
SPU ⼆次开发指北
Using SPU in Research

Wen-jie Lu
2024-02-26



To Use Customized Protocols 

• Situations:
• new developed sub-functions or a better construction

• Possible ways:
• Python hijack
• Intrinsic calls 
• C++ programming



Working Scenario: Evaluating GELU 

• Gaussian Error Linear Unit (GELU) 
• By default, SPU will (approximately) evaluate tanh(*) which is 

expensive to use
• How can we switch to a customized Gelu protocol ?
• Difficulty: 
• The Gelu function has been broken into multiple pieces of smaller 

functions. 
• Pattern matching the Gelu graph from the whole program is tedious

• Solution: Python context hijack 

<latexit sha1_base64="p0LlIZSgLr2FcvR5LWyL0WQ+b4k=">AAACMnicbZDLSgMxFIYz3q23qks3wSJMEeqMtupGKLpQdxWsCp1aMmmmDWYyY3JGWoY+kxufRHChC0Xc+hCml4W3A4Gf7z+Hk/P7seAaHOfZGhufmJyanpnNzM0vLC5ll1cudJQoyqo0EpG68olmgktWBQ6CXcWKkdAX7NK/Oer7l3dMaR7Jc+jGrB6SluQBpwQMamRPU08H+JiJpGd38vgAO4VSx3bxJvaAyLbt6VsF6faWF/OeR5sRYLtjTKfgFIt7bmmIOtc7+XwjmzN0UPivcEcih0ZVaWQfvWZEk5BJoIJoXXOdGOopUcCpYL2Ml2gWE3pDWqxmpCQh0/V0cHIPbxjSxEGkzJOAB/T7REpCrbuhbzpDAm392+vD/7xaAsF+PeUyToBJOlwUJAJDhPv54SZXjILoGkGo4uavmLaJIhRMyhkTgvv75L/iYrvg7hZKZ8Vc+XAUxwxaQ+vIRi7aQ2V0giqoiii6R0/oFb1ZD9aL9W59DFvHrNHMKvpR1ucX1gOlpg==</latexit>

Gelu(x) = 0.5x(1 + tanh(
p
2/⇡ · (x+ 0.044715 · x3))



Python Context Hijack

• Replacing the target function on-the-fly

Replacing all the “jax.nn.gelu” 
call in the program on-the-fly

1

2

3

4



Python Context Hijack

• Replacing the target function on-the-fly
• Good: Barely need to change the given program (e.g,. taking from 

HuggingFace)
• NOTE: some (pointer) function is not hijack-able, e.g., activation functions. 

We still need to change the Python source code.

• Bad: 
• Lack of fine-grained control, replacing none-or-all.
• No low-level control is possible
• Still lack of time-profiling for the hijack function (since we are still 

working above the Op level)



Intrinsic Calls

• A piece of C++ codes that can be called directly from Python
• Checkout spu/spu/intrinsic at main · secretflow/spu (github.com)
• Entry: spu/libspu/device/pphlo/pphlo_intrinsic_executor.cc at main · secretflow/spu (github.com)

• Workflow:
• Run `python spu/intrinsic/add_new_intrinsic.py <function_name>` 

• Will generate some python wrapper in `spu/intrinsic/` 
• NOTE: Need manually add 

• Write your C++ codes and add a dispatch in `pphlo_intrinsic_executor.cc` 
• May need some config to Bazel build file to compile the C++ program 

https://github.com/secretflow/spu/tree/main/spu/intrinsic
https://github.com/secretflow/spu/blob/main/libspu/device/pphlo/pphlo_intrinsic_executor.cc


Intrinsic Calls

• A piece of C++ codes that can be called directly from Python
• Checkout spu/spu/intrinsic at main · secretflow/spu (github.com)
• Entry: spu/libspu/device/pphlo/pphlo_intrinsic_executor.cc at main · secretflow/spu (github.com)

• Workflow:
• Run `python spu/intrinsic/add_new_intrinsic.py <function_name>` 

• Will generate some python wrapper in `spu/intrinsic/` 
• NOTE: Need manually add 

• Write your C++ codes and add a dispatch in `pphlo_intrinsic_executor.cc` 
• May need some config to Bazel build file to compile the C++ program 

https://github.com/secretflow/spu/tree/main/spu/intrinsic
https://github.com/secretflow/spu/blob/main/libspu/device/pphlo/pphlo_intrinsic_executor.cc


Intrinsic Calls

From Python
to Low-level
C++ code

5 truncations

Only 1 
truncation 



Intrinsic Calls from Hijack

• Intrinsic (i.e., Python wrapper) is still a Python call
• Thus can also be used in context hijack

Improvements due to fine-
grained truncation control



Intrinsic Calls from Hijack

• Intrinsic (i.e., Python wrapper) is still a Python call
• Thus can also be used in context hijack
• Turn on ‘config.enable_pphlo_profile = True’ can see the profiling 

for intrinsic 



Advanced Topic 1: Full Control



Advanced Topic 1: Full Control
• Intrinsic already provides the access to `SPUContext` from which 

we can fully control the MPC back-end
• E.g., `ctx->prot()` to obtain the handler of the underlying MPC back-end

• For example, to compute the square, cubic and quad term from [x]
• That is [x] => [x^2], [x^3] and [x^4]. 

The cases that we are not 
optimizing, simply turn to 

default APIs

The cases that we interest, we 
can call the optimized function



Advanced Topic 2: C++ 
Programming



Advanced Topic 2: C++ Only Programming

• The C++ module under `libspu/kernel/hal/` can be used directly 



Advanced Topic 2: C++ Only Programming

• For complicated function 
(e.g., multi-head attention), 
we can leverage the Python 
to dump the Intermediate 
Representation (IR) and call 
the IR in C++ directly.
• Use regex to handle the 

shape information



Advanced Topic 2: Hand Optimizing IR

Dump the ArgMax IR 
from jax.numpy



Advanced Topic 2: Hand Optimizing IR

Dump the ArgMax IR 
from jax.numpy

Some “plaintext” ops are 
barely meaningful for MPC



Advanced Topic 2: Hand Optimizing IR

Some “plaintext” ops are 
barely meanngful for MPC

simplify


