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Abstract 

A new class of ort,hogonal curvilinear dipole co0rdinat.e systems on the sphere with 

arbitrarily-locat.ed poles  is introduced and used to  construct  computational meshes  for 

global ocean models. These grids can be constructed analytically, and  their  parameters 

can be adjust,ed to satis@ various desirable properties, such as having the grid  poles located 

inside land masses, having a zonal coordinate line along the  Equator,  and being able to 

focus high resolution in the subpolar North Atlantic for more accurate modeling of the 

thermohaline circulation. The primitive equations are derived in generalized orthogonal 

spherical coordinates  and the new grid  scheme is implemented in a global ocean general 

circulation model. Results from eddy-resolving and non-eddy-resolving simulations are 

presented. 

1 



A standard difficulty encountered in modeling  fluid flows on the sphere using finite- 

difference methods is the so-called  “pole  problem” associated with the convergence of 

meridians a.t the North  and  South poles. In  computational  grids whose coordinates  are 

lines of constant  longitude  and  latitude, the cell widths decrease to zero like the cosine of 

latitude as the poles &re approached,  and the time step used with explicit timeintegration 

segments near the pole [2], but this is also expensive and may corrupt the solution or 
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destroy important  properties of a field such as V. u = 0. Filtering and implicit methods 

are also difbcult to pardelize  and hence are less useful  for  high-resolution  global  models 

designed to run on massively parallel computers (MPPs). They generally  involve  nonlocal 

communication, and  the North Pole remains a unique point requiring special treatment. 

(e.g.,  cross-pole advection). 

The final possibility for overcoming the pole  problem is to use a coordinate 

transformation which either eliminates the poles  or  displaces them  into  land masses. Grids 

obtained by rotating  the  standard polas grid to displace the singularities out. of the region 

of interest have been used to model the Arctic Ocean [3]. However, a simple rotation is 

inadequa.t,e for a global model since there are no large antipodal land masses  on  t.he Earth 

that can be used to hide both grid singularities. A variation of this approach for  global 

models was recently suggested by Eby and Holloway [l], which  uses a rotated, grid  in t.he. 

North-Atlantic/Arctic region matched onto a standard polar  grid everywhere-else. 

Many opt.ions for more complicat.ed  grid transformations are available. Unstructured 

meshes  provide the most general gridding schemes  for  complicat.ed  geometries [4]: but. they 

also present the greatest challenge in developing  good  numerical  schemes, particularly 

on parallel ma.chines:  since they typically have a one-dimensional data  structure and all 

communication is  via indirect addressing with nonlocal communication. One option is 

t,o use spherical tessella,tions. These are nonorthogonal grids, but they do retain a 2- 

D horizontal data st.ructure and provide for nearly  uniform cell widths over the globe. 

This approach has been  used  successfully to model 3-D mantle convection  using  finite- 

element. methods [5] but has had limited application in  meteorology [6,7]. Another option 

for atmospheric models is the use of “stretched” grids [8] with global spectral-transform 

methods.  These grids allow resolution to  be focused near one of the two diametrically- 

opposed poles and  are typically rotated to obtain high resolution in a select  region. 

In this paper we are primarily concerned with investigating orthogonal curvilinear 

coordinate systems on the surface of the sphere. We will restrict ourselves to “dipole” 
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coordinate systems: those  with two grid singularities, or “grid poles”, which  may be 

located anywhere on the surface. Such grids have the same topology as the  standard 

polar grid and  share many of its desirable features, as discussed  below. Other  methods 

such as filtering, implicit methods,  or the use of nonorthogonal grids, do not present 

insurmountable technical problems, but our approach is to avoid these problems by finding 

a simple orthogonal  coordinate  system that  has most of the essential features needed in a 

global ocean grid. . 

Let us first consider what are  the  important physical, numerical, and  computational 

issues that arise in selecting or designing such a grid? 

Physical The main physical feat.ures effecting horizontal grid resolution are: 1) the 

complex topography, which strongly influences the pathways of ocean currents; 2) the 

narrow western boundary  currents  (tens of kilometers wide) that.  are responsible for 

poleward transport of heat  and  salt; 3) the relatively narrow (100-200 km) zonal equatorial 

current  systems  and linear waves in the equatorial waveguide, and 4) in  eddy-resolving 

models: t.he characteristic  length scale of the dominant. instability mechanism, which  is 

smaller at higher 1a.titudes. This length scale is the Rossby deformation  radius R1 = C,/f 

which depends  on the Coriolis parameter f and the gravity-wave speed Cg of the first 

internal mode (typically Cg is of order 1-3 mj’sec, and R1 ranges from about 60 km at 

20” to less than 10 km at latitudes  greater  than 60’). In  short, we  would  like to have 

resolution focused near western boundaries, at. high latitudes,  and to a. lesser degree near 

the  Equator. n o m  the point of view of st.udying long-term climate variability [9], we 

would also like to have reasonably high resolution in the North-Atlantic  and the subpolar 

deepwater  formation regions for  modeling the thermohaline circulation (THC). 

Numerical: In order to employ simple and  accurate numerical algorithms, we would  like the 

grid to have the following properties: 1) no grid  poles near ocean points, to avoid  overly- 

. restrictive  CFL  limits  due small cell widths; 2) it should be  able to support  the second- 

order spatial accuracy of the finite-difference  schemes typically employed in OGCMs; 3) we 
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would prefer that one  coordinate  should  be along the zonal direction in the Equatorial 

region in order to  obtain  accurate finite-difference dispersion relations for the linear waves 

(particulady Kelvin waves which play an important role in modeling El Niiio); these  are 

much less accurate along diagonal directions in the mesh [lo]; 4) for simplicity we  would 

prefer the grid to be orthogonal and, if possible, to have an analytic  representation so that, 

no artificial  nonorthogonality will be introduced in the numerical construction of the grid; 

and finally, 5 )  we  would also like the grid to be a single  globally-connected mesh, rather 

than a composite mesh, in  order to avoid interpolation in overlap regions. 

Computationd For computational efficiency  we  would  like to have a simple data  structure, 

and for this reason we choose to restrict ourselves to dipole grids, since they can be mapped 

onto a single cyclic  logically 2-D mesh, so that indirect addressing is not required for near- 

neighbor communication. On parallel machines this  data  structure also has the largest 

possible subgrid ratio  (the surface-to-volume ratio of data on each  processing node) which 

is generally desirable for enhanced performance on MPPs. More complex data.  structures 

associated wit.h composite or multipole grids generally  involve explicit looping over patches 

and a reduced subgrid  ratio.  The  other issue  is the ocean-land load imbalance problem, 

which in parallel ocean models  is  usually ignored, allowing processors with land  points to  

sit idle or do useless  work. For this reason we would like  t.he ra.tio of ocean t o  land  points 

in the field arrays t.o be as large as possible. 

In  this paper we  will present a class  of orthogonal 2-D spherical dipole coordinate 

systems that can be  adjusted to satisfy essentially all the desirable  propert,ies discussed 

above for global ocean models. Implementation of such a grid requires an ocean  model 

capable of handling general orthogonal  coordinates. In Section 2 the primitive  equations 

for ocean dynamics  are derived in general curvilinear coordinates,  and the basic finite- 

difference operators axe presented for B- and  C-type grids; the implementation  in  our ocean 

model, the Parallel Ocean Program (POP), is also discussed. In Section 3 we introduce 

a simple  analytic  dipole grid with  arbitrarily placed  poles that reduces to the  standard 
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polar  grid as a special case. In Section 4 we discuss composite generalizations of this basic 

idea  and show that composite grids developed  previously by others  are special cases of 

this general framework. The breakdown of second-order accuracy in composit,e 'grids is 

also discussed. Section 5 presents a class of continuous generalizations of the composite 

grids that. support. higher-order spatial differencing  schemes. In Section 6 the algorithm 

for numerically constructing such a grid  is  given, and the parameters defining the syst,em 

are  adjusted t.0 satisfy various desirable properties in a computational mesh with realistic 

bathymetry.  In  Sectian 7 results  are shown  from  two  numerical integrations using the POP 

model: one using a non-eddy-resolving (2/3") average-resolut.ion grid, and another using 

an eddy-resolving (1/3") grid. 
I 

2. The Primitive  Equations  in  Generalized  Spherical Coordinates 

Ocean dynamics  are described by the 3-D primitive equations for a thin strat.ified 

fluid  using t.he  hydrostatic  and Boussinesq approximations. The cont,inuous equations in 

standard polar coordinates (with vert.ica1 z-coordinate)  are: 

momentum equations: 

d 
-u + L ( u )  - (uv tanr$)/a - f v  = - 92 + F . z ( u ,  2.) + F v ( u )  ( l a )  at poacos# dX 

a 
acos# 84 + -(cos$ va) 

FH~(V, u)  = AM V2v + v ( 1 -  tan2 d)/u2 + 2sinq5 du 
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continuity equation: , '  

.. 
C(1) = 0 

hydrostatic  equation: 
aP - = -PS 8% 

equation of state: 

tracer  transport: 
d 
at --T + C(T) = DB(T) + Dv(T) 

d 
a+ -s + C(S) = DH(S)  + D V ( S )  
Vl 

where X, 4: z = T - a are longitude, latitude  and  depth relative to mean  sea level T = a; 

g is the acceleration due to gravity, f = 2R sin $J is the 'Coriolis parameter, and po is the 

background density of water. The seven variables in these equations are the two horizontal 

velocity components (u, v), the vertical velocity 20, the pressure p ,  the density p, and the 

temperature T and salinity S. AH and AM are, respectively, the coefficients for horizontal 
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diffusion and visc0sit.y (here assumed to  be constant)! and' K m d - p  are  the c&&ponding 

vertical coefficients  which typically depend on the local Richardson number Ill]. The 

third t e r m  on  the left-hand side in Eqs. (la?b)  are due to the convective derivatives 

in du/dt  a,cting  on the unit vectors in the X, q5 directions, and the second and  third 

t e r m  in  Eqs. (ld,e) arise in a transversely-isotropic formulation of the viscosity [12]. The 

forcing due to wind stress  and  heat  and fresh water fluxes are applied as surface boundary 

conditions to the friction  and dissipative terms F and D. For more detailed discussion of 

these  equations see for example, [ 13). 

To derive the primit.ive equations in general coordinates, consider the transformation 

from Cartesian coordinat,es (<I! 52: [3 with origin at  the center of the  Earth)  to' general 

horizontal coordinates ( gr!  gg2 z ) ,  where qs and qy are  arbitrary curvilinear coordinates 

in the horizontal directions,  and z = T - Q is again the vertical co0rdinat.e normal to  the 

surface of the sphere. For simplicity of notat.ion in the final equations, we have  chosen to 

denote actual distances along the curvilinear coordinates by x and y, which  lie along the 

circumpolar (longitude-like) and  azimuthal (1atit.ude-like) co0rdinat.e lines, respectively, on 

dipole grids with two arbitrarily located poles. The differential 1engt.h element ds is  given 

by 

(where i, j = x, y and  repeated indices are  summed).  The  metric coefficients hij depend on 

the local curvature of the coordinates. Differential lengths in the Z direction are assumed 

independent of x and y, so no  metric coefficients  involving z appear.  Further  restricting 

ourselves to orthogonal grids: the cross terms vanish, and we have 



where Ai and Si can'be interpreted as either infinitesimal or  finite differences and  their 

associated derivatives. Fomulas for the basic horizontal operators  (gradient, divergence, 

curl) can be found in standard textbooks [14]. The  gradient is 

where 2 and 9 are unit  vectors in the cc, y directions. The divergence  is: 

which gives the form of the continuity  equation (Eq. 2) (ux and uy are  the velocity 

components along the 2 and 9 directions).  The advection operator (Eq. IC) is similar: 

The  horizontal part (z-component) of the curl operator is 
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The Laplacian  operator, which appears in the viscous and diffusive terms (Eqs. Id, le, 5c): 

is given by 
v21cI=v.v+ 

The  other horizontal finite difference operators  appearing in the primitive equations can 

also be derived in general coordinates. The Coriolis terms are simply given by 

252 x u = -2 fua, + 9 fu ,  . 

The  metric momentum advection terms corresponding to  the  third  terms on the left in 

Eqs. (la, b) are given by [15]: 

(uz'tan$)/a + uZuyk, - u2kx (1 5a.) 

(u2 tan4)/a + uZuyk, - uZky (15b) 

Note that these revert to  the  standard forms (left of arrows) in spherical polar coordinates: 

where h, = acosQ and h, = a. The met.ric t,erms in the viscous operators (second and 

third  terms on the right in Eqs. ld,e) require a more careful treatment. These terms were 

derived by M'illiams [12] in spherical coordinates, by applying the thin-shell approximation 

( T  ---f a )  to the viscous terms expressed  in terms of the stress  and rate-of-strain tensors. 

This form was chosen to  insure transverse isotropy which  implies that for solid rotation 

the fluid is stress-free. The general coordinate versions of these  terms  are derived in 

Appendix A. The results are 
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The formula. for .7HY(2cY, uZ) is the same  with x and y interchanged eveqwhere. It is 

straightforward to show that these also reduce to the correct form in the spherical polar 

limit (Eqs. ld,e). 

The exact finite-difference versions of these operat.ors can be easily  derived  for the 

various types of staggered horizontal grids A,B,C,D,E [16] given only the forms of the 

fundamental  operators: divergence, gradient, and curl for that  type of mesh.  Most  OGCMs 

employ either  B-type grids (scalars at cell centers, vectors at cell corners) or C-type grids 

(scalars at cell centers, vector components normal to cell  faces).  Using standard notation 

[13] for finitedifference derivatives and averages: 

the fundament.al  operators on C-grids have the same form as Eqs. 9, 10, and 12 (there is 

no t,ransverse avera.ging of t.he  fundamental derivatives as in the B-grid, but  the Coriolis 

terms (Eq. 14) must be  averaged). For the B-type  grids,  they are given by: 

As discussed in  Appendix A, in Bryan-Cox models  (which  use a B-grid formulation) all 

viscous and diffusive terms  are given  in t.erms of an approximate C-grid discretization in 

order to ensure they will damp checkerboard oscil1a.tion.s on the scale of the grid spacing. 

The implementation of general coordinates in the POP model was relatively simple. 

POP is a Bryan-Cox type OGCM with an implicit free-surface formulation of the barotropic 
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mode [17]. ,It &e&a centered-difference spatial differencing  scheme that is second-order 

accurate. The  data  structure is such that  the field arrays  are organized as horizontal slabs 

and  are  operated on with an outer loop over vertical levels 1181. (This is different than 

previous versions of the Bryan-Cox model, such as the GFDL MOM model [19], where 

the  data is instead organized as longitude-depth slabs with an outer loop over latitude.) 

On parallel architectures the horizontal dimensions are spread across processors, while the 

vertical dimension @. heid  in-processor. For this reason the vertical dimension plays  only 

a minor role in the parallelization, and the subgrid ratio is just that of the horizontal 

. .  

field arrays. POP is designed to be run on a variety of machine archit,ectures, including 

dist.ribut.ed-memory paranel architect,ures (both message-passing and  data-parallel) 1 as well 

as serial or vector archit.ectures. General coordinates were  easily implemented in the model 

because of the code structure: for  portabi1it.y all communica.tion  is isolated in a small set, of 

stencil and global reduction routines. Most of the stencil coefficients are time-independent 

and  are precomput.ed and stored. While the stencil coefficients  change under OUT co0rdinat.e 

t.ransformation, t,he st.enci1 pat,t.erns remain the same. Therefore it was  only  necessary to 

precompute the new  coefficients:  leaving the rest of t,he code unchanged. 

3. Analytic Dipole Grids 

We  now introduce the simplest  dipole coordinate syst.em  wit,h arbit.rarily placed  poles 

that is both analytic  and reduces to  the  standard polar grid as a special case. It is  most 

easily constructed geometrically, as shown  in Fig. la. Consider an axis (say  on the  Earth) 

parallel to  the North-South polar axis but displaced by a constant distance, such that. it 

intersects the surface at two points symmetric about. the Equator at latitudes fa. These 

are  the displaced poles,  which on t.he unit sphere are represented by the  unit vectors i., .and 

is. All coordinate lines in this system are circles determined by the intersection of cert.ain 

, planes with the surface. Associated wit.h  ea.ch coordinate is a set of planes containing 

a common axis. The y-coordinate lines are circles determined by the int.ersection of the 
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planes  containing the displaced polar axis with the surface of the sphere. The s-coor&nate 

lines are circles determined by the  set of planes containing  another axis, defined as the 

intersection of the two tangent  planes at  the displaced-pole points. We will henceforth 

refer to  the x and y coordinate lines as “z-circles” and “9-circles,” respectively, and to 

the corresponding  planes as “z-planes” and “y-pla,nes.” The system is most nat.urally 

described by two angular coordinates x and 7 around  these axes. The polar axis will be 

’ ,  1 ’  , , _ .  - , ’ , , ,  . ‘ . .  . ,, ‘...,i.’’;:. . I  ’ . . . ’  - . .  ,, . .. 

. ..  

referred to as the “x-axis” and  the tangent-plane axis as the “ ~ - a ~ i s ”  (note 0 < x < 27r, 
and cr - n/2 < 7 < k/2 - Q with the choice of origin  shown in Fig. 1). In the polar limit 

Q -+ n/2, the x-axis. approaches the  true North-South polar axis, the 7-axis moves off 

to infinity, and  the x- and y-circles  become  lines of const.ant latitude 4 and longitude A, 

related to x and T by: x -+ X, tan T sec cr 4 sin 4. 

The analyt.ic  relations between the new coordinates (x, 7) and the old are given by 

the simultaneous  solution of the  equations for the x- and y-circles passing through  an 

arbitrary point on the surface, represented by the unit vector i = (X, 4) or ((I,&,&) with 

<: + <: + = 1 (see Figs. 1b:c): 

x-circle: 

y-circle: 

i . c = c  , c = c n y  2 

A A 

c = sinxcoscr , n, = C1 sinx - €2 cosx . 

where b =Ibl: c =Icl: and b, c are  the vectors’from the center of the sphere to nearest point,s 

on the z and y planes, respectively, and n, and n, are  the corresponding unit vectors in 

these  directions. The orthogonality of the  coordinate  system is easily demonstrated by 
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observing that. at the surface point f ,  the z and y coordinate circles  lie along directions 

5k ,- (iiz x P) and 9 - ( i i v  x P). -The orthogonality imiiiediately foilows’from .. . ,  , 

= ii, iiia, - (f * iiz) (f n i Y >  
= sinTsinX - bc = 0. 

This simple  analytic dipole grid can be equivalently constructed using bipolar coordinates 

on the plane [14] €oUowed by an inverse stereographic map to  the sphere (since the 

stereographic map is conformal, orthogonality is preserved), and  it is in fact equivalent 

to  the system  obtained from the solution of Poissonk equation on the surface of the sphere 

wit.h two point charges of opposite sign at. the poles. 

By simply rotating  this co0rdinat.e syst.em, dipole grids with  arbitrarily located poles 

can  be construct.ed. We  will refer to a co0rdinat.e system of this kind as one of t,he basic 

Analytic Dipole (AD) .grids. Note that a given  AD grid is completely specified by the 

location  and  orientation of either its polar x-axis or its tangent-plane .r-axis.  An example 

of such a grid,  with the  south pole point f, rotated t.0 the  true  South Pole, is shown 

in Fig. 2. This grid fulfills  most of the desirable features discussed in  the last sect.ion: 

with one exception: it does not  have purely zonal coordinates in  the Equatorial region: 

which is desirable for accurat.e finite-difference dispersion relat.ions of the linear waves. In 

Sect.ion 5 we  will discuss how to  get around this problem. But, first. we consider composite 

generalizations of this basic dipole grid. 

4. Composite Dipole Grids 

The  properties of the basic AD grid make it possible to easily construct global 

composite grids made up of sections of  two  or more of them. To show this, we make 

the following observation: 

Theorem: For each pair of circles  on the sphere cut by arbitrary planes passing through 

its surface, there is a unique AD grid with these as coordinate circles. 
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The proof ‘ i s  by construction. If the circles cross each other,  they are both y-circles and 

intersect at the pole points, which defines the x-axis. If they do not meet they  are z-circles, 

and  the T-axis is the intersection of the two planes containing them.  Either case  uniquely 

defines an AD grid. A pole  point is just  the limiting case of an s-circle approaching one 

of the  tangent planes, so it also follows that: 

. . .  . , .a 

Corollary: Given any circle on the sphere and any surface  point not lying on it,  there exist,s 

a unique AD grid wi$h these ali one of its z-circles and one of its poles. 

This corollary can be used to construct a simple twepatch global composite mesh from two 

different AD grids which share a common s-circle, one covering the  area ‘‘inside’’ and the 

ot,her the area “outside” t,his matching circle. Each patch  contains one arbitrarily-locat,ed 

pole, which together  with the matching x-circle  defines the AD grid for that.  patch. An 

example of such a grid shown in Fig. 3. In this case the Equat.or is the mat.ching 2-circle, 

and different AD grids are used  in the  northern and  southern hemispheres, with poles at 

(95IV750N) and 9OS, respectively (so it is just a standard  latitudelongitude grid in the 

south). We note  that  this t-ype of comp0sit.e  grid  is orthogonal everywhere: even on the 

matching circle. However, as will be discussed  below, the finite difference scheme suffers a 

loss of second-order accuracy in the vicinity of the matching circle. 

It is also possible to construct  another  type of two-patch composite mesh by arranging 

the AD grids so that.  the matching circle is an  s-circle of one of them  and a y-circle of the 

other.  In  this case the global grid will have three poles: two lying on the matching circle 

and one inside  one of the patches. An interesting example of such a grid, recently developed 

independently by R. Bleck, is shown  in Figure 4. In this global grid, a standard  polar grid is 

used everywhere south of the matching circle at 65N. The region above 65N is covered with 

another  grid, derived using bi-polar coordinates. As mentioned above, this is equivalent to 

an AD grid with the two poles located on the matching circle. In this case all three pole 

points in the global grid can be hidden within land masses. This grid has the advantage 
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that  it is equivalent to a. standard polar grid ov& most of the globe, while retaining  the 

desirable  feature that  the resolution decreases at high latitudes. One disadvantage of this 

type of “cross-matched” grid is that.  it cannot, be mapped onto a cyclic 2-D array  without 

folding or cutting, which complicates the  data  structure as discussed above. The  rotated 

global grid used by Eby and Holloway [l] is another example of a cross-matched composite 

grid, where the matching circle is at  the Equator and the northern  rotated grid is used  only 

in the  North Atlantic and Arctic oceans. The two patches only meet at the  Equator in the 

Atlantic and hence the Bering Strait ii not connected, but  (because the global connectivity 

has been given up) it is possible to lay-out the grid as two  pa.tches on a single  cyclic 2-D 

array. For eddy-resolving models, this  rotated grid has the disa.dvantage that it.  is not 

possible t.o focus resolution at high northern  latitudes since there  are no poles north of the 

Equator. 

Composite grids with three or  more AD sect.ions can also be  constructed using the 

above theorem.  Imagine several planes passing through the sphere but not intersecting 

within it. The region of the surface between  neighboring  circles cut by these planes can be 

covered with  a unique AD grid  which contains them as x-circles. If there  are n - 1 planes, 

t.hen there will be n regions  covered by different  grids: n - 2 of them  are bounded by 

two neighboring mat.ching circles:  while the two  on the ends  are bounded by one matching 

circle and each contain  a pole point. This defines an n-patch global composite grid  which: 

like the t,wo-patch grids described above, is  everywhere orthogonal.  Note that  in’these 

n-pat.ch grids the 2-coordinat.es lines are all circles, as in the basic AD grid, however, 

the y-coordinate lines are no longer  simple  circles: they are a line of circular arcs linked 

end-to-end from one pole to  the other  and joined with equal slopes. 

Due to  the orthogonality, the slopes of the y-coordinate lines are continuous across 

matching circles.  However, they do not in general have continuous second derivatives there, 

_ .  which makes it impossible to const,ruct a second-order-accurate finite-different  scheme (it 

is possible to arrange for the discontinuity to vanish  locally, but  this can only happen near 
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one or two points along the matching circle). This is because a discont.inuous  change  in 

t.he second derivative of a coordinate at a point (with  respect to some other locally smooth 

coordinate like X, 4, or &) leads to a piscretization  with a sudden change in grid  spacing 

at. that point (as is the case across the  Equator in Fig. 3), and  the leading-order truncation 

. . . .  

error of typical second-order finite-merence operators is proportional to this change in 

grid spacing. I ,  

To illustrate how the loss of second-order accuracy comes about, consider a simple 

one-dimensional transformation  from some smooth  coordinate < to a new coordinate 

y = f (t), where for simplicity both g and y are scaled to lie within the interval 

0 < t, y < 1: and f is the funct.ion defining the coordinate  transformation. If the int.erval  is 

discretized  with N uniform cells of width A t  = 1/N, then analyzing the  truncation error 

d2) - d2y /dc2  - Aj - Aj-1 (where Aj = yj+l -  yj) with a Taylor series expansion of f(t) 
around  nearby  points: 

.. 

the error is proportional t.o 

where f j  = f(<j). Therefore if f is a smooth  function of c, and if the system is discretized 

uniformly in 5, then  the differencing  scheme  is  second-order accurate in the sense that, 

the leading-order truncation  error decreases l i e  At2 = 1/N2. This argument,  is clearly 

invalid, however, at points where f has no  second derivative; there  the differencing  scheme 

is at best. first-order  accurate. This is precisely what occurs with the y-coordinate lines 

crossing the matching circles in the composite grids described above. To get around  this 

problem, we consider in the next  section the continuum limit of a composite grid, with 

infinikly many AD sections, so that  the error is distributed globally (and infinitesimally) 

across the grid and hence it vanishes. 
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5. Continuously-Differentiable  Dipole Grids 
. -  

Taking the limit n -, 00 of a continuum of composite grids whose matching s-circles 

are displaced only infinitesimally from one another, we obtain a new class of dipole grids. 

To characterize a grid of this type, consider the curve C defmed as the locus of points 

at the centers of its z-circles, as illustrated in Fig. 5a. Each z-coordinate circle  in the 

grid is determined by the plane normal to some vector b from the center of the sphere 

to a point  on this curve. Thus the coordinate  system is uniquely defined by the curve: 

and  its end points  are  the poles. Figure  5b shows this curve for the basic AD grid. In 

this case it is simply an arc of the circle  which  passes through the origin and the nearest 

point on the T-axis with its center halfway between them. As will be shown  below: the 

y-coordinate lines of a grid will  have  exa.ctly as many derivatives as its associat.ed curve C. 

1 Since the trunca.tion  error of an nt.h-order accurate differencing scheme is dn) - dny/dcn,  

i t  follows that grids whose associated curves C possess n derivatives at every point will 

support  nth-order differencing  schemes. 

. , , -  . ,  

In  this section we consider the class of grids associated with t.he set of cont.inuously 

differentiable curves C connecting two arbitrarily located poles on the sphere  and subject. 

to the  constraint  that  its normal planes r b = b2 not intersect wit.hin the sphere. We 

will  refer to these as Continuously-differentiable Dipole (or “CD“) grids. Each curve C 

associat.ed wit.h a CD grid can be charact.erized by a single parameter s, the distance along 

the curve measured from some  fixed point on it.  The equations for the curve and its unit 

tangent vector 6 can be expressed in Cartesian coordinates as 



E 

where b l ,  b2, and b3 are all smooth  functions of s. Given b, and (or equivalently bl, bi ,  

and b3), all the properties of the grid can be computed in the neighborhood of the 2-circle 

associated  with b. The coordinate  directions at a point ij, on the 2-circle are given  by 

5 

.. i 
. . ,. 

Consider the infinitesimal annul$ on the surface containing the 2-circle associated with 

b, and bounded by the two planes  normal to bl = b + db/2 and b2 = b - db/2 (say with 

bl > bz) .  The  area of the annulus is  simply  given by dA = 2n(bl- bz)  = 2ndb, provided the 

planes do not  intersect  within the sphere. The y-coordinate changes dy across the anndus 

. a  

can be derived analytically given only b and 6 ,  since these  determine the associated 7-axis 

and hence the AD grid within the annulus  (note that t.he associat,ed polar x-axis does not, 

in general pass through  the point b and is  not  aligned with b or 5). The  axis is normal 

to  the plane  containing b and 5, and crosses it at a  point 7, which  is determined from the 

simultaneous  solution of the equations for the two planes, T bl = bz and 7 e b2 = b:. 

Taking the limit db --+ 0 yields 

which can  be solved  for the two components of r .  We label a.  given point. on the 2-circle with 

the unit vector f b )  which in  a cylindrical coordinate  system  with axis b is t b  = (b ,  A b ) ,  

where X b  is the angle about  the center of the 2-circle (see Fig. 5a). The y-coordinate 

changes at that point  are given  by the y-circle arc-lengths dy of its associat.ed AD grid 

across the annulus, and the coordinate changes  can be expressed analytically as 



where the metric  function G is a smooth  analytic function of its arguments. The algebraic 

derivation of G is outlined in Appendix B. It follows  from Eq. 26b that  the y-co0rdinat.e 

lines have as many derivatives as the curve C. 

Now consider the implications of the condition that  the two planes normal to bl: b2 

not int.ersect within the  sphere, namely: 1 7 1  5 1. This leads to Ibl - bzl 2 5 sin2 012, 

(where 012 is the angle between bl and bz). In  the limit db + 0, this becomes 

/ b x P I < b .  (27) 

That. is, the sine of the angle between b and 9 must be less than b, so the closer they  are to 

the origin t,he more aligned they must be with one another. This constraint implies that 

b cannot have a local minimum at any point along t.he curve C except. at the’origin, for 

if it did then b and 5 would be perpendicular at  that  point, violating Eq. 27 for b > 0. 

Therefore the curve C must pass though the origin, ,and b must increase monotonically 

along it from the origin to each  pole.  Since it can only pass through the origin once, 

there is exactly one 2-circle  in the grid which is a great circle, and it is given  by the plane 

normal to b = 6 at b = 0. We refer to this great circle as the  “Equator” of that grid. 

Any comput,ational mesh we construct. will  have this great circle aligned with the Eart,h’s 

Equator for the reasons discussed above. So for  convenience we will henceforth t,hink of 

the CD grid as aligned on the  Earth in this way and refer to various points by their true 

latitude and  longitude. 

A 

To distinguish the two hemispheres, we  now redefine b as: b = lbl in t,he  northern 

hemisphere but. b = -[bl in the southern hemisphere. Then b must  be a monotonically 

increasing function along the curve horn the southern to  the  northern pole, and s = s(b) 

is a unique single-valued function. The surface-area integral can then  be expressed as: 
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f 

.where  the,  integral is along the curve C. F'urthermore: the functions b l ,  b2, and b3 (and 

hence b, 6, and T) can be  reexpressed as smooth  functions of b only, and we may rewrite 

Eq. 26b as 

where g is a smooth  analytic  function of b and A b .  

For completeness we  now specify the fundamental  orthogonal variables qz, q3, of the 

coordinate syst.em which sa.tisfy qz = constant on a given z-coordinate line, and q3, = 

constant on a given y-coordinate line.  Since b = constant uniquely identifies a given x- 

coordinate circle, it is natural  to choose qz = b. For the other variable we may  choose 

q, = XO: t.he angle (longitude) at which a given y-coordinate line intersect.s the Equator.  In 

the limit of a simple AD grid, X0 is relat,ed to  the angle x by tan x = sin XO/(COS Q - cos XO) 

(see Fig. IC). For a general CD grid there is no simple expression for XO, but  it can be 

expressed formally in  terms of the solution of an integral  equation: 

The  integral is along the y-coordinate line  between 20 = (O,Xo), and f b  = (b: Ab). This 

equation must be satisfied by a smooth function A6 = &@,X()) tha.t gives the location of 

the point f b  as a  function of the fundamental coordinat.es b and XO. The differential length 

elements can therefore  be expressed as: 

dx = hz (b? Xo)dXo 

dy = h,(b,  Xo)db 

where h, and h, are t,he  metric coefficients (Eq. 7) of the coordinate 

The choice of coordinates b, X0 is somewhat arbitrary, but note that  the 

transformation. 

finite-difference 
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operators (Eqs. 9-16) do not depend on this choice, only on the coordinate  lengths across 

the mesh cells Ai - dsi = h&i, so it is not actually necessary to  directly solve an int.egra1 

equation such as Eq. 30 to construct the mesh: 
. .  

6. Mesh Construction 

In order to construct a computational mesh for OGChIs with  realistic  bathymetry, 
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corrolary in Sec. 4) which intersects the x = 0 line at angle $j+l. The condition that 

successive  x-circles not  intersect  within the sphere  is replaced by the simple requirement 

that   the  j th pole ~ j '  lie within (i.e., on the poleward side of) the  j th  matching  s-circle.  In 

this formulation, the coordinate-changes dy at a point & on the z-circle labeled $0, are 

again given in terrds' of an analytic  function: dy = f(40, a7i&,)d$o. Note that since the 

truncation error d2) - d 2 y / d t 2  involves a term (af/acr)/(acr/a$o), second-order accuracy 

requires that CL have a continuous first derivative 8cr/d&, evewhere. 

The algorithm for analytically  construct.ing a. discrete mesh for an n-patch composite 

grid using this method is  given in Appendix C. We employ it with  a very large value of 

n when actually  constructing global  ocean grids. Since it is an analytic  construction, the 

only nonorthogonality  introduced is due to roundoff  error.  In  practice we found that if the 

mesh  is computed  with 64-bit float.ing-point numbers, the calculated , .  . . I mesh  will . .  converge 

to about 8 digits of accuracy, provided n is large enough tha.t - 0.01". 

Two examples of meshes constructed using this n-patch  algorithm are shown in Fig. 6. 

In this case, the function ~ ~ ( 4 0 )  was chosen to  have the form: 

where an is the  latitude of the  northern pole of the CD grid. Thus when $0 = 0 (the 

Equator), CL = 7r/2 (the  true North  Pole),  and  it approaches the  northern grid pole  from 

t,he north Q + an as #O -, an approaches it from the  south. In  the  southern hemisphere 

CY = 7r/2 everywhere, so it is just  the  standard polar grid there.  Note that this choice for o 

has a continuous first derivative aa/d&, = 0 at the  Equator, as required for second-order 

accuracy. In Figure 6a  the  northern pole has been placed in  Canada at (95W,50N), and 

in Fig. 6b  it  has been placed in Asia at (85E,50N). 
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that  the discontinuity in y-spacing across the Equator has vanished. This grid therefore 

has essentially all the features we set out to capture  in a simple dipole coordinate system. 

In  particular,  it has zonal coordinates at the Equator (unlike the grid in Fig. 2), and.  it 

can  support second-order accurate  spatial differencing  schemes  (unlike the grids in Figs. 3 

and 4). 
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7. Numerical . .  Simulations . .  at (2/3") and (1/3') Resolution 

As examples of global simulations using a computational mesh based on a CD grid, 

we present  results from two numerical integrations: one a marginally eddy-resolving (1/3O) 

grid, the other a non-eddy-resolving (2/3O) grid (brackets  denote the average resolution 

of surface  ocean points). The horizontal dimensions are 768 x 512 with 20 vertical levels 

for the (1/3O) grid, and 384 x 256 with 32 vertical levels for the (2/3O) grid.  "'These were 

const.ructed in the same way as the grids discussed in the last section,  with a Mercator grid 

in the  southern hemisphere and using Eqs. 32 and 33. The  northern  grid pole is  displaced 

into central  Canada at (50N: 95W) in the (2/3O), and (50N, 93W) in the (1/3")  grid. 

These are again Mercator-like grids in the northern hemisphere with  square cells along the 

two y-coordinate lines that cross the  Equator  at X, f 90' (where X, is the  latitude of the 

northern  grid  pole).  Figure 7 shows two spherical  projections of the (2/3") grid.  Note in 

Fig. 7a that. t,he Hudson Bay is closed off since it is too close to  the  northern grid  pole; 

however, the  straits connect.ing the Beaufort. Sea with Baf€in  Bay are  open. The  transport 

in  and  out of Hudson Bay  is  believed to be small, so we elected to eliminate it rather  than 

place the pole in Asia and consequently sacrifice resolution in the North  Atlantic. Note 

in Fig. 7b that  the z-coordinate lines  in the  Equatorial region are essentially zonal: and 

only gradually begin to deviate from this  at mid-latitudes. It is of course possible to focus 

more latitudinal resolution near the Equator by smoothly decreasing the y-spacing there. 

, Figure 8 shows the resolut.ion and aspect  ratio of the (1/3O) grid,  plotted in logical 

space. The resolution is here defined as the square-root of the cell area in kilometers, and 

the aspect ratio is the  ratio of the longer to shorter sides of the cell (note that  the (2/3") 

grid has just twice the resolution in km of the (1/3O) grid,  and the aspect  ratio  is the 

same for both).  The resolution ranges from 60-65 km in the equatorial  Indian Ocean to 

10-15 km at  both  the  northern and  southern'boundaries of the grid (so neither of these will 

tend to dominate  the CFL limits). Compared to a standard Mercator grid  with comparable 

equatorial  resolution, it has much finer resolution along the northern coastlines of North 
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the region of the Gulf Stream  and the Labrador Sea, which is important for resolving the 

surface and deep western-boundary currents associated with the North  Atlantic component 

of the THC. Note the resolution is not zonally uniform in the  southern hemisphere because 

of the variable s-spacing (Eq. 33). The  aspect  ratio (Fig. 8b) is less than 1.2 over  most of 

the ocean  and is greater  than 2 only in small areas along the North American coastline. 

This grid -also has a reasonably large fraction (67%) of ocean vs. land  points. 

In  Figure 9 we show results from numerical simulations using the POP model at the 

two resolutions. In  the initial state  the ocean is at rest with respect to  the  Earth, and 

the  temperature  and  salinity fields are initialized to  the annual-mean climatological values 

of Levitus [21]. The models are  then forced  only at  the surface: heat and freshwater 

fluxes are approximat.ed by restoring to annual-mean surface Levitas values with a one- 

month  relaxation  time scale, and the annual-mean climatological values of Hellerman 

and Rosenstein [22] are used  for the wind stress. The (2/3") run uses Laplacian mixing 

parameterizations  (Eqs. ld,e and 5c) with AH = An{ = 1.0 X lo3 m2/s.  The (1/3") uses 

the biharmonic forms (Eq. A3 for the viscosity, and the same expression with Fz ---t V2 

for t.he tracer diffusion) which  selectively damp only the highest wave numbers. The 

biharmonic viscosity  coefficients  \\;ere  chosen to vary spatially like the cube of t.he grid 

spacing,  with a value of AH = Anf = -3.0 x 10I1 m4/s for a cell with the average 

equatorial grid spacing. The models  were int,egrated with  time  steps of approximat,ely 

50 and 100 minutes for the (1/3") and (2/3"), respectively; these are limited by the CFL 

number associated  with the gravity-wave speed of the first. internal (baroclinic) mode. The 

integration  lengths were 50 years for the (2/3") and 23 years for the more expensive (1/3") 

simulation. This is long enough for the upper ocean to  have  reached a quasi-equilibrium 

state:  the geostrophic adjustment of the velocities to  the density field is for the most part 

comdeted for both  the barot.roDic and first baroclinic modes. The  deep ocean circulation 
- .  

involves  diffusive  processes  which require much  longer (hundreds of years) to equilibrate; 



reflect the upper ocean circulation.  Figure 9 shows the instantaneous sea-surface height 
. ,  . ,  

7 (relative to the mean geoid) at the end of the (2/3") and (1/3") runs. The contour 

interval is 20 cm, and  the zero contour is shown as a dotted line (the sign is such that 17 is 

positive in the  Equatorial Pacific and negative around  Antarctica).  Contours of constant 

7 lie approximately along streamlines of the flow due to geostrophic balance, and closely- 

spaced  contour lines indicate  faster  currents.  Comparing the (1/3") and (2/3") surface 

heights, we see that the (1/3") displays very active eddy fields, but in the (2/3") they  are 

almost completely absent  (tropical  instability waves appear in both  solutions: but they do 

not  stand-out  in  the surface height field). This is partly because the (2/3") grid  is  not 

fine enough to begin resolving the Rossby radius of the first baroclinic mode and  partly 

because it uses a  Laplacian  rather than biharmonic formulation of the mixing terms. If 

biharmonic mixing is used at (2/3"), however, unphysical jets  are produced by the western 

boundary currents,  since  the eddies that would normally  diffuse them  are  neither resolved 

nor paramet.erized. The most eddy-active regions are in and  around t.he strong,currents, 

such as the Agulhas retroflection region  below Sout,h Africa, where the count,er-flowing 

Agulhas Current  and  Antarctic  Circumpolar  Current (ACC) produce  large eddies with 

diameters of 300 km  or  more. The region off the east coast of Argentina where the Brazil 

and  h-lalvinas  Currents collide  head-on  also has a  strong eddy field. Note that the Gulf 

St,ream is more eddy-active than  the Kuroshio Current in the Pacific; this is because the 

resolution in the Gulf Stream  is roughly double that in the Kuroshio (see Fig. sa). 

The large  scale  features of the height  field are  quite similar in many respects (for 

example  note the rough agreement of the  zercxontour  lines),  but  the ACC and all  the 

subpolar gyres are stronger in the (1/3") case. The transport through  the Drake Passage 

is about 112 Sv in the (2/3") and 145 Sv in-the (1/3") model (1 Sv = lo6 m3/s); this is 

reflect.ed by the  drop in surface height across the passage of -160 cm in the (2/3") and 

-180 cm in the (1/3") case. The momentum balance in the ACC is different in eddy- and 
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more strongly diffuse momentum vertically downward [23], resulting in a stronger, deeper 

ACC whose path is much more strongly infiuenced by the bottom topography, as seen in 

Fig. 9b. 

8. Summary 

In this paper we have present.ed a new class of 2-D spherical dipole coordinate systems 

which allow the northern grid pole to be smoothly displaced into a land mass. (such as 

North America or Asia). These grids are orthogonal and continuously-differentiable and 

can  therefore  support higher-order spatial differencing  schemes, including the second-order 

methods used in most current-generation models.  Like the  standard polar grid: they can 

be mapped  onto a logically 2-D cyclic array, which  simplifies the  data  struct.ure and t.he 

implementation on parallel machines. The paramet.ers of the grids can be  .adjusted to  

satisfy a number of desirable properties. h4ercator-like  meshes can  be constructed that. 

focus resolution in both  coordinate directions near the poles, as desired for  resolving 

the smaller Rossby radius at high latitudes.  The mean aspect ratio of grid  cells can 

be minimized by adjusting  the grid spacing, as in Eq. (33), although it. cannot, be arranged 

so that all mesh  cells are  square, as in the pure  hlercator grid. Each of these grids has 

exact.13- one coordinate line which  is a great circle, and  this can be aligned with the  Earth’s 

Equator to obtain a more accurate numerical representation of the linear waves and zonal 

current syst.ems there. By placing the pole  in North America we obtain higher resolution 

in the Gulf Stream  and  subpolar North Atlantic, which is useful  for modeling the global 

thermohaline  circulation. 

To implement  such a grid in an OGCM, we have  derived the primitive  equations 

in generalized spherical coordinates and presented the finite difference  versions of the 

fundamental  operators  on Arakawa B- and C-type grids. A simple algorithm for 

analytically  constructing the grid is given  in Appendix C. To demonstrate  the use of these 

new grids we have presented results  fiom two global simulations using the POP model: one 
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(2/3") mesh. While this new grid scheme has been implemented here in a z-coordinate 
.., . I.., , , 

, . , _ _ I , . _  , , ,. . . ,  .. . 

model, it is independent of the choice of vertical coordinate,  and so can be equally well 

used in isopycnal and sigma-coordinate models. 
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Appendix A: Viscous Terms  in  Generalized  Spherical  Coordinates 

The derivation of Eq. (16) follows the procedure of Williams [12].  The viscous terms 

are  written in generalized coordinates  and expressed in terms of the stress  tensor 7 i j  (related 

to  the rate-of-strain  tensor eij by Tij = 2 A ~ ~ i j ) ,  then the thin shell limit T -+ a is applied. 

Writing the viscous terms as FH, (u, , u,) = AH Fz , F ’ H ~  (up, ux) = AHF,, the curvilinear 

forms of F, and F, &e given by (see [ 121, Eqs. 7 and 8) : 

(for simp1icit.y the coefficient of visc0sit.y AH which normally multiplies 7i j  has been 

factored  out: 7ij  = 2e,). The expression for F, is the same with 2 and y interchanged 

everywhere. Other  terms  -appearing in the full expressions that involve the vertical z- 

coordinate,  either vanish identically (because the metric coefficients  for the horizontal 

coordinat.es are  independent of the vertical coordinate,  and vice versa), or are dropped 

because they are proportional to  the vertical velocity ‘w = uz which is small w << (u,, uy )  

in the thin-shell, shallow-fluid limit.  There is also a term a2u,/dz2 corresponding to  the 

vert.ica1  diffusion of the horizontal velocity,  which  is t.reated  separately  in Eq. (lg). Using 

Eqs. (8) and  (15c,d), Eq. (Al) can be rewritten as 



Inserting  the expressions for Tij and using bzuZ + 6gug = 0 in the thin-shell limit, we 

arrive  after  some  algebra at the form  for Fz given by the terms in brackets in. Eq. (16). 

In  the B-grid discretization, this operator (like the simple horizontal Laplacian)  contains 

a checkerboard null spa.ce. This is essentially because the underlying gradient  operator 

(Eq. 18a) annihilates a+/- checkerboard field. In Bryan-Cox  models the horizontal viscous 

and diffusion terms (Eqs. ld-e and  5c)  are usually discretized with an approximate C-grid 

discretization (a five-point  st.enci1 rather  than  the usual nine-point  B-grid st.encil), where 

the velocities on the cell  faces are taken to be the average of the velocities at. the B-grid 

cell corners. The resulting  appr0ximat.e  fivepoint  operator does not  contain the null space 

and hence is  able to damp checkerboard  noise on the scale of the grid spacing. In POP, 

the viscous terms (Eq. 16) are also evalwted with an  approximate five-point operat.or 

analogous to t.he  C-grid implementat.ion. If a biharmonic (i.e, V4 type) parameterization 

of the viscosity is used: the horizontal viscous terms  are  approximated by 

and  again, t.he expression for - 7 ~ ~ ( u ~ ,  u,) is the same with x * y everywhere. Here AH 

may be  spatially varying: as discussed  in Section 7. 

Appendix B: Algebraic Derivation of the Metric Function G 

The metric  function G defined by Eq. (26b) can  be derived algebraically given the 

parameterization of the curve C, or equivalently b and 6 from Eq. (23). First, r is 

determined from the solution of Eq. (25), and &om it the two  poles fn and f, associated 
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with  the local AD grid ih the neighborhood of the z-circle at b can be found. They lie in the 
~ , . . , , . 2 si. <,:. 

(b, 6) plane at angles fa from the vector 7, where 1 7 1  = sec cy (see Fig. lb).  The equation 

for the y-plane passing through a given point f b  on the s-circle is given by r c = c2, and 

the  three components of c can be determined from the solution of the equat,ions 

f b . C = C  2 

. I  + c = c  2 (B1) 

f , * c = c  , 
since the  points f b ,  2, and f, all lie in  the y-plane. Then  the coordinate changes dy in a,n 

infinitesimal annulus  around the x-circle can be derived as follows. Let 1'1 and f.2 label t.he 

2 

leads in the limit db -+ 0 to 
d f . * c  = 0 

d f . 6  = l d b l  , 
where df = f 1  - f 2 .  These equat.ions can  be solved algebraically for the  three components 

of di.: and expanding to leading order in db: the metric  function G can  be  obtained from 

dy = ldfl = G a db. The  actual  analytic form of G can be evalua.ted by resolving the 

vector equations B1 and B2  in Cartesian  coordinates  and solving for c and d? by direct 

substitution. 

Appendix C: Mesh Construction  Algorithm 

Here we present the algorithm for comput.ing a mesh based on an n-patch composite 

grid, as outlined  in Section 6.  For simplicit,y the algorithm is described here in vector 

notation (as in Appendix B). The  actual solution of the vector equations is most easily 

accomplished by resolving all vect,ors in a Cartesian  coordinate system ([I, &, &) with <3 

in the direct,ion of the  true polar axis, and lying along the intersection of the equatorial 

and pole planes (as in Fig. 1). 
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the  Equator) with ‘normal vector b3: and‘with a specified  mesh spacing (Az)ij around the 

circle  (which also determines the grid points fij on it). Then the next 2-circle at bj+l, 

the  points fi,j+l around it, and the arc-lengths (A,), (between f i j  and fij+l)  can all be 

computed from the geometry of the local AD grid  defined by bj and aj. The algorithm is 

outlined below: . . 

Begin loop over j 

1) Solve  for the two components of the vector 7’ associated with the AD grid  defined by 

ckj and bj using: 

where t.he local northern pole ( f n ) j  of the  j th AD grid  lies in the pole plane at latitude 

Qj 

2) Find  the local southern pole (fs)j using (&)j * Tj = 1. 

3) Solve for the next matching x-circle bj+l: 

where ( fo) j+1  is the point at latit,ude 4j+l where the x-circle at bj+l intersects the x = 0 

line. 

Began loop over i 

4) Solve for the  thr& components of the vector C i j  normal to  the 3-plane which  passes 

through  the  three points f i j ,  (fn)j, and (fs)j: 



* cij = c2j 2 

5 )  Solve  for the two components of ?i,j+l: 

End loops over i and j 

(to convert, the  arc lengths from radians on the unit sphere to kilometers on  the surface of 

the  Eart,h, multiply by its ra.dius a). In pract.ice we use this  algorithm with a value of n 

large enough that A00 - 0.01", as discussed  in  Section 7. To construct. a grid with near- 

square cells along a given y-coordinate line (say with index i o ) ,  we iterate with  this small 

A40 spacing until t.he int.egrated y-spacing  between the mesh points ( i 0 , j )  and ( i 0 , j  + 1) 

is just greater than  the  s-spacing between the mesh points ( i 0 , j )  and (io - 1,j). Then. the 

grid  cells along the y-coordinate line at io will have an aspect ratio of unit,y plus a small 

correction of order 1% for grids with order - 1" spacing. 
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Figure 4. An example of a cross-matched twepatch composite grid: recently proposed 
by R. Bleck [20]. A standard  polar grid  covers the globe  below 65N, and a section of an 
AD grid with  poles'on the matching circle is used to cover the polar region. 

Figure 5. Geometry of the Continuously-differentiable Dipole (CD) grid. Each 2- 
coordinate circle in  the grid has  an associated vector b normal to  the plane containing 
t.he circle. The curve C is the locus of center points of the 2-circles in  .the CD grid,  and 
its  endpoints  are  the grid poles.  For  every curve C between two arbitrarily  located poles 
satisfying  t,he  constraint  Eq. (27), t,here is a unique CD  grid  which can be constructed from 
it. The curve C is shown for a general CD  grid in a), and for an AD grid in b). 

Figure 6. Two examples of CD grids constructed from the  parametric  function ~ ( 4 0 )  

given by Eq. (32). In a) the northern grid pole is in Canada at (95W,50N), and in b) it is 
in Asia at (85E,50N). B0t.h  use a standard Mercator grid in the  southern hemisphere, and 
have variable 2-spacing at the  Equator, as given  by Eq. (33). 

Figure 7. Two  views of the (2/3") grid. Note the enhanced resolution in  the Gulf Stream 
and  subpolar  North  Atlantic (a), and the zonal z-coordinate lines in  the equatorial region 
(b), which gradually begin to deviate at midlatitudes. 

Figure 8. Resolution and  aspect  ratio of mesh  cells in the (1/3O) grid, plotted in logical 
space. 67% of the mesh  cells are ocean points. 
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Figure 9. Sea-surface height fields at the ends of the (a) (2/3"), and (b) (1/3O), 

simulations. The contour  interval is 20 cm, and the zero-contours are shown as dashed lines 
(the sign is such that  the height is positive in the equatorial Pacific and negative around 
Antarctica).  Strong  eddy fields are present. in the (1/3") but not. in the non-eddy-resolving 
(2/3") simulation. The large-scale features are similar in the two cases, although all the 
subpolar gyres and the ACC are stronger in the (1/3") case (see text). 
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