
‭Lavie Shaked Golan‬

‭Independent Developer, July 7th, 2024‬

‭Using the Jump Flood Algorithm to Dilate‬
‭Velocity Maps in the application of‬
‭Believable High Range High Fidelity‬
‭Motion Blur‬

‭Abstract‬
‭This paper describes a method for simulating motion blur phenomenon for real time application by‬
‭making use of the jump flood algorithm for velocity map dilation. I demonstrate results on video‬
‭game scenes rendered and reconstructed in real time on NVIDIA rtx 2070. The technique is faster‬
‭than previous known methods and is equally robust, while providing higher fidelity. This technique‬
‭was made to be provided as a proprietary effect by the Godot game engine for its future releases.‬

‭1 Introduction and Related Work‬
‭A motion blur effect simulates a real phenomena inherit to cameras and shutter speed, with‬
‭photographed elements appearing smeared and blurred in their direction of movement. The blur‬
‭amount correlates directly to the velocity of the object relatively to the camera's view times the shutter‬
‭speed, to put simply. To simulate that effect in digitally rendered scenes, there exists multitude of‬
‭methods with varying capabilities for both real time applications and offline rendering.‬

‭1.1 previous methods‬
‭In McGuire et al.'s [2012] paper, which is a staple work on the subject, was described a reconstruction‬
‭filter technique that used tile based dominant velocity buffers to dilate a high resolution velocity‬
‭buffer, and use them when generating a believable motion blur post process effect.‬

‭His approach had a complexity of O(kn/m) with k being the radius of maximum velocity range‬
‭captured by the reconstruction filter in pixel space, and m being the amount of parallel processing‬
‭units available, an example being the many cores in modern GPU's.‬

‭1.2 Jump Flood Algorithm‬
‭The jump flood algorithm is a data processing pattern common in creations of Signed Distance fields‬
‭and Voronoi diagrams. It is popular for its ability to perform complex comparisons over large data sets‬
‭at the complexity of O(log(n)). For that reason its the best and only plausible algorithm with which to‬

‭generate high resolution high quality distnace related maps in realtime applications, making it the best‬
‭candidate for established post process effects such as soft shadows and signed distance functions‬
‭(used for high quality sillouhette rendering) in those applications.‬

‭Jump Flood Algorithm Overview‬‭the algorithm works by iterating on a data set of size w‬‭* h‬
‭log‬‭2‬‭(max(w, h)) + 1 times. For each data point, sample in 8 directions described by this kernel: (0, 1),‬
‭(1, 0), (0, -1), (-1, 0), (1, 1), (1, -1), (-1, 1), (-1, -1), multiplied by pow(2, iteration_index - 1). This‬
‭simply ensures that every pixel in the resulting data set is aware and have selected the most fit data‬
‭point from the original data set, and is pointing to it.‬

‭Limitations Of the Jump Flood Algorithm‬‭for its simplicity and efficiency the Jump Flood‬
‭Algorithm introduces limitations revolving mainly around the conditions driving it. In order to‬
‭achieve consistent and smooth results, the sample preferences needs to stay simple and continuous‬
‭throughout, aswell as stay the same for each of the passes, as it relies on sensitive symmetry for a‬
‭smooth coverage and to produce correct results. Both applications described above, being the signed‬
‭distance functions and voronoi diagrams can be both described simply as a single distance comparison‬
‭for each pixel until all pixels are compared.‬

‭1.3 Personal Preference‬
‭In McGuire et al.'s [2012] paper, they dilate the velocity buffer in both directions by ||V|| / 2. This is a‬
‭common practice as is both yields a better base for blurring, and it allows us to require half the‬
‭dilation radius for the same velocity. The issue I present with this is that at rapid velocity changes, the‬
‭dilation would often extend beyond the object's final position, producing blurring outside its apparent‬
‭sillouhete and against viewer intuition. I propose that this exact problem is also felt to a degree at less‬
‭extreme scenarios and could be a leading cause to distain and reported motion sickness by the viewer‬
‭from this effect in popular media such as video games and other realtime applications. For that reason‬
‭I chose to follow a retrospective velocity blur principle, as I believe it is worth the extra required‬
‭dilation radius and elaborate blending work to eliminate the added ghosting as a result of the‬
‭sillouhette's leading edge being left bare.‬

‭2 Algorithm‬

‭2.1 oveview‬
‭The method in question takes in a velocity buffer V, and for p passes transfers data from two high‬
‭resolution buffers A and B in the direction A -> B if (p % 2 > 0) else B -> A, with the first pass‬
‭transferring the data to A from V instead of B. This is following the Jump Flood Algorithm described‬
‭in the section above, with a few caveats being as followed: 1) I do not iterate as many times as‬
‭necessary to reach full coverage of the image buffer, and instead only enough to reach coverage of K,‬
‭being the max velocity length to dilate 2) I use complex sets of conditiions that take depth and‬
‭velocity directionality into account, some are non-continuous 3) I add the option to multiply all step‬
‭sizes by m, sacrificing some accuracy while decreasing range complexity by a logarithmic amount 4)‬
‭At the last pass first discard values that do not have sufficient fitness values, and on the ones left i‬
‭perform backtracking of the dilation to mitigate the perpendicular bleed of velocities.‬

‭Motivating Analysis‬‭The key idea behind this velocity dilation method is that it converts an O(kn)‬
‭or an O(kn/m) [McGuire et al. 2012] algorithms into an O(log‬‭2‬‭(kn / m)) algorithm. Additionally, while‬
‭McGuire et al.'s 2012 methods uses n / k tiles resolution for the final velocity dilation buffer, I get to‬
‭keep my dilation buffers at full resolution, allowing for maximum amount of detail and fidelity. In‬
‭addition, the dilation of velocities stay within the the ranges necessary for those velocities, with no‬
‭prior clamping of velocity values being required, meaning k is just a maximum, and the final dilation‬
‭radius ends up as small as the dominant relevant velocity's length. This in turn minimizes velocity‬
‭bleed in the direction of the velocity. In addition, I can make the dilation algorithm be aware of the‬
‭depth of elements, to prevent background elements affecting foreground elemens. Lastly, the‬
‭implementation allows for as many passes as necessary, with each pass being identical, which means‬
‭on modern graphics pipelines, these passes can be made in quick succession one after another, with no‬
‭rebinding of buffers, and only the push constants need to be updated to let the shader know which‬
‭pass index it is on.‬

‭2.2 Buffers‬
‭velocity_sampler (V) is a sharp input velocity buffer in ndc space. depth_sampler (Z) is a sharp input‬
‭depth buffer in ndc space. Note that both V and Z have been perpective divided prior to this. All‬
‭buffers are retrieved after the transparent pass and before post processing passes like bloom and‬
‭FXAA.‬

‭I also generate two R32G32B32A32_SFLOAT full resolution buffers A and B.‬

‭2.3 Dilation Passes‬
‭The algorithm follows the description above, and this is the glsl code for it:‬

‭const int kernel_size = 8;‬

‭const vec2 check_step_kernel[kernel_size] = {‬
‭vec2(0, 0),‬
‭vec2(1, 1),‬
‭vec2(0, 1),‬
‭vec2(-1, 1),‬
‭vec2(1, 0),‬
‭vec2(1, -1),‬
‭vec2(-1, 0),‬
‭vec2(-1, -1),‬
‭vec2(0, -1),‬

‭};‬

‭// near plane distance‬
‭float npd = 0.05;‬

‭vec4 get_value(bool a, ivec2 uvi, ivec2 render_size)‬
‭{‬

‭if ((uvi.x >= render_size.x) || (uvi.x < 0) || (uvi.y >= render_size.y) || (uvi.y < 0))‬
‭{‬

‭return vec4(-1, -1, 0, 1);‬
‭}‬

‭if(a)‬
‭{‬

‭return imageLoad(buffer_a, uvi);‬
‭}‬

‭return imageLoad(buffer_b, uvi);‬
‭}‬

‭void set_value(bool a, ivec2 uvi, vec4 value, ivec2 render_size)‬
‭{‬

‭if ((uvi.x >= render_size.x) || (uvi.x < 0) || (uvi.y >= render_size.y) || (uvi.y < 0))‬
‭{‬

‭return;‬
‭}‬
‭if(a)‬
‭{‬

‭imageStore(buffer_a, uvi, value);‬
‭return;‬

‭}‬

‭imageStore(buffer_b, uvi, value);‬
‭}‬

‭// Motion similarity‬
‭// --‬
‭float get_motion_difference(vec2 V, vec2 V2, float parallel_sensitivity, float perpendicular_sensitivity)‬
‭{‬

‭vec2 VO = V - V2;‬
‭double parallel = abs(dot(VO, V) / max(DBL_MIN, dot(V, V)));‬
‭vec2 perpen_V = vec2(V.y, -V.x);‬
‭double perpendicular = abs(dot(VO, perpen_V) / max(DBL_MIN, dot(V, V)));‬
‭float difference = float(parallel) * parallel_sensitivity + float(perpendicular) * perpendicular_sensitivity;‬
‭return clamp(difference, 0, 1);‬

‭}‬
‭// --‬

‭vec4 sample_fitness(vec2 uv_offset, vec4 uv_sample)‬
‭{‬

‭vec2 sample_velocity = -uv_sample.xy;‬

‭if (dot(sample_velocity, sample_velocity) <= FLT_MIN)‬
‭{‬

‭return vec4(FLT_MAX, FLT_MAX, FLT_MAX, 0);‬
‭}‬

‭double velocity_space_distance = dot(sample_velocity, uv_offset) / max(FLT_MIN, dot(sample_velocity, sample_velocity));‬

‭double mid_point = params.motion_blur_intensity / 2;‬

‭double absolute_velocity_space_distance = abs(velocity_space_distance - mid_point);‬

‭double within_velocity_range = step(absolute_velocity_space_distance, mid_point);‬

‭vec2 perpen_offset = vec2(uv_offset.y, -uv_offset.x);‬

‭double side_offset = abs(dot(perpen_offset, sample_velocity)) / max(FLT_MIN, dot(sample_velocity, sample_velocity));‬

‭double within_perpen_error_range = step(side_offset, params.perpen_error_thresh * params.motion_blur_intensity);‬

‭return vec4(absolute_velocity_space_distance, velocity_space_distance, uv_sample.z, within_velocity_range *‬
‭within_perpen_error_range);‬
‭}‬

‭bool is_sample_better(vec4 a, vec4 b)‬
‭{‬

‭if((a.w == b.w) && (a.w == 1))‬
‭{‬

‭return a.z < b.z;‬
‭}‬

‭float nearer = a.z > b.z ? 1 : 0;‬

‭return a.x * b.w * nearer < b.x * a.w;‬
‭}‬

‭vec4 get_backtracked_sample(vec2 uvn, vec2 chosen_uv, vec2 chosen_velocity, vec4 best_sample_fitness, vec2 render_size)‬
‭{‬

‭//return vec4(chosen_uv, best_sample_fitness.x, 0);// comment this to enable backtracking‬

‭int step_count = 16;‬

‭float smallest_step = 1 / max(render_size.x, render_size.y);‬

‭float max_dilation_radius = pow(2, params.last_iteration_index) * params.sample_step_multiplier * smallest_step /‬
‭(length(chosen_velocity) * params.motion_blur_intensity);‬

‭float general_velocity_multiplier = min(best_sample_fitness.y, max_dilation_radius);‬

‭for(int i = -step_count; i < step_count + 1; i++)‬
‭{‬

‭float velocity_multiplier = general_velocity_multiplier * (1 + float(i) / float(step_count));‬

‭if(velocity_multiplier > params.motion_blur_intensity + 0.2 || velocity_multiplier < FLT_MIN)‬
‭{‬

‭continue;‬
‭}‬

‭vec2 new_sample = uvn - chosen_velocity * velocity_multiplier;‬

‭if((new_sample.x < 0.) || (new_sample.x > 1.) || (new_sample.y < 0.) || (new_sample.y > 1.))‬
‭{‬

‭continue;‬
‭}‬

‭vec2 velocity_test = textureLod(velocity_sampler, new_sample, 0.0).xy;‬

‭if(get_motion_difference(chosen_velocity, velocity_test, params.parallel_sensitivity, params.perpendicular_sensitivity) <=‬
‭params.velocity_match_threshold)‬

‭{‬
‭chosen_uv = new_sample;‬
‭best_sample_fitness.x = velocity_multiplier;‬
‭return vec4(chosen_uv, best_sample_fitness.x, 0);‬

‭}‬
‭}‬

‭return vec4(uvn, best_sample_fitness.x, 1);‬
‭}‬

‭void main()‬
‭{‬

‭ivec2 render_size = ivec2(textureSize(velocity_sampler, 0));‬
‭ivec2 uvi = ivec2(gl_GlobalInvocationID.xy);‬
‭if ((uvi.x >= render_size.x) || (uvi.y >= render_size.y))‬
‭{‬

‭return;‬
‭}‬
‭vec2 uvn = (vec2(uvi) + vec2(0.5)) / render_size;‬

‭int iteration_index = params.iteration_index;‬

‭float step_size = round(pow(2, params.last_iteration_index - iteration_index));‬

‭vec2 uv_step = vec2(step_size) * params.sample_step_multiplier / render_size;‬

‭vec4 best_sample_fitness = vec4(FLT_MAX, FLT_MAX, FLT_MAX, 0);‬

‭vec2 chosen_uv = uvn;‬

‭vec2 chosen_velocity = vec2(0);‬

‭bool set_a = !bool(step(0.5, float(iteration_index % 2)));‬

‭for(int i = 0; i < kernel_size; i++)‬
‭{‬

‭vec2 step_offset = check_step_kernel[i] * uv_step;‬
‭vec2 check_uv = uvn + step_offset;‬

‭if((check_uv.x < 0.) || (check_uv.x > 1.) || (check_uv.y < 0.) || (check_uv.y > 1.))‬
‭{‬

‭continue;‬
‭}‬

‭if(iteration_index > 0)‬
‭{‬

‭ivec2 check_uv2 = ivec2(check_uv * render_size);‬

‭vec4 buffer_load = get_value(!set_a, check_uv2, render_size);‬

‭check_uv = buffer_load.xy;‬

‭step_offset = check_uv - uvn;‬
‭}‬

‭vec4 uv_sample = vec4(textureLod(velocity_sampler, check_uv, 0.0).xy, npd / textureLod(depth_sampler, check_uv,‬
‭0.0).x, 0);‬

‭vec4 current_sample_fitness = sample_fitness(step_offset, uv_sample);‬

‭if (is_sample_better(current_sample_fitness, best_sample_fitness))‬
‭{‬

‭best_sample_fitness = current_sample_fitness;‬
‭chosen_uv = check_uv;‬
‭chosen_velocity = uv_sample.xy;‬

‭}‬
‭}‬

‭if(iteration_index < params.last_iteration_index)‬
‭{‬

‭set_value(set_a, uvi, vec4(chosen_uv, best_sample_fitness.x, best_sample_fitness.w), render_size);‬
‭return;‬

‭}‬

‭float depth = npd / textureLod(depth_sampler, uvn, 0.0).x;‬

‭if(best_sample_fitness.w == 0 || depth < best_sample_fitness.z)‬
‭{‬

‭set_value(set_a, uvi, vec4(uvn, best_sample_fitness.x, 0), render_size);‬
‭return;‬

‭}‬

‭vec4 backtracked_sample = get_backtracked_sample(uvn, chosen_uv, chosen_velocity, best_sample_fitness, render_size);‬

‭set_value(set_a, uvi, backtracked_sample, render_size);‬

‭return;‬
‭}‬

‭The main structure of it follows a standard jump flood algorithm pattern, with the caveats mentioned‬
‭above. The reason behing each one being: 1) it is obvious I only want to be aware of pixels within the‬
‭range of the largest velocity I want to consider, so last_iteration_index is not bound to the screen's‬
‭resolution. 2) I am multiplying uv_step by sample_step_multiplier, allowing me to decrease the‬
‭complexity of the code while achieving a comparable quality result. 3) I compare the sample fitness‬

‭using as basic conditions as possible. 4) At the last pass I discard all velocities that were assigned in‬
‭the process of discovery based on their fitness coefficient, and velocities that are left are run through a‬
‭backtracking algorithm to further filter perpendicular velocity bleed.‬

‭A demo project containing a working interactible implementation can be found at‬
‭https://github.com/sphynx-owner/JFA_driven_motion_blur_demo‬

‭3 Results‬

‭Figure 1:‬‭screenshot of in game debug footage using the jump flood velocity dilation. Blur is set at intensity of 1, framerate‬
‭is limited to 15, and sample step multiplier is set to 1, The image is produced with 4 passes. in the image you can see a‬
‭vehicle speeding down a highway, to the sides a hilly landscape, and to the top right of the view a plane going to the right.‬
‭top left image is enhanced absolute input velocity buffer, bottom left image shows enhanced absolute offsets of the velocity‬
‭buffer generated by the dilation process, top right shows final enhanced absolute velocity map being used.‬

https://github.com/sphynx-owner/JFA_driven_motion_blur_demo

‭Figure 2‬‭: game footage, 1920 x 1080 with 4 passes at ~30 fps, blur intensity at 1, sample step multiplier at 1, a mannequin is‬
‭running down the street in front of a cafe with a sign, light pole, bushes, and a scooter.‬

‭Figure 3‬‭: game footage, 1920 x 1080 with 4 passes at ~30 fps, blur intensity at 1, sample step multiplier at 1, flying through‬
‭a street with a lamp to the left and a bush to the right. note the attention given to each leaf by the algorithm.‬

‭Note the extending of the hill to the left and the plane in figure 1. In figure 2 and figure 3, The‬
‭velocity dilation offset image at the bottom left reveals the level of details in the velocity dilation that‬
‭can be achieved with this method, especially arond high detail elements like the bushes.‬

‭4 Discussion‬

‭4.1 Artistic Control‬
‭This method for velocity dilation offers control over radius of dilation, as well as control over‬
‭thresholds including perpendicular error threshold, which controls how much perpendicular offset can‬
‭a sample have from the velocity it is pointing to, and the parallel threshold, which directly correlates‬
‭to the blur intensity an artist may desire, and it controls how far down the velocity vector can you‬
‭include a sample as covered by it. In addition you can control the sample step scale, to allow for‬
‭greater reach with little to no quality reduction.‬

‭You can also expose othe attributes like the motion similarity threshold when performing dilation‬
‭backtracking, but I did not get to do this in my implementation yet.‬

‭4.2 Limitations‬
‭The nature of the algorithm makes it really tough to avoid peripheral bleed of velocities, as the strict‬
‭geometry of the samples in the jump flood algorithm makes it hard to narrow down anything related‬
‭to the directions of vectors, meaning the connection between a sample's offset and the velocity it‬
‭stores can be purely heuristic. This is why the perpendicular threshold is present, and it needs to be‬
‭carefully chosen as to not cause any holes in the dilation, which is shown in figure 4.‬

‭Figure 4‬‭: simple mesh examples, camera is looking to the left, and the perpendicular velocity threshold is set to 0.01, which‬
‭is way lower than recommended.‬

‭The lack of strict perpendicular dilation limit causes significant sideways bleed that is proportional to‬
‭the velocities of the elements in the image, and it can be mostly observed in figure 3 by the widening‬
‭of the hanging ornaments' silouhettes, as they are moving upwadrs, but also get wider to the sides.‬

‭Another obvious example is with the railing in figure 5, which bleeds onto the car at high enough‬
‭velocities.‬

‭Figure 5‬‭: game footage of car speeding down highway, showcasing the peripheral bleed caused by the velocity dilation at‬
‭even optimal threshold values.‬

‭In order to mitigate this, I have introduced the dilation backtracking on the last pass, which samples‬
‭from each pixel back in the direction of the velocity dilated to it, to see if a similar velocity can be‬
‭observed within a sensible range, at which point if no similar velocity was found, return the original‬
‭velocity at that pixel, and if a sufficient velocity was found, return that position instaed.‬

‭This leads to significant improvements on the quality of the result, and is able to neutralize most if not‬
‭all artifacts regarding peripheral dilation as can be seen in figure 6.‬

‭Figure 6‬‭: game footage of car speeding down highway, at the bottom left, the blue sections indicates‬
‭samples that have been backtracked to the original velocity value at those pixels, resulting in a crisp‬
‭edge under the same conditions as figure 5‬

‭Though some attention still needs to be given to the sensitivity of the backtracking check, and the‬
‭amount of iterations to check for a fit velocity sample, and while not visible anymore, the peripheral‬
‭bleeding of velocities can still affect the final result in case of severy overflow causing large areas of‬
‭the image to revert entirely to the original velocity values, degrading the quality of the blur‬
‭significantly.‬

‭Another limitation is the lack of control over the sampling ranges, as the only choises are powers of 2.‬
‭This can be worked around by using the sample step multiplier to reach higher precision when‬
‭selecting max dilation radius, at the small sacrifice of some accuracy in the final result. Moreover, due‬
‭to the dynamic range of dilation in the final result, the actual radius serves as a max value and does‬
‭not affect the resolution of the result, unless extreme velocities that would utilize the entire range are‬
‭observed.‬

‭4.3 Future Work‬
‭This discovery was made as part of my attempts to create a motion blur effect for the later releases of‬
‭the Godot game engine to arrive with built in. In order to make that happen I would have to improve‬
‭peripheral aspects such as the motion blur itself, borrowing as much as I can from provable methods‬
‭and encorporating them into my own.‬

‭In general, I believe this approach is still in its infancy, and much more is left to be discovered and‬
‭perfected. The areas I would shift my focus to would be improving the performance and efficiency of‬
‭the implementation and reducing artifacts caused by peripheral bleeding.‬

‭Acknowledgements‬‭I thank the Godot vfx community for getting me interested in the subject, and‬
‭McGuire for his great paper on the matter.‬

‭McGuire, M., Hennessy, P., Bukowsky, M. AND Osman, B., 2012.A Reconstruction Filter for‬
‭Plausible Motion Blur, 1–8.‬
‭https://casual-effects.com/research/McGuire2012Blur/McGuire12Blur.pdf‬

‭Douglas, B., 2021, The Jump Flood Algorithm | Visualized and Explained‬
‭https://www.youtube.com/watch?v=A0pxY9QsgJE‬

https://casual-effects.com/research/McGuire2012Blur/McGuire12Blur.pdf
https://www.youtube.com/watch?v=A0pxY9QsgJE

