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Abstract

A new class of orthogonal curvilinear dipole coordinate systems on the sphere with
arbitrarily-located poles is introduced and used to construct computational meshes for
global ocean models. These grids can be constructed analytically, and their parameters
can be adjusted to satisfy various desirable properties, such as having the grid poles located
inside land masses, having a zonal coordinate hne along the Equator, and be1ng able to
focus high resolution in the subpolar North Atlanmc for more accurate modeling of the
thermohaline circulation. The primitive equations are derived in generalized orthogonal
spherical coordinates and the new grid schsme is implemented in a global ocean general
circulation model. Results from eddy-resolving and non-eddy-resolving simulations are

presented.



1. Iﬁtfdductiohﬂ

A standard diﬂicdty ve:nc'ountered in modeling fluid flows on the sphere using finite-
diffefénce methods 1s the éo-called “pole probllem”k associated with the convergence of
meridians at the North and South poles. In computational grids whose coordinates are
ylines of constant longitudé and latiﬁude, the cell widths decreasg to zero like the cosine of |
latitude as the poles are apprvc‘,ached, and the time step used with explicit time-integration
- methods must also approach zero. This is the well-known Courant—Friedrichs-Lew r (CFL)
stability limit, which restricts the time step to be less than the time taken by the fastest
waves or inertial flows in the model to traverse the smallest grid cells. In atmospheric
models this problém can be avéided by using spectral transform methods, where the time
step is limited only by‘the mammum zonal wavenumber of a truncated spherical harmonic
basis. Global spectral transform methods cannot, however, be applied to ocean modeling
because of the coymplicat-ekd‘ lateral boundary conditions associated with coastlines and
bottom topography. Hence, ocean models with realistic topography are based on either

finite-difference, finite-element, or spectral-element methods. -

There are sevéral approaches to overcoming the‘pole problem in ocean general
circulation models (OGCMs). The simplest of these is to eliminate the North Pole by
excluding all or part of the Arctic Ocean and cutting off the grid at some high northern
latitude (the South Pole is of course not a problem since it is inside Antarctica). Howevér,
it is now widely recognized that ocean and sea-ice dynamics in the Arctic play a crucial role
in the global climate system [1]. Another possibility is to use fully implicit rather than
explicit time-integfation techniques, buf these involve the solution of multi;dimensional
~ elliptic boundary-value pfoblems which are computationally expensive and very difficult
to solve riumerically.‘ Thé more common approach in global models is to émooth the
: solutlon ath1ghlat1tudesus1ng one-dimensional filtering along constant latitude ocean
segments near the pole [2], but this is also expehsive and may corrupt the solution or
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destroy izhportam properties of a field such as V -u = 0. Filtering and implicit methods
are also difficult to parallelize and hence are less useful for high-resolution global models
designed to run on massively paraﬂel computers (MPPs). They generally involve nonlocal
communication, and the North Pole remains a unique point requiring special treatment
(e.g., cross-pole advection). | | |

The final Apossi‘t')i'lity for overcoming the pole problem is to use a coordinate
transformation whigl; either eliminates the poles or displaces them iﬁto land masses. Grids
obtained by rotating the standérd polar grid to displacé the singularities out of the region
of interest have been used to model the Arctic Ocean [3]. However, a simple rotation is
inadequate for a global model since there‘are no large antipodal land masses on the Earth
that can be used ’to hide both grid singularitiés. A ﬁriation of this approach for global
models was recently suggested by Eby and Holloway [1], which uses a rotated gfid ih the.

North-Atlantic/Arctic region matched onto a standard polar grid everywhere else. -

Many options for more complicated grid transformations are available. Unstructured
meshes provide the most general gridding schemes for complicat.ed geometries [4], but they
also present the greatest challenge in developing gobd numerical schemes, particularly
on parallel machines, since they typically have a one-dimensional data structure and all
communication is via indirect addressing with nonlocal communication. One option is
to use spherical tessellations. These are nonorthogonal grids, but they do retain a 2-
D horizontal data structure and provide for nearly uﬁiform cell widths over the globe.
This approach has been used successfully to model 3-D mantle convection using finite-
element methods [5] but has had limited application in meteorology [6,7]. Another option
for atmospheric models is the use of “stretched” grids [8] with global spectral-transform
methods. These grids allow resolution to be focused near one of the two diametriéally-
opposed poles and are typically rotated to obtain high resolution in a select region.

In this paper we are primarily concerned with investigating orthogonal curvilinear

coordinate systems on the surface of the sphere. We will restrict ourselves to “dipole”
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coordinate systems: those with two grid singularities, or “grid poles”, which may be
located anywhere on the surface. Such grids have the same topology as the standard
polar grid and share many of its desirable features, as discussed below. Other methods
such as filtering, implicit methods, or the use of nonorthogonal grids, do not present
insurmountable technical problems, but our approach is to avoi.d these problems by finding
a simple orthogonal cdérdinate system that has most of the esséntia._l features needed in a
globé] ocean grid.

Let us first consider what are tﬁe important physical, humeriéal, and computational
issues that arise in selecting or designing such a grid?
Physical: The main physical features effecting horizontal grid resolution are: 1) the
complex topography, which strongly influences the pathwa,y‘s. of ocean currents; 2) the
narrow western boundary currents (tens of kilometers wide) that are responsible for
poleward transport of heat and salt; 3) the félatively narrow (100-200 km) zonal eqﬁatoria,l
current systems and linear waves in the equatorial waveguide, and 4) bin eddy-resolving
models, the characterisfic’ length scale of the dominant instability mechanism, which is
smaller at higher latitudes. This length scale is the Rossby deformation radius Ry = Cy/f
which depends on the Coriolis parameter f and the gravity-wave speed C, of the first
“internal mode (typically C, is of order 1-3 m/sec, and R ranges from about 60 kmb at
20° to less than 10 km at latitudes greater than 60°). In short, we would like to have
resolution focused near western. boundaries, at high latitudes, and to a lesser degree near
the Equator. From the point of view of studying long-term climate variability [9], we
would also like to have reasonably high resolution in the North-Atlantic and the subpolar
deep-water formation regions for modeling the thermohaline circulation (THC).
Numerical: In order to employ simple and accurate numerical algorithms, we would like the
grid to have the followihg properties: 1) no grid poles near ocean points, to avoid overly-
. restrictive CFL limits due small cell widths; 2) it should be able to support the second-

order spatial accuracy of the finite-difference schemes typically employed in OGCMs; 3) we
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would prefer that one coqr@inate should be along the zonal direction in the Equatorial
region in order to obtain accurate finite-difference dispersion relations for the linear waves
(particularly Kelvin waves which play an impbrtant role in modeling El Nifio); these are
much less accurate along diagénal directions in the mesh {10]; 4) for simplicity we would
prefer the grid to be orthogonal and, if possible, to have an analytic representation so that
no artificial nonorthogonality will be introduced in the numerical construction of the grid;
and finally, 5) we would also like the grid to be a single globally-connected mesh, rather

than a composite mesh, in order to avoid interpolation in overlap regions.

Computational: For computational efficiency we would like to have a simple data structure,
and for this reason we choose to restrict ourselves to dipole grids, since they can be mapped
onto a single cyclic logically 2-D mesh, so that indirect addressing is not required for near-
neighbor communication. On parallel machines this data structure also has the largest
possible subgrid ratio (the surface-to-volume ratio of data on each processing node) which
is generally ciesirable for enhanced performance on MPPs. More complex data structures
associated with composite or multipole grids generally involve explicit looping over patches
and a reduced subgrid ratio. The other issue is the ocean-land load imbalance problem,
which in parallel ocean models is usually ignored, allowing processors with land points to
sit idle or do useless work. For this reason we would like the ratio of ocean to land points

in the field arrays to be as large as possible.

In this paper we will present a class of orthogonal 2-D spherical dipole coordinate
systems that can be adjusted to satisfy essentially all the desirable properties discussed
above for global ocean models. Implementation of such a grid requires an ocean model
capable of handling general orthogonal coordinates. In Section 2 the prinﬁtive equations
for ocean dynamics are derived in general curvilinear coordinates, and the basic finite-
difference operators are presented for B- and C-type grids; the implementation in our ocean
model, the Parallel Ocean Program (POP), is also discussed. In Section 3 we introduce

a simple analytic dipole grid with arbitrarily placed poles that reduces to the standard
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polar grid as a special case. In Section 4 we discuss composite generalizations of this basic
- idea and show that cdmposite grids developed previously by others are special cases of
this general framework. The breakdown of second-order accuracy in composite grids is
also discussed. Section 5 presents a class of continuous generalizations of the composite
grids that support higher-order spatial differencing schemes. In Section 6 the algorithm
for numerically constr'ucting such a grid is given, and the parameters defining the system
are adjusted to satisfy various desirable properties in a computational mesh with realistic
bathymetry. In Section 7 results are shown from two numerical integrations using the POP
model: one using a non-eddy-resolving (2/3°) average-resolution grid, and another using

an eddy-resolving (1/3°) grid.

2. The Primitive Equations in Generalized Spherical Coordinates
Ocean dyna‘mi'cs are described by the 3-D primitive equations for a thin stratified
fluid using the hydrostatic and Boussinesq approximations. The continuous equations in

standard polar coordinates (with vertical z-coordinate) are:

momentum equations:

1 Op

8
i + L(u) — (uvtang)/a — fv = ~oacosd B + Fuz(u,v) + Fy(u) (1a)
—(2-'1."-!- L)+ (u®tang)/a + fu = _ 1o + Fry(v,u) +‘.7-'V(v) (1b)
ot poa Og | - HYYY
1 0 0 8
L(a) = pp— [E_X(UO) + %(cosqﬁ va)]k + -é;(wq) H ’(lc)

fgf(u,v) = An {Vzu + u(l — tan? ¢)/a® — a—zz‘(%% 5%} (1d)

, s « . o 5

Fry(v,u) = Am {V2v+v(1—tan2¢)/a2+5% -6—2} (1e)
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V o= cos? ¢ O\? + a2 cos¢ O¢ COS¢6¢ (1f)

Fy(a) = 3:"5 (1g)
continuity equation: |
=0 (2)
hydrostatic equation:
p
3, = P9 3)
equation of state:
p=p(T,S,p) | (4)
tracer transport:
%T + L(T) =Dy(T) +Dv(T) (5a)
8
'a?S+£(S> = Dy(S) + Dy(S) (5b)
Dy(a) = AgV’a (5¢)
6 0
Dv(a) = Ef{b—;a ’ (5d)

where X, ¢, z = 7 — a are longitude, latitude and depth .relative to mean sea level r = q;
g is the acceleration due to gravity, f = 2Qsin ¢ is the Coriolis parameter, and pg is the
background density of water. The seven variables in these equations are the two horizontal
' velocity components (u, v), the vertical velocity w, the pressure p, the density p, and the

temperature T and salinity S. Ay and A), are, respectively, the coefficients for horizontal
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diffusion and viscosity (here assumed to be cOnStaﬁt), and x and p are the COfiespondiné
vertical coefficients which typicaily depend on the local Richardson number [11]. \The
third terms on the left-hand side i}l Egs. (1a,b) are due to the convective derivatives
‘in du/dt acting on the unit vectors in the A, ¢ directions, and the second and third
terms in Egs. (1d,e) arise in a transversely-isotropic formulation of the viscosity [12]. The
forcing due to wind stféss and heat and fresh water fluxes are applied as surface boundary
conditions to the fri.c_tion‘, and dissipati\}e terms F and D. For more detailed discussion of
these equations see forbex'am‘ple, [13].‘

To derive the primitive equations in general coordinates, consider the transformation
from Cartesian coordinates (£;. £, £3 with origin at the center of the Earth) to general
horizontal coordinates (g:. gy. z), where g, and g, are arbitrary curvilinear coordinates
in the horizontal directions, and z = r — a is again the vertical coordinate normal to the -
surface of the sphere. For simplicity of notation in the final equations, we have chosen to
deﬁote actual distances along the curvilinear coordinates by z and y, which lie along the
circumpolar (longitude-like) and azimuthal (latitude-like) coordinate lines, respectively, on
dipole grids with two arbitrarily located poles. The differential length element ds is given
by |

o

ds? = d€? + d€2 + dEf = hyjdgidg; + d2® (6a)
08 Otk

0% 0%k 6b

1) 6@1‘ 5q_7' ? ( )

~ (where i, j = z,y and repeated indicés are summed). The metric coefficients h;; depend on
the local curvature of the coordinates. Differential lengths in the 2 direction are assumed
independent of z and Y, SO 1o metric coefficients involving 2z appear. Further restricting
ourselves to orthogonal grids, the cross terms vanish, and we have

h; = hyi zg—-o(#.?)

ds; = hidg; .

(7)



For the purpose of constructing horizontal finite-difference operators corresponding to the

various terms in the primitive equatidns, define:

A,Ed81 .
T 0si —hia(h ’

where A; and 6; can be interpreted as either infinitesimal or finite differences and their
assoc1ated derivatives. Formulas for the basic horizontal operators (gradient, divergence,

curl) can be found in standard textbooks [14]. The gradient is

N N
Vi = xh—:z Ba. +yh 3a, (9a)
= X6 + yby) . (9b)

where X and ¥ are unit vectors in the z,y directions. The divergence is:

1 0 1
. p— 0
V-u hohy 9a —(hytiz) + hohy B y(hzuy) (10a)
1 1

which gives the form of the continuity equation (Eq. 2) (u; and u, are the velocity

components along the X and y directions). The advection operator (Eq. 1c) is similar:

L(a) = —62(A,usa) + ll—xaymzuya) +6.(wa) . (1)

1
Ay

The horizontal part (2-component) of the curl operator is

. 1 0 1 ,
z-Vxu= T -(,qu-(hyuy) e hy g (hzuz) (12a)
1 1

Yy x
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The Laplacian opgérator, which appears in the viscous and diffusive terms '(Eqs. 1d, ‘lle, 5¢),
is given by o o

| V3=V V¢
(13)

= Z—é (Ay 6$¢)+ 6 y(Az8,9) .

The other horizontal finite difference operators appearing in the primitive equations can

also be derived in general coordinates. The Coriolis terms are simply given by
2Q xu=—-Xfuy, +¥fug . (14)

The metric momentum advection terms corresponding to the third terms on the left in

Egs. (1a, b)vare given by [15]:

(uvtan@)/a — uzuyky — uzkJt (15a)
(u? tan @)/a — uguy ks — ulky (15b)
1 3 1 D
kz = 72,3_]1; 'éa';hy Ay6 A (15C)
1 .
k, = haih Alaz_\. (154)
v T

Note that these revert to the standard forms (left of arrows) in spherical polar coordinates,
where h; = acos¢ and hy = a. The metric terms in the viscous operators (second and
third terms on the right in Egs. 1d,e) require a more careful treatment. These terms were
derived by Williams [12] in spherical coordinates, by applying the thin-shell approximation
(r — a) to the viscous terms expressed in terms of the stress and rate-of-strain tensors.
This form was chosen to insure transverse isotropy which implies that for solid rotation
the fluid is stress-free. The general coordinate versions of these terms are derived in
Appendix A. The results are

Fria(uz,uy) = An {V2tz — up(Bcks + 6k, + 2k2 + 2K2) "
+ Uy (62ky — bykz) + 2ky(62uy) — 2k (6yuy)}
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The formula for .7-' Hy(Uy, tug) is the same with z and y interchanged everywhere. It is
straightforwarci to show that these also reduce to the correct form in the spherical polar
limit (Egs. 1d,e).

The exact finite-difference versions of these operators can be easily derived for the
various types of staggered horizontal grids A,B,C,D,E [16] given only the forms of the
fundamental operators: divergence, gradient, and curl for that type of mesh. Most OGCMs
employ either B-type grids (scalars at cell centers, vectors at cell corners) or C-type grids

(scalars at cell centers, vector components normal to cell faces). Using standard notation

[13] for finite-difference derivatives and averages:

6:r:¢ = ["r/) ($+A:r/2)—'¢(m"A:r/2)] /A:c ’ (173')
P = R(z+A/2)+ ¥ (z+D0,/2)] /2, (17b)

the fundamental operators on C-grids have the same form as Egs. 9, 10, and 12 (there is
no transverse averaging of the fundamental derivatives as in the B-grid, but the Coriolis

terms (Eq. 14) must be averaged). For the B-type grids, they are given by:

Vi = k6.9 + §6,0° (18a)
| — 1  —
V-u= Z—(SIAyux + K—éyAxuy (18b)
y x .
z-Vxu= -Lil-észuy! + -ALéyAxu,x (18c)
v x

As discussed in Appendix A, in Bryah—Cox models (which use a B-grid formulation) all
viscous and diffusive terms are given in terms of an approximate C-grid discretization in
order to ensure they will damp checkerboard oscillations on the scale of the grid spacing.

The implementation of general coordinates in the POP model was relatively simple.

POP is a Bryan-Cox type OGCM with an implicit free-surface formulation of the barotropic
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“mode [17). Tt uses a centered-difference spatial differencing scheme that is second-order
" accurate. The daté. sti‘iictufe is such thatmtl‘le vﬁeld arrays aie orgénizéd as herizontal slabs
and are operated on with an outer loop over vertlca.l levels [18] (Thxs is different than
prev1ous versions of the Bryan—Cox model such as the GFDL MOM model [19], where
the data is mstead orgamzed as longxtude-depth slabs with an outer loop over lat1tude )
On parallel archltectures the horizontal dimensions are spread across processors, while the
vertical dimension is, held in-processor. For this reason the vertical dimension plays only
a minor role in the parallelization, and the subgrid ratie is just that of the horizontal
field arrays. POP is deSigned to be run on a variety of machine arcliiteelures, including
distributed-memory parallel architectures (both message-passiﬁg and data-parallel); as well
as serial or vector architectures. General coordinates were easily implemented in the model
because of the code structure: for pbrtabilit& all communication is isolated in a small set of
stencil and global reduction routines. Most of the stencil coefficients are time-independent
and are precomputed and stored. ‘While the stencil coefficients change under our coordinate
transformation, the stencil patterns remain the same. Therefore it was only necessary to

precompute the new coefficients, leaving the rest of the code unchanged.

3. Analytic Dipole Grids

We now introduce the simplest dipole coordinate system with arbitrarily placed poles
that is both analytic and reduces to the standard polar grid as a special case. It is most
easily constructed geometrically, as shown in Fig. la. Consider an axis (say on the Earth)
parallel to the North-South polar axis but displaced by a constant distance, such that it
intersects the surface at two points Symmetfic about the Equator at latitudes £a. These
are the displaced poles, which on the unit sphere are represented by the unit vectors f'n and

. All coordinate lines in this system are circles determined by the 1ntersect10n of certain
planes with the surface Assocxated with each coordinate 1s a set of planes contalmng

a common axis. The y-coordinate lines are circles determined by the intersection of the
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planes contamng the dlspla,ced pola:r axis thh the surface of the sphere The z-coordinate
hnes are cxrcles determmed by the set of planes contammg another axis, deﬁned as the
mtersectxon of the two tangent planes at the dmplaced—pole points. We will henceforth
refer to the z and y coordmate lines as “zfcucles a.nd y-cu'cles, respectively, and to
the corresponding planes as “:c-planesﬂ”l and “y-planes.” The system is most naturally
described by two angular coordinates x and 7 around these axes. The polar axis will be
referred to as the “y-axis” and the tangent?plane a_xis as the “r-axis” (note 0 < x < 2m,
and a—7/2<7< 7/2 — o with the choice of origin shown in Fig. 1). In the polar limit
a — m/2, the x-axis approaches the true North-South polar axis, the 7-axis moves off
to infinity, and the z- and y-circles become lines of constant latitude ¢ and longitude A,

related to x and 7 by: x — ), tanTseca — sin¢.

The analytic relations between the new coordinates (X, 7) and the old are given by
the simultaneous solution of the equations for the z- and y-circles passing through an
arbitrary point on the surface, represented by the unit vector # = (), ¢) or (&1, &2,€3) with

€2 + €2 +£2 =1 (see Figs. 1b,c):

z-circle:
f-b=5%%, b=bh,
R R (19a)
b=sinTseca, n,=E§;sinT+E§3cosT,
y-circle:
f.c=c®, c=cn,
(19b)

c=sinxcosa, n,=§sinx—§cosx.

where b =|b|, ¢ =|c|, and b, ¢ are the vectors from the center of the sphere to nearest points
on the r and y planes, respectively, and f; and fi, are the corresponding unit vectors in

these directions. The orthogonality of the coordinate system is easily demonstrated by
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observing that at the surface point f, the z and y coordinate circles lie aiong directions
%~ (i x £) and § ~ (A, x #). The orthogonality immediately follows from =~
R~ (B xD) (B xE)
C=hehy - (Be) (o) (20)
~=sinTsiny — bc‘= 0.
This simple analytic dipole grid can be equivalently constructed using bipolar coordinates
on the plane [14] followed by an inverse stereographic map to the sphere (since the
stereographic map is conformal, orthogonality is preserved), and it is in fact equivalent
to the system obtained from the solution of Poisson’s equation on the surface of the sphere
with two point charges of opposité sign at the poles.

By simply ‘rotatwi'ng this icoordivna‘t.‘e system, dipole grids with arbitrarily located poles
can be construct.éd. We ‘véill refer to a coérdinate system of this kind as one of the basic
Analytic Dipole (AD) g‘rids. the that a given AD grid is completely specified by the
location and orientation bf éither its polar y-axis or its tangent-plane 7-axis. An example
of such a grid, with the south pole point t, rotated to ’tllle true éouth Pole, is shown
in F ig. 2. This grid fulfills most of the desirable features discussed in the last section,
with ohe excebfion: it does not have purely zonal coordinates in the Equatorial region,
which is desirable for accurate finite-difference dispersion relations of the linear waves. In
Section 5 we will discuss how to get around this problem. But first we consider composite

generalizations of this basic dipole grid.

4. Composite Dipole Grids

The properties of the basic AD grid make it possible to easily construct global
composite' grids made up of sections of two or more of them. To show this, we make
the following observation:
Theorem: For each pair of circles on the sphere cut by arbitrary planes passing through

its surface, there is a unique AD grid with these as coordinate circles.
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The proof is by construction. If the circles cross each other, they are both y-circles and
intersect at the pqlg points, which defines the y-axis. If they do not meet they are z-circles,
and the 7-axis is the intersection of the two planes containing them. Either case uniquely
defines an AD grid. A pole point is just the limiting case of an z-circle approaching one

of the tangent planes, so it also follows that:

Corollary: Given any circle on the sphere and any surface point not lying on it, there exists

a unique AD grid with these as one of its z-circles and one of its poles.

This corollary can be used to construct a simple two-patch global composite mesh from two
different AD grids which share a common z-circle, one covéring the area “inside” and the
other the area “outside” this matching circle. Each patch contains one arbitrarily-located
pole, which together with the matching z-circle defines the AD grid for that patch. An

example of such a grid shown in Fig. 3. In this case the Equator is the métchihg z-circle,
and different AD grids are used in the northern and southern henlisphéfes, with polés at
(95W,50N) and 90S, res’pectively (so it is just a standard latitude-longitude grid in the
south). We note that this type of composite grid is orthogonal everywhere, even on the
matching circle. However, as will be discussed below, the finite difference scheme suffers a

loss of second-order accuracy in the vicinity of the matching circle.

It is also possible to construct another type of two-patch composite mesh by arranging
the AD grids so that the matching circle is an z-circle of one of them and a y-circle of the
other. In this case the global grid will have three poles: two lying on the matching circle
and one inside one of the patches. An interesting example of such a grid, recently developed
independently by R. Bleck, is shown in Figure 4. In this global grid, a standard pdlar grid is
used everywhere south of the matching circle at 65N. The region above 65N is covered with
another grid, derived using bi-polar coordinates. As mentioned above, this is equivalent to
an AD grid with the two poles located on the matching circle. In this case all three pole

points in the global grid can be hidden within land masses. This grid has the advantage
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that it is equiva_lént’ to a standard polar grid over most of the globe, while retaining the
desirable feature that the resolution decreases at high latitudes. One disadvantage of this
type of “cross-matched” grid is that it cannot be mapped onto a cyclic 2-D array without
folding or éutting, which complicates the data structure as discussed above. The rotated
global grid used by Eby and Holloway [1] is another example of a cross-matched composite
grid, where the matchiiig circle is at the Equator and the northern rotated grid is used only
in the North Atlantic’ and Arctic oceans. The two patches only meet at the Eqﬁatbr in the
Atlantic and hence the Bering Strait is not connected, but (because the global connectivity
has been given up) it is poésible to lay-out the grid as two patches on a single cyclic 2-D
array. For eddy-resolving models, this rotated grid has the disadvantage that 4it is not
possible to focus resolution at high northern latitudes since there are no poles north of the
Equator.

Composite grids with three or more AD sections can also be constructed using the
above theorem. Imagine several planes passing through the sphere but not intersecting
within it. The region of the surface between neighboring circles cut by these planes can be
covered with a unique AD grid which contains them as :c¥circlesk. If there are n — 1 planes,
then there will be n regions covered by different grids: n — 2 of them are bounded by
two neighboring matching circles, while the two on the ends are bounded by one matching
circle and each contain a pole point. This defines an n-patch global composite grid which,
like the two-patch grids describéd above, is everywhere orthogonal. Note that in these
n-patch grids the z-coordinates lines are all circles, as in the basié AD grid, however,
the y-coordinate lines are no longer simple circles: they are a line of circular arcs linked
end-to-end from one pole to the other and joined with equal slopes.

Due to the orthogonality, the slopes of the y-coordinate lines are continuous across
matching circles. However, theyr do not in general have continuous second derivatives thére, |
- which makes it ifnpdss'ible to construct a second-order-accurate finite-different scheme (it

is possib]é to arrange for the discontinuity to vanish locally, but this can only happen near
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one or two points along the matching circle). This ris because a discontinuous change in
the second derivative of a coordinate at a point (with respect to some other locally smooth
coordinate like VA, ¢, or &) }eads toa _disc_retization with a sudden change in grid spacing
at that point (as is the case across the Equator in Fig. 3), and the leading-order truncation
error of typical second—o;der ﬁgite—diﬁ'erence operators is proportional to this change in
grid spacing.

To illustrate how the loss of second—érder accuracy comes about, consider a simple
one-dimensional tra:r'lsformation from some smooth coordinate £ to a new coordinate
y = f(£), where for simplicity both £ and y are scaled to lie within the interval
0 < £,y <1, and f is the function defining the coordinate transformation. If the interval is
discretized with N uniform cells of width A = 1/N, then analyzing the truncation error
e? ~ d?y/dE? ~ A;— Aj_q (where A; = y;41 —y;) with a Taylor series expansion of f(§)

around nearby points:

1 ! 1 14
f&x1)=F(&) £ ~/ (&) + —"'2Ngf E)=x..., (21)
the error is proportional to
1 ., 1
Aj—Aj..1=fj+1—~2fj+fj—1=]—v—2fj +O(m) s (22)

where f; = f(&;). Therefore if f is a smooth function of £, and if the system is discretized
uniformly in £, then the differencing scheme is second-order accurate in the sense that
the leading-order truncation error decreases like A¢2 = 1/N2. This argument is clearly
invalid, however, at points where f has no second derivative; there the differencing scheme
is at best first-order accurate. This is precisely what occurs with the y-coordinate lines
crossing the matching circles in the composite grids described above. To get around this
problem, we consider in the next section the continuum limit of a composite grid with
infinitely many AD séctions, so that the error is distributed globally (and infinitesimally)

across the grid and hence it vanishes.
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5. Continuously-Differentiable Dipole Grids

Taking the limit n — oo of a continuum of composite grids whose matching z-circles
are displaced only infinitesimally from one another, we obtain a new class of dipole grids.
To characterize a grid of this type, consider the curve C defined as the locus of points
at the centers of its z-circles, as illustrated in Fig. 5a. Each z-coordinate circle in the
grid is determined by the plane normal to some vector b from the center of the sphere
to a poiﬁt onA this curve. Thus the coordinate system is uniquely definéd by the curve,
and its end poihts are the poies. Figﬁre 5b shows this curve for the basic AD grid. In
this case it is simply an arc of the circle which passes through the origin and the nearest
point on the r-axis with its center halfway between them. As will be shown below, the
‘y-coordinate lines of a grid will have exa.ctly as many derivatives as its associated curve C.
| Since the truncation error of an nth-order eecurate differencing scheme is (™ ~ dny/dg™,
it follows that grids whose associated cur;{'es C possess n derivatives at every point will

support nth-order differencing schemes.

In this section we consider the class of grids associated with the set of ’continuously
differentiable curves C connecting two arbitrarily located poles on the sphere and subject
to the constraint that its normal planes r - b = b2 not intersect within the sphere. We
will refer to these as Continuously-differentiable Dipole (or “CD”) grids. Each curve C
associated with a CD grid can be characterized by a single parameter s, the distance along
the curve measured from some fixed point on it. The equations for the curve and its unit

tangent vector § can be expressed in Cartesian coordinates as

b = £;b1(s) + &2b2(s) + E3bs(s) | (232)
. db
S = Eg y (23b)
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where by, bz, and b3 are all smooth functions of s. Given b and § (or equivalently by, b,
and b3), all the properties of the grid can be computed in the neighborhood of the z-circle

associated with b. The coordinate directions at a point £, on the z-circle are given by

x,f“b/ lbx f'bl - o (24a)

b X X. (24b)

-
o

x

I
>

R/

Consider the infinitesimal annulus on the surface containing the z-circle associated with
b, and bounded by'i':he two planes normal to b; = b +db/2 and by = b — db/2 (say with
by > by). The area of the annulus is simply given by d4 = 27(b; —b;) = 2mdb, provided the
planes do not intersect within the sphere. Th'é' y-coordinate changes dy across the anpulus
can be derived analytically given only b and §, since these determihe the associated 7-axis
and hence the AD grid within the annulus (note that the assbc.iat-ed\polar x-axis does not
in general pass through the point b and is not aligned with b or §). The 7-axis is normal
to the plane éontaining b and §, and crosses it at a point 7, which is determined from the
simultaneous solution of the equations for the two planes, 7-b; = b2 and 7 - b = b3.

Taking the limit db — 0 yields

\'
cu
Il
o
[

(25a)

(25b)

~‘

(¢33

I
R
o
7.

which can be solved for the two components of 7. We label a given point on the z-circle with
the unit vector f,, which in a cylindrical coordinate system with axis b is 5 = (b, Ap),
where ), is the angle about the center of the z-circle (see Fig. 5a). The y-coordinate
changes at that point are given by the y-circle arc-lengths dy of its associated AD grid

across the annulus, and the coordinate changes can be expressed analytically as
dz = 1 -b2d) (26a)
dy = G (b,$,);)-db, (26b)
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where the metric function G is a smooth analytic function of its arguments. The algebraic
derivation of G is outlined in Appendix B. It follows from Eq. 26b that the y-coordinate

lines have as many derivatives as the curve C.

Now consider the implications of the condition that the two planes normal to bj, b,

not intersect within ‘the sphere, namely: |r| < 1. This leads to |by; — bo|® < sin?6;,,

(where 633 is the angle between b; and b). In the limit db — 0, this becqmes |
|B x sl <b. | (27)

That is, the sine of the angle between b and § must be less than b, so the closer they are to
the origin the more aligned they must be with one another. This constraint imblies that
b cannot have a local minimum at any point along the curve C exceptb at the origin, for
if it did then b and § would be p'erpendic.ular at that point, Vioiaﬁihg Eq. 27 for b > 0.
Therefore the curve C must pass though the origin, and b must increase monotonically -
along it from the origin to each pole. Since it can only pass through the origin once,
there is exactly one z-circle in the grid which is a great circle, and it is given by the plane
normal to b = § at b = 0. We refer to this great circle asrthe “Equator” of that grid.
Any computational mesh we construct will have this grea:c circle aligned with the Earth’s
Equator for the reasons discussed -above. ‘So for convenience we will henceforth think of
the CD> grid as aligned on the Earth in this v?ay and refer to various points by their true
latitude and longitude. |

To distinguish the two hemispheres, we now redefine b as: b = |b| in the northern
hemisphere but b = —|b| in the southern hemisphere. Then b must be a monotonically
increasing function along the curve from the southern to the northern pole, and s = s(b)
is a unique single-valued function. The surface-area infegral can then be expressed as:

tp

1
fdA:/zwdbmm,  (28)
Jo o

i"s‘
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-where thé integrél is along the curve C. Furthermore, the functions b;, b,, and b3 (and
hence b, 8, and 7) can be re-expressed as smooth functions of b only, and we may rewrite
Eq. 26b as

dy = g(b, A\p)db , 7 (29)

~ where g is a smooth analytic function of b and .

For completeness‘ §ve now specify the fundamental orthogonal variables g, g, of the
coordinate system which satisfy g, = constant on a given z-coordinate line, and ¢, =
constant on a given y-coordinate line. Since b = constant uniquely identifies a given z-
coordinate circle, it is natural to choose g, = b. For the other variable we may choose
gy = Ao, the angle (longitude) at which a given y-coordinate line intersects the Equator. In
the limit of a simple AD grid, Ao is related to the angle x by tanx = sin Ao/ (cosa—cos Ap)
(see Fig. 1c). For a general CD grid there is no simple expression for Ag, but it can be

expressed formally in terms of the solution of an integral equation:
fp fp ,
fo-fo= [dy= [yol aw)av (30)
fo to

The integral is along the y-coordinate line between fo = (0, ), and &, = (b, Ay). This
equation must be satisfied by a smooth function Ay = Ap(b, Ag) that gives the location of
the point f; as a function of the fundamental coordinates b and Ag. The differential length

elements can therefore be expressed as:

dz = hz(b, Ao)dXo (31a)

dy = hy (b, Ao)db (31b)

hx =111~ b2 'b_a)‘_)‘b(ba )\0) : (31C)
0

hy = g(b,2s(b, X0)) , (31d)

where h, and h, are the metric coefficients (Eq. 7) of the coordinate transformation.

"The choice of coordinates b, Ag is somewhat arbitrary, but note that the finite-difference
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operators (Egs. 9—16) do not depend on this choice, only on the coordinate lengt.hé across
- the mesh cells A; ~ ds; = h;dg;, so it is not acttially necessary to directly solve an integral

equation such as Eq. 30 to construct the mesh.

6. Mesh Construction

In order to construct a éomput‘éﬁohal mesh for OGCMs with realistic bathymetry,
we are primarily interested in basing it on a CD grid with the north pole fn displaced
smoothly (rather than suddenly as in the cdmposite grid in Fig. 3) into either Asia or North
America. For this purpose it is sufficient to réstrict. the curve C to lie entirely within the
plane containing the origin and the two poles (hénceforth referred to as the “pole plane”).
In this case the curve can be represented with only two parametric functions instead of
three, as in Eq. 23. Furthermore, rather than trying to specify C for a given grid, it is more
convenient to work with an associated surface curve S: the loéus of north pole positions
tp of the AD.grids associated with each point on C. This makes it easier to parameterize
a smooth displacement of ‘thé pole to a specific location. With C constrained to lie in the
pole plane, theﬁ in thewnorthern hemisphere S lies along the circﬁlar arc’ between the true
North Pole and the northern pole f,, and a pbint on it can be represented with a single

parameter a, the true latitude of the (local) northern pole point on S.

To construct a computational mesh based on an underlying CD grid, we will use a
somewhat different approach than that taken in the last section, one which makes use of
the corollary rather than the theorem of Section 4. An n-patch composite grid can either
be constructed directly by §pecifying the sequence of b vectors, or it can be constructed by
specifying only the pole angle o of each AD section. This is accomplished as follows. We
identify a given matching z-circle by the latitude ¢ (see Fig. 1b) relative to the Equator
at which it intersects the shortest y-coordinate line between the poles (which we take to
be the origin of the r-coordinate lines, z = 0). We choose the pole position ¢; associated

with the AD grid in the annulus between matching z-circles j and j+1 to be some smooth
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function o; = a(¢;) ’_(w‘hhere ¢; = ¢o for the jth z-circle). Then, starting with some
specified matéhing z-circle b (usually the Equator, b = 0), successive matching z-circles
b,41 are constructed as the z-circle of the jth AD grid (defined by o; and by, see the
corrolary in Sec. 4) which intersects the z = 0 line at angle ¢;41. The condition that
successive z-circles not intersect within the sphere is replaced by the simple requirement
that the jth pole o; lie within (i.e., on the poleward side of) the jth matching z-circle. In
this formulation, the coordinate-changes dy at a point 4, on the z-circle labeled ¢, are
again given in terms of an analytic function: dy‘ = f(¢o, @, F,)dPo. Note that since the
truncation error €(2) ~ d%y/d¢? involves a term (8f/0c) /(8c/8¢0), second-order accuracy
requires that a have a continuous first derivative 8a/0¢¢ everywhere.

The algorithm for arialytically constructing a discreté mesh for an n-patch composite
grid using this method is given in Appendix C.n We employ it with a very large value of
n when actually constructing global ocean grids. Since it is an analytic conétruction,.the
only nonorthogonality introduced is due to roundoff error. In practice we found that if the
mesh is computed with 64-bit floating-point numbers, the calculated mesh will converge
to about 8 digits of accuracy, provided n is large enough that Agg ~ 0.01°.

Two examples of meshes constructed using this n-patch algorithm are shown in Fig. 6.
In this case, the function a(¢¢) was chosen to have the form:

%—a(¢o)={(%_a")ﬁn(%) , $0>0 E
. 0 3 ¢0<0

where o, is the latitude of the northern pole of the CD grid. Thus when ¢9 = 0 (the
Equator), @ = 7/2 (the true North Pole), and it approaches the northern grid pole from
the north a — a, as ¢y — a, approaches it from the south. In the southern hemisphere
a = 7 /2 everywhere, so it is just the standard polar grid there. Note that this choice for a
has a continuous first derivative 8a;/9¢o = 0 at the Equator, as required for second-order
accuracy. In Figure 6a the northern pole has been placed in Canada at (95W,50N), and
| in Fig. 6b it has been placed in Asia at (8E,50N).
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In the case of the standard polar grid, the y-spacing can be chosen to be exactly equal
to the z-spacing everywhere, resulting in the familiar Mercator grid with square cells. In
a mesh constructed from a general CD grid, however, it is not possible to make every
cell square. The meshes in Fig. 6 are Merbator-like grids, in the sense that the y-spacing
decreases towards the poles in order to make the cells as nearly square as possible. The
mean aspect ratio can be minimized somewhat by choosing a variable z-spacing at §he
Equator, and focusing more z-resolution near the z = 0 line where the resolution in y is
already focused. To .z;,ccomplish this the z-spacing Azg at a given point £o = (0, A¢) on the
Equator is chosen to be proportional to the distance between poles along the y-coordinate

line through that point:

fr, Fo(Xo)
Azo(Mo) = an / dy + as / dy . (33)
Fo(Xo) rs

Here the coefficients a,, and a, are introduced to give different weights to the contributions
from the northern and southern hemispheres and are normalized such that £;Azry = 27.
We have chosen the coefficients to have the ratio a,,/as; = 3 in order to give greater weight
to the mo‘re “distorted” northern hemisphere. The grids shown in Figs. 3, 6, 7, and 8 of
this article were draWn using the variable r-spacing given by Eq. 33 with a,/as = 3. As
discussed’in Appendix C, the y-spacing was in all cases chosen to be equal to the z-spacing

along the y-coordinate lines at A\g = £90°.

Comparing the mesh in Fig. 6a with the two-patch composite grid of Fig. 3, we see
that the discontinuity in y-spacing across the Equator has va.njshéd. This grid therefore
has essentially all the features we set out to capture in é simple dipole coordinate system.
In particular, it has zonal coordinates at the Equator (unlike the grid in Fig. 2), and it
can support second-order accurate spatial differencing schemes (unlike the grids in Figs. 3
and 4).
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7. Numerical Simulations at (2/3°) and (1/3°) Resolution

. As examples of global simulations using a computational mesh based on a CD grid,
we present results from two numerical integrations: one a marginally eddy-resolving {(1/3°)
grid, the other a non-eddy-resolving (2/3°) grid (brackets denote the average resolution
of surface ocean points). The horizontal dimensions are 768 x 512 with 20 vertical levels
for the (1/3°) grid, and 384 x 256 with 32 vertical levels for the (2/3°) grid. These were
constructed in the same way as the grids discussed in the last section, with a Mercator grid
in the southern hemi;phere and using Eqs. 32 and 33. The northern grid pole is displaced
into central Canada at (50N, 95W) in the (2/3°), and (50N, 93W) in the (1/3°) grid.
These are again Mercator-like grids in the northern hemisphere with square cells along the
two y-coordinate lines that cross the Equator at A, & 90° (where )\, is the latitude of the
northern grid pole). Figure 7 shows two spherical projections of the (2/3°) grid. Note in
Fig. 7a that the Hﬁdson Bay is closed off since it is too close to the northern grid pole;
however, the straits connecting the Beaufort Sea with Baffin Bay are open. The transport
in and out of Hudson Bay is believed to be small, so we elected to eliminate it rather than
place the pole in Asia and consequently sacrifice resolution in the North Atlantic. Note
in Fig. 7b that the z-coordinate lines in the Equaﬁorial region are essentially zonal, and
only gradually begin to deviate from this at mid-latitudes. It is of course possible to focus

more latitudinal resolution near the Equator by smoothly decreasing the y-spacing there.

Figure 8 shows the resolution and aspect ratio of the (1/3°) grid, plotted in logical
space. The resolution is here defined as the square-root of the cell area in kilometers, and
the aspect ratio is the ratio of the longer to shorter sides of the cell (note that the (2/3°)
grid has just twice the resolution in km of the (1/3°) grid, and the aspect ratio is the
same for both). The resolution ranges from 60-65 km in the equatorial Indian Ocean to
10-15 km at both the northern and southern boundaries of the grid (so neither of these will
tend to dominate the CFL limits). Compared to a standard Mercator grid with comparable

equatorial resolution, it has much finer resolution along the northern coastlines of North
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Ameri‘cef' due to the placement of the ’pdle'.b Inpa.rt:cula.r, it bhas eﬂhaﬁced resolution in
the region of the Gulf Stream and the Labrador Sea, which is important for resolving the
surface and deep WeStern-boundary currents associated with the North Atlantic component
of the THC. Note the resolution is not zonally uniform in the southern hemisphere because
of the variable :c-spaciné (Eq. 33). The‘a'spvect"'ratio (Fig. 8b) is less than 1.2 over most of
the ocean and is greater than 2 only in small areas along the North American coastline.

This grid also has a reasonably large fraction '(67%) of ocean vs. land points.

In Figure 9 we show results from numerical simulations using the POP model at the
two resoluvtions.v In the initial state the ocean is‘kat fest Wit’h respect to the Earth, and
the temperature and salinity fields are initialized to the annual-mean climatological values
of Levitus [21]. The models are then forced only at the surface: heat and freshwater
fluxes are approximated by restoring to annual;mean surface Levitus values with a one-
month relaxationb time scale, and the annual-mean climatological values of Hellerman
and Rosenstein [22] aré ‘used for the wind stress. The (2/ 3°) run uses Laplacian mixing
parameterizations (Egs. 1d,e and 5¢) with Ay = Aj = 1.0 x 10® m?/s. The (1/3°) uses
the biharmonic forms (Eq. A3 for the \7iscosify, and the same expression with Fp — V2
for the tracer diffusion) which selectively damp only the highest wave numbers. The
biharmonic visbosity coefficients were chosen to vary spatially like the cube of the grid
spacing, with a value of Ay = Ay = -3.0 x iO” m?/s for a cell with the average
equatorial grid spacing. The models were integra;ted with time steps of approximately
50 and 100 minutes for the (1/3°) and (2/3°), respéctively; these are limited by the CFL
number associated with the gravity-wave speed of the first internal (baroclinic) mode. The
integration lengths were 50 years for the (2/3°) and 23 years for the more expensive (1/3°)
simulation. This is long enough for the upper vocéan to have reached a quasi-equﬂibrium
- state: the geostrbphic‘ adjustment of the veiocities to the density field is for the most part
completed for both the barotropic and first baroclinic modes. The deep ocean circulation

involves diffusive processes which require much longer (hundreds of years) to equilibrate;
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but lt 1s rea.sonable to make compansons of quantltlw such as surface height which mainly
reﬂect the upper ocean c1rculat10n Fxgure 9 shows the instantaneous sea-surface height
T (relative to the mean geoxd) at the end of the (2/3°) and (1/3°) runs. The contour
interval is 20 cm, a.nd the zero contour is shown as a dotted line (the sign is such that 7 is
positivé in the Equatorial Pacific and negative arouhd Antarctica). Contours of constant
7 lie approximately along streamlines of the flow due to geostrophic balance, and closely-
spaced contour lines indicate faster currents. Comparing the {1/3°) and (2/3°) surface
heights, we see that the (1/3°) displays very active eddy fields, but in the (2/3°) they are
almost completely absent (trépical instability waves appear in both solutions, but they do
not stand-out in the surface height field). This is partly because the (2/3°) grid is not
fine enough to begin resolving the Rossby radius of the first baroclinic mode and partly
because it uses a Laplacian rather than biharmonic formulation of the mixing terms. If
biharmonic mixing is used at {2/3°), however, unphysical jets are produced by the Western‘
boundary currents, since the eddies that would normally diffuse them are neither resolved
nor parameterized. The most eddy-active regions are in and around the strong currents,
“such as the Agulhas retroflection region below South Africa, where the counter-flowing
Agulhas Current and Antarctic Circumpolar Current (ACC) produce large eddies with
diameters of 300 km or more. The region off the east coast of Argentina where the Brazil
and Malvinas Currents collide head-on also has a strong eddy field. Note that the Gulf ‘
Stream is more eddy-active than the Kuroshio Current in the Pacific; this is because the

resolution in the Gulf Stream is roughly double that in the Kuroshio (see Fig. 8a).

The large scale features of the height field are quite similar in many respects (for
example note the roﬁgh agreement of the zéro—contour lines), but the ACC and all the
subpolar gyres are stronger in the (1/3°) case. The transport through the Drake Passage
is about 112 Sv in the (2/3°) and 145 Sv in-the {1/3°) model (1 Sv = 10% m?/s); this is
reflected by the drop in surface height across the passage of —160 cm in the (2/3°) and

—180 cm in the {1/3°) case. The momentum balance in the ACC is different in eddy- and
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non-eddy-resolyying& models, becatise résolved ede&stend to accelerate the mean flow and
more strongly diffuse momentum vertically downward [23], resu.lﬁng in a si;ronger, deeper
' ACC whose path is much more strongly influenced by the bottom topography, as seen in
Fig. 9b. o o
8. Summary

In this paper we ﬂave presented a new class of 2-D spherical dipole coordinate systems
which allow the northern grid pole to be smoothly displaced into a land mass (such as
North America or Asia). These grids are orthogonal and continuously-differentiable and
can therefore support higher-order spatial differencing schemes, including the sécond-order
methods used in most current-generation models. Like the standard polar grid, they can
be mapped onto a logically 2-D cyclic array, which simplifies the data structure and the
implementation on parallel machines. The parameters of the grids can be adjusted to
satisfy a number of desirable properties. Mercator-like meshes can be constructed that
focus resolution in both coordinate directions near the poles, as desired for resolving
the smaller Rossby radius at high latitudes. The mean aspect ratio of grid cells can
be minimized by adjusting the grid spacing, as in Eq. (33), although it cannot be arranged
so that all mesh cells are square, as in the pure Mercator grid. Each of these grids has
exactly one coordinate line which is a great circle, and this can be aligned with the Earth’s
Equator to obtain a more accurate numerical representation of the linear iraves and zonal
current systems there. By placing the pole in North America we obtain higher resolution
in the Gulf Stream and subpolar North Atlantic, which is useful for modeling the global
thermohaline circulation.

To implement such a grid in an OGCM, we have derived the primitive equations
in generalized spherical coordinates and presented the finite difference versions of the
fundamental operators on Arakawa B- and C-type grids. A simple algorithm for
_ analytically constructing the grid is given in Appendix C. To demonstrate the use of these

new grids we have presented results from two global simulations using the POP model: one
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with an eddy -resolvmg (1 / 3°) average. resolut:on mesh the other with a non-eddy-resolving
(2/3") meﬁh Whlle tlus new gnd scheme has been 1mp1emented here in a 2-coordinate
model, it is mdependent of the ch01ce of vertlcal coordinate, and so can be equally well

used in 1sopycnal and 51gma~coordmate models
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Appendix A: Viscpus'Terms in Generaiized Spherical Coordinates
The derivation of Eq. (16) follows the procedure of Williams [12]. The viscous terms
are written in generalized coordinates and expressed in terms of the stress tensor 7;; (related
to the rate-of-strain tensor €;; by 7;; = 24 Hfij); fhen the thin shell limit » — a is applied.
W_riting the viscous terms as Fy,(uz,uy) = AnFs, ny(uy,ux) = ApF,, the curvilinear
forms of F and F, are given by (see [12], Egs. 7 and 8):
Fr(uz,uy) = 'E;IE [‘5% (hyTzz) + 5?1'; (heTzy)

Toz =2 (i Ous | Uy 6hz) (A1)

=l 2 () fe (e
* = hy Ogz \Ry) | hy 0qy \ Bz

(for simplicity the coefficient of viséosity Ap which normally multiplies 7;; has been
factored out: 7;; = 2¢;;). The expression for Fy, is the same with r and y interchanged
everywhere. Other terms appearing in the full expressions that involve the vertical z-
coordinate, either vanish identically (because the metric coefficients for the horizontai
coordinates are independent of the vertical coordinate, and vice versa), or are dropped
because they are proportional to the vertical velocity w = u, which is small w < (uz, uy)
in the thin-'shell; shallow-fluid limit. There is also a term 8%u, /822 corresponding to the
vertical diffusion of the horizontal velocity, which is treated separately in Eq. (1g). Using
~ Egs. (8) and (15¢,d), Eq. (A1) can be rewritten as : |
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T By = ymen 4 6Ty + ke (Tor — Tyy) + 2k Ty
Tz = 2 (6zuz + kyuy) o
Tyy = 2 (5yuy + kxuz) |

sz = ny + 5yUz - kzﬂay - kyux .

Inserting the expressions for 7;; and using 6;u: + éyu, = 0 in the thin-shell limit, we
arrive after some algebra at the form for F, given by the terms in brackets in Eq. (16).
In the B-grid discret.i.zation, this operator (like the simple horizontal Laplacian) contains
a checkerboard null space. This is essentially because the underlying gradient operator
(Eq. 18a) annihilates a+/— checkerboard field. In Bryan-Cox models the horizontal viscous
and diffusion terms (Eqs. 1d—e and 5¢) are usually discretized with an approximate C-grid
discretization (a five-point stencil rather than the usual nine-point B-grid stencil), where
the velocities on the cell faces are taken to be the average of the velocities at the B-grid
cell corners. The resulting approximate five-point operator does not contain the null space
and hence is able to damp checkerboard noise on the scale of the grid spacing. In POP,
the viscous terms (Eq. 16) are also evaluated with an approximate five-point operator
analogous to the C-grid imblementation. If a biharmonic (i.e, V4 type) parameterization

of the viscosity is used, the horizontal viscous terms are approximated by
fo(uxauy) = Fy (AHFz(uxauy)eAHFy(uy; U:t)) ’ (A3)

and again, the expression for Fpy(uy,uz) is the same with £ < y everywhere. Here Ay

may be spatially varying, as discussed in Section 7.

Appendix B: Algebraic Derivation of the Metric Function G
The metric function G defined by Eq. (26b) can be derived algebraically given the
parameterization of the curve C, or equivalently b and § from Eq. (23). First, 7 is

determined from the solution of Eq. (25), and from it the two poles £, and f, associated
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with the local AD grid in the neighborhood of the z-circle at b can be found. They lie in the
(b,8) plane at angles £a from the vector 7, where |7| = seca (see'Fig. 1b). The equation
for the y-plane passing through a given point #, on the z-circle is given by r - ¢ = ¢?, and

the three components of ¢ can be determined from the solution of the equations

f‘b-c=62
f‘n'C=C2 (B1)
f‘s'c=62)

since the points £, f‘.,; and £, all lie in the y-plane. Then the coordinate changes dy in an
infinitesimal annulus around the z-circle can be derived as follows. Let 1 and £» label the
points where the two bounding plaﬁes normal to b; = b+db/2 and b, = b—db/2 intersect
the y-circlé associated with ¢. The system of equatibns f‘i'- = A, ;b = bf(% = 1,2)

leads in the limit db — 0 to

di-c=0 )
di-b=2b—f, (B2)
di-§ = |db| ,

where df = £, — F;. These equations can be solved algebraically for the three components
of dr, and expanding to leading order in db, the metric function G can be obtained from
dy = |dt| = G - db. The actual analytic form of G can be evaluated by resolving the
vector equations Bl and B2 in Cartesian coordinates and solving for ¢ and df by direct

substitution.

Appendix C: Mesh Construction Algorithm

Here we present the algorithm for computing a mesh based oﬁ an n-patch composite
grid, as outlined in Section 6. For simplicity the algorithm is described here in \}ector
notation (as in Appendix B). The actual solution of the vector equations is most easily
accomplished by resolving all vectors in a Cartesian coordinate system (£, £2,£3) with &3
in the direction of the true polar axis, and &; lying along the intersection of the equatorial

and pole planes (as in Fig. 1).
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G1ven the sequence of angl% ¢, at whlch the z-cucles intersect the y-coordinate line

at T = 0 the assocxated pole a,ngles @; = o(¢;) can be computed from the functional
form chosen for a (e g, Eq 32) 'The algorithm starts from some known z-circle (usually
the Equa_tor) w1th‘normal vector bj and w;th a spec1ﬁed mesh spacing (Az);; around the
circle (wl»lkich/ élso determines the grid points f;; on it). Then the next z-circle at bj,,
the points #; ;41 around it, and the arc-lengths (A, );; (between #;; and #; ;41) can all be
computed from the geometry of the local AD grid defined by b; and a;. The algorithm is

outlined below:

Begin loop over j
1) Solve for the two components of the vector T; associated Wlth the AD grid defined by

a; and b; using:

‘T’j . bj = b?
(C1)

where the local northern pole (f,,); of the jth AD grid lies in the pole plane at latitude
aj.
2) Find the local southern pole (f;); using (f5); - 75 = 1.
3) Solve for the next matching z-circle bj+i:
75 b1 = bjyy

(C2)
(f'O)j-H by = §+1 ’

where‘ (fo);+1 is the point ét létitvude ¢;j+1 where the z-circle at bj4, intersects thez =0
line. '
Begin loop over i

4) Solve for the three components éf the vector c;; normal to the y-plane which passes

through the three points f;;, (f);, and (fs);:



fij -y =}
(), - €45 = ¢ | (C3)
(fs)ij *Cij = Cizj .

5) Solve for the two components of £; j41:

~ . 2
Tij+1°Cij = Cjj

(C4)
. fij+1-bjp1 = b2y, .
6) Compute the arc lengths along the ldcal z- and y-circles between grid points:
€os(Qy)sj = (Fij — €i5) - (Bije1 — ¢i5) / (1= )
(Cs)

cos(Az)ij+1 = (Fij+1 — bj) - (Fir141—by) /(1 - b?) .

End loops over i and j

(to convert the arc l'eng'ths from radians on the unit sphere to kilometers on the surface of
the Earth, multiply by its radius a). In practice we use this algorithm with a value of n
large enough that Agg ~ 0.01°, as discussed in Section 7. To construct a grid with near-
square cells along a given y-coordinate line (say with index 4p), we iterate with this small
Adp spacing until the integrated y-sbacing between the mesh points (ip,j) and (io,j + 1)
is just greater than the z-spacing between the mesh points (4o, j) and (io — 1, j). Then the
grid cells along the y-coordinate line at iy will have an aspect ratio of unity plus a small

correction of order 1% for grids with order ~ 1° spacing.
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Figure Captions

~ Figure 1. 'Geometry of the basic Analytic Dipole (AD) grid. Coordinate lines are circles
formed by planes intersecting the surface of the sphere. The z-coordinate circles are formed
by the set of planes coiltaining the displaced polar x-axis, and the y-coordinate circles are
formed by the set of planes containing the tangent-plane 7-axis (see text). |

Figuré 2. Two views of an AD grid with poles at (95W,50N) and 90S. The grid lines
are not drawn beyond a small z-circle near each pole.

Figure 3. A two-patch composite dipole grid. The matching circle is the Equator, and
the poles are at (95W,50N) and 908, so it is a standard Mercator grid in the southern
hemisphere. The disconﬁnuity in y-spacing across the Equator leads to a loss of second-
order accuracy in the spatial differencing scheme.

Figure 4. An example of a cross-matched two-patch composite grid, recently proposed
by R. Bleck [20]. A standard polar grid covers the globe below 65N, and a section of an
AD grid with poles on the matching circle is used to cover the polar region.

Figure 5. Geometry of the Continuously-differentiable Dipole (CD) grid. Each z-
coordinate circle in the grid has an associated vector b normal to the plane containing
the circle. The curve C is the locus of center points of the z-circles in the CD grid, and
its endpoints are the grid poles. For every curve C between two arbitrarily located poles
satisfying the constraint Eq. (27), there is a unique CD grid which can be constructed from
it. The curve C is shown for a general CD grid in a), and for an AD grid in b).

Figure 6. Two examples of CD grids constructed from the parametric function a(¢o)
given by Eq. (32). In a) the northern grid pole is in Canada at (95W,50N), and in b) it is
in Asia at (85E,50N). Both use a standard Mercator grid in the southern hemisphere, and
have variable z-spacing at the Equator, as given by Eq. (33).

Figure 7. Two views of the (2/3°) grid. Note the enhanced resolution in the Gulf Stream
and subpolar North Atlantic (a), and the zonal z-coordinate lines in the equatorial region
(b), which gradually begin to deviate at midlatitudes.

Figure 8. Resolution and aspect ratio of mesh cells in the {1/3°) grid, plotted in logical
space. 67% of the mesh cells are ocean points.
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Figure 9. Sea-surface height fields at the ends of the (a) (2/3°), and (b) (1/3°),
simulations. The contour interval is 20 cm, and the zero-contours are shown as dashed lines
(the sign is such that the height is positive in the equatorial Pacific and negative around
Antarctica). Strong eddy fields are present in the (1/3°) but not in the non-eddy-resolving
(2/3°) simulation. The large-scale features are similar in the two cases, although all the
subpolar gyres and the ACC are stronger in the (1/3°) case (see text).
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a) Resolution of the <1/3°> Grid
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. b) Aspect Ratio of the <1/3°> Grid
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b) Instantaneous Sea-Surface Height (<1/3°> grid, year 23)
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