:, 3] / 2) + padx - labels[:, 2] = h * (x[:, 2] - x[:, 4] / 2) + pady - labels[:, 3] = w * (x[:, 1] + x[:, 3] / 2) + padx - labels[:, 4] = h * (x[:, 2] + x[:, 4] / 2) + pady + labels = self.labels[index].copy() + if labels.size: + labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padx, pady) # normalized xywh to pixel xyxy format labels9.append(labels) # Image diff --git a/utils/general.py b/utils/general.py index 4822709d1753..37534799c157 100755 --- a/utils/general.py +++ b/utils/general.py @@ -223,6 +223,16 @@ def xywh2xyxy(x): return y +def xywhn2xyxy(x, w=640, h=640, padw=32, padh=32): + # Convert nx4 boxes from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right + y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) + y[:, 0] = w * (x[:, 0] - x[:, 2] / 2) + padw # top left x + y[:, 1] = h * (x[:, 1] - x[:, 3] / 2) + padh # top left y + y[:, 2] = w * (x[:, 0] + x[:, 2] / 2) + padw # bottom right x + y[:, 3] = h * (x[:, 1] + x[:, 3] / 2) + padh # bottom right y + return y + + def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None): # Rescale coords (xyxy) from img1_shape to img0_shape if ratio_pad is None: # calculate from img0_shape