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Estimating and comparing
time-dependent areas under receiver
operating characteristic curves for
censored event times with
competing risks
Paul Blanche,a,b*† Jean-François Dartiguesa,b and
Hélène Jacqmin-Gaddaa,b

The area under the time-dependent ROC curve (AUC) may be used to quantify the ability of a marker to predict
the onset of a clinical outcome in the future. For survival analysis with competing risks, two alternative defini-
tions of the specificity may be proposed depending of the way to deal with subjects who undergo the competing
events. In this work, we propose nonparametric inverse probability of censoring weighting estimators of the AUC
corresponding to these two definitions, and we study their asymptotic properties. We derive confidence intervals
and test statistics for the equality of the AUCs obtained with two markers measured on the same subjects. A
simulation study is performed to investigate the finite sample behaviour of the test and the confidence intervals.
The method is applied to the French cohort PAQUID to compare the abilities of two psychometric tests to predict
dementia onset in the elderly accounting for death without dementia competing risk. The ‘timeROC’ R package
is provided to make the methodology easily usable. Copyright © 2013 John Wiley & Sons, Ltd.

Keywords: AUC; competing risks; discrimination; inverse probability of censoring weighting; prognosis;
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1. Introduction

It is often useful to identify markers that enable the discrimination between subjects at high and low
risk of a disease in the future. Markers with high predictive accuracy help clinicians for early medical
decisions and thus may reduce morbidity and mortality in the high-risk population. Identification of such
markers are therefore a major concern in medical research. For instance, the level of prostate-specific
antigen is often used to identify subjects at high risk of prostate cancer recurrence and to guide treatment
management. In Alzheimer’s disease, the most frequent dementia in the elderly, some studies suggest
that the decline in cognitive functions begins long before all the criteria for the clinical diagnosis of
dementia are reached [1]. These results suggest that cognitive tests could be useful for identification of
subjects with high risk of Alzheimer’s disease in the coming years. As treatment against Alzheimer’s
disease have only demonstrated a modest efficiency, current research is focusing on preventive treat-
ments that could be administered in the pre-diagnosis phase to subjects at high risk of dementia [2]. In
this context, relevant questions are as follows. Are psychometric tests good markers for discrimination
of subjects with respect to their risk of Alzheimer’s disease in the few years following a test result? Are
some psychometric tests better than others for this task? Data from large prospective cohort studies can
be used to answer these questions. To evaluate prognostic abilities on such data, statistical methodology

aUniversity Bordeaux, ISPED, Centre INSERM U897-Epidémiologie-Biostatistique, F-33000 Bordeaux, France
bINSERM, ISPED, Centre INSERM U897-Epidémiologie-Biostatistique, F-33000 Bordeaux, France
*Correspondence to: Paul Blanche, INSERM U897 - Equipe de biostatistique, ISPED, Université Bordeaux Segalen,
146 rue Leo Saignat, 33076 Bordeaux cedex, France.

†E-mail: Paul.Blanche@isped.u-bordeaux2.fr

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2013, 32 5381–5397

5381



P. BLANCHE, J.-F. DARTIGUES AND H. JACQMIN-GADDA

have (i) to account for censoring due to lost of follow-up and (ii) to deal with the competing risk of death
without dementia, which is a major issue in the elderly population.

Motivated by the prediction of Alzheimer’s disease, the goal of this paper is to propose a method to
estimate and compare the predictive accuracy of different rival markers using the ROC methodology,
accounting for censoring and competing events.

The ROC methodology was originally introduced in medicine for the evaluation of diagnostic accu-
racy of quantitative markers. The ROC curve displays the sensitivity (true positive rate) versus 1-
specificity (false positive rate) for all possible cutpoints that define a binary test, by dichotomizing a
quantitative marker. The area under the ROC curve (AUC) is often used to summarize and compare
diagnostic accuracy of several markers. The AUC may be interpreted as a concordance index. Indeed,
the AUC is equal to the probability that the marker value of a randomly chosen diseased subject is above
the marker value of a randomly chosen healthy subject.

For the evaluation of the predictive accuracy, Heagerty et al. [3, 4] introduced the time-dependent
ROC curves and proposed several definitions of cases and controls. In particular, they introduced the
so-called cumulative/dynamic definition, where a case is a subject diagnosed before a time point t and a
healthy subject is free of the disease at time t . More recently, Saha and Heagerty [5] and Zheng et al. [6]
extended this definition for the competing risks setting. As noticed by Zheng et al. [6], two definitions of
the specificity can be considered depending of the way to deal with subjects who undergo the competing
events. Such subjects can be considered as controls or not, depending on the clinical setting.

Without censoring, sensitivity and specificity can be estimated by empirical true positive and true neg-
ative fractions [7] and AUCs are often compared with the test of DeLong et al. [8]. These approaches
assume that all subjects can be classified as cases or controls. However, when data are censored, the status
of subjects lost of follow-up before time t is unknown. In the standard situation without competing risks,
Uno et al. [9] and Hung and Chiang [10] proposed a nonparametric estimator of the time-dependent ROC
curve using the inverse probability of censoring weighting (IPCW) approach, and Chiang and Hung [11]
proposed a test for comparing AUCs. Besides, simulation studies have shown the good behaviour of the
IPCW approach for various censoring scenarios [11,12].

In the competing risks setting, only estimators that rely on parametric [13], semiparametric [6] or
nonparametric smooth estimators that require a bandwidth selection [5] were proposed. In addition, no
test was proposed to compare AUCs of different markers. In this paper, we first extend the IPCW esti-
mators for ROC curves and AUCs to the competing risks setting for both definitions of specificity. By
contrast to previous nonparametric proposed methods, this nonparametric approach does not require
any bandwidth selection and has practical computational advantages, avoiding bootstrapping for making
inference and being implemented in the timeROC R package. Moreover, whereas previous works were
mainly focused on ROC curve estimation, this paper mainly focusses on providing and studying a test for
comparing AUCs of two rival markers on censored data with competing events. We also propose some
extensions such as estimators that properly account for marker dependent censoring when comparing
AUCs or estimation of confidence bands.

The paper is organized as follows. Section 2 presents the notations and the definitions of the time-
dependent ROC curves in presence of competing risks. Section 3 describes the proposed estimators,
the asymptotic results and the inference procedures. The finite sample performances of the infer-
ence procedures are evaluated by simulations in Section 4. Section 5 presents the application of the
proposed method to the comparison of two cognitive tests to predict dementia onset in the elderly.
Finally, Section 6 concludes the paper contrasting our work with the previous ones and discussing some
perspectives.

2. Receiver operating characteristic curves with competing risks

2.1. Notations

Let M denote a marker that is measured at baseline. Let T denote the event-time, C the censoring time
and � D 11.T 6C / the censoring indicator, with 11.�/ denoting the indicator function. Let K denote the
number of competing event and � the type of event. Let eT D min.T; C /, the observed time ande� D ��,
which indicates either the type of event (whene� 2 f1; : : : ; Kg) or a censored observation (whene� D 0).
Hereafter, for all time point t , we denote ST .t / D P .T > t/ and G.t/ D P .C > t/ and bST .t / andbG.t/ the Kaplan–Meier estimators of ST .t / and G.t/, SeT .t / D P .eT > t/ and bSeT .t / its empirical esti-
mator. To make formulae easier to read, we also introduce the weight W.t/ D 1=G.t/ and its estimator
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bW .t/ D 1=bG.t/.
We observe the independent and identically distributed (i.i.d.) sample of n subjects

˚�eT i ; �i ;e�i ; Mi

�
,

i D 1; : : : ; ng. To simplify the presentation of the estimators, we assume that the marker M is measured
on a continuous scale without ties. Adaptation for ties is discussed in Section 3.5.

2.2. Definitions of receiver operating characteristic curves and area under the receiver operating
characteristic curves

With competing events, definition of cases is clear but for controls, Zheng et al. [6] considered two
definitions leading to two different definitions of the time-dependent specificity.

For clarity, we suppose that we are interested in the assessment of the predictive accuracy for the first
type of event (called main event) corresponding to � D 1. Cases at time t are defined as subjects who
undergo the main event � D 1 before time t , that is, subjects i with Ti 6 t; �i D 1. Without loss of
generality, we assume that larger values of the marker M are associated with higher risks of events.
Then, for a threshold c 2 R the sensitivity at time t is defined by

Se.c; t / D P .M > cjT 6 t; � D 1/ :

Controls at time t were originally defined as event-free subjects at time t , that is, subjects j with Tj > t

[5]. In the following, we denote ‘control�’ (with an asterix) the controls for this definition that leads to a
specificity at time t defined by

Sp�.c; t / D P .M 6 cjT > t/ : (1)

According to this definition, subjects who experience another type of event before time t , that is, subjects
j with Tj 6 t; �j ¤ 1, are neither cases nor controls.
Alternatively, a control may be defined as a subject who is not a case, that is, a subject j with Tj > t

or Tj 6 t; �j ¤ 1 [6]. In the following, we denote ‘control’ (without an asterix) the controls for this
definition, leading to the specificity at time t :

Sp.c; t / D P .M 6 cj fT > tg [ fT 6 t; � ¤ 1g/ : (2)

Two different time-dependent ROC curves can be obtained plotting Se.c; t / versus either 1 � Sp�.c; t /

or 1 � Sp.c; t /. As with usual ROC curve, the AUC can be shown to be the probability that the marker
of a case is greater than the marker of a control [7]. As a consequence, the AUC at time t for both
definitions are

AUC �.t / D P
�
Mi > Mj jTi 6 t; �i D 1; Tj > t

�
(3)

and AUC.t/ D P
�
Mi > Mj

ˇ̌̌
Ti 6 t; �i D 1;

˚
Tj > t

�[ ˚
Tj 6 t; �j ¤ 1

��
(4)

with i and j the indexes of two independent subjects. In the following, we will use AUC for the generic
term and AUC �.t / or AUC.t/ for definitions (3) or (4).

Thus, subjects who meet one of the competing events before time t do not contribute to AUC �.t /,
although they are considered as control in AUC.t/. Applied to the example of dementia (as main
event) and death without dementia (as competing event), this means AUC �.t / evaluates discrimination
between demented subjects and subjects alive and non-demented at the time point t of interest, whereas
AUC.t/ evaluates discrimination between demented subjects and subjects non-demented at the time
point t or dead without dementia in the window of prediction. Given that many predictors of dementia
are also predictors of death, the two measures may give very different results.

3. Inverse probability of censoring weighting estimators and inference procedures

3.1. Inverse probability of censoring weighting estimators

Without competing risks, Uno et al. [9] and Hung and Chiang [10] proposed IPCW estimators for the
ROC curve and the AUC with censored data. A more general theory about IPCW can be found in [14] or
[15]. The rational of the IPCW approach is to mainly use the observed cases and controls and to weight
them by their probability of being observed. In the competing risk setting, observed cases are subjects i

with eT i 6 t ande�i D 1; observed controls� are the uncensored event-free subjects at t , that is, subjects

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2013, 32 5381–5397
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j with eT j > t , and observed controls are either uncensored and event-free or subjects who met a com-
peting event before t , that is, subjects j with eT j > t or eT j 6 t;e�j 62 f0; 1g. Subjects censored before t ,
that is, subjects i with eT i 6 t;e�i D 0, are only used to estimate the weights.

Assuming that the censoring C is independent of .T; �; M /, we propose to estimate sensitivity
Se.c; t / by

cSe.c; t / D
Pn

iD1 11.Mi >c/11.eT i 6t;e�i D1/
bW �eT i

�Pn
iD1 11

.eT i 6t;e�i D1/
bW �eT i

� : (5)

Heuristically, the weighting bW �eT i

� D 1=bG �eT i

�
is justified by the fact that as n ! 1, the value of

n�1� numerator of cSe.c; t / converges to

E

(
11.Mi >c/11.eT i 6t;e�i D1/

G
�eT i

� )
D E

�
E

�
11.Mi >c/11.Ti 6t/11.�i D1/11.Ti6Ci /

G.Ti /

ˇ̌̌̌
Ti ; �i ; Mi

	

D E

�
11.Mi >c/11.Ti 6t/11.�iD1/

G.Ti /
E
�
11.Ti 6Ci /

ˇ̌
Ti ; �i ; Mi

�

D E

�
11.Mi >c/11.Ti 6t/11.�iD1/

G.Ti /
G.Ti /



D P .M > c; T 6 t; � D 1/

and similarly the value of n�1� denominator of cSe.c; t / converges to P .T 6 t; � D 1/, both together
leading to a consistent estimator of sensitivity.
By analogy, specificity Sp�.c; t / is estimated by

cSp�.c; t / D
Pn

iD1 11.Mi 6c/11.eT i >t/
bW .t/Pn

iD1 11
.eT i >t/

bW .t/
D
Pn

iD1 11.Mi 6c/11.eT i >t/Pn
iD1 11

.eT i >t/

(6)

and specificity Sp.c; t / by

cSp.c; t / D
Pn

iD1 11.Mi 6c/

�
11

.eT i >t/
bW .t/ C 11

.eT i 6t;e�i 62f0;1g/
bW .eT i /

�
Pn

iD1

n
11

.eT i >t/
bW .t/ C 11

.eT i 6t;e�i 62f0;1g/
bW .eT i /

o : (7)

The resulting estimated ROC curves are increasing step functions. As with usual empirical ROC curve
for uncensored data [7, p. 103], summing rectangular areas of widths and heights corresponding to
increases in specificity and sensitivity, it can easily be shown that the area under the estimated ROC
curves corresponding to the two specificity estimators (6) and (7) are given by

1AUC �.t / D
Pn

iD1

Pn
j D1 11

.eT i 6t;e�i D1/
bW .eT i /11.eT j >t/

bW .t/11.Mi>Mj /�Pn
iD1 11

.eT i 6t;e�i D1/
bW .eT i /

� �Pn
j D1 11

.eT j >t/
bW .t/

� (8)

and

1AUC .t/ D
Pn

iD1

Pn
j D1 11

.eT i 6t;e�i D1/
bW .eT i /

�
11

.eT j >t/
bW .t/ C 11

.eT j 6t;e�j 62f0;1g/
bW .eT j /

�
11.Mi >Mj /�Pn

iD1 11
.eT i 6t;e�i D1/

bW .eT i /
� �Pn

j D1

n
11

.eT j >t/
bW .t/ C 11

.eT j 6t;e�j 62f0;1g/
bW �eT j

�o�
(9)

Let us recall that the IPCW estimator of the cumulative incidence function F1.t / D P .T 6 t; � D 1/

defined by

bF 1.t / D 1

n

nX
iD1

11
.eT i 6t;e�i D1/

bW �eT i

�
(10)

is equal to the usual nonparametric maximum likelihood estimator, defined by bF 1.t / DPn
iD1

b�1

�eT i

�bST

�eT i

�
where b�1.t / D

Pn
j D1 11

.e�j D1;eT j Dt/Pn
j D1 11

.eT j >t/

[16, 17]. Besides, by the equality bST .t / D
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1 � 1
n

Pn
iD1 11

.eT i 6t/
�i
bW �eT i

�
that represents the Kaplan–Meier estimator as an IPCW estimator [18],

then 1 � bF 1.t / D 1
n

Pn
j D1

n
11

.eT j >t/
bW .t/ C 11

.eT j 6t;e�j 62f0;1g/
bW �eT j

�o
. As a consequence, the denom-

inator of formulae (8) and (9) are respectively equal to the more compact form bST .t /bF 1.t / and�
1 � bF 1.t /

�bF 1.t /.

In both formulae (8) and (9), the AUC estimator is the ratio of the estimated probability of observing a
pair of a case and a control with ordered markers over the estimated probability of observing a pair with
a case and a control.

3.2. Large sample properties

Only results about 1AUC.t/ are presented in the following. Results about 1AUC �.t /, based on lemma 2
provided in the web Supporting Information‡ B, are similar.
Assume that �1 > inf fu W F1.u/ > 0g and �2 < sup

˚
u W SeT .u/ > 0

�
. Thus, Œ�1; �2� represents a period

of times t in which there is both a non-null probability of observing a main event before time t and a
non-null probability of observing someone at risk at time t .

Lemma 1
Let us assume that the censoring time C is independent of .T; �; M /, then for all time t in Œ�1; �2� :

p
n
�
1AUC .t/ � AUC.t/

�
D 1p

n

nX
iD1

IF
�eT i ;e�i ; Mi ; t

�C op.1/

where E
�
IF
�eT ;e�; M; t

��D 0. The influence function of the estimator IF.�/ is detailed in the appendix.

Proof
The proof is the adaptation to the competing risks setting of the proof of Theorem 1 of [10] and is given
in the web Supporting Information A. �

From the decomposition of the estimator 1AUC .t/ as a sum of i.i.d. terms in lemma 1, it follows that

p
n
�
1AUC.t/ � AUC.t/

� D�! N �
0; �2

t

�
:

The variance of the influence function �2
t can be consistently estimated by the empirical estimator

b�2
t D 1

n

nX
iD1

bIF �eT i ;e�i ; Mi ; t
�2

(11)

where bIF �eT ;e�; M; t
�

is a simple plug-in estimator that is detailed in the Appendix. Therefore, we obtain
the asymptotic .1 � ˛/-level confidence interval (CI)

1AUC .t/ � ´1�˛=2

b� tp
n

; 1AUC.t/ C ´1�˛=2

b� tp
n

�
where ´1�˛=2 is the 1 � ˛=2 quantile of the univariate standard normal distribution.

3.3. Test for comparing the area under the receiver operating characterisitc curves

Let M1 and M2 denote two rival markers measured on the same subject, AUCM1
.t / and AUCM2

.t / the
areas under their time-dependent ROC curve and 1AUC M1

.t / and 1AUC M2
.t / their estimators. Assum-

ing that the censoring C is independent of .T; �; M1; M2/, under the null hypothesis H0 W AUCM1
.t / D

AUCM2
.t /, it follows from lemma 1 that

p
nb� t12

�
1AUC M1

.t / � 1AUC M2
.t /
� D�! N .0; 1/

‡Supporting information may be found in the online version of this article.
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where

b�2
t12 D 1

n

nX
iD1

nbIF �eT i ;e�i ; M1i ; t
�� bIF �eT i ;e�i ; M2i ; t

�o2

: (12)

Alternatively, �2
t12 may also be estimated by bootstrapping.

3.4. Extension for marker-dependent censoring

The previous methodology assumes that the censoring time C is independent of .T; �; M /. It is some-
times more realistic to assume that C is only independent of .T; �/ given the marker M . Indeed, the
marker may be associated with the risk of censoring. The IPCW estimators can be adapted to deal
with this lighter assumption by replacing in the weights, the marginal Kaplan–Meier estimator bG.t/ by
any consistent estimator of the conditional survival function G .t jM / D P .C > t jM /. Nonparametric
estimators proposed by Beran [19] and Akritas [20] can be used for this task.

However, to build a test for comparing two or more rival markers measured on the same subject, it is
necessary to account for possible dependency of censoring on all the markers being compared. Thereby,
in presence of marker-dependent censoring, assuming that the censoring time C is independent of .T; �/

given M, where M is the vector of rival markers (M D .M1; M2/t for two rival markers), the weights
should be based on an estimator bG .t jM/ of G .t jM/ D P .C > t jM/. As nonparametric estimators are
often not efficient with moderate sample size and several explanatory variables, semiparametric estima-
tors are therefore favoured.
Estimators of sensitivity, specificity and AUCs can be adapted replacing the marginal Kaplan–MeierbG.�/
by any semiparametric estimator of G .�jM/ in the weights of formulae (5) to (9). Note that the weights
no longer cancel in formula (6) in this case, because for i ¤ j then G .�jMi / ¤ G

��jMj

�
in general.

Under the assumption that the censoring mechanism is correctly specified, these estimators are unbiased.
Decompositions of these estimators as a sum of i.i.d terms as presented in lemma 1 can also be obtained
for most of usual semiparametric estimators of G .�jM/, including those derived from proportional or
additive hazards models. However, the influence function of these estimators of G .�jM/ is complex [21]
and so are the influence functions of the AUC estimators. Therefore, a bootstrap resampling method is
required to estimate the variances.

3.5. Adaptation for ties and markers with ordered discrete results

In practice, samples often include ties in the marker values, especially when the marker is measured on a
discrete scale. Definitions and estimators of sensitivity and specificities are still valid in this case. How-
ever, in all formulae of estimators of AUC.t/ and AUC �.t /, the term 11.Mi >Mj / need to be replaced by
11.Mi >Mj / C 1

2
11.MiDMj /. This leads to a consistent estimator of the area under the ROC curve defined

by the linear interpolation between two points. In this case, the AUC has a slightly different interpreta-
tion: this is the probability that the marker of a case is greater than the marker of a control, plus half the
probability that the marker of a case is equal to the marker of a control. We refer to Section 4.5 of [7] for
a more thorough discussion about the ROC curve for ordinal marker.

3.6. Adjusted tests for multiple comparisons

In prognostic studies, several time points tl , l D 1; : : : ; L are often of interest for clinicians who aim at
evaluating the predictive accuracy of biomarkers in more or less long term. Thus, ROC curves may be
estimated for different windows of prediction tl , and the corresponding AUC of two rival markers may be
compared at all these different times tl . When several tests are performed, the p-values must be adjusted
for multiple testing. Using the same approach as in the proof of lemma 1, under the null hypotheses
Hl

0 W AUCM1
.tl/ D AUCM2

.tl/; l D 1; : : : ; L, it can be shown that the vector of the L test statistics,
which is the vector of L standardized differences of AUC estimated at time points tl , as in Section 3.3,
converges to a multivariate normal distribution N .0; †L/. The covariance terms of the covariance-
matrix †L may be estimated similarly to the variance terms in Sections 3.2 and 3.3, either by empirical
estimator and estimated influence functions bIF.�/ or by Bootstrap. These results may be used either for
performing a multivariate test or for computing asymptotically exact adjusted p-value for multiple uni-
variate tests. The asymptotically exact adjusted p-value for testing Hl

0 W AUCM1
.tl/ D AUCM2

.tl/ is

5386
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computed as

p-value.tl/ D P .max jZj > j´.tl/j/
where Z � N .0; †L/ and ´.tl/ is the value of the realization of the test statistic at time point tl [22].

3.7. Simultaneous confidence bands

When an interval of time points is of interest, say Œtmin; tmax�, it may be desirable to compute a confidence
band. A so-called .1 � ˛/-simultaneous confidence band for the curve f.t; AUC.t// ; t 2 Œtmin; tmax�g
is a region containing this curve with probability level 1 � ˛. Note that the simultaneous confidence
band is by definition larger that the band of pointwise CIs. We propose to compute an asymptotic
.1 � ˛/-simultaneous confidence band by

1AUC .t/ �bq1�˛

b� tp
n

; 1AUC.t/ Cbq1�˛

b� tp
n

�
; t 2 Œtmin; tmax�

where bq1�˛ is estimated by the following simulation technique, paralleling the approaches of
[10,21,23,24] among others, and making use of lemma 1:

Step 1: Generate a random sample
�
!b

1 ; : : : ; !b
n

�
from n independent standard normal distributions.

Step 2: Using step 1 and the estimator bIF.�/ detailed in the appendix, compute

‚b D sup
tmin6t6tmax

ˇ̌̌̌
ˇ 1p

n

nX
iD1

!b
i

bIF �eT i ;e�i ; Mi ; t
�

b� t

ˇ̌̌̌
ˇ

Step 3: Repeat steps 1 and 2 a large number of times, say B D 2000 times for instance, and computebq1�˛ as the 100.1 � ˛/th percentile of
˚
‚1; : : : ; ‚B

�
.

Similarly, we are able to compute confidence band for the curve
˚�

t; AUCM1
.t / � AUCM2

.t /
�

; t 2
Œtmin; tmax�g replacing 1AUC .t/ by 1AUC M1

.t / � 1AUC M2
.t /, and

bIF.eT i ;e�i ;Mi ;t/b�t

bybIF.eT i ;e�i ;M1i ;t/�bIF.eT i ;e�i ;M2i ;t/b� t12

in the previous expressions. This latter confidence band is of particular

interest for testing by observing whether or not the zero function is contained within the band.

3.8. Inference for points on receiver operating characteristic curve

Although we mainly focus on AUC in this paper, inference procedures for points on ROC curve are also
desirable. In particular, CIs for sensitivity and specificity at a clinically relevant threshold c are useful.
We therefore provide lemma 3 in the web Supporting Material C that gives large sample results for
sensitivity and specificity estimators, similarly to lemma 1 for the AUC.t/ estimator. Then, CI or other
confidence regions may be derived using the approach described in Section 3.2.

4. Simulation studies

We conducted numerical investigations to assess the performances of the proposed estimators and of the
test of comparison.

4.1. Data generation

We generated two rival markers M1 and M2 through standard normal distribution N .0; 1/ with
correlation 0.5. We generated two competing events with proportional cause-specific hazards models

˛j .t / D lim
dt!0

P .T 2 Œt; t C dt/; � D j jT > t / =dt

D ˛0j exp
�
ˇj1M1 C ˇj 2M2

�
;

for j D 1; 2, following the algorithm described in [25]. We generated the censoring time with a Cox pro-
portional hazards model �C .t / D �0C exp .�1M1 C �2M2/. We considered several scenarios: two sam-
ple sizes n D 200 or n D 400, a censoring that does not depend on any markers (HRC1

D exp.�1/ D 1

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2013, 32 5381–5397
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P. BLANCHE, J.-F. DARTIGUES AND H. JACQMIN-GADDA

and HRC2
D exp.�2/ D 1) or that depends on the marker M1 only with hazard ratio HRC1

D 1:35
(and HRC2

D 1), and four values 0, 0.22, 0.45 or 0.68 for parameter �ˇ1
, where ˇ11 D 1 C �ˇ1

and
ˇ12 D 1 � �ˇ1

, to make the differences of AUCs of M1 and M2 at time t D 1 equal to 0, 0.05, 0.10
or 0.15. Both markers were also associated with the competing event .ˇ21 D ˇ22 D 0:2/. To more thor-
oughly investigate the behaviour of the test when censoring depends on the markers, we also performed
simulations under the null hypothesis where

�
HRC1

; HRC2

�D .2; 1/ and .1:35; 0:6/. Other parameters
were chosen to have approximately 33%; 17% and 38% of observed cases, controls� and controls (as
defined in Section 3.1) and 28% of censored subjects at time t D 1. These frequencies can be 1% to 3%
greater or smaller depending on the scenario generated.
The choice of the hazard ratio HRC1

D 1:35, the correlation between M1 and M2 equal to 0.5 and the
proportion of censored subjects equal to 27:5% was guided by the PAQUID cohort data.

For each data set, we computed the IPCW estimators of AUC.t/ and AUC �.t / for the first event-
type, the 95%-level CIs and the tests of comparison with ˛-level equal to 5%. We used the two
weighting procedures: assuming C is independent of .T; �; M1; M2/, estimating G.t/ by Kaplan–Meier
(KM-weights), or relaxing this assumption, assuming that C is independent of .T; �/ given .M1; M2/,
estimating G .t jM1; M2/ by a Cox model (Cox-weights). We also computed the nonparametric near-
est neighbour estimators (NNE) of Saha and Heagerty [5] for comparison with our approach. As no
optimal rule exists, the choice of a bandwidth �n D O

�
n�1=3

�
required for NNE was set equal to

�n D 0:33 � n�1=3, that leads to approximately 2�n D 11:3% and 8:9% of subjects included in each
neighbourhood, when n D 200 and n D 400 respectively.

The standard error estimators based on the influence function defined at equations (11) and (12) were
computed for the KM-weights estimator, and for all estimators, standard errors were also computed by
bootstrapping (400 replications).

4.2. Simulation results

Tables I–III summarize the main simulation results on the basis of 1000 replications for each scenario
including n D 400 subjects. Similar tables of results with n D 200 are provided in the web Support-
ing Information D. First, with the KM-weights, the bootstrap and influence function estimators of the
standard errors lead to very similar results.

When the censoring does not depend on the markers (Table I), estimators based on both weightings
perform as well. As expected, they are unbiased, and the coverage probabilities of the CIs are close to the
nominal value 95%. Under the null hypothesis that AUCs are equal for both markers, estimated ˛-level
is close to the nominal value 5%, and the power of the test tends to one when the difference between
AUCs increases. The two weighting procedures also lead to similar results in terms of efficiency.

When the censoring depends moderately on the marker M1 (Table II), the AUC estimates for M1

are slightly biased, and the coverage probabilities of their CIs decrease when C is assumed indepen-
dent of M1 (KM-weights). Because of the positive correlation between the two markers, the bias for the
KM-estimates of AUC for marker M2 is in the same direction but much smaller (with no impact on the
coverage rates). As a consequence, the test of comparison remains valid in these simulation scenarios
even if the weights are not well adapted to the censoring.

However, Table III shows that when the dependency between C and M1 is stronger (HRC1
D 2,

HRC2
D 1), or when there is a positive association between C and M1 and a negative association

between C and M2 (HRC1
D 1:35, HRC2

D 0:6), the test is biased. AUC estimators and all inference
procedures perform still very well in any cases when weights are computed from a Cox model.

The NNE performs also well for independent censoring with only slight underestimations, probably
because of smoothing (Table II). With moderate marker-dependent censoring (Table II), the bias for
NNE increases little, and this has no consequences on the validity of inference procedures even when
censoring depends on marker M1, whereas the ROC curve is estimated for M2, setting which is not
handled by NNE. The main reason is that slight underestimation due to smoothing compensates slight
overestimation due to marker-dependent censoring. Even when the association between censoring and
marker becomes stronger, or when censoring is associated with both markers with opposite directions,
NNE appears quite robust (Table III).

Finally, these simulations illustrate the difference between the two definitions of the specificity. Defin-
ing all subjects who met the competing event as controls decreases the AUC and increases the power of
the test of comparison. The decrease of AUC is due to the positive dependence of both types of event on
the markers. Indeed, discrimination between subjects who will experience the main event and subjects
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P. BLANCHE, J.-F. DARTIGUES AND H. JACQMIN-GADDA

Table I. Simulation results with sample size n D 400 and independent censoring, that is, HRC1
=HRC2

=1
(1000 replications).

AUC.t/ Coverage probability

Type I error
True Bias M1 M2 or power

Method �AUC.t/ M1 M2 M1 M2 IF B IF B IF B

AUC �.t/ IPCW KM 0.0 85.6 85.6 0.0 0.1 93.2 93.3 94.5 94.7 5.0 4.8
IPCW Cox 0.0 0.1 — 94.0 — 95.5 — 5.0
NNE �0:3 �0:2 — 95.0 — 95.2 — 4.7

AUC.t/ IPCW KM 0.0 79.8 79.8 0.0 0.0 95.7 95.7 95.1 94.9 4.7 4.6
IPCW Cox 0.0 0.0 — 95.1 — 94.9 — 4.4
NNE �0:3 �0:3 — 94.4 — 95.3 — 4.1

AUC �.t/ IPCW KM 5.0 87.9 82.9 0.1 0.1 93.7 93.8 95.1 95.6 26.7 25.2
IPCW Cox 0.1 0.0 — 93.3 — 95.9 — 26.7
NNE �0:2 �0:2 — 94.6 — 95.6 — 30.2

AUC.t/ IPCW KM 5.1 82.2 77.1 0.1 0.0 94.4 94.4 96.8 96.5 34.8 34.3
IPCW Cox 0.1 0.0 — 94.8 — 96.2 — 35.7
NNE �0:2 �0:2 — 94.9 — 95.4 — 36.0

AUC �.t/ IPCW KM 10.0 89.9 79.9 0.1 0.1 93.5 93.7 94.8 94.8 77.7 78.1
IPCW Cox 0.1 0.1 — 94.4 — 95.2 — 79.3
NNE �0:2 �0:2 — 94.5 — 95.3 — 82.4

AUC.t/ IPCW KM 10.3 84.4 74.1 0.1 0.1 94.9 94.9 95.9 95.8 89.8 90.0
IPCW Cox 0.1 0.1 — 94.8 — 95.9 — 90.8
NNE �0:2 �0:2 — 95.5 — 95.2 — 90.3

AUC �.t/ IPCW KM 14.7 91.4 76.8 0.1 0.1 94.3 94.3 94.8 95.1 98.4 98.4
IPCW Cox 0.1 0.1 — 94.7 — 96.0 — 98.6
NNE �0:2 �0:2 — 94.7 — 95.3 — 99.3

AUC.t/ IPCW KM 15.1 86.0 71.0 0.1 0.0 94.0 94.6 95.3 95.8 99.7 99.8
IPCW Cox 0.1 0.0 — 94.4 — 96.3 — 99.7
NNE �0:2 �0:2 — 94.5 — 95.8 — 99.7

Bias of estimates for two markers M1 and M2 (multiplied by 100), empirical coverage probabilities of 95%
confidence intervals and type I errors and powers of the test of H0 W AUCM1

.t/ D AUCM2
.t/, depending on

�AUC.t/ D AUCM1
.t/�AUCM2

.t/. Inverse probability of censoring weighting (IPCW) estimators using the Kaplan–
Meier estimator (IPCW KM) or a Cox proportional hazards model with covariates M1 and M2 (IPCW Cox) for
weighting, and the nearest neighbour estimator (NNE). Variances are computed from the estimated influence function
(IF) for IPCW KM, or by bootstrapping 400 times (B).

who will undergo the competing event is more difficult than discrimination between subjects who will
undergo the main event and subjects who will experience none of the event. As it will be illustrated in
Section 5, it is frequent that both events are associated with the markers. The increase of the power is
because subjects who met the competing event are more informative for estimating AUC.t/, for which
they are controls, than for estimating AUC �.t / for which they are only used for estimating the weights.

The good behaviour of the inference procedures for points on the ROC curve discussed in
Subsection 3.8 was also assessed, and some simulation results are provided in the web Supporting
Information Table 4.

5. Application to dementia prediction

5.1. Objective

The objective of this analysis is the estimation and the comparison of the abilities of two cognitive tests
to predict the risk of dementia within the 3, 5 and 10 years following the test result, in the elderly pop-
ulation accounting for death without dementia competing risk. A window of prediction of 3 or 5 years
could correspond to the duration of a preventive clinical trial, and thus after validation, these cogni-
tive tests could be used to select the population at risk to include in a trial. A window of 10 years is
probably too long for a preventive trial but may be of interest for general practitioner for reassuring
worried patients. The two tests compared are the mini-mental state examination (MMSE) [26] and the

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2013, 32 5381–5397
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P. BLANCHE, J.-F. DARTIGUES AND H. JACQMIN-GADDA

Table II. Simulation results with sample size n D 400 and moderate M1-dependent censoring, that is,
HRC1

=1.35, HRC2
=1 (1000 replications).

AUC.t/ Coverage probability

Type I error
True Bias M1 M2 or power

Method �AUC.t/ M1 M2 M1 M2 IF B IF B IF B

AUC �.t/ IPCW KM 0.0 85.6 85.6 1.5 0.6 87.6 87.8 93.7 93.7 5.2 5.6
IPCW Cox 0.0 0.2 — 94.1 — 95.0 — 4.8
NNE �0:5 �0:2 — 94.2 — 95.9 — 5.5

AUC.t/ IPCW KM 0.0 79.8 79.8 1.1 0.6 92.0 92.0 92.9 93.0 5.2 5.4
IPCW Cox 0.0 0.1 — 95.6 — 94.3 — 5.4
NNE �0:4 0.0 — 94.9 — 94.3 — 5.4

AUC �.t/ IPCW KM 5.0 87.9 82.9 1.3 0.6 86.2 86.0 94.1 94.4 36.7 36.2
IPCW Cox 0.1 0.1 — 93.4 — 95.8 — 26.5
NNE �0:4 �0:2 — 94.3 — 95.5 — 29.5

AUC.t/ IPCW KM 5.1 82.2 77.1 1.0 0.7 91.5 91.2 94.6 94.3 41.2 41.2
IPCW Cox 0.1 0.0 — 94.2 — 95.6 — 33.3
NNE �0:3 0.0 — 94.9 — 95.5 — 33.8

AUC �.t/ IPCW KM 10.0 89.9 79.9 1.1 0.8 88.0 87.9 94.1 93.7 86.7 86.2
IPCW Cox 0.1 0.1 — 94.2 — 95.3 — 78.8
NNE �0:4 �0:2 — 95.5 — 95.3 — 81.8

AUC.t/ IPCW KM 10.3 84.4 74.1 0.9 0.8 92.1 92.1 94.5 94.6 92.7 92.5
IPCW Cox 0.1 0.1 — 95.4 — 95.6 — 89.5
NNE �0:3 0.0 — 94.9 — 95.1 — 90.3

AUC �.t/ IPCW KM 14.7 91.4 76.8 0.9 0.9 87.8 88.5 93.4 93.0 99.5 99.4
IPCW Cox 0.1 0.1 — 93.7 — 94.8 — 99.0
NNE �0:4 �0:2 — 95.5 — 94.9 — 99.0

AUC.t/ IPCW KM 15.1 86.0 71.0 0.8 0.8 91.2 90.9 93.8 93.6 99.9 99.8
IPCW Cox 0.1 0.0 — 94.6 — 95.0 — 99.8
NNE �0:2 0.0 — 94.9 — 95.0 — 99.8

Bias of estimates for two markers M1 and M2 (multiplied by 100), empirical coverage probabilities of 95%
confidence intervals and type I errors and powers of the test of H0 W AUCM1

.t/ D AUCM2
.t/, depending on

�AUC.t/ D AUCM1
.t/�AUCM2

.t/. Inverse probability of censoring weighting (IPCW) estimators using the Kaplan–
Meier estimator (IPCW KM) or a Cox proportional hazards model with covariates M1 and M2 (IPCW Cox) for
weighting, and the nearest neighbour estimator (NNE). Variances are computed from the estimated influence function
(IF) for IPCW KM, or by bootstrapping 400 times (B).

digit symbol substitution test (DSST) [27]. The MMSE is a sum-score evaluating various dimensions of
cognition (memory, calculation, orientation in space and time, language and word recognition), which
is often used as an index of global cognitive performance and for screening of dementia. MMSE score
ranges from 0 to 30. The DSST explores attention and psychomotor speed. Given a code table displaying
the correspondence between pairs of digits and symbols, the subjects have to fill in blank squares with
the symbol, which is paired to the digit displayed above the square. The subjects have to fill in as many
squares as possible in 90 s. The maximum value is 90.
As larger values of DSST and MMSE are associated with lower risks of dementia, let us note that, fol-
lowing the previous notations, ROC analyses were performed for minus DSST and minus MMSE to
reverse the associations.

5.2. The PAQUID data

Paquid is a population-based study including 3777 subjects aged 65 years and older, living at home in the
south-west of France at enrollment in 1988. Individuals were seen at home by psychologists trained in
home interviews at the initial visit and at 1, 3, 5, 8, 10, 13, 15, 17 and 20 years later. Each visit included
a neuropsychological evaluation through a battery of psychometric tests and a standardized diagnosis of
dementia [28].

We used MMSE and DSST collected at baseline to predict dementia diagnosis over the first 3, 5 or
10 years of follow-up. We excluded from the sample subjects demented, blind, deaf or confined to bed
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P. BLANCHE, J.-F. DARTIGUES AND H. JACQMIN-GADDA

Table III. Simulation results with sample size n D 400 and strong dependent censoring (1000 replications).

AUC.t/ Coverage probability

Type I error
True Bias M1 M2 or power

Method �AUC.t/ M1 M2 M1 M2 IF B IF B IF B

HRC1
=2, HRC2

=1
AUC �.t/ IPCW KM 0.0 85.6 85.6 2.6 0.8 74.1 74.8 91.8 91.6 9.2 9.3

IPCW Cox 0.1 0.2 — 94.5 — 94.2 — 5.0
NNE �1:0 �0:3 — 94.2 — 95.3 — 5.8

AUC.t/ IPCW KM 0.0 79.8 79.8 2.0 1.0 84.4 84.3 90.3 90.5 6.7 6.6
IPCW Cox 0.0 0.1 — 95.5 — 93.8 — 5.6
NNE �0:6 0.0 — 95.3 — 93.9 — 6.1

HRC1
=1.35, HRC2

=0.6
AUC �.t/ IPCW KM 0.0 85.6 85.6 1.2 �2:5 90.3 90.7 91.7 91.5 15.8 14.9

IPCW Cox 0.1 0.1 — 92.5 — 94.2 — 4.8
NNE �0:2 0.2 — 94.8 — 94.6 — 5.6

AUC.t/ IPCW KM 0.0 79.8 79.8 0.4 �1:7 94.0 94.1 92.5 92.3 9.7 9.9
IPCW Cox 0.0 0.0 — 94.9 — 94.0 — 5.1
NNE �0:5 0.3 — 94.7 — 93.6 — 6.2

Bias of estimates for two markers M1 and M2 (multiplied by 100), empirical coverage probabilities of 95%
confidence intervals and type I errors and powers of the test of H0 W AUCM1

.t/ D AUCM2
.t/, depending on

�AUC.t/ D AUCM1
.t/�AUCM2

.t/. Inverse probability of censoring weighting (IPCW) estimators using the Kaplan–
Meier estimator (IPCW KM) or a Cox proportional hazards model with covariates M1 and M2 (IPCW Cox) for
weighting, and the nearest neighbour estimator (NNE). Variances are computed from the estimated influence function
(IF) for IPCW KM, or by bootstrapping 400 times (B).

Table IV. Comparison of AUC.t/ of digit symbol substitution test and mini-mental state examination at times
t D 3; 5 and 10 years.

t D 3 t D 5 t D 10

Demented 70(2.7%) 122( 4.8%) 318(12.4%)
Died without dementia 194(7.6%) 313(12.2%) 545(21.3%)
Censored 180(7.0%) 292(11.4%) 591(23.1%)

KM weights
AUC.t/ DSST 79.9 [74.9,84.9] 77.8 [74.0,81.6] 72.2 [69.2,75.2]

MMSE 74.7 [68.7,80.8] 72.0 [67.2,76.8] 66.9 [63.6,70.2]
p-value 0.03 0.01 < 0:01

Adjusted p-value 0.09 0.02 < 0:01

AUC �.t/ DSST 80.9 [76.0,85.8] 79.7 [76.0,83.5] 76.7 [73.8,79.7]
MMSE 75.4 [69.4,81.4] 73.2 [68.4,78.0] 69.9 [66.6,73.3]
p-value 0.02 < 0:01 < 0:01

Adjusted p-value 0.06 0.01 < 0:01

Cox weights
AUC.t/ DSST 79.8 [74.8,84.8] 77.5 [73.7,81.4] 71.7 [68.8,74.7]

MMSE 74.7 [68.6,80.7] 71.9 [67.0,76.7] 66.6 [63.3,69.9]
p-value 0.04 0.01 < 0:01

Adjusted p-value 0.10 0.03 < 0:01

AUC �.t/ DSST 80.8 [75.9,85.7] 79.4 [75.6,83.2] 76.1 [73.2,79.1]
MMSE 75.2 [69.3,81.4] 73.0 [68.2,77.8] 69.6 [66.2,73.0]
p-value 0.03 < 0:01 < 0:01

Adjusted p-value 0.07 0.01 < 0:01

Estimates (multiplied by 100), confidence intervals and p-values of the test of H0 W AUCDSST .t/ D AUCMMSE .t/.
PAQUID cohort, n D 2561.
DSST, digit symbol substitution test; MMSE, mini-mental state examination; AUC, area under the receiver operating
characterisitic; KM weights, Kaplan–Meier weights.

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2013, 32 5381–5397
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P. BLANCHE, J.-F. DARTIGUES AND H. JACQMIN-GADDA

Figure 1. Time-dependent receiver operating characteristic curves estimated by inverse probability of censoring
weighting estimators (KM-weights) at t D 3; 5 and 10 years for digit symbol substitution test and mini-mental
state examination with the two definitions of the specificity. PAQUID, n D 2561 subjects. Points and rectangles
display estimates and 95% confidence intervals for sensitivity and one minus specificity estimates for a threshold
value equal to the third quartile of the marker distribution (19 for digit symbol substitution test, 25 for mini-mental

state examination).

at the initial visit, subjects with missing values for the MMSE and the DSST and subjects who dropped
out just after the baseline visit. The final sample included n D 2561 subjects. The time-to-dementia
was computed as the mid-point between the time of the visit of diagnosis and the time of the last visit
without dementia. Subjects who died without a dementia diagnosis were considered as free of dementia
at their death if the last visit was less than 2 years before the death and were considered as censored at
the last visit if duration between the last visit and death was longer. Using a threshold of 3 years instead
of 2 years led to the same conclusions (results not shown).

5.3. Results

The mean DSST score was 27.4 (standard deviation: 11.5, inter quartile range: 19–35), and the mean
MMSE was 26.4 (standard deviation: 2.9, inter quartile range: 25–28). The correlation between the two
markers was estimated at 0.55.

We fitted a multivariate Cox model in order to explore the dependence of the censoring time on both
psychometric tests. The estimated hazard ratios were 1:019 for DDST (95% CI: .1:010; 1:028/) and
1:023 for MMSE (95% CI :.0:989; 1:057/). As in our simulation study, only one marker is significantly

5392
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P. BLANCHE, J.-F. DARTIGUES AND H. JACQMIN-GADDA

Figure 2. Comparisons of the evolutions of 1AUC .t/ and 1AUC �.t/ over time for digit symbol substitution
test and mini-mental state examination. PAQUID cohort, n D 2561. �1AUC .t/ and �1AUC �.t/ mean the
differences of estimates between digit symbol substitution test and mini-mental state examination. Dashed and
dotted lines display respectively 95% pointwise confidence intervals and 95% simultaneous confidence bands.

associated with the censoring time. The hazard ratio for the increase of one standard error of the DSST
was 1.25, smaller than the one in the simulation study.

The frequencies of observed cases, controls� and controls (as defined in Section 3.1) and censored
subjects before each time point t , for t D 3; 5; 10 years, are given in Table IV. Although the proportions
of observed cases at time t D 3; 5; 10 are small, respectively 2:7%; 4:8% and 12:4%, the frequencies
are big enough, respectively 70, 122 and 328 because of the large sample size (n D 2561). Respectively,
7.0%, 11.4% and 23.1% of subjects are lost of follow-up at time 3, 5 and 10 years.

Figure 1 displays the ROC curves estimated at time t D 3; 5; 10 years for the two definitions of speci-
ficity, assuming independence between censoring and marker (KM-weights). For both definitions, the
ROC curves go down and become closer to the diagonal as time increases, confirming that the discrim-
ination decreases as the window of prediction enlarges. This is illustrated on Figure 2 that displays the
estimates of AUC.t/ and AUC �.t / for time t from 3 to 12 years and their 95% pointwise CIs. With
both definition of controls, Figure 1 shows that the discrimination ability of DSST appears always better
than the one of MMSE, and more specifically, the three ROC curves of DSST are always above the ROC
curves of MMSE. Consequently, whatever the time t D 3; 5; 10 years and whatever the cutpoint chosen
for the marker (or equivalently the value of the specificity), the sensitivity is always estimated greater for
DSST. As an illustration, Figure 1 also depicts CIs for sensitivity and specificity estimates, for a thresh-
old value equal to the third quartile of the marker distribution. Table IV displays AUC estimates with
95% CI and tests for comparison between MMSE and DSST for the two definitions of controls and the
two weightings (with KM-weights, estimated influence functions were used to compute the variances;
with Cox-weights, variances were estimated by bootstrapping 5000 times). According to the unadjusted
p-values, the differences between the AUC were significant for the three windows of prediction; adjust-
ing for multiple testing (one test for each time point), only the differences at 5 and 10 years were still
significant. The 95% pointwise CIs of the differences between AUCs of MMSE and DSST displayed in
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Figure 2 show that the differences are significant for all times t from 3 to 12 years. However, the 95%
simultaneous confidence bands of these differences intersect the zero line. As the association between
censoring and marker is weak, results obtained with the Cox-weights and with the NNE of Saha and
Heagerty [5] were nearly identical, as expected (results not shown).

Figure 2 and Table IV also show that the discrimination is better when subjects died without dementia
are not defined as controls (AUC �.t / versus AUC.t/). However, the differences between DSST and
MMSE are similar for both definitions, and the test results are concordant. The great difference between
AUC �.t / and AUC.t/ is due to the association between the two markers and the competing event:
the hazard ratio for the association between DSST or MMSE and death without dementia are 1.037 for
DSST (95% CI : .1:030; 1:044/) and 1.080 for MMSE (95% CI : .1:055; 1:107/). Thus, it is easier to
discriminate future demented subjects from subjects alive and non-demented rather than from subjects
alive and non-demented or died without dementia.

To conclude, although MMSE is largely used as a screening test for dementia, all these analyses
found that the DSST has better performances to detect future demented subjects in a period of time of 3,
5 or 10 years compared with the MMSE. Moreover, whatever the specificity, the sensitivity of DSST is
always estimated better than the one of MMSE.

6. Discussion

In this manuscript, we used the IPCW approach to estimate time-dependent ROC curve and AUC for
censored events with competing risks. Large sample theory of the estimators was established, and CIs,
simultaneous confidence band and tests of comparison were derived. Simulation results show that the
proposed procedures work well for moderate sample sizes. The practical interest of the procedure for
estimating and comparing psychometric tests for dementia onset was illustrated with data from the
PAQUID cohort. Significant results suggest that the DSST is better than the MMSE to discriminate
subjects at high risk of Alzheimer’s disease in the next few years.

We proposed estimators for the two definitions of specificity because both definitions may be useful
depending the clinical setting. For instance, if the prognostic marker is used as inclusion criteria in a
clinical trial for Alzheimer’s disease, it is essential to be able to discriminate subjects at high risk of
dementia from all subjects and especially from subjects who have a high risk of death without dementia
during the trial duration. Similarly, in prostate cancer treatment of very old patients, the main criteria
for treatment is the risk of progression of the disease before death from other causes. Thus, for both
setting the marker must be validated with AUC.t/ defined at equation (4). On the other hand, from the
point of view of a patient worried about his cognitive decline, the main question of interest may be : If
I survive 10 years, am I at high risk of becoming demented during this period? Then, AUC �.t / defined
at equation (3) is more relevant. In any case, as the estimated value may be very different, it is essential
in the clinical application to clearly state which definition is used for the specificity.

As pointed out by one referee, our analyses of the predictiveness of the cognitive tests on the PAQUID
data do not account for the age of the subjects. Consequently, the predictiveness of the cognitive tests has
to be carefully interpreted as a marginal predictiveness among the population of subjects aged 65 years
and older enrolled in the PAQUID study. Thus, the estimated predictive accuracy is of interest for clini-
cians who are interested in quantifying how informative can be the result of a cognitive test to evaluate
the risk of dementia of a patient in the t -years following a test result.

To account for age in the estimation of the ROC curves and AUCs, we could have fitted semipara-
metric models for ROC curves or AUC given age, using semiparametric methods proposed by Zheng
et al. [6] or adapting a method of Hung and Chiang [10]. Alternatively, our nonparametric methods
could also have been computed on several age groups, performing stratified analyses. Another possible
approach would have been to fit a multivariate prediction model accounting for age, using a binomial
regression model [29] for example, to then estimate the ROC curve and AUC of the resulting predic-
tion tool. For this latter approach, a careful correction for overfitting and optimism bias is required [30],
which is outside the scope of this manuscript. Kerr and Pepe [31] have recently discussed and contrasted
these two strategies in detail.

To deal with interval censoring of dementia in the PAQUID data, we used a simple imputation rule of
the status of subjects deceased without dementia diagnosis. Changing this rule (3 years instead of 2 years
between the last visit and the death) did not change the results. To our knowledge, only parametric esti-
mators based on an illness-death model can account for this particular kind of interval-censoring [32].
In an ongoing work, we developed such model-based estimators. However, simulation results suggest
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that the bias for the IPCW estimators are small and may be smaller than the bias of the model-based
estimators when the model is misspecified.

Compared with earlier papers that focused on estimation, this work mainly focused on tests for com-
paring AUCs. The test of comparison that we proposed is the extension to the competing risks setting
with censored data of the popular test proposed by DeLong et al. [8]. Indeed, without censoring, weights
are all equal to one.

Assuming that censoring does not depend on the markers, the estimation and the test do not require
any parametric assumptions by contrast to the approach of Foucher et al. [13] or Zheng et al. [6], nor
bandwidth selection due to kernel smoothing as in Saha and Heagerty [5] or as in the smooth method of
Zheng et al. [6].

Moreover, nonparametric approaches previously proposed cannot properly deal with censoring
depending on several markers. Indeed, with the method of Saha and Heagerty [5] or the smooth method
of Zheng et al. [6], the cause specific hazards are estimated only conditionally on the marker under
study, by non-parametric kernel-based methods. Therefore, dependence between censoring and other
markers are not taken into account, whereas when modelling hazard in survival analysis, the assumption
is that the censoring mechanism can only depend on covariates included in the model [33, Section 2.2.8].
Although they could be extended to deal with censoring depending on several markers, using multidi-
mensional kernels, their practical interest would be limited by the so-called curse of dimensionality
phenomenon [34]. To our mind, they are therefore not suitable for comparing several markers and mak-
ing tests with marker dependent censoring, even though they appeared robust in our realistic simulation
scenarii with two correlated markers and moderate associations between censoring and markers. By
contrast, when censoring depend on the markers, the IPCW approach enables such tests of comparison
under the additional assumption that the censoring mechanism is well specified. Nevertheless, when the
dependence between censoring and markers is light, our simulations suggest that the estimator using
KM-weights can be robust.

The proposed methodology is implemented in the timeROC package, written in R [35], that is pub-
licly available on the Comprehensive R Archive Network (CRAN) site. The PAQUID data presented in
Section 5 is attached to the package, and most of the analyses presented in Section 5 are presented as
examples, making them easily reproducible.

Appendix A

Definition of IF.�/
Let MCi

.t / D 11
.e�i D0;eT i 6t/

� R t

0
11

.eT i >t/
dƒC .u/, where ƒC .�/ is the cumulative haz-

ard function of the censoring variable C , htij;1 D
11

.eT i 6t;e�i D1/
11

.eT j >t/

G.eT i /G.t/
11.Mi>Mj /, htij;2 D

11
.eT i 6t;e�i D1/

11
.eT j 6t;e�j 62f0;1g/

G.eT i/G.eT j /
11.Mi>Mj /, fi1t D 11

.eT i 6t;e�i D1/

G.eT i /
and ht D E

�
htij;1 C htij;2

�
. Then,

IF
�eT i ;e�i ; Mi ; t

�D E
�
‰ijkl.t / C ‰j ikl.t / C ‰jkil.t / C ‰jkli .t /

ˇ̌ �eT i ;e�i ; Mi

��
F1.t / .1 � F1.t //

where

‰ijkl .t / Dhtij;1

 
1 C

Z eT i

0

dMCk
.u/

SeT .u/

!�
1 C

Z t

0

dMCl
.u/

SeT .u/

	

C htij;2

 
1 C

Z eT i

0

dMCk
.u/

SeT .u/

! 
1 C

Z eT j

0

dMCl
.u/

SeT .u/

!

� ht � ht .1 � 2F1.t //

F1.t / .1 � F1.t //

"
fi1t

 
1 C

Z eT i

0

dMCk
.u/

SeT .u/

!
� F1.t /

#

Estimator bIF.�/
Let cM C .�/ be the estimator defined by plugging in the usual Nelson–Aalen estimator of the cumula-
tive incidence function of the censoring C and bhtij;1, bhtij;2 and bf i1t be defined by plugging in the
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Kaplan–Meier estimator bG.�/. Letbht D 1
n2

Pn
iD1

Pn
j D1

bhtij;1 Cbhtij;2. Then,

bIF �eT i ;e�i ; Mi ; t
�D

1
n.n�1/.n�2/

Pn
j D1

Pn
kD1

Pn
lD1

b‰ijkl.t / C b‰j ikl .t / C b‰jkil .t / C b‰jkli .t /bF 1.t /
�
1 � bF 1.t /

�
where b‰ijkl.t / is defined plugging in the estimatorsbht ,bhtij;1,bhtij;2, bf i1t , cM C .�/, bF 1.t / and bSeT .�/.

Supporting Information

Web Appendix referenced in Sections 3.2, 3.8 and 4.2 is available with this paper at the Statistics in
Medicine website on Wiley Online Library. It contains details about large sample results and additional
simulation results.
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