
Security Audit Report

Hub 2024 Q2: Partial Set Security

Authors: Josef Widder, Ivan Golubovic, Aleksandar Ljahovic

Last revised 5 June, 2024



© 2024 Informal Systems Hub 2024 Q2: Partial Set Security

Table of Contents

Audit Overview ............................................................................................................ 1
Relevant Code Commits                                                                                                                                                 1

Conclusion                                                                                                                                                                           1

Audit Dashboard ......................................................................................................... 2
Target Summary                                                                                                                                                                2

Engagement Summary                                                                                                                                                   2

Severity Summary                                                                                                                                                            2

System Overview......................................................................................................... 3
Consumer Chain Onboarding                                                                                                                                      3

Key Components                                                                                                                                                               3

Threat Model ............................................................................................................... 4
Threats                                                                                                                                                                                  4

Invariants                                                                                                                                                                             5

Findings ....................................................................................................................... 7
Potential Optimization in Max Power Capping Logic                                                                                        9

No validation for TopN property                                                                                                                              11

Redundant Denylist Check with Allowlist Present                                                                                            12

Inaccurate Rounding of maxPower                                                                                                                         13

Validator avoids jailing by opting out                                                                                                                     15

Inconsistent Validator Set Capping Behavior in PSS                                                                                       16

Lack of validator set history leads to race conditions and unexpected behaviour                             18

Risk of Unsecure or Non-Operational Validator Sets Due to Validator Selection Parameters       19

Code Efficiency Improvements and Optimization Opportunities                                                              20

Minor Code Improvements                                                                                                                                         22

Vulnerability Classification ....................................................................................... 24
Impact Score                                                                                                                                                                     24

Exploitability Score                                                                                                                                                        24

Severity Score                                                                                                                                                                   25

Disclaimer.................................................................................................................. 27



© 2024 Informal Systems Hub 2024 Q2: Partial Set Security

Audit Overview 1

•
•
•
•
•
•

•
•
•

•

Audit Overview
In May 2024, Informal Systems conducted a security audit for Hub team. The audit aimed at inspecting the 
correctness and security properties of Partial Set Security. The relevant resources for the audit were following:

EPIC to track work — https://github.com/cosmos/interchain-security/issues/853
ADR — https://cosmos.github.io/interchain-security/adrs/adr-015-partial-set-security
WIP feature branch — https://github.com/cosmos/interchain-security/tree/feat/partial-set-security
PSS PR is out in draft. https://github.com/cosmos/interchain-security/pull/1809
the diff: https://github.com/cosmos/interchain-security/compare/release/v4.1.x...release/v4.2.x
InterchainSecurity repo with frozen tag: https://github.com/cosmos/interchain-security/tree/v4.2.0-rc0

The audit was performed from May 6, 2024 to May 29, 2024 by the following personnel:

Josef Widder
Ivan Golubovic
Aleksandar Ljahovic

Relevant Code Commits
The audited code was from the interchain-security repository at the following commit:

hash 71666b171267c4c48a0526ccee022b49d1295979

Conclusion
We performed a thorough review of the project. We found some subtle problems - more on them in the section 
Findings .

We are glad to report that the dev team has acknowledged our findings and is working towards fixing them.

https://informal.systems/
https://github.com/cosmos/interchain-security/issues/853
https://cosmos.github.io/interchain-security/adrs/adr-015-partial-set-security
https://github.com/cosmos/interchain-security/tree/feat/partial-set-security
https://github.com/cosmos/interchain-security/pull/1809
https://github.com/cosmos/interchain-security/compare/release/v4.1.x...release/v4.2.x
https://github.com/cosmos/interchain-security/tree/v4.2.0-rc0
https://github.com/cosmos/interchain-security/tree/v4.2.0-rc0


© 2024 Informal Systems Hub 2024 Q2: Partial Set Security

Audit Dashboard 2

•
•
•

•
•

Audit Dashboard

Target Summary
Type: Protocol and Implementation
Platform: Go
Artifacts: https://github.com/cosmos/interchain-security

Engagement Summary
Dates: 06.05.2024 - 29.05.2024
Method: Manual code review, protocol analysis

Severity Summary

Finding Severity #

Critical 0

High 0

Medium 0

Low 4

Informational 6

Total 10

https://github.com/cosmos/interchain-security


© 2024 Informal Systems Hub 2024 Q2: Partial Set Security

System Overview 3

1.
2.

•
•
•

1.
2.
3.

System Overview
Partial Set Security (PSS) enhances Interchain Security (ICS) by allowing consumer chains to be validated by 
subsets of the provider chain’s validators, specifically within the Cosmos Hub ecosystem.

Under Interchain Security, the provider chain (Cosmos Hub) used its entire validator set to secure consumer chains 
(e.g., Stride and Neutron). PSS introduces two categories of consumer chains validated by subsets of the provider’s 
validators:

Opt In: Validators can choose to opt in and out at will.
Top N: The top N% of validators on the Hub are required to validate the consumer chain, with other 
validators having the option to opt in.

Consumer chains can also use validator-shaping features:

Validator-set cap: Limits the maximum number of validators for a consumer chain.
Validator-power cap: Caps the maximum power a validator can hold on a consumer chain.
Allowlist/Denylist: Specifies which Hub validators can or cannot validate the consumer chain.

Consumer Chain Onboarding
New consumer chains can join as Opt In or Top N and set validator-shaping features via the 
ConsumerAdditionProposal. Existing consumer chains, Stride and Neutron, are automatically migrated to Top 95% 
chains due to their existing soft opt-out feature.

Key Components

Validator-Set Updates
PSS constructs validator-set updates using epochs (600 block sequences). For each consumer chain, the current 
validators are filtered and updated based on their power and opt-in status. This process involves:

GetConsumerValSet: Retrieves the current validator set.
Applies various filters to the validator set: power capping, power shaping, allow/deny listing.
DiffValidators: Generates the differences to create ValidatorUpdates for VSCPackets.

Reward Distribution
PSS modifies reward distribution so that only validators who validate a consumer chain receive its rewards. An IBC 
Middleware tracks rewards from consumer chains, which are then allocated through the AllocateTokens method 
during BeginBlock. Validators can set different commission rates for different consumer chains.

https://github.com/cosmos/interchain-security/blob/v4.2.0-rc0/proto/interchain_security/ccv/provider/v1/provider.proto#L88-L106


© 2024 Informal Systems Hub 2024 Q2: Partial Set Security

Threat Model 4

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Threat Model

Threats
1. Unbounded Validator Set (Opt-In Chains)

Explanation: An Opt-In chain might end up with more validators than intended due to a lack of enforcement 
mechanisms for the validator-set_cap . A large validator set can negatively impact performance.

Property Checked: Effectiveness of validator-set_cap  implementation for Opt-In chains, ensuring it 
restricts the validator set size.
Consequence: An excessive number of validators in an Opt-In chain can slow down the chain and increase 
resource consumption.
Conclusion: The following findings were identified during the inspection of this threat:
Inconsistent Validator Set Capping Behavior in PSS

2. Limitations on Validator Selection

Explanation: A consumer chain's validator set might include unauthorized validators (from denylist) or 
exclude authorized ones (from allowlist) due to flaws in the filtering logic.
Property Checked: Logic for utilizing allowlist and denylist to ensure only authorized validators are 
included in the consumer chain's validator set.
Consequence: Including unauthorized validators can compromise security by allowing malicious actors to 
participate in consensus or disrupt the chain's operation. Conversely, excluding authorized validators can 
prevent legitimate validators from fulfilling their roles.
Conclusion: The following findings were identified during the inspection of this threat: 
Risk of Unsecure or Non-Operational Validator Sets Due to Validator Selection Parameters 
Redundant Denylist Check with Allowlist Present

3. Power Takeover

Explanation: In a consumer chain, a validator or a colluding group of validators could accumulate excessive 
voting power exceeding the intended validator_power_cap . This power could be used to manipulate 
consensus or reward distribution.
Property Checked: Power capping mechanism and its ability to enforce validator-power_cap , 
preventing any validator from exceeding the defined power limit on the consumer chain.
Consequence: A validator with excessive power in a chain can disrupt consensus, unfairly influence reward 
distribution, or manipulate penalties for misbehavior, jeopardizing the overall security and fairness of the 
system.
Conclusion: The following findings were identified during the inspection of this threat: 
No validation for TopN property 
Potential Optimization in Max Power Capping Logic 

4. Reward Misallocation

Explanation: Validators might receive incorrect rewards (more/less than deserved) due to flaws in the 
reward allocation logic based on voting power or issues with handling consumer chain rewards through the 
IBC Middleware.
Property Checked: Reward allocation algorithm for consumer chains, ensuring it accurately reflects the 
voting power of participating validators and correctly handles rewards received via IBC transfers.
Consequence: Validators receiving incorrect rewards can lead to unfairness and potentially incentivize 
malicious behavior.
Conclusion: The following findings were identified during the inspection of this threat:
Lack of validator set history leads to race conditions and unexpected behaviour

5. Commission Rate Manipulation:



© 2024 Informal Systems Hub 2024 Q2: Partial Set Security

Threat Model 5

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

Explanation: A validator might exploit a vulnerability in the MsgSetConsumerCommissionRate
message to manipulate their commission rate for a specific consumer chain, potentially gaining an unfair 
advantage in reward distribution.
Property Checked: Security of the MsgSetConsumerCommissionRate  message handling and 
validation to prevent manipulation of commission rates.
Consequence: A validator manipulating commission rates can gain an unfair advantage in rewards, 
impacting the overall fairness of the system.
Conclusion: The implementation does not suffer from this threat. The commission rate set by the validator 
for a specific consumer chain is subject to validations that will prevent any attempt at manipulation.

6. Inactive Validator Consensus Disruption

Explanation: The consumer chain's validator set might include inactive validators during epoch boundaries. 
These validators cannot participate in consensus, potentially halting the chain's operation or causing 
crashes.
Property Checked: Process for selecting validators for the consumer chain, ensuring only active validators 
on the hub chain are included during epoch transitions.
Consequence: Including inactive validators can disrupt consensus, potentially halting the chain's progress 
or even causing crashes, jeopardizing the overall functionality of the consumer chain.
Conclusion: The implementation does not suffer from this threat. The process of selecting only active 
validators is ensured by the implementation in a way that only validators with bonded status could end up 
validating the consumer chain.

7. Voting Power Discrepancy

Explanation: The relative voting power relationships between validators on the provider and consumer 
chains might not be preserved during validator set updates. This inconsistency can lead to unexpected 
power distribution within the consumer chain.
Property Checked: Mechanism for updating the validator set while maintaining the relative voting power 
relationships between validators as established on the provider chain.
Consequence: Discrepancies in voting power can lead to situations where validators have more or less 
power than intended on the consumer chain, potentially impacting fairness and security.
Conclusion: The implementation does not suffer from this threat. There has not been identified that a 
validator power could be recalculated in such a way that it would harm the relative relationship of two 
validators on provider and consumer chain.

8. Incomplete Consumer Chain State Removal

Explanation: Consumer chain information might not be completely removed from the Hub's state after the 
chain is stopped or times out. This residual data could lead to unforeseen consequences, such as 
unintended resource consumption or potential security vulnerabilities.
Property Checked: Completeness and effectiveness of the state cleaning procedure for stopped or timed-
out consumer chains, ensuring all relevant data is removed from the Hub.
Consequence: Incomplete removal of consumer chain state can cause wasted storage space, potentially 
impacting performance. Additionally, residual data might introduce vulnerabilities if exploited by malicious 
actors, compromising the overall security of the system.
Conclusion: The implementation does not suffer from this threat. It has been identified that all the relevant 
Partial Set Security data is cleaned up on every consumer chain stoppage/timeout. This data includes 
allowlist, denylist, TopN, validator set cap and validator power cap as well as stored validator set and opted 
in validators (some of them might be out of validator set).

Invariants
Validator Set Size:

For Opt-In chains, the validator set size is capped at a maximum of validator_set_cap
validators.



© 2024 Informal Systems Hub 2024 Q2: Partial Set Security

Threat Model 6

•

•

•
•

•

•

•
•

•

•

•

For Top N chains, the validator set size is less than or equal to the number of validators in the top N% 
of the Hub's validator set.

Validator Liveness: Only active validators (bonded) on the Hub chain can be included in the consumer 
chain's validator set during epoch boundaries.
Validator Selection:

The validator set for a consumer chain consists only of validators from the allowlist (if defined) and 
excludes those from the denylist (if defined).
In Top N chains, all validators within the top N% of the Hub's validator set are included in the 
consumer chain's validator set, unless they are on the denylist.

Voting Power Cap: The voting power of any individual validator on a consumer chain is limited to a 
maximum of validator_power_cap  percent of the total voting power on that chain.
Reward Allocation:

The total rewards distributed to validators for a consumer chain match the total rewards received 
from that chain via IBC transfers.
The share of rewards a validator receives on a consumer chain is proportional to its relative voting 
power on that chain.

Opt-In Consistency: A validator's opt-in status for a consumer chain should be consistent across the Hub 
and the consumer chain itself.
Commission Rate Validity: The commission rate set by a validator for a consumer chain should be within a 
valid range defined by the protocol.



© 2024 Informal Systems Hub 2024 Q2: Partial Set Security

Findings 7

Findings
Title Type Severity Impact Exploitability

Potential 
Optimization in 
Max Power Capping 
Logic

IMPLEMENTATIO
N

1 LOW 1 LOW 1 LOW

No validation for 
TopN property

IMPLEMENTATIO
N

1 LOW 1 LOW 1 LOW

Redundant Denylist 
Check with 
Allowlist Present

IMPLEMENTATIO
N

1 LOW 1 LOW 1 LOW

Inaccurate 
Rounding of 
maxPower

IMPLEMENTATIO
N

1 LOW 1 LOW 1 LOW

Validator avoids 
jailing by opting out

IMPLEMENTATIO
N

0 INFORMATIONAL 0 NONE 0 NONE

Inconsistent 
Validator Set 
Capping Behavior 
in PSS

IMPLEMENTATIO
N

0 INFORMATIONAL 0 NONE 0 NONE

Lack of validator 
set history leads to 
race conditions and 
unexpected 
behaviour

IMPLEMENTATIO
N

DOCUMENTATIO
N

0 INFORMATIONAL 0 NONE 0 NONE

Risk of Unsecure or 
Non-Operational 
Validator Sets Due 
to Validator 
Selection 
Parameters

IMPLEMENTATIO
N

DOCUMENTATIO
N

0 INFORMATIONAL 0 NONE 0 NONE

Code Efficiency 
Improvements and 
Optimization 
Opportunities

IMPLEMENTATIO
N

0 INFORMATIONAL 0 NONE 0 NONE



© 2024 Informal Systems Hub 2024 Q2: Partial Set Security

Findings 8

Minor Code 
Improvements

IMPLEMENTATIO
N

DOCUMENTATIO
N

0 INFORMATIONAL 0 NONE 0 NONE



© 2024 Informal Systems Hub 2024 Q2: Partial Set Security

Findings 9

•

Potential Optimization in Max Power Capping Logic

Project Hub 2024 Q2: Partial Set Security

Type IMPLEMENTATION

Severity 1 LOW

Impact 1 LOW

Exploitability 1 LOW

Status ACKNOWLEDGED

Issue  

Involved artifacts
interchain-security/partial-set-security

Description
The current implementation of the max power capping functionality in consumer chains utilizes a two-step 
approach for distributing voting power among validators. The first step involves calculating the total power from 
validators exceeding the cap and the number of validators with power below the cap. Subsequently, the main loop 
iterates through validators, adjusting their power and recalculating the remaining power to be distributed in each 
iteration.

Problem Scenarios
While the current approach in NoMoreThanPercentOfTheSum  functions correctly, the initial loop dedicated 

to calculating remainingPower  and validatorsWithPowerLessThanMaxPower  introduces 
unnecessary redundancy. This redundancy can potentially impact code readability and contribute to minor 
performance overhead.

Recommendation
To optimize the max power capping logic, consider refactoring the code to eliminate the separate loop for 
calculating remainingPower  and validatorsWithPowerLessThanMaxPower  variables. Also, logic 

within the first if  branch ( if v.Power >= maxPower ) could be merged into the main processing loop.

The validators that are being processed are already sorted by power in decreasing order. The main for loop in its 
redesigned form with first if branch merged into the second one, will first process the validators with power greater 
than the maximum power which makes it possible to calculate the remaining power before the validators with 
power lower than the maximum power are encountered in the loop.

This optimization would:

https://github.com/cosmos/interchain-security/blob/88e97b7494be1698c22bb883bf4f7251bb04bc36/x/ccv/provider/keeper/partial_set_security.go
https://github.com/cosmos/interchain-security/blob/71666b171267c4c48a0526ccee022b49d1295979/x/ccv/provider/keeper/partial_set_security.go#L184-L184
https://github.com/cosmos/interchain-security/blob/71666b171267c4c48a0526ccee022b49d1295979/x/ccv/provider/keeper/partial_set_security.go#L226-L228
https://github.com/cosmos/interchain-security/blob/71666b171267c4c48a0526ccee022b49d1295979/x/ccv/provider/keeper/partial_set_security.go#L250-L269


© 2024 Informal Systems Hub 2024 Q2: Partial Set Security

Findings 10

•
•
•

Reduce code complexity by eliminating redundant calculations.
Potentially improve code readability by condensing the logic.
Lead to minor performance improvements by reducing loop iterations.



© 2024 Informal Systems Hub 2024 Q2: Partial Set Security

Findings 11

•

•

•

No validation for TopN property

Project Hub 2024 Q2: Partial Set Security

Type IMPLEMENTATION

Severity 1 LOW

Impact 1 LOW

Exploitability 1 LOW

Status ACKNOWLEDGED

Issue  

Involved artifacts
 interchain-security/partial-set-security

Description
The Partial Set Security (PSS) specification defines "Top N" consumer chains where the validator set comprises the 
top N% of validators from the provider chain, with N ranging from 50 to 100. However, the code review identified 
places where the implementation lacks validation to ensure N falls within this valid range.

Problem Scenarios
Top N consumer chains are intended to have a validator set size proportional to the chosen N value (between 50% 
and 100% of the provider's validators). The code contains instances where the provided N value is used in 
calculations without explicit validation to confirm it adheres to the specified range (HandleOptOut, 
ComputeMinPowerToOptIn (misleading comment also stating it should be 0-100)).

While the ConsumerAdditionProposal message properly validates the N value to be within the 50-100 range, 
additional validation in the identified code sections would strengthen the overall security posture. This redundancy 
acts as an extra layer of state verification, mitigating potential inconsistencies that might arise due to unexpected 
changes.

Recommendation
To address this incomplete validation, it's recommended to incorporate checks within the following functions to 
ensure the provided N value for Top N consumer chains falls within the allowed range (50-100):

HandleOptOut  function

ComputeMinPowerToOptIn  function

These additional checks would fortify the system's integrity by preventing the creation of Top N consumer chains 
with invalid N values, thereby maintaining the intended validator set sizes and security properties of the PSS 
design.

https://github.com/cosmos/interchain-security/blob/8329a27e6aa72a4678576e83b2450795141f20f0/x/ccv/provider/keeper/partial_set_security.go
https://docs.google.com/document/d/19SI_rVpTWffI06h0Ud4F26sP6ueQ3UXGxVztcoBtGOk/edit
https://github.com/cosmos/interchain-security/blob/88e97b7494be1698c22bb883bf4f7251bb04bc36/x/ccv/provider/keeper/partial_set_security.go#L57
https://github.com/cosmos/interchain-security/blob/88e97b7494be1698c22bb883bf4f7251bb04bc36/x/ccv/provider/keeper/partial_set_security.go#L102-L105
https://github.com/cosmos/interchain-security/blob/88e97b7494be1698c22bb883bf4f7251bb04bc36/x/ccv/provider/keeper/proposal.go#L384
https://github.com/cosmos/interchain-security/blob/88e97b7494be1698c22bb883bf4f7251bb04bc36/x/ccv/provider/keeper/partial_set_security.go#L57
https://github.com/cosmos/interchain-security/blob/88e97b7494be1698c22bb883bf4f7251bb04bc36/x/ccv/provider/keeper/partial_set_security.go#L102-L105


© 2024 Informal Systems Hub 2024 Q2: Partial Set Security

Findings 12

•

•

•

Redundant Denylist Check with Allowlist Present

Project Hub 2024 Q2: Partial Set Security

Type IMPLEMENTATION

Severity 1 LOW

Impact 1 LOW

Exploitability 1 LOW

Status ACKNOWLEDGED

Issue  

Involved artifacts
interchain-security/partial-set-security

Description
The current implementation of consumer chain validator selection uses both allowlists and denylists. However, the 
presence of an allowlist effectively makes the denylist redundant.

The code also prioritizes the denylist, so any validator on the denylist will be excluded regardless of being on the 
allowlist.

Problem Scenarios
Redundant Denylist Check: The code performs an unnecessary check for the denylist if an allowlist is 
defined. Allowlist is used to exactly point to the validators that are wanted on the chain. The denylist has no 
real purpose here.
Empty Validator Set: If both allowlist and denylist are non-empty and contain identical entries (allowlist = 
denylist), the current behavior using denylist precedence results in an empty validator set. This leaves the 
consumer chain with no validators.

Recommendation
To optimize code execution and address the potential for an empty validator set, consider the following 
approaches:

Enforce Single List: Modify the consumer chain configuration to allow only one list (allowlist or denylist) to be set 
at a time. This ensures clarity and eliminates the redundant denylist check.

Allowlist Precedence with Denylist Merge: If maintaining both lists is necessary, prioritize the allowlist and 
incorporate denylist functionality by removing denylisted validators from the allowlist before selection. This 
approach streamlines the validation process and avoids the empty validator set scenario.

https://github.com/cosmos/interchain-security/blob/88e97b7494be1698c22bb883bf4f7251bb04bc36/x/ccv/provider/keeper/partial_set_security.go
https://github.com/cosmos/interchain-security/blob/71666b171267c4c48a0526ccee022b49d1295979/x/ccv/provider/keeper/partial_set_security.go#L275-L284


© 2024 Informal Systems Hub 2024 Q2: Partial Set Security

Findings 13

•

Inaccurate Rounding of maxPower

Project Hub 2024 Q2: Partial Set Security

Type IMPLEMENTATION

Severity 1 LOW

Impact 1 LOW

Exploitability 1 LOW

Status ACKNOWLEDGED

Issue  

Involved artifacts
x/ccv/provider/keeper/partial_set_security.go

Description
An analysis of the calculation for the maxPower  reveals that the calculation may not yield the correct results in 
certain scenarios. Specifically, when the expression 
sdk.NewDec(sum(validators)).Mul(sdk.NewDec(int64(percent))).QuoInt64(100)

evaluates to a whole number, the use of the Ceil()  function followed by a subtraction of 1 ( - 1 ) results in an 
incorrect value.

Problem Scenarios
The expression 
sdk.NewDec(sum(validators)).Mul(sdk.NewDec(int64(percent))).QuoInt64(100)  is 

intended to calculate a percentage of the sum of validators, and Ceil()  is used to round up to the nearest whole 

number. However, if the result is already a whole number, Ceil()  should ideally leave the number unchanged, 

akin to what a Floor()  function would do if it existed in this context. Subtracting 1 from the result in such cases 
leads to an incorrect value, as demonstrated in the test:

https://github.com/cosmos/interchain-security/blob/88e97b7494be1698c22bb883bf4f7251bb04bc36/x/ccv/provider/keeper/partial_set_security.go
https://github.com/cosmos/interchain-security/blob/88e97b7494be1698c22bb883bf4f7251bb04bc36/x/ccv/provider/keeper/partial_set_security.go#L212-L214


© 2024 Informal Systems Hub 2024 Q2: Partial Set Security

Findings 14

1.
2.

3.

func TestMaxPowerCalc(t *testing.T) {
    sumValidators := int64(200)
    percent := int64(2)
    maxPower := sdk.NewDec(sumValidators).Mul(sdk.NewDec(percent)).QuoInt64(100).Ceil
().RoundInt64() - 1
 
    require.Equal(t, int64(4), maxPower)  // Error: expected: 4, actual: 3
}

Recommendation
To address this issue, review the logic used for calculating maxPower . Consider the following changes:

Evaluate whether the use of Ceil()  is appropriate when the result is already a whole number.
Implement a conditional check to determine if the result of 
sdk.NewDec(sum(validators)).Mul(sdk.NewDec(int64(percent))).QuoInt64(100)

is a whole number and handle it accordingly, without subtracting 1.
Update the test case to validate the new logic and ensure accurate results.



© 2024 Informal Systems Hub 2024 Q2: Partial Set Security

Findings 15

•

•

•

•

Validator avoids jailing by opting out

Project Hub 2024 Q2: Partial Set Security

Type IMPLEMENTATION

Severity 0 INFORMATIONAL

Impact 0 NONE

Exploitability 0 NONE

Status ACKNOWLEDGED

Issue  

Involved artifacts
interchain-security/partial-set-security

Description
Partial Set Security features adds a new type of chains in terms of their validator set called Opted In chains. In such 
chains, a validator set is made of validators that are willingly taking part in the consensus. In addition, these 
validators can also opt out of a validator set when they don’t want to be part of the consumer chain’s consensus 
anymore.

One of the consequences of such validator set creation process is the jailing process being changed in a way that 
only opted in validators on consumer chain can be jailed for downtime. Otherwise, all the validators that did not 
opt in for consumer chain could end up jailed. So, opted out validators are not eligible for jailing by consumer 
chain.

Problem Scenarios
In PSS, only opted-in validators on a consumer chain can be jailed for downtime or misbehavior. A malicious 
validator on an Opt-In chain can exploit this by opting-out before the jailing process, evading punishment.

Recommendation
Firstly, the aforementioned fact should be properly documented for the team to be aware of this possibility.

To address this otherwise, consider:

Grace Period Jailing: Allow jailing opted-out validators for a grace period after opting-out to complete the 
jailing process if misbehavior evidence exists.
Reputation System: Implement a reputation system that tracks a validator's opt-out history across chains. 
Frequent opt-outs near potential jailing events could trigger further investigation.
Alternative Penalties: Explore alternative penalties beyond jailing for opted-out validators, such as 
slashing voting power or reducing rewards for a set period.

https://github.com/cosmos/interchain-security/blob/8329a27e6aa72a4678576e83b2450795141f20f0/x/ccv/provider/keeper/partial_set_security.go


© 2024 Informal Systems Hub 2024 Q2: Partial Set Security

Findings 16

•

•

Inconsistent Validator Set Capping Behavior in PSS

Project Hub 2024 Q2: Partial Set Security

Type IMPLEMENTATION

Severity 0 INFORMATIONAL

Impact 0 NONE

Exploitability 0 NONE

Status ACKNOWLEDGED

Issue  

Involved artifacts
interchain-security/partial-set-security

Description
The current implementation of validator set capping in PSS exhibits inconsistency between Top N and Opt-In 
consumer chains. In Opt-In chains, the validator_set_cap  parameter effectively limits the total number of 
validators participating in the chain. However, for Top N chains, the validator set cap does not restrict the total 
number of validators.

Problem Scenarios
Consider a scenario where a consumer chain is configured as Top 50, intending to have the top 50 validators from 
the provider chain as its validator set. Additionally, a validator_set_cap  of 100 is set, aiming to limit the total 
number of validators to 100 (including the top 50).

In this scenario, the current implementation would only enforce the cap on validators outside the top 50. This could 
result in a validator set exceeding 100 if more than 50 validators from outside the top 50 opt-in to participate. This 
behavior deviates from the expectation of a capped validator set and could lead to unintended consequences such 
as resource exhaustion or performance degradation.

Recommendation
To ensure consistent behavior for validator set capping across both Opt-In and Top N chains, it's recommended to 
consider the following approaches:

Apply Cap to Entire Set (Top N): Modify the logic for Top N chains to consider the validator_set_cap
when selecting validators. This would ensure the total validator set size remains within the specified cap, 
even for Top N chains.

https://github.com/cosmos/interchain-security/blob/8329a27e6aa72a4678576e83b2450795141f20f0/x/ccv/provider/keeper/partial_set_security.go


© 2024 Informal Systems Hub 2024 Q2: Partial Set Security

Findings 17

• Introduce Separate Cap for Top N: Implement a separate capping mechanism specifically for Top N chains. 
This separate cap would define the maximum number of validators allowed beyond the top N, providing 
more granular control over the validator set size for Top N chains.



© 2024 Informal Systems Hub 2024 Q2: Partial Set Security

Findings 18

•

1.

•
•

2.

Lack of validator set history leads to race conditions and unexpected 
behaviour

Project Hub 2024 Q2: Partial Set Security

Type IMPLEMENTATION  DOCUMENTATION

Severity 0 INFORMATIONAL

Impact 0 NONE

Exploitability 0 NONE

Status ACKNOWLEDGED

Issue  

Involved artifacts
 interchain-security/partial-set-security

Description
The current implementation of consumer chains in PSS only stores the current validator set. This lack of historical 
data can lead to race conditions and unintended consequences, potentially affecting reward distribution and 
validator jailing.

Problem Scenarios
Reward Misallocation: Rewards are distributed to the current validator set based on block production, 
even if prior validators performed the work. This can result in:

Opting-out validators missing out on deserved rewards.
Opting-in validators receiving rewards they haven't earned.

Jailing Ineffectiveness: Validators responsible for downtime on a consumer chain can evade penalties by 
opting out just before the corresponding information reaches the provider chain. The absence of historical 
validator set data hinders the identification and punishment of such misbehavior.

Recommendation
The PSS specification should be updated to explicitly address the implications of missing historical validator set 
data. This should include clear guidelines outlining the potential consequences on reward distribution and 
validator jailing mechanisms.

https://github.com/cosmos/interchain-security/blob/8329a27e6aa72a4678576e83b2450795141f20f0/x/ccv/provider/keeper/partial_set_security.go


© 2024 Informal Systems Hub 2024 Q2: Partial Set Security

Findings 19

•

•

•

Risk of Unsecure or Non-Operational Validator Sets Due to Validator 
Selection Parameters

Project Hub 2024 Q2: Partial Set Security

Type IMPLEMENTATION  DOCUMENTATION

Severity 0 INFORMATIONAL

Impact 0 NONE

Exploitability 0 NONE

Status ACKNOWLEDGED

Issue  

Involved artifacts
 interchain-security/partial-set-security

Description
The validator selection process in PSS, which includes allowlists, denylists, and power shaping features, introduces 
potential risks of creating insecure or non-operational consumer chain validator sets. Improper configuration of 
these parameters can lead to critical vulnerabilities and operational disruptions.

Problem Scenarios
An overly restrictive configuration of allowlists or denylists in a consumer chain can result in a very small validator 
set, potentially even just a single validator. This creates a single point of failure, making the consumer chain highly 
vulnerable. If this sole validator opts out, the entire consumer chain can halt operations.

Recommendation
To mitigate risks associated with validator selection parameters, the following recommendations are essential:

Comprehensive Documentation: Thorough documentation outlining the functionality and associated risks 
of allowlists, denylists, and power shaping features should be developed.
Consumer Chain Awareness: Consumer chains must be clearly informed about the potential consequences 
of setting overly restrictive validator selection parameters. This will empower them to make informed 
decisions that balance security with operational needs.

https://github.com/cosmos/interchain-security/blob/8329a27e6aa72a4678576e83b2450795141f20f0/x/ccv/provider/keeper/partial_set_security.go


© 2024 Informal Systems Hub 2024 Q2: Partial Set Security

Findings 20

•

•

•

•

Code Efficiency Improvements and Optimization Opportunities

Project Hub 2024 Q2: Partial Set Security

Type IMPLEMENTATION

Severity 0 INFORMATIONAL

Impact 0 NONE

Exploitability 0 NONE

Status ACKNOWLEDGED

Issue  

Involved artifacts
/x/ccv/provider/keeper

Description
In multiple locations, Int  objects are created unnecessarily. Instead of using NewDecFromInt , 

NewDec  can be directly used. code1, code2, code3:

totalPower = totalPower.Add(sdk.NewDecFromInt(sdk.NewInt(power)))

Refactored code:

totalPower = totalPower.Add(sdk.NewDec(power))

In several mathematical calculations, immutable operations are used where mutable operations could 
enhance efficiency. code1, code3:

totalPower = totalPower.Add(sdk.NewDecFromInt(sdk.NewInt(power)))

Refactored code:

totalPower.AddMut(sdk.NewDec(power))

The variable topN  is already defined as chain.Top_N , making it unnecessary to retrieve its value again 
in relay.go#L226.

https://github.com/cosmos/interchain-security/blob/88e97b7494be1698c22bb883bf4f7251bb04bc36/x/ccv/provider/keeper
https://github.com/cosmos/interchain-security/blob/88e97b7494be1698c22bb883bf4f7251bb04bc36/x/ccv/provider/keeper/partial_set_security.go#L113
https://github.com/cosmos/interchain-security/blob/88e97b7494be1698c22bb883bf4f7251bb04bc36/x/ccv/provider/keeper/partial_set_security.go#L121
https://github.com/cosmos/interchain-security/blob/88e97b7494be1698c22bb883bf4f7251bb04bc36/x/ccv/provider/keeper/partial_set_security.go#L124
https://github.com/cosmos/interchain-security/blob/88e97b7494be1698c22bb883bf4f7251bb04bc36/x/ccv/provider/keeper/partial_set_security.go#L113
https://github.com/cosmos/interchain-security/blob/88e97b7494be1698c22bb883bf4f7251bb04bc36/x/ccv/provider/keeper/partial_set_security.go#L124
https://github.com/cosmos/interchain-security/blob/88e97b7494be1698c22bb883bf4f7251bb04bc36/x/ccv/provider/keeper/relay.go#L226


© 2024 Informal Systems Hub 2024 Q2: Partial Set Security

Findings 21

•

•

•

•

A new function IsConsumerTotalVotingPowerZero()  should be created and utilized here. It is 
much more efficient.
math.LegacyNewDec(totalPower)  should be initialized once before entering the loop (code).

The code can be optimized to avoid sorting validators when len(validators) < 

int(validatorSetCap) , as it's unnecessary to sort:

if validatorSetCap, found := k.GetValidatorSetCap(ctx, chainID); found && 
validatorSetCap != 0 && len(validators) >= int(validatorSetCap) {
    sort.Slice(validators, func(i, j int) bool {
        return validators[i].Power > validators[j].Power
    })
 
    return validators[:int(validatorSetCap)]
}
 
return validators

Maps isCurrentValidator and isNextValidator should be initialize with size.

Problem Scenarios
It was concluded that the code changes in places above were not critical for gaining significant difference in speed, 
but suggested optimizations could slightly improve performance.

Recommendation
As explained in the Description section.

https://github.com/cosmos/interchain-security/blob/88e97b7494be1698c22bb883bf4f7251bb04bc36/x/ccv/provider/keeper/distribution.go#L104
https://github.com/cosmos/interchain-security/blob/88e97b7494be1698c22bb883bf4f7251bb04bc36/x/ccv/provider/keeper/distribution.go#L153
https://github.com/cosmos/interchain-security/blob/88e97b7494be1698c22bb883bf4f7251bb04bc36/x/ccv/provider/keeper/partial_set_security.go#L143-L157
https://github.com/cosmos/interchain-security/blob/88e97b7494be1698c22bb883bf4f7251bb04bc36/x/ccv/provider/keeper/validator_set_update.go#L104
https://github.com/cosmos/interchain-security/blob/88e97b7494be1698c22bb883bf4f7251bb04bc36/x/ccv/provider/keeper/validator_set_update.go#L109


© 2024 Informal Systems Hub 2024 Q2: Partial Set Security

Findings 22

•

•

•

•

•

Minor Code Improvements

Project Hub 2024 Q2: Partial Set Security

Type IMPLEMENTATION DOCUMENTATION

Severity 0 INFORMATIONAL

Impact 0 NONE

Exploitability 0 NONE

Status ACKNOWLEDGED

Issue

Involved artifacts
/x/ccv/provider/keeper

Description
The validatorSetUpdateId  retrieval in /keeper.go#L729-L736 is redundant:

if bz == nil {
    return 0
}
return binary.BigEndian.Uint64(bz)

The consumerKey  parameter in the HandleOptIn  function does not need to be passed by reference 

(code). It could simply be a string variable. The check for whether consumerKey  has been passed could 

be handled similarly to how it is done in the OptIn  function within msgServer  (code). Furthermore, 

this check would become redundant because it would also be verified within the HandleOptIn  function.

The new allocation.Rewards  value (code) should match the changeCoins  value from 

TruncateDecimal()  (code):

rewardsToSend, _ := allocation.Rewards.TruncateDecimal()
allocation.Rewards = 
allocation.Rewards.Sub(sdk.NewDecCoinsFromCoins(rewardsToSend...))

This code could be simplified:

https://github.com/cosmos/interchain-security/blob/88e97b7494be1698c22bb883bf4f7251bb04bc36/x/ccv/provider/keeper
https://github.com/cosmos/interchain-security/blob/88e97b7494be1698c22bb883bf4f7251bb04bc36/x/ccv/provider/keeper/keeper.go#L729-L736
https://github.com/cosmos/interchain-security/blob/88e97b7494be1698c22bb883bf4f7251bb04bc36/x/ccv/provider/keeper/partial_set_security.go#L17
https://github.com/cosmos/interchain-security/blob/88e97b7494be1698c22bb883bf4f7251bb04bc36/x/ccv/provider/keeper/msg_server.go#L160
https://github.com/cosmos/interchain-security/blob/88e97b7494be1698c22bb883bf4f7251bb04bc36/x/ccv/provider/keeper/distribution.go#L200
https://github.com/cosmos/interchain-security/blob/88e97b7494be1698c22bb883bf4f7251bb04bc36/x/ccv/provider/keeper/distribution.go#L193
https://github.com/cosmos/interchain-security/blob/88e97b7494be1698c22bb883bf4f7251bb04bc36/x/ccv/provider/keeper/keeper.go#L1482-L1486


© 2024 Informal Systems Hub 2024 Q2: Partial Set Security

Findings 23

•
•

•

•

•

•

•

return !iterator.Valid()

And this one too.
Combine code into a single function: StopConsumerChain
The code regarding cleaning the Partial Set Security data could be moved into single function for better 
readability.
In the function CapValidatorSet , the variable minNumberOfValidators  is misleading as it 
represents the precise number of validators, not just a minimum number.
The function FilterOptedInAndAllowAndDenylistedPredicate  serves as a predicate to check 
whether a given validator meets certain criteria. However, naming it as a "Filter" may be misleading.
The comment in the function ComputeConsumerTotalVotingPower  incorrectly states that it sums 
the voting powers of opted-in validators. Instead, it sums the voting powers of the actual validator set.
DeleteValidatorsPowerCap function should be called only to clean the state, and this is something that 
should be commented in the code to prevent any misuse.
Update the comment to say that PSS clean-up was added to the code (the spec mentioned in the comment 
doesn’t capture that).

Problem Scenarios
Findings listed above could not introduce any issues, they are suggestions for code improvements as well for some 
additional logging and inline code improvements, for easier understanding and readability of the code.

Recommendation
As described above.

https://github.com/cosmos/interchain-security/blob/88e97b7494be1698c22bb883bf4f7251bb04bc36/x/ccv/provider/keeper/keeper.go#L1532-L1536
https://github.com/cosmos/interchain-security/blob/88e97b7494be1698c22bb883bf4f7251bb04bc36/x/ccv/provider/keeper/proposal.go#L222-L229
https://github.com/cosmos/interchain-security/blob/8329a27e6aa72a4678576e83b2450795141f20f0/x/ccv/provider/keeper/keeper.go#L1382
https://github.com/cosmos/interchain-security/blob/1294f9040481935a91bc50a9af4fb08e31e7c3b8/x/ccv/provider/keeper/proposal.go#L221


© 2024 Informal Systems Hub 2024 Q2: Partial Set Security

Vulnerability Classification 24

•

•

Vulnerability Classification
For classifying vulnerabilities identified in the findings of this report, we employ the simplified version of Common 
Vulnerability Scoring System (CVSS) v3.1, which is an industry standard vulnerability metric. For each identified 
vulnerability we assess the scores from the Base Metric Group, the Impact score, and the Exploitability score. 
The Exploitability score reflects the ease and technical means by which the vulnerability can be exploited. That is, it 
represents characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component. 
The Impact score reflects the direct consequence of a successful exploit, and represents the consequence to 
the thing that suffers the impact, which we refer to formally as the impacted component. In order to ease score 
understanding, we employ CVSS Qualitative Severity Rating Scale, and abstract numerical scores into the textual 
representation; we construct the final Severity score based on the combination of the Impact and Exploitability sub-
scores.

As blockchains are a fast evolving field, we evaluate the scores not only for the present state of the system, but also 
for the state that deems achievable within 1 year of projected system evolution. E.g., if at present the system 
interacts with 1-2 other blockchains, but plans to expand interaction to 10-20 within the next year, we evaluate the 
impact, exploitability, and severity scores wrt. the latter state, in order to give the system designers better 
understanding of the vulnerabilities that need to be addressed in the near future.

Impact Score
The Impact score captures the effects of a successfully exploited vulnerability on the component that suffers the 
worst outcome that is most directly and predictably associated with the attack.

Impact Score Examples                          

 High Halting of the chain; loss, locking, or unauthorized withdrawal of funds of many users; 
arbitrary transaction execution; forging of user messages / circumvention of 
authorization logic

 Medium Temporary denial of service / substantial unexpected delays in processing user requests 
(e.g. many hours/days); loss, locking, or unauthorized withdrawal of funds of a single 
user / few users; failures during transaction execution (e.g. out of gas errors); substantial 
increase in node computational requirements (e.g. 10x)

 Low Transient unexpected delays in processing user requests (e.g. minutes/a few hours); 
Medium increase in node computational requirements (e.g. 2x); any kind of problem that 
affects end users, but can be repaired by manual intervention (e.g. a special transaction)

 None Small increase in node computational requirements (e.g. 20%); code inefficiencies; bad 
code practices; lack/incompleteness of tests; lack/incompleteness of documentation

Exploitability Score
The Exploitability score reflects the ease and technical means by which the vulnerability can be exploited; it 
represents the characteristics of the vulnerable component. In the below table we list, for each category, examples 
of actions by actors that are enough to trigger the exploit. In the examples below:

Actors can be any entity that interacts with the system: other blockchains, system users, validators, relayers, 
but also uncontrollable phenomena (e.g. network delays or partitions).
Actions can be

https://www.first.org/cvss/v3.1/specification-document
https://www.first.org/cvss/specification-document#2-3-Impact-Metrics
https://www.first.org/cvss/specification-document#2-1-Exploitability-Metrics
https://www.first.org/cvss/v3.1/specification-document#Qualitative-Severity-Rating-Scale


© 2024 Informal Systems Hub 2024 Q2: Partial Set Security

Vulnerability Classification 25

•

•

•

legitimate, e.g. submission of a transaction that follows protocol rules by a user; delegation/
redelegation/bonding/unbonding; validator downtime; validator voting on a single, but alternative 
block; delays in relaying certain messages, or speeding up relaying other messages;
illegitimate, e.g. submission of a specially crafted transaction (not following the protocol, or e.g. with 
large/incorrect values); voting on two different alternative blocks; alteration of relayed messages.

We employ also a qualitative measure representing the amount of certain class of power (e.g. possessed 
tokens, validator power, relayed messages): small for < 3%; medium for 3-10%; large for 10-33%, all for 
>33%. We further quantify this qualitative measure as relative to the largest of the system components. (e.g. 
when two blockchains are interacting, one with a large capitalization, and another with a small 
capitalization, we employ small wrt. the number of tokens held, if it is small wrt. the large blockchain, even if 
it is large wrt. the small blockchain)

Exploitability Score Examples

 High illegitimate actions taken by a small group of actors; possibly coordinated with 
legitimate actions taken by a medium group of actors

 Medium illegitimate actions taken by a medium group of actors; possibly coordinated with 
legitimate actions taken by a large group of actors

 Low illegitimate actions taken by a large group of actors; possibly coordinated with 
legitimate actions taken by all actors

 None illegitimate actions taken in a coordinated fashion by all actors

Severity Score
The severity score combines the above two sub-scores into a single value, and roughly represents the probability of 
the system suffering a severe impact with time; thus it also represents the measure of the urgency or order in which 
vulnerabilities need to be addressed. We assess the severity according to the combination scheme represented 
graphically below.

As can be seen from the image above, only a combination of high impact with high exploitability results in a Critical 
severity score; such vulnerabilities need to be addressed ASAP. Accordingly, High severity score receive 
vulnerabilities with the combination of high impact and medium exploitability, or medium impact, but high 
exploitability.

Severity Score Examples

 Critical Halting of chain via a submission of a specially crafted transaction

 High Permanent loss of user funds via a combination of submitting a specially crafted 
transaction with delaying of certain messages by a large portion of relayers

 Medium Substantial unexpected delays in processing user requests via a combination of 
delaying of certain messages by a large group of relayers with coordinated withdrawal 
of funds by a large group of users



© 2024 Informal Systems Hub 2024 Q2: Partial Set Security

Vulnerability Classification 26

Severity Score Examples

 Low 2x increase in node computational requirements via coordinated withdrawal of all user 
tokens

 Informational Code inefficiencies; bad code practices; lack/incompleteness of tests; lack/
incompleteness of documentation; any exploit for which a coordinated illegitimate 
action of all actors is necessary



© 2024 Informal Systems Hub 2024 Q2: Partial Set Security

Disclaimer 27

Disclaimer
This report is subject to the terms and conditions (including without limitation, description of services, 
confidentiality, disclaimer and limitation of liability, etc.) set forth in the associated Services Agreement. This report 
provided in connection with the Services set forth in the Services Agreement shall be used by the Company only to 
the extent permitted under the terms and conditions set forth in the Agreement.

This audit report is provided on an “as is” basis, with no guarantee of the completeness, accuracy, timeliness or of 
the results obtained by use of the information provided. Informal has relied upon information and data provided by 
the client, and is not responsible for any errors or omissions in such information and data or results obtained from 
the use of that information or conclusions in this report. Informal makes no warranty of any kind, express or 
implied, regarding the accuracy, adequacy, validity, reliability, availability or completeness of this report. This 
report should not be considered or utilized as a complete assessment of the overall utility, security or bugfree 
status of the code.

This audit report contains confidential information and is only intended for use by the client. Reuse or republication 
of the audit report other than as authorized by the client is prohibited.

This report is not, nor should it be considered, an “endorsement”, “approval” or “disapproval” of any particular 
project or team. This report is not, nor should it be considered, an indication of the economics or value of any 
“product” or “asset” created by any team or project that contracts with Informal to perform a security assessment. 
This report does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology 
analyzed, nor does it provide any indication of the client’s business, business model or legal compliance. This 
report should not be used in any way to make decisions around investment or involvement with any particular 
project. This report in no way provides investment advice, nor should it be leveraged as investment advice of any 
sort.

Blockchain technology and cryptographic assets in general and by definition present a high level of ongoing risk. 
Client is responsible for its own due diligence and continuing security in this regard.


	Audit Overview
	Relevant Code Commits
	Conclusion

	Audit Dashboard
	Target Summary
	Engagement Summary
	Severity Summary

	System Overview
	Consumer Chain Onboarding
	Key Components
	Validator-Set Updates
	Reward Distribution


	Threat Model
	Threats
	Invariants

	Findings
	Potential Optimization in Max Power Capping Logic
	Involved artifacts
	Description
	Problem Scenarios
	Recommendation

	No validation for TopN property
	Involved artifacts
	Description
	Problem Scenarios
	Recommendation

	Redundant Denylist Check with Allowlist Present
	Involved artifacts
	Description
	Problem Scenarios
	Recommendation

	Inaccurate Rounding of maxPower
	Involved artifacts
	Description
	Problem Scenarios
	Recommendation

	Validator avoids jailing by opting out
	Involved artifacts
	Description
	Problem Scenarios
	Recommendation

	Inconsistent Validator Set Capping Behavior in PSS
	Involved artifacts
	Description
	Problem Scenarios
	Recommendation

	Lack of validator set history leads to race conditions and unexpected behaviour
	Involved artifacts
	Description
	Problem Scenarios
	Recommendation

	Risk of Unsecure or Non-Operational Validator Sets Due to Validator Selection Parameters
	Involved artifacts
	Description
	Problem Scenarios
	Recommendation

	Code Efficiency Improvements and Optimization Opportunities
	Involved artifacts
	Description
	Problem Scenarios
	Recommendation

	Minor Code Improvements
	Involved artifacts
	Description
	Problem Scenarios
	Recommendation


	Vulnerability Classification
	Impact Score
	Exploitability Score
	Severity Score

	Disclaimer

