
Managing software
updates for IT

June 2024 v1.0

2Managing software updates for IT

Contents

Intro to managing software updates	 4

Introduction	 4

Types of software updates	 5

Software update security	 7

Caching software updates	 7

Software update requirements	 8

Software update process	 9

Software update detection	 9

Downloading and preparing software updates on iPhone and iPad	 10

Downloading and preparing software updates on Mac	 11

Software update notifications	 11

Installing a software update	 11

Installing and enforcing software updates	 12

Requiring a minimum version during MDM enrollment	 12

Managing the availability of software updates	 13

Installing software updates automatically	 14

Requiring authorization by an administrator on macOS	 15

Enforcing software updates	 15

3Managing software updates for IT

Software update implementation details for MDM developers	 18

The importance of leveraging software update declarations	 19

Using the Apple Software Lookup Service	 20

Sending a status report to the MDM solution	 22

Requesting a specific minimum software version during MDM enrollment	 24

MDM settings for software updates	 26

Configuring automatic software updates with MDM	 27

How MDM handles Rapid Security Responses	 28

Deferring a software update with MDM	 29

Enforcing software updates with MDM	 31

Phases of Apple software update enforcement	 33

Testing software updates with the AppleSeed for IT beta program	 38

Enrolling a device in a beta program	 39

Copyright	 44

4Managing software updates for IT

Intro to managing software updates

Introduction
Keeping devices up to date is an essential part of managing devices in an organizational
environment. Software updates allow users to quickly benefit from new features and help
keep the deployment secure.

Apple operating systems provide a suite of built-in capabilities to make this process
seamless for the user, while providing IT administrators the necessary controls to
manage software updates at scale across devices. A key technology is the mobile
device management (MDM) framework, which has been updated with the introduction of
declarative device management. Declarative device management increases autonomy and
proactivity of devices and enables an entirely new approach to managing and enforcing
software updates.

This document details the managed software update process based on declarative device
management for IT administrators and MDM developers and covers Apple’s operating
systems for iPhone, iPad, and Mac.

5Managing software updates for IT

Types of software updates
For the purposes of this document, software updates are divided into three types: software
updates, software upgrades, and Rapid Security Responses (also known as supplemental
updates).

Software updates
Updates consist of frequently released patches that help secure or enhance the current
operating system and that are designed to keep devices protected. These minor updates
use a version numbering scheme that includes at least one decimal point—for example
iOS 17.1.

Software upgrades
Upgrades typically make important changes to an operating system over the previous
version—in functionality, user interface, and general appearance.

Upgrades are released much less frequently than updates, and they can take a while to
install because of their size. Older devices may not be eligible for upgrades if they don’t
have the necessary hardware capabilities to support the new software.

Typically, upgrades of Apple’s operating systems use a whole number integer—for
example, iOS 17. macOS also uses a whole number integer (for example, the systems
macOS 13 and macOS 14), and may be named—here, Ventura and Sonoma. Some upgrades
include the first update automatically. An example is iOS 16.1 where the upgrade includes
the update automatically, because iPadOS 16.0 was not released separately.

6Managing software updates for IT

Rapid Security Responses
Rapid Security Responses (RSRs) are a different type of software release for applying
security fixes to devices more frequently by not requiring a full software update.
Rapid Security Responses are delivered only for the latest versions of iOS, iPadOS,
and macOS. Because of this, the operating systems must be running the latest version.
In iOS 18, iPadOS 18, and macOS 15, available Rapid Security Responses are part of the
software update, which removes the need to perform multiple installations consecutively—
first the update, then any available Rapid Security Responses.

Rapid Security Responses that involve the operating system require the device to restart.
In macOS, if the Rapid Security Response also includes an update to Safari, it may be made
available with just a relaunch of Safari, though a restart is required to make this content
available to the rest of the operating system.

Users can remove responses from within Settings > About > iOS (or iPadOS) Version or
 > About This Mac > More Info and by clicking on the Info button next to the version
number.

Each Rapid Security Response is versioned relative to its base operating system version,
starting with a, then b, and so on. Within a line of Rapid Security Responses, successive
ones always include the changes from previous ones. Subsequent operating system
updates and upgrades include the content from all the Rapid Security Responses that were
issued for the previous operating system version. The table below shows an example of
how minor operating system updates affect Rapid Security Responses.

Note: These examples aren’t to be considered actual Rapid Security Response versions.

Operating system version installed Rapid Security
Response version
examples

Description

iOS 17.2

macOS 14.1

a

b

Two Rapid Security Responses (a and b) were available.

iOS 17.3

macOS 14.2

a

b

c

Three Rapid Security Responses (a, b, and c) were
available. iOS 17.3 and macOS 14.2 include the
content from the two RSRs available for iOS 17.2 and
macOS 14.1.

iOS 17.4

macOS 14.3

a One Rapid Security Response (a) was available.
iOS 17.4 and macOS 14.3 include the content from the
three RSRs available for iOS 17.3 and macOS 14.2.

Important: Unless otherwise noted, the phrase software update is used in this technical
paper to refer to all software updates as a whole—that is, to include updates, upgrades,
and Rapid Security Responses.

7Managing software updates for IT

Software update security
Apple devices use a secure software update process, which verifies the integrity of an
update, personalizes it for the specific device, and helps prevent downgrade attacks.
To help protect the user's privacy and integrity of their data, the user’s data volume is
never mounted during a software update or upgrade. For more information on the security
of Apple software updates, see Secure software updates in Apple Platform Security.

Note: Because of dependency on architecture and system changes to any current version
of Apple operating systems (for example, macOS 14, iOS 17, and so on), not all known
security issues are addressed in previous versions (for example, macOS 13, iOS 16,
and so on).

Caching software updates
Software updates for Apple devices can be cached on a Mac using macOS 10.13 or later
with Content Caching turned on. This allows devices to download the necessary files from
the content cache instead of using an internet connection. However, devices still must
contact Apple servers to complete the update. For more information, see:

•	 Intro to content caching

•	 Plan for and set up content caching

•	 Use DNS TXT records with content caches

•	 Apple Support article: Content types supported by content caching in macOS

https://support.apple.com/guide/security/secf683e0b36
https://support.apple.com/guide/deployment/depde72e125f
https://support.apple.com/guide/deployment/depe9b5c1aab
https://support.apple.com/guide/deployment/depe6ded0780
https://support.apple.com/102860

8Managing software updates for IT

Software update requirements
Network requirements
Apple devices require access to specific internet hosts to download software updates and
personalize the operating system during a software update for the specific device.
Here's how Apple devices connect to hosts and work with proxies:

•	 Network connections to hosts are initiated by the device, not by hosts operated by
Apple.

•	 Apple services will fail any connection that uses HTTPS Interception (SSL Inspection).
If the HTTPS traffic traverses a web proxy, disable HTTPS Interception for the
appropriate hosts.

For more information on the network connections required during the software update
process, see the Software updates section of the Apple Support article Use Apple products
on enterprise networks.

Power requirements
Depending on the type of the update and how it is initiated, devices must be connected
to power or have the following minimum battery charging level to download, prepare, and
install a software update:

Device type Minimum battery
percentage required for
user-initiated software
updates and upgrades

Minimum battery
percentage required to
install automatic software
updates*

Minimum battery percentage
required for Rapid Security
Responses

iPhone 20% 30% 20%

(5% when connected to power)

iPad 20% 30% 20%

(5% when connected to power)

Mac with Apple
silicon

20% 50% 10%

Intel-based Mac 50% 50% 20%

*To download and prepare an automatic software update, devices must be connected to
power.

Space requirements
Devices must have sufficient space available to download, prepare, and install the update.

Terms and conditions
Users may also need to agree to updated terms and conditions to initiate a software update
or upgrade on their devices. This doesn’t apply to updates enforced by MDM on supervised
devices.

https://support.apple.com/101555
https://support.apple.com/101555

9Managing software updates for IT

Software update process

The process to perform a software update involves multiple steps—from the detection of
an available update, to downloading and preparing the update, to the actual installation.

Software update detection
After an update becomes available for iPhone, iPad, or Mac, it’s detected in one of the
following methods:

•	 After the user opens the Software Update settings

•	 Every 24 hours

•	 After a device restarts

If the device is using the default configuration and the requirements for a software
updates are met, users can navigate to Settings (on iOS and iPadOS) or System Settings
(on macOS) to download, prepare, and install the update at a time convenient for them.

10Managing software updates for IT

Downloading and preparing software updates on
iPhone and iPad
When connected wirelessly, iPhone and iPad devices use an over-the-air (OTA) update
method that downloads only the components required to complete an update. This update
improves network efficiency and enables faster downloads.

iOS and iPadOS software updates are made available in two phases, which determine how
they can be downloaded.

iPhone and iPad can download and prepare software updates when connected using Wi-Fi
and when connected using cellular:

•	 When connected wirelessly using Wi-Fi:

•	 Initial availability: Manually by the user from Software Update Settings.

•	 General availability: Manually by the user or using automatic software update
downloads.

•	 When connected wirelessly using cellular:

•	 Initial availability: Manually by the user when their device is connected to a 5G
cellular network and has Allow More Data on 5G turned on.

•	 General availability: Manually by the user unless it’s deferred by the carrier on the
specific cellular network. In this case, users are informed that a Wi-Fi connection is
required to download the update.

•	 When physically connected to a Mac or PC: Through the Finder or Apple Configurator
on a Mac or the Apple Devices app on a PC. In this case, a full copy of iOS or iPadOS is
downloaded, prepared, and installed.

11Managing software updates for IT

Downloading and preparing software updates on
Mac
Similar to updates for iOS and iPadOS, updates for macOS are incremental updates using
the OTA update method, which downloads only the components necessary to update the
specific device. Incremental updates require a sealed system volume.

Software update notifications
After an update has been downloaded and prepared, a notification is shown to the user and
a red icon appears over the Settings app (on iOS and iPadOS) or the System Settings app
(on macOS). If automatic downloads are turned off, the notification and badge are shown
when the update is detected.

Installing a software update
iPhone and iPad
If a passcode has been configured on the device, users are prompted for it to authorize the
update.

Mac
In macOS 12.3 or later, any local user can authorize incremental software updates.
Before macOS 12.3, local administrators are required to perform software upgrades.
On a Mac with Apple silicon, users must be a volume owner to perform an update.

The Universal Mac Assistant (UMA) is a full installer of macOS and can be used on any
supported Mac. The UMA is available using the softwareupdate command-line tool and
requires authorization by a local administrator to be installed.

Automatic installation of software updates (not upgrades) and Rapid Security
Responses
After the preparation is complete and users have automatic software updates or Rapid
Security Responses turned on, the device uses on-device machine learning to determine a
suitable time to install them.

To authorize the update, devices try to use the passcode or password from unlock to
perform an automatic update, but may prompt the user instead.

In addition to other software update requirements, Mac computers must have no apps or
processes running which block a restart. Mac laptops can have their lid closed.

12Managing software updates for IT

Installing and enforcing software updates

Using declarative device management, organizations can configure different aspects of
the software update process. This includes managing software update availability,
enforcing software updates, enrolling devices into beta programs, and more.

Requiring a minimum version during MDM
enrollment
Starting in iOS 17, iPadOS 17, and macOS 14, MDM solutions can enforce a minimum
operating system version during Automated Device Enrollment. If the device doesn’t meet
the minimum version expected by the MDM solution, the user is guided through an update
before they can complete Setup Assistant. The same process happens automatically when
used with Auto Advance. This helps ensure that devices owned by an organization are on
the necessary operating system version before being put into production.

13Managing software updates for IT

Managing the availability of software updates
Organizations may want to control which versions their users can update their devices to.
For example, this control can be used to perform verification of an update with a test group
before allowing all users to install it in production, or deploy different deferrals to different
groups to phase the rollout of recent updates.

Time-based deferrals
Supervised devices can be prevented from offering OTA software updates to users until
a specified period of time has passed since they were made publicly available by Apple.
For example, say that an iPhone fleet is using iOS 17.3, and a deferred software update
configuration of 30 days is applied. In this scenario, users have iOS 17.4 offered to them on
their managed devices 30 days after the iOS 17.4 release date.

As part of the configuration, organizations can specify a custom deferral period from
1 to 90 days. In iOS and iPadOS, this delay applies to both operating system updates and
upgrades. In macOS, they can also specify different deferral periods for operating system
updates, upgrades, and non-operating system updates. Non-operating system updates
include updates for Safari, printer drivers, and Xcode command-line tools. For example,
a custom deferral can be used on macOS to defer a software upgrade for longer than a
software update.

Note: OTA software updates are typically available for up to 180 days after their initial
release date to ensure that an update is always available for managed devices with the
maximum deferral value.

Recommended cadence on iOS and iPadOS
In addition to defining time-based deferrals, organizations can define whether users on
supervised iPhone and iPad devices have the option to upgrade to a newer, major version
or continue on the current one and still receive minor updates, even after an upgrade is
available.

For example, on an iPhone using iOS 16.6.1, one of three options can be used:

•	 Offer users only additional updates to iOS 16.

•	 Offer users only the upgrade to iOS 17.

•	 Allow users the choice: additional updates to iOS 16 (for example, iOS 16.7) or upgrade
to iOS 17.

The first option is available for only a limited period of time and allows users to benefit
from any important security updates while testing is completed to approve the major
upgrade for a production environment.

In conjunction with deferrals, a recommended cadence can be used. In the example above,
it could be used to keep devices on iOS 16 while deferring software updates only
(like iOS 16.7) for the defined period of time.

14Managing software updates for IT

Installing software updates automatically
In iOS 18, iPadOS 18, and macOS 15, organizations can manage the automatic software
update behavior on supervised devices.

Automatic software updates (not upgrades)
For downloading and preparing automatic software updates, the following configuration
choices are available:

•	 Let the user choose whether to turn on automatic downloads.

•	 Automatic update downloads are turned off.

•	 Automatic update downloads are turned on.

For installing automatic software updates and upgrades, the following configuration
choices are available:

•	 Let the user choose whether to turn on automatic update installation.

•	 Automatic update installations are turned off.

•	 Automatic update installations are turned on.

Note: This option requires automatic downloads to be turned on.

These choices provide granular controls for an organization to define the most suitable
automatic software update approach.

In macOS, there’s an additional setting with the same three configuration options for
security updates, which include updates for XProtect, Gatekeeper, and system data files.
For more information, see the Apple Support article About background updates in macOS.

Automatic Rapid Security Responses
Rapid Security Responses don’t adhere to the managed software update deferral.
Because they apply only to the latest minor operating system version, if that update is
deferred, the Rapid Security Response is also effectively deferred.

Organizations can define whether Rapid Security Responses are automatically applied and
specify whether users are allowed to remove them after they’ve been applied.

https://support.apple.com/101591

15Managing software updates for IT

Requiring authorization by an administrator on
macOS
Organizations can change the default behavior to require authorization by a local
administrator to install a software update. For example, this can be used in deployments
where a device is shared with multiple users to restrict who can perform an update.

Enforcing software updates
Organizations can enforce specific software updates at a chosen time regardless of
configured deferrals or if the automatic installation of Rapid Security Responses is turned
off. This helps ensure managed devices run a specified version by a certain date and
time while allowing users to install the update at a time convenient for them (prior to the
enforcement date).

The enforcement date and time are relative to the local time zone of the device.
This allows the same configuration to be applied across different regions. For example,
if the enforcement date is set to 6 p.m., devices attempt to perform the update at 6 p.m.
on the specified date in their local time zone.

When a software update is declared, users are informed about its deadline:

•	 In Settings (iOS and iPadOS) and in System Settings (macOS)

•	 In a notification

Depending on the time left until the enforcement deadline, the notification provides
different options (as described below). To allow for increased transparency to users and
to keep them informed about the process, additional information about the update can be
provided using the “More information” link.

If the user doesn’t immediately begin the installation, the notifications and options shown
depend on the remaining time get more frequent leading up to the enforcement date and
are meant to encourage the user to install the update at a time convenient for them.
To help ensure these notifications are displayed to the user, the Do Not Disturb feature is
ignored during the 24 hours prior to the enforcement.

Alternatively, in iOS 18, iPadOS 18, and macOS 15, organizations can set the notifications
to be displayed only 1 hour before the enforcement deadline and to show the restart
countdown. This reduces the amount of notifications shown on devices—for example,
if they aren’t directly assigned to a user (like a kiosk deployment).

16Managing software updates for IT

To initiate and authorize the update from a notification or from Settings and System
Settings, the system prompts the user for their passcode or password.

In case the user hasn’t installed the update before the local enforcement date:

•	 iOS and iPadOS force the user to enter their passcode if one is set (unless it was
entered earlier)

•	 macOS force quits all open apps (regardless of whether any documents are open and
unsaved) and performs a restart if necessary

•	 On a Mac with Apple silicon, the Mac uses a bootstrap token (if one is available) to
authorize the update or the Mac prompts the user for their credentials

To enforce the installation of an update, upgrade, or Rapid Security Response, a device
must meet the same requirements as for a user-initiated update of the same type.

A key benefit of declarative device management is the autonomy of devices. Instead of
triggering individual actions, the MDM solution declares the desired state and delegates
the task to achieve that state to the device itself. A specific example of this behavior is
a situation where the software update enforcement date was missed because the device
didn’t meet the requirements. The device automatically detects that the declared state
hasn’t yet been achieved and resumes the process when it’s connected to the internet.

17Managing software updates for IT

To do so—if necessary—the operating system downloads and prepares the update and
posts another notification letting the user know the install is past due and an attempt
will be made to perform the installation within the next hour. In case the process gets
interrupted again for any reason, the process repeats the next time the device is powered
on and connected to the internet.

Using status reports available with declarative device management, MDM solutions can
also get increased transparency about the status of the installation—for example,
waiting for, downloading and preparing, or installing the update. Meaningful error codes
have been added in case the release couldn’t be applied or was unable to be successfully
completed. Some examples of this are if the device was offline, if the battery charge was
too low, or if not enough free space was available.

Updating iPadOS on Shared iPad
Software updates on Shared iPad devices can be initiated over the air using the MDM
solution that the Shared iPad is enrolled in. If the device is physically connected, the Finder
or Apple Configurator on a Mac can also be used.

To install an update on Shared iPad, users must be signed out but can be left cached on
the device. If the installation requires more free space than what is currently available,
cached user account data must be removed. Due to the autonomy of declarative device
management, a device keeps retrying to install a new release until it’s successful.

To minimize downtime, updates to a Shared iPad should be scheduled to occur during off
hours to minimize impact to users and the network.

18Managing software updates for IT

Software update implementation details for
MDM developers

By default, users can configure software update settings on their devices. Organizations
can also manage software update settings and behavior using an MDM solution.

Declarative device management is the future of Apple device management. It allows the
device to asynchronously apply settings and report status back to the MDM solution
without constant polling. This is ideal for performance and scalability and also enables a
modern approach to managing software updates. Declarative device management provides
proactive status reporting from devices as values and configurations change. In this way,
an MDM solution always has an up-to-date view on devices without having to perform
regular queries.

Instead of sending a software update command to a device to initiate an update, an MDM
solution declares the desired operating system version state and delegates the task to
achieving that state to the device itself. This allows for a more resilient managed software
update process and increased user transparency.

19Managing software updates for IT

The importance of leveraging software update
declarations
MDM solutions should leverage software update declarations whenever possible.
However, the legacy software update commands and profiles are still available and
supported. They can work alongside software update declarations with the following
changes:

•	 Deferrals defined by a declaration take precedence over deferrals configured by a
restriction.

•	 Automatic software update settings on macOS applied by a declaration take precedence
over automatic update settings provided in a configuration profile.

•	 When there’s a pending software update configured using declarative device
management, some MDM commands are no longer processed by the client, returning
errors communicating that there’s an active declaration on the device, as shown in the
following table:

MDM command Result

AvailableOSUpdates Limited: In macOS, operating system-based updates that aren’t managed may show
up in the command response—for example, in Xcode or command-line tools.

ScheduleOSUpdate The device returns an InstallFailed error.

OSUpdateStatus The device returns an empty status array.

20Managing software updates for IT

Using the Apple Software Lookup Service
The Apple Software Lookup Service (available at https://gdmf.apple.com/v2/pmv) is the
official resource to obtain a list of publicly available updates, upgrades, and Rapid Security
Responses. It allows an MDM solution to query releases as soon as they are published and
calculate applicability for each hardware model in a timely and accurate manner.

The service returns a JSON response containing three lists of available software releases:

•	 PublicAssetSets: This list contains the latest releases available to the general public if
they try to update or upgrade.

•	 AssetSets: This list is a subset of PublicAssetSets and contains all the releases available
for MDM solutions to push to supervised devices.

•	 PublicRapidSecurityResponses: This list contains Rapid Security Response releases
currently available for Apple devices.

{

 "AssetSets": {

 "iOS": [

 {

"ProductVersion": "17.5",

"Build": "21F6079",

"PostingDate": "2024-05-13",

"ExpirationDate": "2024-08-15",

"SupportedDevices": ["iPad11,1", "iPad11,2", "iPad11,3", "iPad11,4",
"iPad11,6", "iPad11,7", "iPad12,1", "iPad12,2", "iPad13,1","iPad13,10",
"iPad13,11", "iPad13,16", "iPad13,17", “iPad13,18", "iPad13,19", "iPad13,2",
"iPad13,4", “iPad13,5", "iPad13,6", "iPad13,7", "iPad13,8", "iPad13,9",
"iPad14,1", "iPad14,2", "iPad14,3", "iPad14,4", "iPad14,5", "iPad14,6",
"iPad6,11", "iPad6,12", "iPad6,3", "iPad6,4", "iPad6,7", "iPad6,8",
"iPad7,1", "iPad7,11", "iPad7,12", "iPad7,2", "iPad7,3", "iPad7,4",
"iPad7,5", "iPad7,6", "iPad8,1", "iPad8,10", "iPad8,11", "iPad8,12",
"iPad8,2", "iPad8,3", "iPad8,4", "iPad8,5", "iPad8,6", "iPad8,7", "iPad8,8",
"iPad8,9", "iPhone10,1", "iPhone10,2", "iPhone10,3", "iPhone10,4",
"iPhone10,5", "iPhone10,6", "iPhone11,2", "iPhone11,6", "iPhone11,8",
"iPhone12,1", "iPhone12,3", "iPhone12,5", "iPhone12,8", "iPhone13,1",
"iPhone13,2", "iPhone13,3", "iPhone13,4", "iPhone14,2", "iPhone14,3",
"iPhone14,4", "iPhone14,5", "iPhone14,6", "iPhone14,7", "iPhone14,8",
"iPhone15,2", "iPhone15,3"

]

 },

Each element in the list contains the ProductVersion number and Build of the operating
system, the PostingDate when the release was published, the ExpirationDate, and
a list of SupportedDevices for that release. The device list matches the ProductName
value from the device, which is returned in a DeviceInformation response, the initial
Authenticate request, or in the MachineInfo when the device tries to enroll.

https://gdmf.apple.com/v2/pmv

21Managing software updates for IT

The expiration date, typically set to 180 days after the posting date, defines the date the
signing of the update expires. An expired update can’t be installed on devices anymore.
When subsequent updates are made available, previous updates might have their
expiration dates updated. If an expiration date isn’t provided, the update has yet to expire.
An update has expired only when it has an expiration date in the past.

The assets are grouped by operating system platform using the following keys:

•	 iOS (which includes iPadOS, tvOS, and watchOS)

•	 macOS

•	 xrOS (which is visionOS)

Use the product version list to determine which versions are greater than the deviceʼs
current operating system version and are applicable to a specific device. Provide that list
of versions to the MDM administrator as potential operating system update candidates.

22Managing software updates for IT

Sending a status report to the MDM solution
To receive updates for status items as they change, the server must subscribe to
each status report by sending a ManagementStatusSubscriptions declaration
to the device. The device then sends a StatusReport to the MDM solution when a
ManagementStatusSubscriptions declaration becomes active, if the status of a
subscribed item changes, and every 24 hours.

For the purposes of monitoring operating system versions and software update status,
the MDM solution may want to subscribe to the following status reports:

Status report Description

device.operating-system.build-version The operating system’s build version on the device (for
example, 21E219).

device.operating-system.version The operating system’s version in use on the device
(for example, 17.4).

device.operating-system.supplemental.build-
version

The operating system’s build and Rapid Security
Response versions in use on the device, for example
(20A123a or 20F75c).

device.operating-system.supplemental.extra-
version

The operating system’s Rapid Security Response
version in use on the device (for example, a).

softwareupdate.pending-version A dictionary that contains the build and operating
system versions of the software update that’s pending
on the device.

softwareupdate.install-state The software update installation status, which has the
following values:

•	 none: There’s no software update pending, and any
previous software update succeeded.

•	 waiting: A software update is waiting to start.

•	 downloading: The system is downloading a software
update.

•	 prepared: The system prepared the software update
and it’s ready for installation.

•	 installing: The system is installing the software
update.

•	 failed: The software update failed.

23Managing software updates for IT

Status report Description

softwareupdate.install-reason A dictionary with details about the reason for a pending
software update. The softwareupdate-reason key
has one of the following values:

•	 system-settings: It was triggered from Settings (on
iOS and iPadOS) or System Settings (on macOS).

•	 install-tonight: It was triggered by an install tonight
action.

•	 auto-update: It was triggered by an automatic
update.

•	 notification: It was triggered from a user notification.

•	 setup-assistant: It was triggered during Setup
Assistant.

•	 command-line: It was triggered by the
softwareupdate command-line tool.

•	 mdm: It was triggered by an MDM command.

•	 declaration: It was triggered by a declarative device
management configuration.

softwareupdate.failure-reason Details about a software update failure. The details
include the number of times the software update has
failed, last failure timestamp, and the failure reason.

softwareupdate.beta-enrollment The device’s enrolled beta program name, or an empty
string if there is no enrolled beta program.

In addition to the other reports, MDM solutions may also want to make softwareupdate.
install-reason available to administrators for support purposes and to provide
additional insight into how an update got triggered. This dictionary can be used to
determine whether a user has initiated the update themselves, the update happened
automatically, or it got enforced by a software update enforcement declaration.

24Managing software updates for IT

Requesting a specific minimum software version
during MDM enrollment
If a device supports this capability, it returns an MDM_CAN_REQUEST_SOFTWARE_
UPDATE key, set to True, in the MachineInfo data that it sends in the initial HTTP POST
request to the MDM solution when the device detects a management configuration in
Setup Assistant. For more information, see the MachineInfo yaml file in the Apple device
management GitHub repository.

In addition, devices provide the following fields in the MachineInfo data (all strings) :

Key Minimum
supported
operating system

Description

VERSION iOS 17

iPadOS 17

macOS 14

The build version installed on the device (for example,
7A182).

OS_VERSION iOS 17

iPadOS 17

macOS 14

The operating system version installed on the device
(for example, 17.0).

SUPPLEMENTAL_BUILD_VERSION iOS 17

iPadOS 17

macOS 14

The device’s Rapid Security Response version (if one is
available).

SUPPLEMENTAL_OS_VERSION_
EXTRA

iOS 17

iPadOS 17

macOS 14

The device’s Rapid Security Response version extra
(if one is available).

SOFTWARE_UPDATE_DEVICE_ID iOS 17.4

iPadOS 17.4

macOS 14.4

The device model identifier used to lookup available
operating system updates in the Apple Software
Lookup Service.

Based on the information provided, the MDM solution can decide whether to enforce the
device to update.

•	 If an MDM solution chooses not to enforce a software update, it simply returns the MDM
enrollment profile in response to the HTTP POST request, as it would normally do to
allow an MDM enrollment to proceed.

•	 If the MDM solution chooses to enforce a software update then it must return an HTTP
response with the 403 status code, and include a JSON or XML object in the response
body (the HTTP Content-Type response header must be set to application/json or
application/xml respectively).

https://github.com/apple/device-management/blob/release/other/machineinfo.yaml

25Managing software updates for IT

After receiving this error response, the device attempts to update to the specified version.
If the update succeeds, the device restarts and the user must go through Setup Assistant
again. The next MachineInfo POST request from the device to the MDM solution shows
the updated operating system version, and the MDM solution can then proceed with MDM
enrollment. If the update fails, an error is shown to the user and the Remote Management
pane appears in Setup Assistant again.

The response schema is defined in the table below.

Key Type Required Description

code String Yes Must be set to com.apple.softwareupdate.
required.

description String No The description of the error. Used only for logging
purposes.

message String No The description of the error suitable for displaying
to the user.

details Dictionary Yes Additional data specifying the software update.

The details dictionary schema is defined here.

Key Type Required Description

OSVersion String Yes The operating system version that the device is
required to update to.

BuildVersion String No The build version that the device is required to
update to.

RequireBetaProgram Dictionary No The device enrolls in the beta program, allowing
enforced software updates to beta program
operating system versions.

The device remains in the beta program after the
enforced software update is complete.

If only the OSVersion is specified, a device automatically downloads and installs any Rapid
Security Responses available for this version. In case a specific build or supplemental
version is needed, an MDM solution can also optionally specify the BuildVersion.
For example, to require a device to run iOS 16.5.1(a) before enrolling—although
iOS 16.5.1(c) is already available—an MDM solution must set OSVersion to iOS 16.5.1 and
BuildVersion to 20F770750b.

Important: Before macOS 15, only releases from the PublicAssetSets and
PublicRapidSecurityResponses lists can be specified. In macOS 15, assets from
AssetSets can also be used.

26Managing software updates for IT

MDM settings for software updates
The com.apple.configuration.softwareupdate.settings declaration (available in
iOS 18, iPadOS 18, and macOS 15) consists of dictionaries that can be used to configure
various aspects of the software update behavior.

After an MDM solution distributes different keys across multiple declarations, a device
merges the settings of all active software update settings declarations. In case the same
key is configured by multiple declarations, the merge behavior depends on the individual
key and is outlined in the tables below.

For the most current schema specification, see the Apple device management GitHub
repository.

https://github.com/apple/device-management
https://github.com/apple/device-management

27Managing software updates for IT

Configuring automatic software updates with MDM
The com.apple.configuration.softwareupdate.settings declaration offers a
dictionary to define the automatic software update behavior on supervised iPhone, iPad,
and Mac devices. The AutomaticActions dictionary offers the keys shown below
(default is Allowed and not required).

Key Type Merge behavior Description

Download Enum The last value
from the
list: Allowed,
AlwaysOn,
AlwaysOff.

Specifies whether automatic downloads and
preparation of available updates only (not upgrades
and Rapid Security Responses) can be controlled by
the user:

•	 Allowed: The user can turn on or turn off automatic
downloads.

•	 AlwaysOn: Automatic downloads are always turned
on.

•	 AlwaysOff: Automatic downloads are always turned
off.

InstallOSUpdates Enum The last value
from the
list: Allowed,
AlwaysOn,
AlwaysOff.

Specifies whether automatic installation of available
operating system updates only (not upgrades and
Rapid Security Responses) can be controlled by the
user:

•	 Allowed: The user can turn on or turn off automatic
installations.

•	 AlwaysOn: Automatic installations are always turned
on.

•	 AlwaysOff: Automatic installations are always
turned off.

InstallSecurityUpdates

(Available for macOS only)

Enum The last value
from the
list: Allowed,
AlwaysOn,
AlwaysOff.

Specifies whether automatic installation of available
security updates can be controlled by the user:

•	 Allowed: The user can turn on or turn off automatic
installations.

•	 AlwaysOn: Automatic installations are always turned
on.

•	 AlwaysOff: Automatic installations are always
turned off.

In case multiple declarations include a value for the same key, the last value in the
following list applied by any of those declarations takes precedence: Allowed, AlwaysOn,
AlwaysOff.

28Managing software updates for IT

How MDM handles Rapid Security Responses
Rapid Security Responses always apply to the latest update of an operating system,
which becomes the base version of the Rapid Security Response. For example, if an iPhone
has operating system version iOS 17.2 installed, then it applies the 17.2 (a) supplemental
update, if one is available. In iOS 18, iPadOS 18, and macOS 15, combined updates have
been made available, which allow a software update to include any available Rapid Security
Responses.

Prior to iOS 18, iPadOS 18, and macOS 15, an MDM solution may have to trigger two
software updates to ensure that a specific supplemental version is present: first, it must
update the device to the base version of the supplemental update, if the device isn’t
already on that base version (for example, iOS 17.1 to iOS 17.2); then it must update the
base version to the supplemental version (for example, iOS 17.2 to iOS 17.2 (a)).

In iOS 18, iPadOS 18, and macOS 15, an MDM solution can specify either:

•	 The operating system version (which automatically installs available Rapid Security
Responses)

•	 The supplemental build version (which causes the device to perform a necessary
update to the base version automatically as part of the process)

These two approaches apply to the software update enforcement configuration, and to the
enforced minimum version during Automated Device Enrollment.

The com.apple.configuration.softwareupdate.settings declaration can also be
used to configure the Rapid Security Response behavior on supervised iPhone, iPad, and
Mac devices. The RapidSecurityResponse dictionary contains the keys shown below
(default is True and not required).

Key Type Merge behavior Description

Enable Boolean Logical AND
operation of the
values

If false, Rapid Security Responses aren’t offered for
user installation.

This defines whether Rapid Security Responses are
automatically installed on user’s devices.

EnableRollback Boolean Logical AND
operation of the
values

If false, Rapid Security Response rollbacks aren’t
offered to the user.

This controls whether users have the option to remove
a Rapid Security Response.

Independent of the Enable key, Rapid Security Responses can still be installed with the
com.apple.configuration.softwareupdate.enforcement.specific declaration.

29Managing software updates for IT

Deferring a software update with MDM
Deferring a software update or upgrade from 1 to 90 days is done using the com.apple.
configuration.softwareupdate.settings declaration on supervised iPhone, iPad,
and Mac devices.

A configured deferral defines how many days a release isn’t offered to users after it
became publicly available. Independent of a configured deferral, an MDM solution can still
enforce a specific software update, upgrade, or Rapid Security Response on managed
devices.

Note: Deferring software updates also defers any Rapid Security Responses that are
dependent on that version.

The Deferrals dictionaries offer different keys to configure the behavior depending on the
platform (no defaults, not required).

Deferring a software update on iOS and iPadOS

Key Type Merge behavior Description

CombinedPeriodInDays Integer 1–90 Maximum
number of days

Specifies the number of days to defer a software
update. When set, software updates and
upgrades appear only after the specified delay,
following the release of the software update or
upgrade.

RecommendedCadence Enum The last value
from the list: All,
Oldest, Newest

Specifies how the device shows software
upgrades to the user. When a software update
and upgrade is available, the device behaves as
follows:

•	 All: Shows all software updates and upgrades.

•	 Oldest: Shows only updates for the oldest
(lower numbered) software version.

•	 Newest: Shows only a software upgrade to the
newest (highest numbered) software version.

Both CombinedPeriodInDays and RecommendedCadence can be used in combination.
For example, if RecommendedCadence is set to Oldest and CombinedPeriodInDays is
set to 30, a user sees only software updates for the oldest release after 30 days of their
publishing date.

30Managing software updates for IT

Deferring a software update on macOS

Key Type Merge behavior Description

MajorPeriodInDays Integer 1–90 Maximum
number of days

Specifies the number of days to defer a software
upgrade on the device. When set, software
upgrades appear only after the specified delay,
following the release of the software upgrade.

MinorPeriodInDays Integer 1–90 Maximum
number of days

Specifies the number of days to defer a software
update only (not a software upgrade or Rapid
Security Response) on the device. When set,
software updates appear only after the specified
delay, following the release of the software
update.

SystemPeriodInDays Integer 1–90 Maximum
number of days

Specifies the number of days to defer non-
operating system updates. When set, updates
appear only after the specified delay, following
the release of the update.

In macOS, an additional key is available to determine whether both standard users and
local administrators can perform an update or upgrade (the default behavior), or determine
whether administrative permissions are required (default is True and not required).

Key Type Merge behavior Description

AllowStandardUserOSUpdates Boolean Logical AND
operation of the
values

If true, a standard user can perform updates
and upgrades.

If false, only administrators can perform
updates and upgrades.

31Managing software updates for IT

Enforcing software updates with MDM
To enforce a software update by a certain time on devices enrolled using Device
Enrollment or Automated Device Enrollment, MDM solutions can apply the com.apple.
configuration.softwareupdate.enforcement.specific declaration. The declaration
offers the keys shown below (all strings and no defaults).

Key Required Description

TargetOSVersion Yes The target operating system version to update the
device to by the appropriate time. This is the operating
system version number, for example, iOS 17.4.

TargetBuildVersion No The target build version to update the device by the
specified time, for example, 21E219. The system uses
the build version for testing during seeding periods.

The build version can include a supplemental version
identifier, for example, 21E219a. If the build version
isn’t consistent with the target operating system
version specified in the TargetOSVersion key, the
TargetOSVersion takes precedence.

TargetLocalDateTime No The local date time value that specifies when to force
install the software update. Use the format YYYY-MM-
DDTHH:MM:SS, which is derived from RFC3339 but
doesn’t include a time zone offset.

If the user doesn’t trigger the software update before
this time, the device force installs it.

DetailsURL No The URL of a web page that shows details that the
organization provides about the enforced release.

If a configuration specifies an operating system or build version that’s the same as,
or older than the current device version, then the configuration is ignored.

If multiple configurations are present with a newer operating system or build version than
the current device version, the configuration with the earliest target date and time is
processed first, and any others remain in the queue. When the device updates to a new
version, the set of configurations are reprocessed to determine which becomes the next
one to be processed.

Any available Rapid Security Responses are automatically installed if an MDM solution
defines only the TargetOSVersion. To target a specific release or Rapid Security
Response, an MDM solution can use the TargetBuildVersion key in addition to
specifying the build, including the supplemental version identifier.

The Notifications key in the com.apple.configuration.softwareupdate.settings
declaration, changes the default notification behavior to show only a notification 1 hour
before the enforcement time, and the restart countdown (default is True and not required).

Key Type Merge behavior Description

Notifications Boolean Logical AND
operation of the
values

If true, the device shows all software update
enforcement notifications.

If false, the device only shows notifications triggered
one hour before the enforcement deadline, and the
restart countdown notification.

32Managing software updates for IT

Using the bootstrap token for Mac computers with Apple silicon
To authorize an enforced software update on a supervised Mac computer with Apple
silicon, an MDM solution can request and escrow a bootstrap token. This allows for a
completely seamless software update experience and avoids the need for user interaction
as part of the process. When needed, the device uses a GetBootstrapTokenRequest to
retrieve the bootstrap token from the MDM solution.

In the first step, the MDM solution determines whether the device supports a
bootstrap token using the SecurityInfo command. If the response includes a
BootstrapTokenRequiredForSoftwareUpdate that’s set to true, the device can use a
bootstrap token to authorize a software update.

To get a bootstrap token created, the MDM solution must add com.apple.mdm.
bootstraptoken to the ServerCapabilities array in the MDM profile. For more
information, see the MDM payload on the Apple Developer website.

If the MDM enrollment profile declares support for using a bootstrap token and the device
it’s installed on supports using one, then the device creates a bootstrap token when a
Secure Token-enabled user logs in. It then reaches out to the check-in endpoint of the
MDM solution and escrows the token using a SetBootstrapTokenRequest. For more
information, see Set Bootstrap Token on the Apple Developer website.

https://developer.apple.com/documentation/devicemanagement/mdm
https://developer.apple.com/documentation/devicemanagement/set_bootstrap_token

33Managing software updates for IT

Phases of Apple software update enforcement
Enforcing software updates using MDM involves five main components:

•	 The MDM solution

•	 The device

•	 The user

•	 The Apple Software Lookup Service

•	 The Apple Software Update Catalog

Phase 1
The MDM solution regularly monitors the Apple Software Lookup Service for new releases.
If one is detected, it uses the SupportedDevices key of the catalog and compares it to its
list of managed devices to determine which devices the release is applicable to.

The MDM solution should also subscribe to the softwareupdate.* and device.
operating-system.* status reports to automatically retrieve updates if any of those
values change.

34Managing software updates for IT

Phase 2
The MDM solution creates a com.apple.configuration.softwareupdate.
enforcement.specific declaration with the detected version and defines the
TargetLocalDateTime and optionally the DetailsURL according to the organizational
requirements. The MDM solution then sends a push notification to the device to trigger
the synchronization of declarations. For more information, see Integrating Declarative
Management on the Apple Developer website.

https://developer.apple.com/documentation/devicemanagement/integrating_declarative_management
https://developer.apple.com/documentation/devicemanagement/integrating_declarative_management

35Managing software updates for IT

Phase 3
After the declaration becomes active on a device, it reaches out to the Apple Software
Update Catalog to retrieve the download URL and then begins to download the update if
the requirements are met. The device then presents a notification to the user and returns
the following to the MDM solution:

1. A softwareupdate.install-state value of waiting, which indicates the process to
request the update has started.
2. A softwareupdate.install-state value of downloading, which indicates the update
is being downloaded by the device.

If a content caching service is available to the device, it attempts to download the software
update from the content cache.

After the device successfully downloaded the update, it prepares the software update for
installation. After this process completes, a softwareupdate.install-state value of
prepared is sent back to the MDM solution.

36Managing software updates for IT

Phase 4
The device enters the notification period. Depending on when the installation is to occur,
this notification may display different text and options.

Phase 5
In case the user hasn’t installed the update before the enforcement deadline, the device
begins the installation and sends a softwareupdate.install-state value of installing
back to the MDM solution. Before starting the installation, a Mac with Apple silicon
contacts the MDM solution to retrieve the bootstrap token (if one is available).

If the update succeeds, the device restarts. If the update fails, a softwareupdate.
install-state value of failed is sent. In either case, the device sends back a
softwareupdate.failure-reason status report. If the update was successful,
the count key has a value of 0.

37Managing software updates for IT

Phase 6
The device then sends the following information back to the MDM solution. Depending on
the update, not all these objects have return values.

•	 StatusDeviceOperatingSystemVersion: A status report of the device’s operating system
version.

•	 StatusDeviceOperatingSystemBuildVersion: A status report of the device’s software
build identifier.

•	 StatusDeviceOperatingSystemSupplementalBuildVersion: A status report of the device’s
operating system version and Rapid Security Response build identifier.

•	 StatusDeviceOperatingSystemSupplementalExtraVersion: A status report of the device’s
operating system’s Rapid Security Response identifier.

Phase 7
The MDM solution unassigns the declaration from the device and sends a push notification
to the device to initiate the synchronization. After synchronizing, the device removes the
declaration.

38Managing software updates for IT

Testing software updates with the
AppleSeed for IT beta program

AppleSeed for IT is a program specifically designed for enterprise and education customers
committed to testing each new version of Apple beta software in their organizations.
This program provides IT professionals and technology managers with an opportunity to
evaluate the latest prerelease software versions in their unique work environments,
offer feedback directly to Apple engineering teams through a dedicated feedback
submission process, and participate in detailed testing plans and forum discussions with
other participants.

iOS 17.5, iPadOS 17.5, and macOS 14.5, or later, make it easier than ever to manage
beta program participation in an organization. Users can be offered to enroll into beta
programs even without an Apple Account in Settings or System Settings. MDM solutions
can also automatically enroll devices during Setup Assistant when using Automated
Device Enrollment or remotely at a later time if the device is supervised and runs iOS 18,
iPadOS 18, macOS 15 or later. If necessary, an MDM solution has the option to remove a
supervised device from beta programs and restrict a user from manually enrolling. This
removes the need for manual steps performed by the user and allows for a streamlined
process throughout the beta testing lifecycle.

To offer AppleSeed for IT beta versions without the need for an Apple Account, a user with
the role of administrator in Apple School Manager or Apple Business Manager must sign
in to the AppleSeed for IT portal and accept the terms and conditions on behalf of their
organization for the current beta period.

Although beta enrollment can be managed without the need for an Apple Account,
organizations may want to consider providing participating users a Managed Apple Account
so they can submit feedback directly to Apple. This also ensures submitted feedback is
tied to their organization. If users select to submit their feedback for the team rather than
as personal feedback, other users like the IT team can engage in submitted tickets and
stay informed. For more information on team feedback, see Manage team feedback in
Feedback Assistant on Mac in the Feedback Assistant User Guide.

Similar to software updates and upgrades, beta releases provided by those programs can
be deferred on supervised devices and a declarative status report provides increased
visibility and allows organizations to track beta program enrollments on managed devices.

Using the available configuration options, an organization can remotely enroll different
devices into different beta programs and—combined with the option to defer beta and
production releases—can be used to implement a phased testing and rollout approach
starting right with the first beta release.

Note: The beta configuration and status report isn’t supported on devices using
User Enrollment.

https://beta.apple.com/it
https://support.apple.com/guide/feedback-assistant/fba9b3f1b328
https://support.apple.com/guide/feedback-assistant/fba9b3f1b328
https://support.apple.com/guide/feedback-assistant/

39Managing software updates for IT

Enrolling a device in a beta program
To enroll a device in the Apple Beta Software Program or AppleSeed for IT, an MDM
solution must retrieve a token from Apple and provide it to devices during Automated
Device Enrollment or using the com.apple.configuration.softwareupdate.settings
declaration.

The first step is for a user with the role of administrator in Apple School Manager
or Apple Business Manager to enroll at https://beta.apple.com/it. After enrollment,
an MDM solution can request available beta program tokens using the
https://mdmenrollment.apple.com/os-beta-enrollment/tokens endpoint. Similar to
other service endpoints available at mdmenrollment.apple.com, MDM solutions must
authenticate using OAuth.

https://beta.apple.com/it

40Managing software updates for IT

The HTTP GET request must include the following header fields (all required):

HTTP header field Description

X-ADM-Auth-Session The OAuth token to authenticate the request.

For more information about the authentication process, see Authenticating
with a Device Enrollment Program (DEP) Server on the Apple Developer
website.

X-Server-Protocol-Version Must be set to value: 1

The service endpoint returns a JSON object with the following structure:

{

 "seedBuildTokens": [

 {

 "token":
"p3ySHD3CiWtpsH1DKS8sVdv9BgmFbRDh31xJH2584wJ5AngrYoReFB4MVY53rucW",

 "title": "macOS AppleSeed Beta",

 "os": "OSX"

 },

 {

 "token":
"35b68K477rAsry6dxiDJBnE7AvjRTueUXFa9jZ3ZhQSFpJZ3Jxz9M8mCt9UXK4Sg",

 "title": "iOS 18 AppleSeed Beta",

 "os": "iOS"

 }

]

}

https://developer.apple.com/documentation/devicemanagement/device_assignment/authenticating_with_a_device_enrollment_program_dep_server
https://developer.apple.com/documentation/devicemanagement/device_assignment/authenticating_with_a_device_enrollment_program_dep_server

41Managing software updates for IT

To enroll a device into a beta program, the RequireBetaProgram dictionary must contain
the keys shown below (all required strings).

Key Description

Description A human-readable description of the beta program.

Token The seeding service token for the organization that the MDM server is part of.
This token is used to enroll the device in the corresponding beta program.

The following is an example response making use of the described keys:

{

 "code": "com.apple.softwareupdate.required",

 "description": "AppleSeed enrollment required",

 "message": "This device needs to be enrolled into the AppleSeed Beta
program",

 "details": {

 "OSVersion": "17.5",

 "RequireBetaProgram": {

 "code": "iOS 17 AppleSeed Beta",

 "token":
"35b68K477rAsry6dxiDJBnE7AvjRTueUXFa9jZ3ZhQSFpJZ3Jxz9M8mCt9UXK4Sg","

 }

 }

}

The token is unique for each organization and can’t be reused across different Apple
School Manager and Apple Business Manager organizations. The token is also specific
to a certain operating system upgrade seeding period. The title is a human-readable
description of the beta release and os can contain the following values: iOS (includes
iPadOS), OSX (macOS), tvOS, watchOS, or xrOS (visionOS).

After an iPhone or iPad is enrolled into device management, an MDM solution can enroll or
unenroll supervised iPhone or iPad devices from beta programs using the Beta dictionary in
the com.apple.configuration.softwareupdate.settings declaration.

42Managing software updates for IT

On unsupervised iPhone or iPad devices, only the OfferPrograms array can be used to
allow users to manually enroll into beta programs the organization has subscribed to.
The beta dictionary offers the following keys (not required):

Key Type Default Merge
behavior

Description

ProgramEnrollment Enum Allowed The last value
from the
list: Allowed,
AlwaysOn,
AlwaysOff

Specifies whether beta program enrollment
can be controlled by the user in the
software update settings user interface:

•	 Allowed: The user can enroll in any
applicable beta programs associated with
the Apple Account they used to sign in.
If the OfferPrograms key is present,
then the programs listed in that key are
also presented to the user.

•	 AlwaysOn: The beta programs specified
by the organization are used, and the
user isn’t able to enroll in a beta program
with the Apple Account they used to sign
in. The device is automatically enrolled
into the beta program specified by the
RequireProgram key, if it’s present.
Otherwise, the programs listed in the
OfferPrograms key are presented to the
user to choose in which to enroll.

•	 AlwaysOff: The device isn’t allowed to
enroll in any beta programs. The device
is removed from any beta programs,
if already enrolled.

OfferPrograms Array — Unique union
of all values

An array of beta programs allowed on the
device. This key must only be present if the
ProgramEnrollment key is set to Allowed
or AlwaysOn. This key must not be present
if the RequireProgram key is present.
This key can be present on unsupervised
devices where the ProgramEnrollment
key isn’t supported but is implicitly set to
Allowed.

RequireProgram Dictionary — First
configuration
applied

The device automatically enrolls in this beta
program. This key must be present only
if the ProgramEnrollment key is set to
AlwaysOn. The OfferPrograms key must
not be present if this key is present.

43Managing software updates for IT

In addition to sending the name of the program, the OfferPrograms and RequireProgram
options require that the token of the beta program be sent to the device. This token is used
with Apple to verify eligibility and receive an updated software update configuration.

To allow users to enroll using their personal Apple Account or Managed Apple Account,
an MDM solution can set the ProgramEnrollment key to Allowed. This allows users to
enroll into any program available to their account and additionally into any beta program
specified by the OfferPrograms array. Each Program dictionary in the OfferPrograms
array must consist of the following keys (all strings, all required):

Key Description

Description A human-readable description of the beta program.

Token The seeding service token that the MDM solution is part of for the organization.
This token is used to enroll the device in the corresponding beta program.

If an organization wants to allow users to participate without the need to sign in, they can
set the ProgramEnrollment key to AlwaysOn. In this case users are offered all programs
listed in the OfferPrograms array. They can also automatically enroll devices into a beta
program using a combination of ProgramEnrollment set to AlwaysOn and defining the
beta program that the device must be enrolled into with the RequireProgram dictionary.
The RequireProgram dictionary requires the following keys (all strings):

Key Description

Description A human-readable description of the beta program.

Token The seeding service token that the MDM solution is part of for the organization.
This token is used to enroll the device in the corresponding beta program.

In case an organization wants to prevent users from enrolling, they can set the
ProgramEnrollment key to AlwaysOff. This also unenrolls the device from any beta
program that it was already manually or automatically enrolled in.

44Managing software updates for IT

© 2024 Apple Inc. All rights reserved.
Use of the “keyboard” Apple logo (Option-Shift-K) for commercial purposes without the prior written consent of
Apple may constitute trademark infringement and unfair competition in violation of federal and state laws.

Apple, the Apple logo, Finder, iPad, iPadOS, iPhone, Mac, macOS, OS X, Safari, tvOS, watchOS, and Xcode are
trademarks of Apple Inc., registered in the U.S. and other countries and regions.

visionOS is a trademark of Apple Inc.

Apple
One Apple Park Way
Cupertino, CA 95014
apple.com

IOS is a trademark or registered trademark of Cisco in the U.S. and other countries and is used under license.

This material is provided for informational purposes only; Apple assumes no liability related to its use. The Apple
software and services discussed hereunder are pre-release versions that may be incomplete and may contain
inaccuracies or errors that could cause failures or loss of data.

Other product and company names mentioned herein may be trademarks of their respective companies. Product
specifications are subject to change without notice.

Every effort has been made to ensure that the information in this manual is accurate. Apple is not responsible for
printing or clerical errors.

028-00789

https://www.apple.com/

	Contents
	Intro to managing software updates
	Introduction
	Types of software updates
	Software update security
	Caching software updates
	Software update requirements

	Software update process
	Software update detection
	Downloading and preparing software updates on iPhone and iPad
	Downloading and preparing software updates on Mac
	Software update notifications
	Installing a software update

	Installing and enforcing software updates
	Requiring a minimum version during MDM enrollment
	Managing the availability of software updates
	Installing software updates automatically
	Requiring authorization by an administrator on macOS
	Enforcing software updates

	Software update implementation details for MDM developers
	The importance of leveraging software update declarations
	Using the Apple Software Lookup Service
	Sending a status report to the MDM solution
	Requesting a specific minimum software version during MDM enrollment
	MDM settings for software updates
	Configuring automatic software updates with MDM
	How MDM handles Rapid Security Responses
	Deferring a software update with MDM
	Enforcing software updates with MDM
	Phases of Apple software update enforcement

	Testing software updates with the AppleSeed for IT beta program
	Enrolling a device in a beta program

	Copyright

