-
Notifications
You must be signed in to change notification settings - Fork 26
/
feature.py
executable file
·146 lines (115 loc) · 4.85 KB
/
feature.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import numpy as np
import cv2
from collections import defaultdict
from numbers import Number
from threading import Thread, Lock
from queue import Queue
class ImageFeature(object):
def __init__(self, image, params):
# TODO: pyramid representation
self.image = image
self.height, self.width = image.shape[:2]
self.keypoints = [] # list of cv2.KeyPoint
self.descriptors = [] # numpy.ndarray
self.detector = params.feature_detector
self.extractor = params.descriptor_extractor
self.matcher = params.descriptor_matcher
self.cell_size = params.matching_cell_size
self.matching_distance = params.matching_distance
self.neighborhood = (
params.matching_cell_size * params.matching_neighborhood)
self._lock = Lock()
def extract(self):
self.keypoints = self.detector.detect(self.image)
self.keypoints, self.descriptors = self.extractor.compute(
self.image, self.keypoints)
self.unmatched = np.ones(len(self.keypoints), dtype=bool)
def draw_keypoints(self, name='keypoints', delay=1):
if self.image.ndim == 2:
image = np.repeat(self.image[..., np.newaxis], 3, axis=2)
else:
image = self.image
img = cv2.drawKeypoints(image, self.keypoints, None, flags=0)
cv2.imshow(name, img);cv2.waitKey(delay)
def find_matches(self, predictions, descriptors):
matches = dict()
distances = defaultdict(lambda: float('inf'))
for m, query_idx, train_idx in self.matched_by(descriptors):
if m.distance > min(distances[train_idx], self.matching_distance):
continue
pt1 = predictions[query_idx]
pt2 = self.keypoints[train_idx].pt
dx = pt1[0] - pt2[0]
dy = pt1[1] - pt2[1]
if np.sqrt(dx*dx + dy*dy) > self.neighborhood:
continue
matches[train_idx] = query_idx
distances[train_idx] = m.distance
matches = [(i, j) for j, i in matches.items()]
return matches
def matched_by(self, descriptors):
with self._lock:
unmatched_descriptors = self.descriptors[self.unmatched]
if len(unmatched_descriptors) == 0:
return []
lookup = dict(zip(
range(len(unmatched_descriptors)),
np.where(self.unmatched)[0]))
# TODO: reduce matched points by using predicted position
matches = self.matcher.match(
np.array(descriptors), unmatched_descriptors)
return [(m, m.queryIdx, m.trainIdx) for m in matches]
def row_match(self, *args, **kwargs):
return row_match(self.matcher, *args, **kwargs)
# def circular_stereo_match(self, *args, **kwargs):
# return circular_stereo_match(self.matcher, *args, **kwargs)
def direct_match(self, *args, **kwargs):
return direct_match(self.matcher, *args, **kwargs)
def get_keypoint(self, i):
return self.keypoints[i]
def get_descriptor(self, i):
return self.descriptors[i]
def get_color(self, pt):
x = int(np.clip(pt[0], 0, self.width-1))
y = int(np.clip(pt[1], 0, self.height-1))
color = self.image[y, x]
if isinstance(color, Number):
color = np.array([color, color, color])
return color[::-1] / 255.
def set_matched(self, i):
with self._lock:
self.unmatched[i] = False
def get_unmatched_keypoints(self):
keypoints = []
descriptors = []
indices = []
with self._lock:
for i in np.where(self.unmatched)[0]:
keypoints.append(self.keypoints[i])
descriptors.append(self.descriptors[i])
indices.append(i)
return keypoints, descriptors, indices
# TODO: only match points in neighboring rows
def row_match(matcher, kps1, desps1, kps2, desps2,
matching_distance=40,
max_row_distance=2.5,
max_disparity=100):
matches = matcher.match(np.array(desps1), np.array(desps2))
good = []
for m in matches:
pt1 = kps1[m.queryIdx].pt
pt2 = kps2[m.trainIdx].pt
if (m.distance < matching_distance and
abs(pt1[1] - pt2[1]) < max_row_distance and
abs(pt1[0] - pt2[0]) < max_disparity): # epipolar constraint
good.append(m)
return good
def direct_match(matcher, desps1, desps2, matching_distance=30, ratio=0.7):
matches = dict()
distances = defaultdict(lambda: float('inf'))
for (m, n) in matcher.knnMatch(np.array(desps1), np.array(desps2), k=2):
if m.distance < min(
matching_distance, n.distance * ratio, distances[m.trainIdx]):
matches[m.trainIdx] = m.queryIdx
distances[m.trainIdx] = m.distance
return [(i, j) for j, i in matches.items()]