

Technical Report on Modifications to the

ImportHandler Class

Introduction

This report details the modifications made to the ImportHandler class in a Java application.

The ImportHandler class is integral to handling various import operations, including

managing bibliographic data, processing files, and resolving duplicates. The primary

objective of these modifications was to enhance the functionality and efficiency of the class

by incorporating file preferences and providing improved path handling.

Original Class Structure

The original ImportHandler class in the Java application was designed to manage various

aspects of importing bibliographic data and associated files. Below is a detailed description of

its components:

Static Fields

• LOGGER:

private static final Logger LOGGER =

LoggerFactory.getLogger(ImportHandler.class);

This is a static final logger used for logging purposes throughout the class. It is

initialized using the LoggerFactory and provides a standardized way to log messages,

errors, and other information, aiding in debugging and monitoring the class's

behavior.

Final Fields

• bibDatabaseContext:

private final BibDatabaseContext bibDatabaseContext;

This field holds the context of the bibliographic database, which includes information

about the database such as its location, associated files, and other metadata. It is

essential for managing and accessing the bibliographic entries.

Ranjandeep A1909181
Sourav Debnath A1900755

• preferences:

private final ImporterPreferences preferences;

This field manages user preferences related to importing operations. It stores settings

and configurations that influence how imports are handled, ensuring that the process

aligns with user expectations and requirements.

• fileUpdateMonitor:

private final FileUpdateMonitor fileUpdateMonitor;

This field monitors file updates, tracking changes to files that are part of the

bibliographic database. It helps ensure that the application is aware of any

modifications to these files, allowing it to respond appropriately.

• linker:

private final ExternalFileTypesManager linker;

This field is responsible for linking external files to bibliographic entries. It manages

the associations between entries in the database and their corresponding files,

facilitating easy access and management of related documents.

• contentImporter:

private final ContentImporter contentImporter;

This field imports content from external files into the bibliographic database. It

handles the actual process of reading data from files and integrating it into the

application's data structures.

• undoManager:

private final UndoManager undoManager;

This field manages undo operations, allowing users to revert changes made during the

import process. It provides functionality to track and reverse actions, enhancing user

control and error recovery.

• stateManager:

private final StateManager stateManager;

This field manages the state of the application, keeping track of its current status and

ensuring that it operates correctly. It helps coordinate different components and

maintain consistency throughout the application.

• dialogService:

private final DialogService dialogService;

This field handles dialog interactions with the user. It provides methods to display

messages, prompts, and other dialogs, facilitating communication between the user

and the application.

• taskExecutor:

private final TaskExecutor taskExecutor;

This field executes background tasks, allowing the application to perform import

operations asynchronously. It helps improve performance and responsiveness by

offloading time-consuming tasks to separate threads.

Constructor

public ImportHandler(BibDatabaseContext bibDatabaseContext,

ImporterPreferences preferences, FileUpdateMonitor

fileUpdateMonitor, ExternalFileTypesManager linker, ContentImporter

contentImporter, UndoManager undoManager, StateManager

stateManager, DialogService dialogService, TaskExecutor

taskExecutor) {

 this.bibDatabaseContext = bibDatabaseContext;

 this.preferences = preferences;

 this.fileUpdateMonitor = fileUpdateMonitor;

 this.linker = linker;

 this.contentImporter = contentImporter;

 this.undoManager = undoManager;

 this.stateManager = stateManager;

 this.dialogService = dialogService;

 this.taskExecutor = taskExecutor;

}

The constructor initializes the above fields, setting up the ImportHandler class for

handling imports. It takes parameters corresponding to each field and assigns them to

the respective class variables, ensuring that all necessary components are available for

the class's operations.

Methods

• importFilesInBackground:

public void importFilesInBackground(List<Path> files) {

 // Implementation

}

This method handles the background import of files. It takes a list of file paths and

processes them asynchronously, ensuring that the import operation does not block the

main application thread.

• importEntries:

public void importEntries(List<BibEntry> entries) {

 // Implementation

}

This method imports a list of bibliographic entries. It processes the entries and

integrates them into the bibliographic database, handling any necessary cleanup and

validation.

• importCleanedEntries:

public void importCleanedEntries(List<BibEntry> entries) {

 // Implementation

}

This method adds cleaned bibliographic entries to the database. It ensures that the

entries are properly formatted and validated before integrating them into the database.

• importEntryWithDuplicateCheck:

public void importEntryWithDuplicateCheck(BibEntry entry) {

 // Implementation

}

This method imports a single bibliographic entry while checking for duplicates. It

ensures that the same entry is not imported multiple times, maintaining the integrity of

the database.

• handleBibTeXData:

public void handleBibTeXData(String bibtex) {

 // Implementation

}

This method processes BibTeX data. It takes a string containing BibTeX entries and

parses it, extracting the relevant information and integrating it into the database.

• handleStringData:

public void handleStringData(String data) {

 // Implementation

}

This method processes string data. It handles generic string input, parsing and

extracting bibliographic information for integration into the database.

• downloadLinkedFiles:

public void downloadLinkedFiles(List<Path> paths) {

 // Implementation

}

This method downloads files linked to bibliographic entries. It takes a list of file paths

and retrieves the corresponding files, ensuring that all necessary documents are

available locally.

• generateKeys:

public void generateKeys(List<BibEntry> entries) {

 // Implementation

}

This method generates citation keys for bibliographic entries. It ensures that each

entry has a unique identifier, facilitating easy referencing and management.

Figure 1 depicts the UML class diagram of ModifiedImportHandler.java. The private

methods section is highlighted in green, indicating the recent modifications made to the

codebase.

Fig 1 : UML diagram of modified code

Impact of Changes

The introduction of the filePreferences field allows the ImportHandler class to access and

utilize user-defined preferences, thereby enhancing the user experience by making the

application more customizable and adaptable to individual needs. This change ensures that

file operations respect user settings, providing a more consistent and reliable experience.

The relativize(Path) method significantly improves path management by converting

absolute paths to relative paths. This improvement is particularly beneficial in scenarios

where the application needs to handle files across different environments or user settings. By

using relative paths, the application can maintain consistency and avoid potential issues

related to absolute path dependencies.

Conclusion

The modifications to the ImportHandler class address the issue in JabRef where linked PDF

paths were stored as absolute paths instead of relative paths when creating an entry by

dragging and dropping a PDF onto the main table. By adding the filePreferences field and

the relativize(Path) method, the class now ensures that PDF paths are stored as relative

paths, fixing the issue.

The filePreferences field allows ImportHandler to respect user-specific file handling

settings. The relativize(Path) method converts absolute file paths to relative ones based

on these preferences, enhancing the application's portability and consistency across different

environments. This change ensures that file paths are managed more reliably, benefiting

collaborative use where file structures may differ.

