
JabRef - Initial Setup & Challenges Faced 
Devang Shetty (a1894311)  & Harish Babu (a1908761)

Introduction
In this report, I'll describe how we set up JabRef, an open-source reference 
management software, on our local machines. The journey involved some challenges, 
particularly with Java Development Kit (JDK) conflicts and other dependency issues, but 
we managed to overcome them. Here’s a step-by-step account of our experience.

Prerequisites

Before diving into the setup, we ensured we had the following tools:

1. Java Development Kit (JDK) 21: JabRef requires JDK 21.
2. Git: To clone the JabRef repository from GitHub.
3. Gradle: Helpful for building the project. The project includes a Gradle Wrapper, so we 

didn't necessarily need to install Gradle separately.

Learning Git

Before starting with the JabRef setup, we had to get comfortable with Git. Here's how we 
learned it:

1. Understanding Basics: We learned about repositories, commits, branches, and 
merges, practicing these concepts by creating our own repositories and performing 
various operations.

2. Essential Commands: We familiarize ourselves with commands such as git clone, 
git status, git add, git commit, git push, and git pull. This helped us 
track changes, stage them, commit them, and sync with remote repositories.

3. Collaborative Work: We practiced collaborating on shared repositories, handling merge 
conflicts, and submitting pull requests on GitHub. This practice was invaluable for 
working on JabRef.

Learning Gradle

To efficiently build and manage the JabRef project, we had to familiarize ourselves with Gradle. 
Here are the main points we focused on:

1. Understanding Gradle Basics: We started by learning the fundamental concepts of 
Gradle, such as tasks, build scripts, and the project structure. This helped us understand 
how Gradle automates the building, testing, and deployment of projects.



2. Using the Gradle Wrapper: We learned to use the Gradle Wrapper (./gradlew), 
which is included in the JabRef project. This ensures that we use a consistent Gradle 
version, avoiding compatibility issues. We practiced commands like ./gradlew build 
to compile the project, ./gradlew test to run tests, and ./gradlew clean to 
remove build artifacts.

3. Managing Dependencies: We explored how Gradle handles dependencies through the 
build.gradle file. This involved adding, updating, and resolving dependencies from 
repositories like Maven Central. We also learned to troubleshoot dependency conflicts 
and ensure that all required libraries are correctly included in the build.

Challenges Faced

Throughout the setup process, we encountered several challenges and learned how to address 
them effectively:

1. JDK Conflicts: We encountered conflicts due to different versions of the JDK installed 
across our team members' machines. This caused inconsistencies and build failures 
during the setup process.  

2. Dependency Issues: Some team members faced dependency issues due to outdated 
local repositories, which resulted in missing or incompatible libraries. 

3. IDE Integration: Importing the project into IntelliJ IDEA and Eclipse required additional 
configuration steps. Setting the correct JDK path and updating necessary plugins were 
crucial. 

4. Incomplete Builds: One team member experienced incomplete builds caused by earlier 
repository issues. These issues left the build in a partially completed state.

5. Interactions for Documentations: Finding the relevant Jabref documentations for the 
issues that we were facing was not always easy.

Resolve Strategy

1. JDK Conflicts: Standardize on a specific JDK version for the entire team. Ensure 
everyone installs the same version and updates their environment variables accordingly.

# For Mac

export JAVA_HOME=/path/to/jdk

export PATH=$JAVA_HOME/bin:$PATH



# For Windows

set JAVA_HOME=C:\path\to\jdk

set PATH=%JAVA_HOME%\bin;%PATH%

2. Dependency Issues: Clear local repository caches and configure build tools to fetch the 
latest versions from remote repositories. Use a dependency management tool like 
Maven or Gradle.

# For Gradle

gradle clean build --refresh-dependencies

3. IDE Integration: Provide a detailed setup guide for configuring the IDEs, including 
setting the correct JDK path and updating necessary plugins. Create project-specific 
configuration files.

<!-- IntelliJ IDEA: .idea/misc.xml -->

<component name="ProjectRootManager" version="2" 
languageLevel="JDK_1_8" default="false" 
project-jdk-name="1.8" project-jdk-type="JavaSDK">

  ...

</component>

4. Incomplete Builds: Perform a clean build after resolving repository issues to ensure all 
dependencies are correctly installed and the build completes successfully.



# For Gradle

gradle clean build

5. Interactions for Documentations: Finding the relevant JabRef documentation for the 
issues we faced was not always easy. To resolve this, we turned to the JabRef Gitter 
community for help. The community managers were the only ones who responded 
consistently, but we often had to wait for solutions since they were managing multiple 
requests. We made sure to ask detailed questions and follow up politely if we didn't get a 
quick response.


