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Abstract 

Approaches of geographic automata grounded in the theories of complex spatial 

systems and geographic information science (GISc) have been utilized in many 

geospatial applications to analyze and simulate spatio-temporal processes including 

land-use/land-cover (LULC) change. Given the increasing interactions in human-

environment systems and their significant impact on global sustainability issues, there is 

a need for new modelling methodologies for characterizing LULC change processes at 

the global level. However, current geosimulation modelling approaches are based on 

conventional geospatial data and two-dimensional planar representations which omit 

effects of the curvature of the Earth’s surface. Such models when applied to LULC 

change can result in spatial and computational errors emanating from distortions. 

Therefore, the primary objective of this dissertation is to develop a suite of novel 

spherical geographic automata modelling approaches for simulating complex spatial 

systems at the global level and considering the curved surface of the Earth. The 

dissertation integrates spherical geodesic grids, geosimulation modelling approaches, 

theories of GISc, and complex systems to leverage the capabilities of these fields for 

better representation of different land systems at the global level. The proposed 

methodology is implemented to simulate LULC change as a complex spatial dynamic 

system operating on a sphere. Results from the models’ implementations indicate the 

methodology offers a realistic and consistent framework for representing, simulating, 

analysing, and visualizing LULC change, particularly urbanization and deforestation, on 

a spherical surface. Moreover, the presentation of modelling results in the context of 

LULC change processes contribute to the enhancement of decision-making processes 

at the global level by providing tools that can be utilized for forecasting, scenario testing 

and policy formulation. This dissertation contributes new methodological frameworks to 

the fields of geographic information science, specifically geographic automata modelling, 

and land use science.  

Keywords:  geographic information science; geographic information systems; 

complex systems models; spherical geographic automata models; 

discrete global grid system; global land-use/land-cover (LULC) change; 

global urbanization; global deforestation  



iv 

Dedication 

 

 

 

 

 

 

 

This is thesis is dedicated to my family for their support and encouragement. 



v 

Acknowledgements 

I would like to express my deepest gratitude to those who have supported me 

throughout the journey of my doctoral studies and the completion of this dissertation. 

First and foremost, I am immensely thankful to my primary advisor and supervisor, 

Professor Suzana Dragićević, whose guidance, patience, and unwavering support have 

been pivotal to my academic growth and professional development. I am also grateful to 

my supervisory committee members, Prof. Kirsten Zickfeld and Prof. Peter Hall, whose 

insightful comments and constructive feedback inspired and enriched my research. 

I extend my appreciation to the Natural Sciences and Engineering Research 

Council (NSERC) of Canada Discovery Grant awarded to Dr. Suzana Dragicevic which 

supported my research activities and enabled me to attend important conferences and 

workshops that significantly contributed to this research and my professional 

development. In addition, I am very grateful to Simon Fraser University and the 

Department of Geography for providing me with the opportunity to obtain several 

scholarships including the Graduate Deans Entrance Scholarship (GDES), the Micheal 

Geller Graduate Scholarship in Urban Development, Graduate Fellowships (GF), and 

Travel and Minor Research Awards (TMRA). 

I am also indebted to my lab colleagues at the spatial analysis and modeling 

(SAM) Laboratory as well as other colleagues within and outside of the Department of 

Geography for their camaraderie, stimulating discussions, and for the countless times 

they lent me a helping hand. The collaborative and encouraging environment among lab 

members has been instrumental in the success of my research. I must also 

acknowledge the broader Geography community at SFU, and the valuable insights and 

support I received from fellow researchers, faculty members, and administrative staff. 

Lastly, I would like to express my heartfelt gratitude to my family and friends, who 

have been my greatest source of strength and support. Their love, patience, and 

understanding have sustained me through the ups and downs of this challenging 

journey. This dissertation stands as a testament to the collective effort and support of all 

those mentioned above, and to many others who have contributed directly or indirectly to 

my academic journey. I am profoundly grateful for all the support I have received and for 

the opportunities that have been afforded to me. 



vi 

Table of Contents 

Declaration of Committee ................................................................................................ ii 

Abstract .......................................................................................................................... iii 

Dedication ...................................................................................................................... iv 

Acknowledgements ......................................................................................................... v 

Table of Contents ........................................................................................................... vi 

List of Tables .................................................................................................................. ix 

List of Figures.................................................................................................................. x 

Chapter 1. Introduction ............................................................................................ 1 

1.1. Modelling Global Land-use/Land-cover Change .................................................... 3 

1.2. Overview of Land-use/Land-cover Change Modelling Approaches ........................ 4 

1.3. Challenges of Global Land-use/Land-cover Change Modelling.............................. 6 

1.4. Spherical Geodesic Grids ...................................................................................... 7 

1.4.1. Base Polyhedron ...................................................................................... 8 

1.4.2. Cell Types ................................................................................................ 8 

1.4.3. Refinement/Aperture .............................................................................. 10 

1.4.4. Cell Indexing .......................................................................................... 10 

1.5. Research Questions and Objectives .................................................................... 12 

1.6. Dissertation Overview .......................................................................................... 13 

1.7. References .......................................................................................................... 15 

Chapter 2. Enabling Geosimulations for Global Scale: Spherical Geographic 
Automata ............................................................................................................ 24 

2.1. Abstract ............................................................................................................... 24 

2.2. Introduction .......................................................................................................... 24 

2.3. Theoretical Background of Geodesic Global Grid Systems .................................. 28 

2.3.1. Comparison of Geometric Distortions in Conventional GIS and DGGS .. 31 

2.4. Framework for Spherical Geographic Automata .................................................. 34 

2.5. SGA Implementation Case Studies and Simulation Results ................................ 37 

2.5.1. SGA Game of Life (𝑺𝑮𝑨𝑮𝑶𝑳) Model ...................................................... 38 

2.5.2. SGA Global Urban Land-Use Growth (𝑺𝑮𝑨𝑮𝑼𝑳) Model ......................... 40 

2.5.3. SGA Global Deforestation (𝑺𝑮𝑨𝑫𝑬𝑭) Model .......................................... 43 

2.6. Discussion and Conclusions ................................................................................ 45 

2.7. References .......................................................................................................... 48 

Chapter 3. Modelling Global Urban Land-use Change Process Using Spherical 
Cellular Automata .............................................................................................. 55 

3.1. Abstract ............................................................................................................... 55 

3.2. Introduction .......................................................................................................... 55 

3.3. Theoretical Background ....................................................................................... 58 

3.4. Methodology ........................................................................................................ 60 

3.4.1. Study Area and Datasets ....................................................................... 60 

3.4.2. Spherical CA Model Overview ................................................................ 62 



vii 

3.4.3. Model Evaluation and Implementation .................................................... 64 

3.5. Results ................................................................................................................ 65 

3.5.1. Simulation Results of Global Urbanization Process ................................ 65 

3.5.2. Regional and Sub-regional Variations of Urban Land-use Growth .......... 70 

3.5.3. Country Level Variation of Urbanization Growth ..................................... 71 

3.6. Discussion ........................................................................................................... 74 

3.7. Conclusions ......................................................................................................... 75 

3.8. References .......................................................................................................... 77 

Chapter 4. Integrating Multi-criteria Analysis and Spherical Cellular Automata 
Approach for Modelling Global Urban Land-use Change ............................... 83 

4.1. Abstract ............................................................................................................... 83 

4.2. Introduction .......................................................................................................... 83 

4.3. Methodology ........................................................................................................ 86 

4.3.1. Datasets ................................................................................................. 86 

4.3.2. Model Overview ..................................................................................... 86 

4.3.3. Selection of Criteria and Suitability Functions ......................................... 88 

4.3.4. Criteria Sensitivity Analysis and Urban Region Clustering ...................... 92 

4.3.5. Criterion Weights and GIS-MCE Technique ........................................... 94 

4.3.6. Spherical CA Model ............................................................................... 95 

4.3.7. Model Evaluation .................................................................................... 97 

4.4. Results ................................................................................................................ 98 

4.4.1. Model Testing ........................................................................................ 98 

4.4.2. Global Overview of Urban Expansion Dynamics .................................... 98 

4.4.3. Variations in Urban Expansion Across Different Urban Region Clusters
 ............................................................................................................. 100 

4.5. Discussion and Conclusions .............................................................................. 102 

4.6. References ........................................................................................................ 104 

Chapter 5. Modelling Global Deforestation using Spherical Geographic 
Automata Approach ........................................................................................ 111 

5.1. Abstract ............................................................................................................. 111 

5.2. Introduction ........................................................................................................ 111 

5.3. Materials and Methods ...................................................................................... 114 

5.3.1. Spherical Deforestation Model Overview .............................................. 114 

5.3.2. Global Deforestation Spherical Geographic Automata ......................... 115 

5.3.3. Datasets ............................................................................................... 116 

5.3.4. Susceptibility Analysis .......................................................................... 116 

5.3.5. Criterion Weights Generation and Global Susceptibility Maps .............. 122 

5.3.6. Deforestation Scenarios ....................................................................... 123 

5.3.7. Model Implementation and Evaluation .................................................. 124 

5.4. Results .............................................................................................................. 126 

5.4.1. Global and Regional Variations in Forest Cover Change ...................... 126 

5.4.2. Forest Change in Protected Areas ....................................................... 132 

5.5. Discussion ......................................................................................................... 132 



viii 

5.6. Conclusions ....................................................................................................... 135 

5.7. References ........................................................................................................ 135 

Chapter 6. Forecasting scenarios of global multiclass land-use and land-cover 
change using deep learning and spherical geographic automata model .... 146 

6.1. Abstract ............................................................................................................. 146 

6.2. Introduction ........................................................................................................ 146 

6.3. Materials and Methods ...................................................................................... 149 

6.3.1. Model Overview ................................................................................... 149 
Datasets............................................................................................................. 150 
Spherical spatial framework component ........................................................... 151 
DL component ................................................................................................... 152 
LULC conversion weights component ............................................................... 152 
Urban rank size component............................................................................... 153 
Spherical geographic automata component ...................................................... 154 
Land demand component .................................................................................. 155 

6.3.2. Multiclass DL-SGA Model Evaluation and Implementation ................... 157 

6.4. Simulation Results ............................................................................................. 160 

6.4.1. Global Trends of Land-use/Land-cover Change ................................... 160 

6.4.2. Observed LULC Changes at the Continental and Regional Levels ....... 162 

6.4.3. Trends in LULC Change at the National Level ..................................... 164 

6.5. Discussions ....................................................................................................... 168 

6.6. Conclusions ....................................................................................................... 170 

6.7. References ........................................................................................................ 171 

Chapter 7. Conclusions ....................................................................................... 180 

7.1. General Conclusions ......................................................................................... 180 

7.2. Summary of Findings ......................................................................................... 180 

7.3. Addressing Limitations of the Current Work and Linking with Future Research 
Directions .......................................................................................................... 184 

7.4. Research Contributions ..................................................................................... 186 

7.5. References ........................................................................................................ 189 
 



ix 

List of Tables 

Table 2.1. Common spherical grids showing key descriptions and properties. ........ 26 

Table 2.2. Description of steps for operationalizing SGA model for simulating 
complex dynamic spatial system. ........................................................... 37 

Table 3.1. Simulated urban land-use growth (in thousand km2) by continent between 
2015 and 2095 under scenario 1 zero-migration, and scenario 2 constant-
fertility. ................................................................................................... 69 

Table 4.1. Identified criteria and their respective suitability functions in vertex 
notation with justifications. ...................................................................... 89 

Table 4.2. Obtained sensitivity values for all criteria in some selected urban regions.
 ............................................................................................................... 92 

Table 4.3. Criterion weights based on Cohen’s d for the four urban region clusters.
 ............................................................................................................... 94 

Table 5.1. Selected criteria of deforestation with their respective susceptibility 
functions with rationale and criteria weights. ........................................ 120 

Table 5.2. Simulated forest cover extent (in million km2) and percentage of 
cumulative forest lost (%) by continent between 2020 and 2100 under the 
Business as Usual (BAU), Accelerated Deforestation (AD), and 
Sustainable Deforestation (SD) scenarios. ........................................... 130 

Table 5.3. Proportions of forest cover in percentages (%) located in protected areas 
by 2100 at the continental level under the Business as Usual (BAU), 
Accelerated Deforestation (AD), and Sustainable Deforestation (SD) 
scenarios and compared to the base year 2020. .................................. 132 

Table 6.1. Description of land use characteristics and assumptions for the five SSP 
scenarios. Source; O’Neill et al., 2017. ................................................. 156 

Table 6.2. Obtained model evaluation values for FoM, PA, and UA metrics for the 
calibration and validation phases. ........................................................ 159 

 



x 

List of Figures 

Figure 1.1. Five base polyhedrons for implementing DGGS: (a) cube; (b) 
dodecahedron; (c) icosahedron; (d) octahedron; (e) tetrahedron. ............. 8 

Figure 1.2. Geometric properties and neighbourhood relationships for triangle, 
square, and hexagon. .............................................................................. 9 

Figure 1.3. Hexagonal hierarchical partitioning methods based on aperture 3, 
aperture 4, and aperture 7. ..................................................................... 10 

Figure 2.1. Regular polyhedrons (top) and their corresponding spherical 
representations (bottom) for: a) Tetrahedron, b) Cube, c) Octahedron, d) 
Dodecahedron, and e) Icosahedron. ...................................................... 28 

Figure 2.2. Grid tessellations composed of a) triangle, b) square and c) hexagonal 
cells. ....................................................................................................... 29 

Figure 2.3. Hierarchical partition of the spherical icosahedron using different 
hexagonal refinement methods: a) aperture 3, b) aperture 4, and c) 
aperture 7. .............................................................................................. 31 

Figure 2.4. Comparison of raster square cells in geographic coordinate and DGGS 
ISEA 4 hexagonal cells at latitude a) 0° and b) 75° N. ............................ 33 

Figure 2.5. Global map of area distortions (in km2) for a) Mollweide equal-area 
projection and b) ISEA DGGS. ............................................................... 34 

Figure 2.6. Simulation results of SGAGOL model showing the evolution of cell states 
over time on a spherical surface from initial state (t0), after five (t5), and 

ten (t10) iterations. ................................................................................. 39 

Figure 2.7. Simulated urban extent between 2020 and 2080 with 10-year temporal 
increments for North America under the Stalled Development scenario. 42 

Figure 2.8. Comparison of a) initial year 2020 urban extent with obtained simulation 
results of urban growth in year 2080 under b) Stalled Development 
scenario, and c) Sustainable Development scenario for North America 
(top), Asia (middle), and Africa (bottom). ................................................ 43 

Figure 2.9. Comparison of a) initial year 2020 forest cover with obtained simulation 
results of deforestation in year b) 2060, c) 2100 and d) the cumulative 
simulated forest loss for North America (top), South America (middle), 
and Africa (bottom). ................................................................................ 45 

Figure 3.1. Global land-use data for year 2015 resampled into DGGS framework 
where each hexagonal cells covers 4.5 km2 surface area. ..................... 61 

Figure 3.2. Conceptual framework of the spherical CA model for long-term simulation 
of global urbanization process. ............................................................... 62 

Figure 3.3. Generated simulation results showing urban growth at various scales for 
year 2095 in a) North America, b) Asia, and c) Africa, under zero-
migration and constant-fertility scenarios................................................ 66 

Figure 3.4. Obtained values in (%) for continental (a) contribution to overall global 
urban expansion, and (b) rates of urban expansion between 2015 and 
2095 under both scenarios. .................................................................... 68 



xi 

Figure 3.5. Values for 20 world sub-regions (a) total simulated urban area between 
2015 and 2095, and (b) rate of expansion at the sub-regional level under 
both scenarios. ....................................................................................... 70 

Figure 3.6. Obtained simulation values for countries with the largest urban size in 
each sub-region for the year 2095 compared with the base year 2015. .. 71 

Figure 3.7. Simulated urban extent for year 2095 under zero-migration and constant-
fertility scenarios in comparison with initial urban extent at year 2015 in 
selected metropolitan regions a) Chicago, USA, b) Beijing, China c) New 
Delhi, India, and d) Lagos/Ibadan ........................................................... 73 

Figure 4.1. Workflow of the MCE-S-CA modelling framework for simulation of the 
long-term urban growth dynamics at the global scale. ............................ 87 

Figure 4.2. Criterion maps of North America only and based on suitability functions 
for each criterion: a) GDP, b) Population density, c) Slope, d) Elevation, 
e) Proximity to coast & inland water bodies, f) Proximity to commercial 
areas, g) Proximity to exiting urban areas, and h) Proximity to major 
roads. ..................................................................................................... 90 

Figure 4.3. Results of urban region classification into four clusters based on their 
characteristics. ....................................................................................... 93 

Figure 4.4. Resulting MCE suitability maps at global level for a) South America, b) 
North America, c) Asia, and d) Europe and Africa. ................................. 96 

Figure 4.5. Obtained simulation results of global urban expansion for year 2095 in a) 
South America, b) North America, c) Asia, d) Africa, e) Europe, and f) 
Australia. ................................................................................................ 99 

Figure 4.6. Comparison between 2015 urban land extent and obtained simulation 
results for 2095 for a) Cluster 1, Shanghai, China b), Cluster 2, Houston, 
USA c) Cluster 3, Brisbane Australia, and d) Cluster 4 Johannesburg, 
South Africa. ........................................................................................ 101 

Figure 5.1. Flowchart of the spherical deforestation model for simulating forest land-
cover change at the global level. .......................................................... 114 

Figure 5.2. Global deforestation susceptibility maps for, a) Africa, b) Asia, c) North 
America, and d) South America. ........................................................... 123 

Figure 5.3. Simulated deforestation for North America from 2020 to 2100 for each 10-
year iteration under the Accelerated Deforestation (AD) scenario. ....... 127 

Figure 5.4. Comparison of initial year 2020 forest cover with obtained simulation 
results of deforestation under Business as Usual (BAU), Accelerated 
Deforestation (AD), and Sustainable Deforestation (SD) scenarios for a) 
Africa, b) Europe, and c) South America .............................................. 128 

Figure 5.5. Cumulative loss of forest land-cover between 2020 and 2100 based on 
the obtained simulation results under Business as Usual (BAU), 
Accelerated Deforestation (AD), and Sustainable Deforestation (SD) 
scenarios for a) Africa, b) Asia, c) Europe, and d) South America. ....... 129 

Figure 5.6. Obtained simulation results of deforestation under Business as Usual 
(BAU), Accelerated Deforestation (AD), and Sustainable Deforestation 
(SD) scenarios compared to the base year for a) Amazon Forest, b) 
Congo basin, and c) Eastern USA. ....................................................... 131 



xii 

Figure 6.1. Framework of the multiclass DL-based spherical geographic automata 
modelling approach for simulating LULC change processes at the global 
level. .................................................................................................... 150 

Figure 6.2. Obtained ROC curves and AUC values for cropland, forest, and urban 
LULC types. ......................................................................................... 159 

Figure 6.3. Simulated land use change (million km2) for urban, cropland, and forest 
LULC types across the five SSP scenarios. ......................................... 161 

Figure 6.4. Rates of urban expansion (%) between 2020 and 2100 across different 
countries and countries under the SSP2 (Middle of the road) scenario. 163 

Figure 6.5. Net change in cropland, forest, and urban extent under the five scenarios 
across different countries. .................................................................... 165 

Figure 6.6. Obtained simulation results of LULC change for year 2100 under the five 
SSP scenarios compared to the base year 2020 for a) Eastern USA, b) 
Yangtze Delta, China, c) Western Europe, and d) Rio de Janeiro-Sao 
Paulo Megalopolis; Brazil. .................................................................... 166 

 

 

 

 

 



1 

Chapter 1.  
 
Introduction 

Changes to the Earth's land surface through anthropogenic activities have 

significant implications for the structure and functioning of the Earth’s systems as well as 

several consequences for human well-being (Turner et al., 2007). Although the Earth’s 

land surface has been modified through human and natural environment interactions for 

centuries, the rate and extent of change in recent decades has intensified leading to 

unprecedented changes in ecosystems and environmental processes at the local, 

regional, and global scales (Ellis, 2011). Indeed, the cumulative effects of human 

activities on the Earth’s systems have led some scientists and scholars to propose and 

define a new geological epoch, termed, the “Anthropocene” (Crutzen, 2002; Zalasiewicz 

et al., 2011). Over the last six decades, almost a third (32%) of the global land surface 

has been affected by anthropogenic activities such as urbanization, deforestation, 

agriculture intensification, and desertification (Winkler et al., 2021). The rate of change in 

the Earth’s surface is expected to continue in the coming decades and land-based 

activities are likely to expand and further intensify in response to increasing demands for 

food, shelter, energy, raw materials, etc. (Hurtt et al., 2020). 

The modification of the terrestrial Earth’s surface through anthropogenic activities 

is termed land-use/land-cover (LULC) change (Lambin et al., 2006). LULC changes may 

result from either the conversion of one land-cover type to another or modification of its 

structure or function. Transformation of the Earth’s surface affects soil properties, water, 

biota, and the atmosphere, which can ultimately result in reduced land productivity, 

biodiversity loss, altered biogeochemical cycles, and climate variability and change 

(Ellis, 2021; Foley et al., 2005). Although the term land-use and land-cover are often 

used interchangeably in the Land use science (LUS) literature, they mean different 

things. Land-cover is defined as the physical, or biophysical characteristics of the Earth’s 

surface. The term is often used to describe vegetation and man-made features such as 

impervious surfaces, agricultural areas, forest, wetlands, water bodies, etc. Land-use is 

related to the functional or socio-economic purpose associated with the land. Land-use 

is characterized by the arrangements, activities and inputs people undertake on a certain 

land-cover type to produce, change, or maintain it (Jansen & Gregorio, 2002). This 
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includes uses such as residential, agriculture, forestry, recreational, among others. 

Land-use and land-cover are inherently coupled because changes in land-use practices 

can change land-cover and land cover determines specific land uses (Sleeter et al., 

2018). 

Research and studies on LULC change and its modelling has increased over the 

last decades due to the heightened awareness of the impact of land systems on 

environmental change and sustainability (Rounsevell et al., 2012). Land-use science has 

thus emerged as a primary component of global environmental change and sustainability 

research, giving rise to advanced Earth observation data collection, integrated research, 

and improved modelling approaches (Chang et al., 2018; Li et al., 2023; Turner et al., 

2007). LULC change modelling entails methodological approaches used for examining 

the spatial and temporal dynamics of LULC change in order to better understand the 

functioning of the land system and to support land-use planning and policy (Verburg et 

al., 2004). LULC change models are analytical and decision-making tools used for 

analyzing, forecasting, and simulating past, present, and possible future LULC change 

conditions at different spatial scales (National Research Council, 2014). Models are 

useful for understanding the complex relationships between the socio-economic and 

biophysical drivers that influence the rate and spatial pattern of LULC change as well as 

assessing the consequences of changes in land-use and land-cover. LULC change 

models also enable the exploration of different potential future land system dynamics 

and alternative trajectories via “what-if” scenarios, assisting stakeholders anticipate and 

plan for changes in LULC patterns due to demographic shifts, technological 

advancements, institutional arrangements, and environmental conditions. LULC change 

models can likewise be applied by stakeholders as decision support systems to make 

informed policy and management decisions related to different environmental systems 

(Ellis, 2011). Given the implications of LULC change for climate and environmental 

change at the local and global scales, decisions and policies related to land systems can 

serve as strategies for mitigating and adapting to these changes and to reaching a more 

sustainable world (National Research Council, 2014). These models are particularly 

useful for exploring conditions that presently do not exist and thus cannot be observed 

by conducting experiments that test our understanding of key processes (Filatova et al., 

2016). 
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1.1. Modelling Global Land-use/Land-cover Change 

Global land-use change models have gained significance over the last decades 

for a variety of reasons. Addressing the numerous environmental and sustainability 

challenges requires a global perspective and approach. However, implementing such 

models require higher computational power to process larger spatial extent with large 

volumes of data. Earth and other environmental systems function at the global scale and 

land systems are increasingly impacted by drivers operating at these scales (Brenner & 

Schmid, 2012; Verburg et al., 2015). The emergence of global environmental and 

climate change issues over the last decades has also necessitated the need for 

decision-making and policy actions across multiple geographic scales and ecological 

dimensions (Foley et al., 2005). With regards to this, global LULC change models 

provide a useful toolkit for simulating scenarios, performing environmental assessments, 

and providing spatial information to assist the science, policy, and decision-support 

communities (Ren et al., 2019; Stehfest et al., 2019). 

The key drivers of LULC change are related to demographic changes due to 

population increase and migration, but also include forces of globalization, international 

politics, and development of technology operate at large spatial scales of influence 

(Meyfroidt et al., 2018). Global and local forces operate concurrently and interactively to 

shape LULC change across the globe (Taylor & Rising, 2021). Substantial feedback also 

exists between land systems at different scales. Addressing the feedback between land 

and other biophysical and socioeconomic systems and the forces that influence LULC 

change requires a globally consistent framework. 

Land-use/land-cover change has also become a central theme in several global 

policy organizations and intergovernmental bodies. Global LULC change models are 

valuable tools for scenario building and provide insightful information for the assessment 

of the processes and impacts of global environmental change. This is typified by the 

special reports of the Intergovernmental Panel on Climate Change (IPCC) on Climate 

Change and Land Use (IPCC, 2019) as well as the Land Degradation and Restoration 

Thematic Assessment report from the Intergovernmental Science‒Policy Platform on 

Biodiversity and Ecosystem Services (IPBES, 2019). Also, land systems play an 

important role in several of the United Nations (UN) sustainable development goals 

(SDGs) such as No poverty (goal 1), Affordable and clean energy (goal 7), Sustainable 
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cities and communities (goal 11), Climate action (goal 13), and Life on land (goal 15) are 

directly and indirectly related to land systems (Munroe & Müller, 2020; Stehfest et al., 

2019). 

Earth systems models (ESM) and integrated assessment models (IAM) often 

require datasets on LULC change as key input to accurately simulate Earth system 

dynamics and examine the combined effects of human activities on the climate system. 

For instance, the Land Use Model Intercomparison Project (LUMIP) was recently 

initiated as part of the Coupled Model Intercomparison Project phase 6 (CMIP6) (Eyring 

et al., 2016). LUMIP aims to advance understanding of the impacts of LULC change on 

climate through the development of historical and future LULC datasets (Lawrence et al., 

2016). Land use change datasets have also been applied to analyze land-use and land-

cover feedback to the climate system and sources and sinks of carbon. 

1.2. Overview of Land-use/Land-cover Change Modelling 
Approaches 

The process of LULC change is generally influenced by interactions between 

biophysical factors, human factors and institutional policies which operate across 

different space and time (Veldkamp et al., 2001). Land systems consist of various 

interrelated and interacting components encompassing biological, ecological, social, and 

economic elements. As such, land systems are conceptualized as complex systems 

under the framework of complex systems theory (Parker et al., 2003). Land systems are 

often characterized by multiple non-linear relationships, social and biophysical 

heterogeneity, feedback, interactions at the local level, and natural and human 

adaptation (Liu et al., 2007). These characteristics limit the capability of traditional 

statistical and system dynamic modelling approaches to effectively examine complex 

system outcomes in land systems (Rindfuss et al., 2008). The complexity of land 

systems results in variations in LULC change outcomes based on geographic location, 

ecosystem types, and socio-economic structures. 

Geographic automata or geosimulation models developed under the complexity 

science and GISc methodological frameworks have thus become common approaches 

for modelling LULC change processes (Torrens & Benenson, 2005). Geosimulation 

models are based on cellular automata (CA) and agent-based modelling (ABM) methods 
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that adopt a bottom-up approach which allows them to capture non-linear interactions 

between system elements at the local level while generating emergent spatial patterns at 

much larger scales (Batty & Xie, 1994; White & Engelen, 2000). Geographic automata 

models explicitly use geographic data and are flexible with efficient framework that 

enable the construction of detailed, complex, and dynamic models which are well suited 

for handling geographic processes (Torrens & Benenson, 2005). Geographic automata 

are characterized by their ability to also incorporate the spatial and temporal 

components of complex systems. These modelling approaches are coupled with 

geographic information systems (GIS) to develop spatially explicit LULC change models 

and have been utilized for decades to simulate several real-world complex spatial 

systems including urban development (Falah et al., 2020; Feng & Tong, 2020), LULC 

change (Feng & Qi, 2018; Jahanishakib et al., 2018; Lu et al., 2019), deforestation 

(Hasan et al., 2020; Ménard & Marceau, 2007), and agriculture expansion (Hou et al., 

2019; Navarro Cerrillo et al., 2020) mainly at the local and regional levels. 

To address the need for global LULC change models and applications, a number 

of spatially explicit modelling methods and approaches have been adopted to simulate 

LULC change at the global level. These include cellular automata (CA) (Li et al., 2016), 

SLEUTH (Zhou et al., 2019), Future Land Use Simulation (FLUS) (G. Chen et al., 2020), 

and DEMETER (M. Chen et al., 2020). Hybrid modelling approaches which combine 

geographic automata with other techniques such as statistical and machine learning 

(ML) have also been implemented (Cao et al., 2021; Li et al., 2021). 

Advancements in artificial intelligence (AI) particularly machine learning (ML) and 

deep learning (DL) techniques, have provided a new avenue for enhancing the accuracy 

and complexity of LULC change models. As a result, DL techniques have been 

integrated with larger and historical datasets to enhance simulation models, albeit with a 

focus primarily on applications at local scales and for smaller spatial extents (Xiao et al., 

2022). Deep learning techniques, including convolutional neural networks (CNN), long 

short-term memory (LSTM), recurrent neural networks (RNN), and deep neural networks 

(DNN) have demonstrated proficiency in capturing spatial and temporal dependencies 

within geospatial data (Xing et al., 2020). This capability makes them well-suited for 

extracting meaningful features from diverse multi-source and historical spatial datasets. 

These techniques provide the capacity to automatically learn complex patterns and 

relationships, which can be used to inform the transition rules governing geosimulation 
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models (Wang et al., 2022). Typically, the DL component of the LULC change model is 

implemented to acquire transition probabilities for the rules of the geosimulation model. 

Given the abilities of ML and DL techniques to learn from data and identify patterns, their 

integration with geosimulation methods can lead to the development of data-driven 

complex spatial system models that better represent LULC change dynamics (Ye et al., 

2019). 

1.3. Challenges of Global Land-use/Land-cover Change 
Modelling 

Modelling LULC change at the global level presents several challenges. While 

some of these issues are general to all LULC change models irrespective of scale, 

others are peculiar to global LUL change modelling. LULC change processes and the 

drivers that influence them are spatially heterogeneous across the globe. When 

modelling at the global level, it is imperative to represent the variability in driving factors 

and their spatial characteristics which can be challenging from a methodological 

perspective (Meiyappan et al., 2014). Also, the different factors that influence LULC 

change operate at different spatial scales and global-scale LULC change modelling 

approaches must appropriately incorporate these multi-scale dynamics and 

representations (Verburg et al., 2019). Further, there is lack of consistent spatial 

datasets with global coverage to represent LULC and the different spatial drivers of 

LULC change at finer resolution (Jokar Arsanjani et al., 2016; Li et al., 2022). 

A major challenge of building LULC change models to operate on a global scale 

is the lack of appropriate spatial reference systems that span the entirety of the Earth 

(Lin et al., 2018). The problem of representing the three-dimensional (3D) Earth’s 

surface on a flat plane has been a persistent challenge in the field of geographic 

information science (GIScience) (Goodchild, 2018). Despite the fact that the Earth is 

spherical, the software and technologies within GIScience continue to be based on two-

dimensional planar maps, exemplified by the use of Cartesian coordinates (Chrisman, 

2017). Traditional geospatial models which employ two-dimensional (2D) representation 

of the Earth produce varying forms of spatial distortions. Although these distortions are 

negligible at the local scale, they can result in spatial and computational inaccuracies in 

large scale applications (Hall et al., 2020). This is primarily due to the transformation of 

the curved Earth’s surface onto a planar medium, rendering traditional models 
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unsuitable for spatial analysis and simulation applications with global coverage (Li et al., 

2020). 

The use of geographic coordinate system (GCS) for global spatial analysis and 

representation of datasets results in unequal grid cell area due to convergence of the 

meridians and coordinate singularity (Kelly & Šavrič, 2021). Consequently, square cells 

at the equator gradually diminish in size as they progress towards the poles, eventually 

transforming into triangles due to the Earth’s curvature. In light of this issue, global LULC 

change models and applications commonly specify the spatial resolution using the cell 

dimensions at the equator (Chen et al., 2022; Li et al., 2021; Zhou et al., 2019). Although 

certain cartographic equal-area projections provide a better spatial representation of 

geographic features at the global level, they still exhibit area and shape distortions 

across the globe (de Sousa et al., 2019). Moreover, many of these equal-area 

projections are region-specific and often yield substantial areal distortions in higher 

latitude regions, and thus unsuitable for global applications (Nowak & Nowak Da Costa, 

2022). 

Global geosimulation modelling approaches are predominantly based on 

traditional planar spatial models, use of raster GIS data formats, thus are deemed 

inappropriate for simulations at the global level. This problem has been recognized in the 

land use science literature, with recommendations to adopt spherical geospatial models 

for implementing global LULC models (Cao et al., 2019; Li et al., 2017).  

1.4. Spherical Geodesic Grids 

Spherical geodesic grids, known in GIScience as discrete global grid systems 

(DGGS) are spatial reference systems that utilize a spherical surface to account for the 

Earth’s curvature (Goodchild, 2018). The spherical grid framework is composed of 

equal-area cells which are used to partition the Earth’s surface and are structured at 

multiple resolutions to create a spatial hierarchy of cells (Béjar et al., 2023). DGGS 

provides a discrete approach to spatial referencing, utilizing cells as the primary spatial 

units to partition the Earth's surface. The resolution of the DGGS is pre-determined and 

is defined by the subdivision of cells (Thompson et al., 2022). A DGGS is comprised of 

four essential components: base polyhedron, cell type, method for hierarchical 

partitioning or refinement and cell indexing (Barnes, 2020). 
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1.4.1. Base Polyhedron 

Due to the Earth’s approximately spherical shape and curvature, projecting its 

surface onto a planar space inevitably introduces distortions. In the context of a grid-

based spatial referencing system for the Earth, achieving equal-area cell coverage is a 

desirable property. To maintain as much as possible the area and shape properties of 

geographic features on a global scale, a spherical approximation of the Earth can be 

modelled using a Platonic solid (Bondaruk et al., 2020). There are only five Platonic 

solids or polyhedrons that are defined on three- dimensional geometric solids 

constructed with a single type of regular cell (Lei et al., 2020). Polyhedrons with smaller 

faces reduce the distortion introduced when transforming between a face of the Platonic 

solid and the corresponding spherical surface (White et al., 1998). The five polyhedrons 

used for implementing DGGS are tetrahedrons, cubes, octahedrons, dodecahedrons, 

and icosahedrons and are presented in Figure 1.1. 

 

Figure 1.1. Five base polyhedrons for implementing DGGS: (a) cube; (b) 
dodecahedron; (c) icosahedron; (d) octahedron; (e) tetrahedron. 

1.4.2. Cell Types  

The fundamental component of any DGGS is its cell structure that are used to 

cover the spherical surface of the Earth (Mahdavi-Amiri et al., 2015). Typically, three cell 

topologies are employed, squares, triangles, and hexagons (Figure 1.2). Each of these 

cell types have their own benefits and disadvantages and the choice of an appropriate 

type depends on the application. Essentially, squares are familiar, triangles are efficient 

for processing, and hexagons are the best fit.  

Squares are very desirable due to their extensive applicability in remote sensing 

(RS) and raster GIS as well as compatibility with current hardware devices and software 

(Mahdavi-Amiri et al., 2015). However, their topology is not directly compatible with 

many Platonic solids. The neighbourhood relationship between square cells is also 
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complex as a square has four edge neighbouring cells and eight vertex neighbouring 

cells. Triangular shapes are a natural fit for the hierarchical partitioning of the Platonic 

solids (Wang et al., 2020). Triangles can also be efficiently rendered and are supported 

by numerous built-in graphic lattice functions (Peterson, 2017). However, the adjacency 

relationship for triangles is also complicated. A single triangle has 12 neighbours, with 3 

of them having an edge neighbour and 9 of them containing a vertex connection (Sahr et 

al., 2003). Triangular tessellations are also composed of cells with different orientations.  

  

Figure 1.2. Geometric properties and neighbourhood relationships for triangle, 
square, and hexagon. 

Hexagonal cells have garnered significant attention in the scientific literature due 

to their numerous advantages. Among the three regular cells, hexagons are the most 

compact as they quantize the sphere with the smallest average error (Zhou et al., 2022). 

Hexagonal lattices also exhibit uniform and unambiguous geometric connectivity, where 

each cell has six neighbours with shared edges, and their centers are equidistant from 

one another; properties desirable for spatial analysis in GIS (Sahr et al., 2003). 

Furthermore, research indicate that hexagons have the highest sampling efficiency and 

angular resolution (Peterson, 2017). In addition to these advantages, hexagons are 

more effective for cartographic data visualization than square cells (Mechenich & 

Žliobaitė, 2023). Given the advantages and characteristics of hexagons as regular 

polygons, they are typically preferred for tessellating the spherical surface and are 

subsequently utilized throughout this dissertation research. In terms of disadvantages, 

hexagons are non-congruent and larger hexagonal cells cannot be evenly decomposed 

into smaller cells completely contained within the larger one (Robertson et al., 2020). 
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1.4.3. Refinement/Aperture 

The multiresolution characteristic of a DGGS is achieved through refinement of 

cells from a coarse resolution to a finer resolution (Wang et al., 2020). Refinement 

methods are techniques that produce a set of fine resolution cells from a set of coarse 

cells in a uniform and systematic manner by reducing cell sizes (Ulmer et al., 2020). The 

ratio of the areas of cells at two successive resolutions is termed aperture. In the case of 

square cells, commonly employed refinements include one-to-four and one-to-nine, 

corresponding to apertures of 4 and 9, respectively. For triangle cells, one-to-four 

refinement is the most suitable. Hexagonal grids commonly utilize one-to-three, one-to-

four and one-to-seven refinements, denoted as aperture 3, 4 and 7 respectively (Sahr, 

2013). These three hexagonal refinement types are presented in Figure 1.3. 

 

Figure 1.3. Hexagonal hierarchical partitioning methods based on aperture 3, 
aperture 4, and aperture 7. 

1.4.4. Cell Indexing 

Within a DGGS, each cell is assigned a unique index or identifier to represent its 

location, and indexing of cells are usually performed through arithmetic techniques 

(Sahr, 2008). The cell's index may also denote a data structure or database utilized for 

retrieving associated data. The location index or code serve as an address for identifying 

and querying cells within the DGGS (Purss et al., 2019). Generally, there are three types 

of indexing techniques: hierarchy-based indexing, axis-based indexing (coordinate-

based indexing) and space filling curve indexing (Alderson et al., 2020). Hierarchical 

indexing utilizes the hierarchical relationships between cells through the application of 

refinement starting from the base cell. Each cell is assigned an index at the initial 
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resolution, with subsequent indices of its children incorporating the parent cell's index as 

a prefix (Zhou et al., 2020). This indexing technique facilitates efficient spatial indexing 

and enables scalable representations of geographic features at different levels of detail. 

Axis or coordinate based indexing in DGGS implementation is similar to 

Cartesian coordinate and the location of cells are specified as an offset along a set of 

axes (Sahr, 2019). This technique is valuable for its simplicity and ease of 

implementation. Coordinate based indexing is particularly useful when a uniform 

distribution of cells is desired, and it can be applied to both regular and irregular grids 

(Vince, 2006). For space-filling curves, a curve is passed over the domain of the cells, 

and the cells are indexed in the order that the curve intersects them (Alderson et al., 

2020). Often, the curve can be refined to index more fine resolutions of the cells. The 

advantage of these method is that the curve can be defined to give neighbouring cells 

similar indices, allowing for efficient neighbourhood queries (Hall et al., 2020).  

Despite the theoretical advantages of spherical geodesic grids for conducting 

spatial analysis and simulations at the global scale, their use and integration with other 

GIScience approaches and techniques remains limited (Hojati et al., 2022). In the 

context of complex systems modelling, spherical geographic grids and geographic 

automata can be integrated to create a novel theoretical framework that capitalizes on 

the capabilities of geographic automata modelling approaches in capturing the local 

interactions and spatial dynamics inherent in complex spatial systems and geodesic 

grids for accurate representation of spherical surfaces. The resulting model can provide 

a coherent modelling framework for simulating complex spatial processes at the global 

level. Essentially, this approach circumvents problems associated with spatial distortions 

emanating from the use of traditional spatial models. The discrete spatial tessellations of 

spherical geodesic grids and data integration characteristics provide a robust foundation 

for implementing geographic automata modelling approaches including cellular automata 

and agent-based models. Additionally, the multi-resolution grid structure of spherical 

geodesic grids offers a consistent framework for representing spatial data and complex 

spatial systems at different scales within the same modelling environment. Such an 

integrative modelling approach facilitates the simulation, analysis, and visualization of 

complex spatial systems on a spherical surface. 
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1.5. Research Questions and Objectives 

The primary goal of this dissertation research is to integrate and leverage the 

potentials of geographic automata and spherical geodesic grids to effectively model, at 

the global scale, LULC change as a complex dynamic spatial system. This integration 

would enable the representation, analysis, and visualization of complex dynamic 

systems at the global level. The dissertation research aims to provide a comprehensive 

theoretical framework and practical implementations that aids in improved modeling of 

the dynamics of different global LULC change processes and analysis of the emerging 

spatial patterns on the spherical Erath’s surface. Specifically, this dissertation 

endeavours to answer the following research questions: 

1. What is the theoretical framework that enables geosimulation models to 
operate on the spherical Earth’s surface? 

2. How can spherical geosimulation models be implemented with real world 
spatial data to represent global LULC change? 

3. How can spherical geosimulation models be improved to represent different 
global LULC change processes? 

To address the aforementioned research questions, this dissertation research 

develops and implements a suite of novel geosimulation modelling approaches by 

integrating the framework of geographic automata and spherical geodesic grid. This 

novel approach is specifically designed for the purpose of characterizing and simulating 

a variety of complex spatial systems at the global level. The main objectives of the 

dissertation can be summarized as follows: 

1. Develop a novel spherical geographic automata (SGA) theoretical modelling 
framework to represent complex spatial systems at the global scale; 

2. Implement the SGA theoretical framework to model urbanization process at 
the global level; 

3. Improve the SGA modelling approach to incorporate multicriteria evaluation 
(MCE) method, and apply to two case studies of global urbanization and 
deforestation under different scenarios; 

4. Integrate deep learning (DL) method into the SGA modelling approach for 
simulating multiple LULC change processes and considering the shared 
socioeconomic pathway (SSP) scenarios. 
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1.6. Dissertation Overview 

The dissertation is organized into seven chapters, with the first five chapters 

following the Introduction aimed at addressing the objectives of this dissertation. 

Specifically, chapter 2 lays the groundwork for the dissertation by providing a 

comprehensive overview of spherical geodesic grids and establishing the conceptual 

foundation for their development. A comparison of data representation in spherical 

geodesic grids and traditional spatial reference systems is also presented. Furthermore, 

this chapter introduces and conceptualizes the novel modelling approach, spherical 

geographic automata (SGA), which is developed for simulating diverse complex spatial 

systems at the global scale. The model is applied as a proof-of-concept to characterize 

different complex systems including population change dynamics using the Game of Life 

(GoL) theoretical framework, global urbanization to represent expansion process and 

deforestation to exemplify a shrinking phenomenon. 

Chapter 3 presents a model case study that demonstrates the implementation of 

the SGA model for a detailed characterization of a real-world complex spatial system, 

represented by global urbanization process. The SGA model is utilized to simulate urban 

expansion at the global level and for 235 different countries. Transition rules are 

implemented to characterize urban growth across different regions in order to account 

for the spatial heterogeneity of the spatial process. Moreover, various scenarios are 

designed to represent different possible future global urban expansion trajectories. 

In the subsequent two chapters, the dissertation focuses on the integration of the 

multi-criteria evaluation (MCE) technique as a spatial decision support system to 

facilitate a systematic approach to decision-making and incorporate the complexity and 

multiplicity inherent in land-use planning. The enhanced SGA model is implemented to 

simulate global urbanization and deforestation in different case studies. The proposed 

MCE-SGA modelling approach is implemented with several spatial drivers and designs 

diverse “what-if” scenarios to characterize change processes under different possible 

future conditions. Given the global scope of the model applications and limited resources 

in this research, soliciting stakeholder opinions to determine MCE parameters was not 

feasible. Consequently, a statistical technique was employed to derive these 

parameters. In Chapter 4, the MCE-SGA model is developed to simulate urbanization 

process at the global level at a high spatial resolution. Additionally, a clustering algorithm 
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is integrated into the modelling framework to classify spatial regions with similar 

characteristics, thereby enhancing the model's ability to capture and simulate urban 

land-use change. Chapter 5 of the dissertation presents the MCE-SGA model to 

represent and simulate deforestation under three scenarios. The implemented scenarios 

demonstrate the usefulness of the proposed model in characterizing LULC change 

under different possible conservation policies at the global level. 

Considering the previous versions and implementations of the proposed 

modelling approaches only simulate one LULC type at a time, there is the need to further 

extend the model to be capable of simulating multiple LULC change types at the global 

level. Chapter 6 thus focuses on improving different components of the model to better 

represent the dynamics of LULC change at the global level. The SGA modelling 

framework is extended to simulate multiple LULC change as well as the incorporation of 

a deep learning (DL) component to leverage the capabilities of DL techniques in learning 

patterns from the data and assisting in deriving transition rules for simulating LULC 

change. The proposed model is implemented to simulate multiple LULC change 

processes and considering the five shared socioeconomic pathways (SSP) scenarios at 

the global level between 2020 and 2100. 

All models in this research study were coded using the Python programming 

language (Van Rossum & Drake, 2009), and utilizing several open-sourced libraries 

including Geopandas, Shapely, Geoplot, Matplotlib, Uber H3, DGGRID, and PyTorch. 

The large-scale global models were executed on a Digital Research Alliance of Canada 

computing facility for increased computational power. Maps of simulation results were 

generated in Python as well as ArcGIS software to facilitate visualization. 

This dissertation concludes with Chapter 7 by providing overall summary of 

obtained results, then outlines the general limitations and advantages of the research, 

discusses possible future research avenues, and insight of general contributions of the 

thesis findings to the relevant scientific fields.  
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Chapter 2.  
 
Enabling Geosimulations for Global Scale: Spherical 
Geographic Automata1 

2.1. Abstract 

Several complex dynamic spatial systems are operating on the global scale. Their 

representation with existing geosimulation models is limited to planar level and do not 

consider the curvature of the Earth’s surface. Thus, the objective of this study is to 

propose and develop a spherical geographic automata (SGA) modelling approach to 

represent and simulate dynamic spatial processes at the global level. The proposed 

SGA model is implemented for three case studies including simulations of (1) Game of 

Life as population dynamics, (2) urban land-use growth, and (3) deforestation, all 

operating on the spherical Earth’s surface. Simulation results indicate that the proposed 

SGA modelling approach can represent spatial processes such as expansion and 

shrinkage dynamics on the Earth’s surface. The proposed approach has a potential to 

be adopted to represent different complex systems such as ecological, epidemiological, 

socio-economic, and Earth systems processes to support environmental management 

and policy making at global level. 

2.2. Introduction 

In recent decades, geospatial technological development and advancement are 

characterized by the collection of large volumes of multi-source and multi-temporal Earth 

observation data with global extent that have led to the new era of Big Earth Data (BED) 

(Guo et al., 2020). To overcome challenges associated with BED such as storage, 

integration, quality, multi-scale representation, processing, and visualization, new 

methodologies for spatio-temporal data analysis and modelling are needed (Yao et al., 

2020). The efficient analysis and management of Big Earth Data requires a consistent 

spatial data framework that can integrate datasets from different sources and formats 

 

1 A version of this chapter is published: Addae, B., & Dragićević, S. (2023). Enabling 
geosimulations for global scale: Spherical geographic automata. Transactions in GIS, 27(3), 821–
840. 
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and supports geospatial data at multiple resolutions at the global level (Alderson et al., 

2020; Baumann, 2021). In addition to these challenges, traditional Geographic 

Information Systems (GIS) data models such as raster and vector data formats are 

primarily focused on small to medium scale applications and are based on two-

dimensional (2D) representation of the real world. Transforming the curved Earth’s 

surface onto a plane introduces various forms of spatial distortions which can cause 

inaccuracies in results obtained from spatial analysis and modelling (Chrisman, 2017). 

When addressing large-scale study areas with global datasets, distortions caused by the 

Earth’s curvature cannot be neglected (Kelly & Šavrič, 2021; Mai et al., 2022). Thus, 

current spatial data models are seen as unsuitable for handling global Big Earth Data 

(Mahdavi-Amiri, Alderson, et al., 2015) Addressing the spherical component when 

representing dynamic spatial phenomena at large and global scales demand new 

generation of geosimulation models. 

The limitations of planar map projections and conventional geospatial models 

has spurred the development of several spherical spatial models such as Lat-Long grid, 

Yin-Yang grid (Kageyama & Sato, 2004), Voronoi grid (Lukatela, 2002), and spherical 

geodesic grid (Carfora, 2007). The brief description and comparisons of common 

spherical spatial grids are presented in Table 2.1. The Lat-Long grid uses the latitudes 

and longitudes to partition the globe into tiles and is applied in numerous fields to 

represent spherical surfaces. They however have two numerical problems: coordinate 

singularity and convergence of the meridians (Williamson, 2007). The cells of the grid 

are unequal in area and shape where square cells at the equator degenerate into 

triangles at the poles; a challenge known in climate science as “the pole problem” 

(Heikes et al., 2013). The Yin-Yang is a type of composite grid based on the Lat-Long 

grid and constitute two separate grid components that partial intersect at the boundaries. 

The grid however requires extensive computational interpolation where the two grids 

overlap (Qaddouri & Lee, 2011). The grid spacing are also quasi-uniform with uneven 

size across the Earth’s surface. The Voronoi grid tessellates the surface of an ellipsoid 

into spherical Voronoi cells with centroids generated from source data used in 

construction of the grid. The cells generated in the Voronoi grid are however irregular 

and unequal in size (Lukatela, 2002). 
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Table 2.1. Common spherical grids showing key descriptions and properties. 

Grid Lat-Long  Yin-Yang Voronoi  Spherical Geodesic  

Description Grid cell 
tessellation 
bounded by 
regularly spaced 
latitudes and 
longitudes 

Two grid 
components based 
on the latitude and 
longitude grid that 
are combined and 
overlap at the edges 

A global spatial 
indexing scheme 
based on Voronoi 
polygons 
constructed on a 
sphere 

Multiresolution grid 
that partitions the 
Earth’s surface into 
cells with regular 
shape and size 

Grid spacing Quasi uniform Quasi uniform Quasi uniform Uniform grid spacing 

Cell typology Square Square Irregular polygons 
based on Voronoi 
diagram algorithm 

Hexagons, triangles, 
squares 

Advantages Widely adopted 
for spatial data 
storage in several 
fields 

Allows for parallel 
computation 

The size of the 
grid can be easily 
adapted to the 
scale of the data 

Equal area grid cells 
across the Earth’s 
surface 

Limitations Unequal cell area 
due to 
convergence of 
the meridians 

Unequal cell area 
and computationally 
intensive 

Unequal cell area Can be 
computationally 
intensive at finer 
scale 

References Santini et al. 
(2010); 
Williamson (2007) 

Kageyama and Sato 
(2004); Qaddouri 
and Lee (2011) 

Chen et al. (2003); 
Lukatela (2002) 

Sahr et al. (2003); 
Mahdavi-Amiri, 
Samavati, et al. 
(2015) 

 

Spherical geodesic grids, known in GIScience as discrete global grid systems 

(DGGSs) have been proposed as a new geospatial technology that utilizes a spherical 

grid framework to partition the globe and accommodate the curvature of the Earth’s 

surface ('t Hart, 2022; Sahr et al., 2003). It addresses the curvature of the Earth’s 

surface, avoiding the distortions caused by projecting the Earth onto a flat plane. DGGSs 

offer a discrete way for spatial referencing using cells as the smallest unit of its base 

rather than conventional coordinates (Hojati et al., 2022). The spherical grid framework 

is composed of equal-area cells that are organized at multiple resolutions or levels, 

forming a spatial hierarchy of cells. These properties make discrete global grid system 

(DGGS) suitable for efficient multi-source data processing, storage, visualization, parallel 

computation, analyses, and modelling (Gibb et al., 2022). Based on these 

characteristics, DGGSs have been adopted in several fields such as climate and Earth 

systems modelling (Randall et al., 2002), numerical weather predictions (Zängl et al., 

2015), oceanography (Ringler et al., 2013), geophysics (Simpson et al., 2006), Earth 
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observation data collection (Talone et al., 2015), land-use science (Ellis et al., 2021), 

global gazetteers (Adams, 2017), among others. 

As a geospatial data format, DGGS has several properties which make them 

desirable for spatio-temporal modelling especially cellular automata (CA) models (Gibb 

et al., 2022; Li & Stefanakis, 2020). The cell structure of DGGSs provide appropriate 

discrete spatial lattice for implementing geosimulation models. Additionally, the spherical 

grid offers a closed surface for simulating Earth’s surface processes at the global level 

where boundary effects do not have to be considered unlike conventional geosimulation 

models (Goodchild, 2018). The multi-resolution grid structure also supports spatial 

hierarchical modelling capabilities where system components and processes can be 

represented and simulated at different levels and for large scale applications (Zhao et 

al., 2022).  

Although there has been growing interest in DGGS development and 

applications in the last decade, its utilization and integration with spatio-temporal 

modelling techniques is still very limited. In the scientific literature, spatio-temporal 

models on curved surfaces based on cellular automata (CA) have been postulated for 

simulating glider dynamics (Ventrella, 2011) and multi-scale Game of Life (Kiester & 

Sahr, 2008). These studies integrated CA framework and spherical models to represent 

dynamic processes on a sphere. However, the proposed frameworks still remain proof-of 

concept models with no integration with actual geospatial data. They also lack model 

evaluation mechanisms and implementation to simulate real world spatio-temporal 

phenomena at the global scale. Though the advantages of utilizing DGGSs for 

implementing spatio-temporal models and global applications are documented in the 

GIScience literature, the development of spherical geosimulation models with real world 

simulation capabilities are still lacking.  

For these reasons, the main objectives of this research study are (1) to propose 

and develop a novel modelling approach that operates on a sphere, specifically 

Spherical Geographic Automata (SGA) using DGGS and hexagonal spatial tessellation, 

and (2) to implement the proposed SGA model on three case studies to simulate 

different dynamic spatial processes at global level. 
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2.3. Theoretical Background of Geodesic Global Grid 
Systems 

Discrete global grid systems can be constructed by specifying a number of 

mathematical properties such as base polyhedron, orientation of the polyhedron, cell 

type, refinement, and cell indexing (Zhou et al., 2020). Base polyhedrons or Platonic 

solids are three-dimensional (3D) geometric figures composed of regular polygons that 

are used to approximate the spherical Earth’s surface. There are five polyhedrons 

including tetrahedron, cube, octahedron, dodecahedron, and icosahedron which are 

commonly used as the initial sphere for DGGSs as presented in Figure 2.1.  

  

Figure 2.1. Regular polyhedrons (top) and their corresponding spherical 
representations (bottom) for: a) Tetrahedron, b) Cube, c) 
Octahedron, d) Dodecahedron, and e) Icosahedron. 

Polyhedrons with smaller and more faces provide a better representation of the 

Earth and cause less distortions when projecting between the base polyhedron and the 

corresponding spherical surface (Ulmer et al 2020). The icosahedron has 20 faces which 

can easily be packed into hexagons and is thus a popular design choice for constructing 

spherical models. Climate and Earth systems models such as the Model for Prediction 

Across Scales (MPAS), Non-hydrostatic Icosahedral Atmospheric Model (NICAM), 

Icosahedral Non-hydrostatic (ICON) global circulation model and Non-hydrostatic 

Icosahedral Model (NIM) are all based on the icosahedron (Ullrich & Jablonowski, 2012). 

After defining the preferred base polyhedron, a fixed orientation relative to the 

actual surface of the Earth must be specified. The best choice of polyhedron orientation 

is often based on the intended DGGS application (Lei et al., 2020). A common 
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orientation of the icosahedron is to place a vertex at each of the poles and then align 

one of the edges of that vertex at the north pole with the prime meridian (Sahr et al., 

2003). Similarly, Fuller’s Dynamic Maximum tension (Dymaxion) orientation places all 12 

of the spherical icosahedron vertices in the ocean so that the icosahedron vertices do 

not overlap with any landmass (Fuller, 1975). This characteristic makes the Fuller 

Dymaxion orientation a preferred choice when working with land areas at the global 

scale. 

Different cell typologies are depicted in Figure 2.2 including triangles, 

quadrilaterals, and hexagons that can be used to tessellate the spherical polyhedron. 

Hexagonal cells are preferred in many DGGS implementations and applications due to 

its properties and advantages over traditional square grid cells used in raster GIS (Zhou 

et al., 2022). Compared with other regular cell types, hexagons are the most compact 

and tessellate the sphere with the least error (Robertson et al., 2020). Also, hexagons 

have uniform adjacency and neighbouring relationships in contrast to squares and 

triangles that have different edge and vertex neighbours (Randall et al., 2002). When 

used for spatial sampling, hexagons can accommodate 13% more area than square 

cells and also provide better approximation of circular regions (de Sousa & Leitão, 

2018). These properties make hexagons suitable and desirable for spatial analyses and 

discrete spatial simulations (Peterson, 2017; Tong et al., 2013). Based on the merits and 

characteristics of hexagons as regular polygons, they are therefore used to tessellate 

the spherical surface and utilized henceforth throughout the research. 

 

Figure 2.2. Grid tessellations composed of a) triangle, b) square and c) 
hexagonal cells. 
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The resulting cells from the initial polyhedron are considered as the first 

resolution. To generate finer resolution cells, refinement techniques are applied to 

subdivide the initial polyhedron cells into a set of finer cells in a hierarchical and 

recursive manner (Adams, 2017). The ratio of the areas of cells at successive 

resolutions is termed aperture. DGGS based on hexagonal grids generally use 1-to-3, 1-

to-4, and 1-to-7 refinements with aperture 3, 4, and 7 respectively (Zhao et al., 2022). In 

a hexagonal DGGS with aperture 4 for example, each successive resolution reduces the 

cell area by a factor of ¼. For each refinement, the coarse cell is referred to as the 

parent cell while the smaller cells partitioned from it are termed child cells. The choice of 

refinement or aperture determines the characteristics of the DGGS hexagonal cells. 

Figure 2.3 illustrates the structure and properties of cells at two resolutions for the three 

hexagonal refinements. Refinement 1-to-3 has the lowest aperture and capable of 

generating more grid resolutions among the three while refinement 1-to-4 produces 

rotation free tessellations at all resolutions which simplifies hierarchical analysis 

(Alderson et al., 2020; Vince, 2006). Child cells in 1-to-7 refinements cover the parent 

hexagonal cell space better and therefore provide a better congruency and simpler 

hierarchical relationship between successive resolutions. Unlike traditional raster 

datasets that can be resampled to arbitrary spatial resolutions, the resolution of DGGS 

cells are essentially fixed once the aperture is specified (Thompson et al., 2022). 

Each discrete cell is assigned a unique identifier at each resolution and used as 

a data structure to represent its location (Sahr, 2008). Three techniques are primarily 

utilized to index cells in DGGSs: hierarchy-based indexing, axis or coordinate based 

indexing, and space filling curve indexing (Hall et al., 2020). For hexagonal DGGS, 

hierarchy-based indexing schemes are commonly used (Zhao et al., 2022). This 

technique uses the hierarchical relationship between cells through the application of 

refinement beginning with the base cell. An initial index is assigned to each cell at the 

first resolution and then using each cell’s index as a prefix to the indices of its children 

(Zhou 2020). Mathematically, if a coarse cell p has index G, its children 𝑐𝑖, receive index 

Gi where i is a digit appended to G (Mahdavi-Amiri, Samavati, et al., 2015). 
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Figure 2.3. Hierarchical partition of the spherical icosahedron using different 
hexagonal refinement methods: a) aperture 3, b) aperture 4, and c) 
aperture 7. 

2.3.1. Comparison of Geometric Distortions in Conventional GIS and 
DGGS 

Global spatial datasets are primarily captured in geographic coordinate system 

(GCS). However, the representation of datasets in GCS produces unequal grid cell area 

due to convergence of the meridians (Kelly & Šavrič, 2021). For instance, square raster 

cells at the equator are transformed into triangles at the poles. Thus, it has become 

common for the spatial resolution of global raster datasets and spatial models to be 

defined using the cell dimension at the equator (Amatulli et al., 2022; Schaldach & 

Priess, 2008). 

In Figure 2.4, global land-use/land-cover raster data with a spatial resolution of 

111.59 km is compared with DGGS Icosahedral Snyder Equal Area (ISEA) aperture 4 

hexagonal cells with an area of 12,452.77 km2 and at different latitudes: latitude 0° 

(equator) and 75° N. From the comparative analysis, the ISEA DGGS hexagonal cells 

maintain their shape and size at both latitudes. On the contrary, the raster cells change 
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from squares at the equator to small rectangles at latitude 75° N. The rectangles 

eventually degenerate into triangles at the poles. These distortions can cause inaccurate 

spatial and statistical analyses especially in large-scale applications and sometimes 

produce misleading visualizations (Kazemi et al., 2022; Raposo et al., 2019). 

For instance, using the ESA-CCI-LC dataset, Mousivand and Arsanjani (2019) 

calculated the total global urban extent in 2015 to be 908 thousand km2. However, the 

ISEA DGGS framework used in this research study with the same ESA land-use/land-

cover dataset computed the global urban extent to be 763 thousand km2 for the year 

2015, which is consistent with the results of Gong et al. (2020) who calculated the global 

urban land extent utilizing high resolution 30-meter land-use/land-cover datasets and 

partitioned the global land surface into 583 geographic grids. The difference between the 

two figures correspond to 19% of the global urban extent. 

For global applications where areal statistics are important, equal-area map 

projections are better for preserving the areal properties of spatial features. However, 

when equal-area map projections are used, polygon segments are represented as 

straight lines instead of arcs of geodesics which can be an important source of error 

when computing surface area and distance at the global level (Santini et al., 2010). 

Moreover, many of these projections are designed for different regions and often exhibit 

large areal distortions in higher latitudes (Nowak & Nowak Da Costa, 2022). 

To demonstrate areal distortions in existing equal-area projections, distortion 

indicators are calculated for cells in the Mollweide equal-area map projection and the 

ISEA DGGS at the global level following the method in de Sousa et al. (2019). The 

geodesic area for each polygon is calculated using the formula in Karney (2013) and 

available in the open source GeographicLib library (Karney, 2012). From the results, the 

Mollweide projection produces cells with unequal area across the globe with greater 

distortions at higher latitudes (Figure 2.5A). The ISEA DGGS hexagonal cells however 

show uniform distribution of cell area at the global level. As illustrated in Figure 2.5, 

existing equal-area map projections still exhibit areal distortions when used for large 

scale and global applications. 
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Figure 2.4. Comparison of raster square cells in geographic coordinate and 
DGGS ISEA 4 hexagonal cells at latitude a) 0° and b) 75° N. 

For these reasons, this research study integrates DGGS and its abilities to 

tessellate spherical surface with the geographic automata systems, capable of 

simulating dynamics of complex spatial systems into a novel spherical geographic 

automata (SGA) modelling approach to represent global spatial processes. 



34 

 

Figure 2.5. Global map of area distortions (in km2) for a) Mollweide equal-area 
projection and b) ISEA DGGS. 

2.4. Framework for Spherical Geographic Automata 

Several real-world dynamic geographic phenomena can be described as 

complex spatial systems where interactions between system components occur at the 

local level and then give rise to spatial patterns at global level (Batty & Xie, 1994; 

Couclelis, 1985; Manson, 2001). A complex system is characterized by bottom-up non-

linear interactions of system elements, space-time dynamics, emergence, evolution, self-

organization, feedback loops, bifurcation, and path dependence. Complex spatial 

systems are often conceptualized as geographic automata systems (GAS) with two main 

mathematical methodologies; cellular automata (CA) and agent-based modeling (ABM) 

(Torrens & Benenson, 2005). GAS are discrete modelling systems based on 

arrangements of arrays of cells, where state of each cell is influenced by state of the 

cells in the neighborhood surrounding the central cell and is governed by the transition 

rules that represent the spatial process with discrete time steps (White & Engelen, 

2000). In conventional GAS models, local effects are collected from the neighbouring 

cells or spatial adjacency that is defined using for example the Von Neumann 

neighbourhood (consist of four cells adjacent to the sides of the middle cell) or the 

Moore neighbourhood (eight adjacent cells). The grid space is typically composed of 

homogenous square cells thus making remote sensing (RS) and raster-based GIS data 

easy to incorporate into GAS models. Consequently, in the past decades, GAS 

modelling approaches have been applied widely to represent different dynamic 

geographic phenomena ranging from urban and regional growth, land-use and land-

cover change, forest fires and insect disturbances, landslides, flooding, and other 
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physical processes, just to name a few. The assumption of homogenous square cells 

has however been extended to concept of non-homogeneous CA such as that operating 

on irregular polygons (Stevens & Dragićević, 2007). Recent advances have also 

represented system components and their interactions as network nodes and links with 

the conceptualization of GAS as network automata (Anderson & Dragićević, 2020). All 

these GAS approaches operate in a planar two-dimensional space, some work has also 

been completed to extend those into the three-dimensional space as voxel geographic 

automata (Jjumba & Dragićević, 2016). 

When looking into representing geographical processes that are at the global 

scale, then spherical GAS models should be used. A spherical geographic automaton 

(SGA) is therefore proposed as a mathematical representation of a global complex 

dynamic spatial system that operates on a spherical surface and can be expressed as 

follows: 

 𝑆𝐺𝐴 = {𝐶𝑆, 𝑆, Ω, 𝑓, ∆𝑇} (1) 

where 𝐶𝑆 is the spherical cell space that represents the landscape to be modelled and 

consisting of hexagonal cells, 𝑆 denotes the hexagonal cell states, Ω is the spatial 

neighbourhood defined as a set of neighbouring cells that influence the evolution of the 

central hexagonal cell, 𝑓 is the function of transition rules that determines changes in cell 

states, and ∆𝑇 is discrete increment of time. 

The spherical cell space is constructed on the spherical geodesic grid which is 

based on the icosahedron and projected to the WGS84 ellipsoid using the icosahedral 

Snyder equal-area (ISEA) projection (Snyder, 1992). The cell space is thus composed of 

homogenous equal-area hexagonal cells. The cells are defined by their spatial 

properties including their geographic location on the spherical space as well as other 

non-spatial information based on the attributes of the complex spatial dynamic system 

being modelled. In the SGA modelling framework, each cell in the system has one of 

possible states. The state set Z is a collection of all possible hexagonal cell states and 

can be defined as {𝑆1, 𝑆2, … , 𝑆𝑘} where k is a finite number. 

The hexagonal neighbourhood Ω, in the SGA modelling framework is used to 

represent the localized region from which the central cell interacts. The neighbourhood 



36 

can be defined using adjacent cells around the central cell. For a hexagonal tessellation, 

each cell has six neighbouring cells that are equidistant from the central cell (Figure 

2.2C). In a hexagonal grid, the neighbourhood of cells can be defined based on the grid 

resolution. The neighbourhood of a central cell (i,j) at an even resolution can be defined 

as: 

 Ω =  {(𝑖 − 1, 𝑗 − 1), (𝑖 − 1, 𝑗), (𝑖, 𝑗 − 1), (𝑖, 𝑗 + 1), (𝑖 + 1, 𝑗), (𝑖 + 1, 𝑗 + 1)} 

 

(2) 

and at odd resolution level as: 

 Ω =  {(𝑖 + 1, 𝑗 − 1), (𝑖 + 1, 𝑗 + 2), (𝑖 − 1, 𝑗 − 2), (𝑖 − 1, 𝑗 + 1), (𝑖 + 2, 𝑗 + 1), (𝑖 − 2, 𝑗 − 1)} 

 

(3) 

where (𝑖, 𝑗) is the central cell’s hexagonal coordinate and Ω is the neighbourhood of six 

cells around the central cell. As the spherical model has a closed surface, edge cells do 

not exist and boundary conditions are not defined in the proposed SGA modelling 

framework unlike conventional planar geosimulation models.  

The function of transition rules 𝑓 is used to represent the dynamic spatial system 

process being modelled on a spherical surface. The transition rules 𝑓, determine how 

the state of a cell 𝑆(𝑖,𝑗) changes through space and time in response to its current state 

and that of the cells in its spatial neighbourhood, Ω. In its basic form, the function is 

usually expressed as a set of “IF-THEN” statements that indicate specific conditions 

necessary for cell state change or otherwise. The time step ∆𝑇, specifies the temporal 

dimension in which the system operates and is typically defined in a discrete manner. 

The time step starts from 𝑡0 which is referred to as the initial state and increases by one 

at each iteration. The state of cells in the system are simultaneously updated at every 

iteration after the transitions rules are applied. The choice of time step normally depends 

on the spatial processes being modelled. 

The proposed SGA modelling framework can be operationalized to simulate 

different spatio-temporal processes at the global scale by following the procedures 

outlined in Table 2.2.  
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Table 2.2. Description of steps for operationalizing SGA model for simulating 
complex dynamic spatial system. 

Steps Descriptions 

Complex system 
conceptualization 

Identify the complex spatial dynamic system to be modelled and the 
components that make up the system. 

Identify the system properties and states that characterize the 
system. 

Determine the appropriate spatial extent at which the system should 
be represented. 

Data acquisition and 
preprocessing 

Data retrieval to represent properties of the system. 

Determine spatial and temporal resolution. 

Conversion of traditional spatial datasets to spherical format or use 
DGGS spherical data. 

Define neighbourhood (Ω) and 

function of transition rules (𝑓) 

Determine the neighbourhood of each cell and their states. 

Develop transition rules that determine how the system evolves over 
time. 

Implementation of SGA Develop programming routines to represent different system 
mechanisms including neighbourhood, function of transition rules, 
and discrete time increment. 

Model evaluation Perform model evaluation including code verification, sensitivity 
analysis, model calibration and validation using actual datasets. 

Scenarios Design scenarios to represent different system conditions and 
possible what-if system trajectories. 

SGA Model execution Run simulations with appropriate parameters and time increment 
(∆𝑇). 

Analysis of simulation results and 
visualization 

Analyse obtained results from the SGA model to understand the 
process being modelled and how it evolves over time. 

Visualization of obtained results including statistics and maps. 

2.5. SGA Implementation Case Studies and Simulation 
Results 

To demonstrate the proposed modelling approach, the SGA modelling framework 

is used to implement several simplified spatial processes such as population dynamics, 

expansion, and shrinkage that are operating on a sphere. For the purpose of 

demonstrating the SGA modelling capabilities to represent these spatial processes, 

three case studies, have been developed to model: (1) Game of Life (GoL), (2) urban 

land-use growth, and (3) deforestation. The SGA model is implemented in the Python 

programming language (v3.8.5)(Van Rossum & Drake, 2009) using open-sourced 

DGGS library DGGRID (Sahr, 2022) and other geospatial libraries including gdal, 

geopandas, shapely, cartopy, rasterio, geodesy, and pyproj. The model is implemented 
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on a workstation with Intel(R) Xeon(R) Gold 6128 CPU @ 3.40GHz 3.39 GHz processor 

and 32 GB RAM with the processing time for each model iteration varying between 5 to 

45 minutes. 

2.5.1. SGA Game of Life (𝑺𝑮𝑨𝑮𝑶𝑳) Model 

The spherical geographic automata for Game of Life (𝑆𝐺𝐴𝐺𝑂𝐿) represents 

automata with three states on a spherical surface, and rules for determining how their 

states changes over time. It extends the well-known Game of Life (Gardner, 1970) 

model representing theoretical complex system to operate on a sphere and in this case 

study to simulate the process of population dynamics at the global level. The 

𝑆𝐺𝐴𝐺𝑂𝐿model is presented here to provide a simple proof-of-concept demonstration of 

the proposed framework so it can easily be implemented to simulate different real-world 

phenomena. Based on equation 1, 𝑆𝐺𝐴𝐺𝑂𝐿 can be formulated as: 

 𝑆𝐺𝐴𝐺𝑂𝐿  = {𝐶𝑆, 𝑆𝐺𝑂𝐿, Ω, 𝑓𝐺𝑂𝐿 , ∆𝑇} (4) 

where 𝐶𝑆is the spherical surface with hexagonal spatial tessellation, 𝑆𝐺𝑂𝐿is the state of 

cells, Ω represents the hexagonal neighbourhood of six cells, 𝑓𝐺𝑂𝐿 denotes transition 

rules and ∆𝑇 is the time step of the model. The 𝑆𝐺𝐴𝐺𝑂𝐿 cell space consists of hexagonal 

cells located in spherical geographic space and with two primary cell states 𝑆𝐺𝐴𝐺𝑂𝐿: 

“dead” and “alive”. The initial cell state is defined by randomly assigning “alive” to a 

given percentage of hexagonal cells on the spherical lattice. The model is initialized at 

time 𝑡0 where 34% of the cells are selected as “alive”. The “alive” cells are further 

categorized into two types, as “alive_1” or “alive_2” by random selection. For every 

iteration, the number of “alive” neighbours is calculated for each cell as well as the 

number of “alive_1” or “alive_2” cell types. The 𝑆𝐺𝐴𝐺𝑂𝐿 model uses a set of transition 

rules 𝑓𝐺𝑂𝐿 to simulate population growth, death, and survival across the globe based on 

each cell’s current state and neighbourhood. An “alive” cell with two or three alive 

neighbours survives at the next time step. An “alive” cell with more than three or less 

than two alive neighbours becomes “dead” at the next time step. A “dead” cell with 

exactly two or three alive neighbours and at least one “alive_1” and “alive_2” cell 

becomes “alive” at the next time step. The new “alive” cell type is assigned based on the 
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minority in the neighbourhood or randomly assigned if the “alive” cell type is evenly 

distributed. If for example a “dead” cell has exactly three alive cells in its neighbourhood 

and two are “alive_1”, the new cell would be assigned “alive_2”. The 𝑆𝐺𝐴𝐺𝑂𝐿 model is 

implemented with DGGS ISEA 3 grid with each hexagonal cell covering an area of 

69,968 km2. Model verification is performed to ensure the code used to define the 

concept and logic of the model is accurately implemented. The model is run for 10 

iterations with each simulation representing one generation. 

The simulation results of the 𝑆𝐺𝐴𝐺𝑂𝐿 model output showing the evolution of cells 

on the sphere after five and ten iterations are presented in Figure 2.6. Based on the 

simulation outputs, all cells changed state at least once during the model run.  

 

Figure 2.6. Simulation results of 𝑺𝑮𝑨𝑮𝑶𝑳 model showing the evolution of cell 

states over time on a spherical surface from initial state (𝒕𝟎), after 
five (𝒕𝟓), and ten (𝒕𝟏𝟎) iterations. 

Common patterns observed in the conventional GoL model such as gliders and 

oscillators were not considered in this model application. The results also show a 

general trend of increasing population across the entire simulation run with the number 

of “alive” cells increases over the course of the simulation whisht “dead” cells decreases. 

At time 𝑡0, 34% of the cell space was populated with “alive” cells and this proportion 

increases to 60% at time 𝑡10. Also, the proportion of “alive_1” and “alive_2” cells remain 

in close equilibrium over the course of the simulation. This system dynamics can be 

attributed to the transition rules utilized in this study that maintains the balance between 

the number of “alive_1” and “alive_2” cell types over time. 
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2.5.2. SGA Global Urban Land-Use Growth (𝑺𝑮𝑨𝑮𝑼𝑳) Model 

The SGA global urban land-use growth 𝑆𝐺𝐴𝐺𝑈𝐿 model is designed to simulate 

the spatial process of expansion as simplified by urban land-use growth across the globe 

using real-world geospatial datasets, and can be presented as: 

 𝑆𝐺𝐴𝐺𝑈𝐿  = {𝐶𝑆, 𝑆𝐺𝑈𝐿 , Ω, 𝑓𝐺𝑈𝐿 , ∆𝑇} (5) 

where 𝐶𝑆 is composed of hexagonal spatial tessellation constructed using the spherical 

model, 𝑆𝐺𝑈𝐿 is the state of cells based on simple binary class of “urban” and “non-

urban”, Ω represents the hexagonal neighbourhood of six cells around the central cell, 

𝑓𝐺𝑈𝐿 is the function of transition rules, and ∆𝑇 is time increment of the model. The initial 

state of cells at time 𝑡0 = year 2000 has been derived using the European Space Agency 

(ESA) global land-use/land-cover dataset (ESA, 2017). Land-use datasets for the years 

2000, 2010, and 2020 were used to implement and evaluate the 𝑆𝐺𝐴𝐺𝑈𝐿 model. All 

spatial datasets are converted to DGGS ISEA 3 with each hexagon having an area of 

287 km2. The conversion of spatial datasets into hexagonal DGGS cells follows the 

methods described in Robertson et al. (2020) Transition rules 𝑓𝐺𝑈𝐿  are designed to 

characterize the process of urban land-use growth to simulate urban development 

across the entire globe. Two scenarios: (a) Stalled Development and (b) Sustainable 

Development are implemented to represent different urban growth trajectories based on 

population increase projection data from the European Union Joint Research Centre 

(JRC) (Lutz et al., 2018). The Stalled Development scenario assumes global population 

with stagnated social development, low education levels, shorter life expectancy, and 

higher fertility rates resulting in higher population growth. The Sustainable Development 

scenario on the other hand assumes global population characterized by rapid social 

development, high education levels, longer life expectancy, and decreasing fertility, thus 

slower population growth.  

Model calibration is performed using datasets for year 2000-2010 and validation 

with the 2010-2020 datasets. The simulation outputs are compared with actual land-use 

datasets using the Figure of Merit (FoM) index described in Pontius et al. (2008) and can 

be formulated as: 
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𝐹𝑜𝑀 =  
ℎ𝑖𝑡𝑠

𝑚𝑖𝑠𝑠𝑒𝑠 + ℎ𝑖𝑡𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠
 

(6) 

where hits are changed urban cells correctly simulated by the model, misses are 

changed urban cells the model was unable to simulate as changed cells, and false 

alarms are non-urban cells wrongly simulated as urban cells. In general terms, the hits 

equate to true positives, the misses denote false negatives and false alarms are the 

same as the false positives. The FoM value obtained for the 𝑆𝐺𝐴𝐺𝑈𝐿 model in this study 

was 29.4% in the calibration phase and 25.1% during model validation. The low FoM 

values can be attributed to the simplified modelling parameters and less variables 

considered in the model design. The 𝑆𝐺𝐴𝐺𝑈𝐿 model is constrained by urban demand at 

the national level and implemented to simulate urban land-use growth at the global scale 

for six iterations between 2020 (𝑡0) and 2080 (𝑡6) with a ten-year temporal interval. 

The simulation results of urban growth in North America at each time step 

between 2020 and 2080 under the Stalled Development scenario are presented in 

Figure 2.7. Based on the simulation results, for example the total urban extent in North 

America increases by 76.5% under the Stalled Development scenario and 57.8% under 

the Sustainable Development scenario between 2020 and 2080. In addition, Figure 2.8 

depicts the simulation outputs of urban land-use growth under the two scenarios by 2080 

compared to the base year 2020 displayed for different parts of the globe and 

continents.  

The simulation results indicate the global urban extent would increase from 793 

thousand km2 in 2020 to 1.7 million km2 in 2080 under the Stalled Development scenario 

representing an urban growth of 118%. The total global urban extent under the 

Sustainable Development scenario however increases to 1.4 million km2 in 2080 which 

corresponds to a growth of 77% between 2020 and 2080. The total global urban extents 

obtained from the model fall within the range found in the scientific literature with values 

varying between 1.1 million and 3.6 million km2 based on different scenarios (Gao & 

O’Neill, 2020; Li et al., 2019; Li et al., 2021). The pattern of urban growth is similar under 

both scenarios although the urban extent is larger under the Stalled Development 

scenario as expected.  
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Figure 2.7. Simulated urban extent between 2020 and 2080 with 10-year 
temporal increments for North America under the Stalled 
Development scenario. 

The developed 𝑆𝐺𝐴𝐺𝑈𝐿 model presents a simplified model for simulating urban 

growth process at the global scale and can be further refined to include more detailed 

datasets with finer spatial resolution and multiple datasets to represent the different 

factors that influence global urban land-use growth. The transition rules in the model can 

also be enhanced by incorporating multicriteria evaluation (MCE) techniques or machine 

learning to handle Big Earth Data and larger number of drivers. 
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Figure 2.8. Comparison of a) initial year 2020 urban extent with obtained 
simulation results of urban growth in year 2080 under b) Stalled 
Development scenario, and c) Sustainable Development scenario for 
North America (top), Asia (middle), and Africa (bottom).  

2.5.3. SGA Global Deforestation (𝑺𝑮𝑨𝑫𝑬𝑭) Model 

The proposed SGA framework is further implemented to simulate the spatial 

process of shrinking at the global scale, represented by deforestation, and can be 

formulated as follows: 

 𝑆𝐺𝐴𝐷𝐸𝐹  = {𝐶𝑆, 𝑆𝐷𝐸𝐹 , Ω, 𝑓𝐷𝐸𝐹 , ∆𝑇} (7) 
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where 𝑆𝐷𝐸𝐹 is the state of cells and 𝑓𝐷𝐸𝐹 is the function of transition rules which 

determines how cell states change over time in the model. The cell states 𝑆𝐷𝐸𝐹 are 

characterized as “forest” and “non-forest” and initialized at time 𝑡0 using the ESA global 

land-use dataset for the year 2020. Transition rules 𝑓𝐷𝐸𝐹 are designed to represent the 

processes of deforestation based on cell states and hexagonal neighbourhood Ω. At 

every iteration, if a “forest” cell has some specified neighbourhood conditions, the cell 

state is changed to “non-forest”. Upon application of the transition rules, the cells are 

evaluated, and states updated simultaneously. The temporal resolution of the model is 

determined to be 10 years and each hexagonal cell encompasses an area of 287 km2. 

The global deforestation model is however unconstrained, and change is determined 

only by the transition rules. To simulate forest change at the global level, a total of eight 

iterations are run to simulate the process of deforestation between 2020 (𝑡0) and 2100 

(𝑡8). 

The obtained simulation outputs of the global deforestation model for North 

America, South America, Africa, and the cumulative simulated forest loss between 2020 

and 2100 are provided in Figure 2.9. In 2020, 48 million km2 of the Earth’s land surface 

was covered by forest. This however decreased to 30 million km2 at the end of the 21st 

century which corresponds to a forest loss of 38%. The simulated forest loss obtained 

from the 𝑆𝐺𝐴𝐷𝐸𝐹 model is consistent with other global land-use change model where 

global forest change varies between 25 million to 50 million km2 by 2100 (Cao et al., 

2019; Chen et al., 2020; Li et al., 2017). Despite the use of simple transition rules in the 

𝑆𝐺𝐴𝐷𝐸𝐹 case study, the simulation results indicate the pattern and process of 

deforestation can be well captured by the SGA model. No scenarios are however 

implemented in the 𝑆𝐷𝐸𝐹 model and the rate of deforestation is only determined by the 

transition rules utilized.  

Based on the simulation outputs, deforestation initially starts from the outskirt of 

large forest regions and shrinks into the interior. This can be explained whereby forest 

regions closer to disturbances, human activities, and have higher accessibility such as 

coastal areas and road networks are more prone to deforestation. Over time, regions 

with large forests become fragmented and replaced by small patches of trees. This 

change pattern is exemplified by the deforestation simulation outputs observed in North 

America in Figure 2.9 (top).  
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Figure 2.9. Comparison of a) initial year 2020 forest cover with obtained 
simulation results of deforestation in year b) 2060, c) 2100 and d) the 
cumulative simulated forest loss for North America (top), South 
America (middle), and Africa (bottom). 

While the 𝑆𝐷𝐸𝐹 model presented in this study is capable of characterizing the 

process of deforestation, the simple binary states of “forest” and “non-forest” can be 

expanded to include several land-use/land-cover types and the array of factors that 

affect the change. The function of transition rules implemented in the model would thus 

need to be refined to correctly capture the conversion of forest and other land cover 

classes into the different land-use types, representing the effects of agricultural land 

expansion and urban land-use growth. Also, different deforestation scenarios can be 

implemented that portray possible future forest cover change pathways. 

2.6. Discussion and Conclusions  

This research study presents the novel modelling approach of spherical 

geographic automata (SGA) that integrates cellular automata and spherical spatial 
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model to represent complex dynamic spatial processes on the Earth’s curved surface. 

The model highlights the representation and modelling of spatio-temporal systems on a 

spherical surface unlike traditional geospatial models that are based on two-dimensional 

spatial technologies and constructed on flat maps. The SGA model differs from 

conventional geosimulation modelling approaches by utilizing new spherical geospatial 

models that address the curvature of the Earth’s surface and hexagonal cells with 

equidistant neighbouring cells thus providing uniform spatial neighbourhood for 

application of transition rules. SGA presents an alternative modelling approach for 

spatial simulation and analyses at the global scale by providing equal-area cells that 

seamlessly cover the Earth’s surface thereby avoiding spatial distortions and its 

associated effects that comes with projecting the spherical Earth onto a flat medium. In 

the era of Big Earth Data characterized by the availability of large volumes of geographic 

data from several sources at multiple spatial and temporal scales, the proposed 

spherical geographic automata (SGA) modelling approach provides a consistent 

geospatial framework for integrating spatial data from different sources, representing 

data at multiple levels, and performing advanced spatial analyses and simulations. 

The novel SGA approach is implemented to successfully simulate different 

dynamic spatial phenomenon as demonstrated by the three case studies presented. The 

spherical Game of Life 𝑆𝐺𝐴𝐺𝑂𝐿 model is implemented to simulate population change at 

the global level and on the sphere albeit using synthetic spatial data. This simple 

application provides a general demonstration of how dynamic spatial phenomena that 

evolve over space and time can be conceptualized and represented in the SGA model. 

Although the model is very generalized with simple transition rules, the results indicate 

complex system dynamics can still emerge. The global urban land-use growth as 

𝑆𝐺𝐴𝐺𝑈𝐿 model with two scenarios and the deforestation as 𝑆𝐺𝐴𝐷𝐸𝐹 model are however 

implemented with real-world data using global land-use/land-cover datasets. This 

demonstrates the SGA model’s capability for simulating full scale real-world spatio-

temporal systems and applications for spatial decision making as well as executing 

possible what-if scenarios. 

Although the proposed modelling approach can be used to represent different 

spatio-temporal processes on a spherical surface, the SGA model and applications have 

some caveats and limitations that can be improved. New components and mechanisms 
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can be integrated to enhance the SGA model’s capability for handling complex 

processes that consist of several interactions and feedback such as modelling multiple 

land-use change processes at the global level consisting of urban growth, deforestation, 

desertification, and farmland conversion while also considering the effects and dynamics 

of climate change on the Earth’s systems. Enhancement of the proposed model to 

represent the third dimension such as building height is also another area which needs 

further consideration. In order to properly represent and simulate real-world dynamic 

phenomena, spatio-temporal systems need to be conceptualized at finer scale which 

would require the use of detailed geospatial datasets. Such improvements necessitate 

the need for utilizing high performance computing (HPC) facilities dues to the increased 

computational demands that comes with improved spatial resolution of the system, 

number of datasets, and complexity of the system being modelled. Furthermore, the 

function of transition rules in the SGA model can be augmented by incorporating more 

comprehensive data and parameters (Addae & Dragićević, 2023), spatial decision-

making methods such as spatial multi-criteria evaluation (MCE) (Addae & Dragićević, 

2022) or machine learning techniques as well as considering multiple land-use changes 

and transition rules representing human-environment processes at different spatial 

scales. This can be especially useful when simulating spatio-temporal processes where 

human decision making is important, thus the SGA models can be used in policy 

planning and management at the global level. 

In conclusion, this research study presents spherical geographic automata 

(SGA), a new geosimulation modelling approach for simulating spatio-temporal 

processes on a spherical surface with hexagonal spatial tessellation. In contrast to 

traditional space-time modelling frameworks that are based on two dimensional flat 

mediums, the novel SGA modelling approach provides a spherical spatial model for 

representing the Earth’s curved surface, thus avoiding the effects of spatial distortions 

associated with planar map projections. 

The three case studies presented in this research demonstrate the successful 

application of the proposed SGA modelling approach and provides a foundation for 

further development of spatio-temporal models that operate on spherical surfaces for 

representing dynamic spatial phenomena. The developed SGA modelling approach 

described in this research is flexible and can be extended to simulate different spatial 
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dynamic processes and systems on the global scale including ecological, socio-

economic, biogeographical, climatology, and epidemiological systems. 
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Chapter 3.  
 
Modelling Global Urban Land-use Change Process 
Using Spherical Cellular Automata2 

3.1. Abstract 

Urbanization process is one of the drivers of environmental and social changes across 

the globe entailing many environmental problems. Long term land-use change 

geosimulation models are useful tools to represent the complex human-environment 

interactions and evaluate the impacts of urbanization on the environment. However, 

many modelling approaches are not always fit to fully address this process at global 

scale and the issues of distortions related to Earths’ curvature. Thus, the goal of this 

research study is to model and examine the long term global urban land-use change 

using spherical cellular automata approach. The developed model is implemented to 

simulate urban land-use change across 235 world countries and using two scenarios 

considering zero-migration and constant-fertility. The simulation results indicate that, 

between 2015 and 2095, the total global urban extent will double in size with the most 

extensive change in urban areas occurring in Africa and Asia. The proposed spherical 

model can be used to assist global urbanization policy making and environmental impact 

assessments. 

3.2. Introduction 

Over the last century, anthropogenic activities have transformed the land surface 

and atmospheric composition in numerous ways which are primarily manifested through 

processes such as deforestation, farmland conversion, mineral extraction and 

urbanization (Verburg et al., 2015). These processes are commonly referred to as land-

use/land-cover change (LULCC) (Lambin et al., 2001). Land-use change (LUC) is 

regarded as one of the anthropogenic activities contributing to global climate change as 

well as biodiversity loss, soil water pollution, and altered hydrological cycle (Houghton, 

 

2 A version of this chapter is published: Addae, B., & Dragićević, S. (2023). Modelling global 
urban land-use change process using spherical cellular automata. GeoJournal, 88, 2737–2754. 
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2018; Sitch et al., 2005). Due to the diverse effects of land-use change on the 

environment, there is a need to advance analytical and modelling approaches to 

understand and analyse the LUC phenomenon and alleviate environmental impacts. 

Simulation models can represent spatial patterns of land-use change and provide 

possible scenarios that can be used for decision-making or policy building for 

environmental protection (Verburg et al., 2004). Spatially explicit modelling has become 

a part of procedures for environmental impact assessments, land-use policy and spatial 

decision making in general for wide range of land-use problems (Huang et al., 2019; 

Meiyappan et al., 2014). 

One evident consequence of the spatial expansion of cities as urban lands is 

accompanied by the transformation of other land-use/land-cover features. A 

distinguishing feature of urbanization is the rise of extensive urban regions that have 

emerged from several smaller satellite urban areas into mega-urban units (Brenner & 

Schmid, 2012; Seto et al., 2017). This, coupled with other global impacts of urbanization, 

has necessitated the need to move from modelling urban land-use change on a local 

scale to much larger continental and global scales (Creutzig et al., 2019). Urban areas 

encompass less than 3% of the Earth’s surface, yet the environmental impact of 

urbanization is global (Romero-Lankao et al., 2014). According to estimates, urban 

areas account for 75% of global carbon emissions and 60% of domestic water 

consumption (Acuto et al., 2018; Grimm et al., 2008). With the global urban population 

projected to increase from 56% in 2020 to 85% in 2100, urban land-use change and the 

process of urbanization are expected to influence global environmental change in the 

coming decades and until the end of the 21st century (OECD, 2015; UN-DESA, 2019). 

To better comprehend the future of urbanization as well as the interaction 

between urbanization and other environmental systems, global urban land-use change 

models capable of forecasting long-term urban expansion are needed for several 

reasons (Acuto et al., 2018; Seto et al., 2012). Within the current world system, the 

factors that drive land-use change such as globalization, demographic change, 

economic growth, local and international political situations have no regional boundaries 

(Meyfroidt et al., 2013). Also, cities across the globe have become interconnected 

through the flow and mobility of people, capital, information, or labour to name a few 

(Geist et al., 2006; Sassen, 2005). Large-scale and local forces operate concurrently 

and interactively to shape urban landscapes across the globe (Verburg et al., 2019). 
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Further, the combined effects of urban land-use changes at the global level have 

considerable effects on biodiversity, agricultural productivity, water resources and 

ultimately on climate change. To represent the different factors and capture the 

complexities of land-use change process, geosimulation models (Torrens & Benenson, 

2005) have been adopted in several land-use change studies (Schaldach & Priess, 

2008). Such models reported in the scientific literature include GEONAMICA (Engelen et 

al., 1995), GEOMOD (Hall et al., 1995) and SLEUTH (Clarke et al., 1997) to name a few 

well known geosimulation approaches. However, these models are developed to 

simulate urban land-use change covering rather smaller spatial extents of metropolitan 

regions and are typically not designed to suit the needs of simulations to represent long 

term land-use process at the continental or global scale. 

Geosimulation models of land-use change are often implemented with raster 

cells or equal square cells spatial tessellation and most studies rely on remote sensing 

or raster GIS data (Batty & Xie, 1994; White & Engelen, 2000). However, spatial 

modelling of land-use change at global scale including urban expansion presents the 

problem of distortions in shape and size of different regions, especially for large 

countries remains a challenge which is yet to be addressed in land-use science (Cao et 

al., 2019; Li et al., 2017). Although equal-area map projections are more convenient for 

preserving the surface of geographic features, distortion of spatial information still 

persist. Implementation and comparison of equal-area projections including the Goode 

Homolosine, Cylindrical Equal Area and Mollweide projections to represent global raster 

datasets indicate considerable differences in total land-use sizes at large spatial scales 

(Usery & Seong, 2001). In many global models, the dimensions of cells used to 

represent spatial data changes in size from the equator towards the south and north 

poles (Wang et al., 2020). Due to this problem, most global-scale land-use change 

models generally refer to the spatial resolution of their models by stating the resolution at 

the equator with the common phrase “roughly 5 km at the equator” (Chen et al., 2020; 

Gao & O'Neill, 2019; Zhou et al., 2019). This is not appropriate because of the spherical 

nature and curvature of the Earth which distorts the shape and size of grids. Such 

distortions are absent at the local scale but are however prominent when implemented 

on a larger scale (Ventrella, 2011). 

In order to partition the globe, Discrete Global Grid System (DGGS) have been 

developed as an Earth reference system which utilizes a spherical tessellation of space 
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to accommodate the curvature of the Earth’s surface (Yao et al., 2020). DGGS is a 

discrete approach for spatial referencing, based on cells as the smallest unit with 

multiple levels of resolution (Alderson et al., 2020). In addition to their equal-area 

characteristics, DGGS have also been proven to provide a more efficient data structure 

for storing geospatial data than traditional geographic information systems (GIS). 

Therefore, the main objective of this research study is to model and analyse the 

long-term urban land use change process using the spherical cellular automata 

approach that operates at global spatial scale. The developed model is implemented 

with the data for 235 world countries and for the period from 1995 to 2015 to simulate 

the world urbanization process to 2095 with 10-year intervals. 

3.3. Theoretical Background 

The key component of any DGGS is its cell configuration that are used to cover 

the spherical Earth’s surface (Mahdavi-Amiri et al., 2015). A DGGS framework is 

comprised of four main elements: base polyhedron, cell type, refinement and cell 

indexing (Barnes, 2020). Base polyhedron or platonic solid is a geometric solid which is 

used to represent the spherical approximation and curvature of the Earth (Bondaruk et 

al., 2020). Among the five spherical polyhedrons (i.e. tetrahedrons, cubes, octahedrons, 

dodecahedrons, and icosahedrons), those with more and smaller faces closely 

approximate the curved surface of the Earth that imply the least distortions (Hall et al., 

2020). The spherical polyhedrons are partitioned into smaller cells consisting of 

polygons of the same size and shape such as triangles or hexagons, and containing the 

information on the location so they can be linked to spatial data (Wang et al., 2020). 

Hexagonal cells have gained considerable attention in recent scientific literature 

because of their uniform and unambiguous geometric connectivity, equidistant 

neighbourhood and smaller average error in quantizing the sphere (Robertson et al., 

2020). In addition, research indicate hexagons have the capability to continuously cover 

the globe (Sahr, 2011) thus making them appropriate for spherical spatial analysis and 

modelling.  

The surface area and spatial resolution of hexagonal cells in a DGGS framework 

are defined in a consistent process of hierarchical subdivisions of cells. These 

subdivisions are based on the ratio of the areas of cells at two different spatial 
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resolutions k and k+1 and are termed as refinement or aperture (Mahdavi-Amiri et al., 

2015). When working with hexagons, one-to-three, one-to-four and one-to-seven 

refinements are commonly used, with apertures of 3, 4 and 7 respectively (Bousquin, 

2021). To support more resolutions, mixed aperture refinements such as 3 and 4 have 

also been developed and implemented (Wang et al., 2020). Each hexagonal cell is 

indexed with a unique identifier based on hierarchical or other indexing techniques. The 

identifier is used in the data structure to represent the location of the cell and to perform 

nearest neighbour and parent-child cell relationship functions (Alderson et al., 2020). 

Despite these characteristics, the application of DGGS with geospatial data is still 

underutilized, with majority of the existing studies focusing on simple spatial analyses 

including buffering and Boolean operations. However, geosimulation modelling 

techniques such as cellular automata (CA) have great potential to be integrated within 

DGGS to represent dynamic processes on the globe given their appropriate cell 

structure considering the spherical surface of the Earth (Li & Stefanakis, 2020). 

Cellular automata are geosimulation modelling approaches that are used to 

represent and capture the spatial and temporal characteristics inherent in dynamic 

spatial phenomena (Torrens & Benenson, 2005). CA models are governed by main 

elements namely, the regular homogenous cells or grid partition and their states, spatial 

neighbourhood, function of transition rules, and discrete time steps (Batty et al., 1999; 

White & Engelen, 2000). The function of transition rules is the key component of a CA 

model as they govern the spatial process being modelled, using information at the local 

level based on cell states within the neighbourhood surrounding the central cell. Time is 

discrete in CA models with a synchronous updating of cell states following the transition 

rules applied to every cell in a single data layer. The choice of time step is often related 

to the nature of the dynamics of the phenomenon to be represented and the available 

temporal snapshots from datasets that determine the temporal resolution of the model. 

Traditional CA models have generally been implemented with regular square 

grids although a few studies have been performed with hexagons. These applications 

include hexagonal CA models to study earth material movement (D’Ambrosio et al., 

2003), forest fire (Trunfio, 2004) and dispersion of reagents in a chemical medium 

(Adamatzky et al., 2006). Using proof of concept models, Nugraha et al. (2020) also 

performed a comparative analysis of square and hexagonal CA for urban growth 

modelling. Although these studies have highlighted the advantages of implementing CA 
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models with hexagonal cells instead of square cells, hexagonal CA have not yet been 

widely applied to simulate urban land-use change using real-world land-use datasets. 

Iovine et al. (2005) indicate that hexagonal cells provide more homogenous CA 

neighbourhoods for transition rules when implementing CA models. In addition, they 

have also been shown to better preserve the areal properties of features when 

resampling land-use/land-cover datasets especially urban land-use type (Shoman et al., 

2019). 

Given the advantages of DGGS and hexagonal cells to accommodate for the 

spherical nature of the Earth’s surface and the capability of cellular automata models in 

capturing the complexity of space-time dynamics of geospatial processes, this research 

study aims to integrate these approaches to effectively simulate and analyze the long-

term urbanization process at global spatial scale. 

3.4. Methodology 

3.4.1. Study Area and Datasets 

This research study encompasses 235 world countries as the study area, 

covering the entire landmass of the Earth, except for Antarctic and Greenland, including 

six continents: Africa (58 countries), Asia (51 countries), Europe (48 countries), North 

America (4 countries), South America (50 countries), and Australia/Oceania (24 

countries). These world countries are further grouped into 20 sub-regions according to 

United Nations geographic region classification (UN-DESA, 2021). 

The primary land-use datasets used in this research study were obtained from 

the European Space Agency Climate Change Initiative Land-Cover (ESA-CCI-LC) portal 

(ESA, 2017). This is the most comprehensive dataset for global land-use change studies 

as the data has finer spatial resolution of 300 meters and offers time series (from 1995) 

with a temporal resolution of one year (Radwan et al., 2021). The original 37 different 

land-cover types were reclassified into seven major categories: bare-land, cropland, 

grassland, forest, snow and permanent ice, urban and water bodies. The temporal 

resolution of the model was determined to be 10 years based on the time series of the 

available land-use dataset. Thus, land-use data for the years 1995, 2005 and 2015 were 

utilized in building and testing the model. Data representing protected areas including 
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parks and public lands, wildlife and biodiversity reserves, conservation sites, and marine 

protected zones collated by the International Union for the Conservation of Nature 

(IUCN) was also obtained from the World Database on Protected Areas (WDPA) online 

data catalogue (WDPA, 2020). Also, historical and projected population data between 

1995 and 2100 were acquired from the United Nations Department of Economic and 

Social Affairs (UN-DESA) online data repository (UN-DESA, 2020). The global per capita 

urban land or urban land consumption (ULC) is described as the size of urban land per 

person (Gao & O'Neill, 2019), and calculated using the total urban land size derived from 

the ESA-CCI data for 2015 and population from the UN population dataset for the same 

year, the obtained global ULC value is 97 m2. 

The modelling procedures were accomplished using hexagonal cells covering the 

global Earth surface. The spatial datasets were converted into the DGGS framework 

(Figure 3.1) with the same spatial resolution of the available global spatial datasets, thus 

mixed aperture 3 and 4 hexagonal DGGS cells were chosen with each hexagonal cell 

covering an area of 4.5 km2 with a side length of 1.3 km and long diagonal of 2.6 km. 

 

Figure 3.1. Global land-use data for year 2015 resampled into DGGS framework 
where each hexagonal cells covers 4.5 km2 surface area. 
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3.4.2. Spherical CA Model Overview 

The proposed spherical CA model is composed of two sub-model components: a 

top-down Urban Demand Model (UDM) and a bottom-up Urban Growth Simulator 

(UGS). The overall workflow of the model is presented in Figure 3.2.  

 

Figure 3.2. Conceptual framework of the spherical CA model for long-term 
simulation of global urbanization process. 
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The UDM component computes the total urban land demand for all 235 world 

countries at a 10-year temporal resolution based on historical land-use data and 

population growth trends using a regression function. These national urban demand 

figures are used as input and constraint parameter for spatializing urban land-use 

change in the UGS model. Specifically, the model uses past population and urban land-

use data to determine the relationship between urban expansion and population change 

and computes future urban demand based on projected population for each country. 

The function of the UGS model component is to simulate the dynamics of urban 

development. The UGS component of the model is based on a spherical CA model that 

uses hexagonal spatial tessellation and can be formulated as: 

 𝑆𝑖𝑗𝑘
𝑇𝑖+1 = 𝑓 (𝑆𝑖𝑗𝑘

𝑇𝑖 , 𝐻𝑖𝑗𝑘
𝑇𝑖 ) (1) 

where f represents the function of transition rules that govern how the state of a 

hexagonal cell 𝑆𝑖𝑗𝑘
𝑇𝑖  change from time Ti to a new state 𝑆𝑖𝑗𝑘

𝑇𝑖+1 at the subsequent time step 

Ti+1, 𝐻𝑖𝑗𝑘
𝑇𝑖  represents the hexagonal neighbourhood of six cells surrounding the central 

cell at time Ti at location (i,j,k). The location of each cell is determined using the 

hexagonal coordinate system which has three natural axes spaced 120° apart, denoted 

as i, j and k. The neighbourhood of each cell can be defined using the hexagonal 

coordinate system. 

To represent the dynamics of urban development in different regions and 

countries, multiple transition rules were implemented. The UGS model contains sub-

region transition rules which ensures that countries in the same region with similar 

population growth and urban land-use change trends have the same simulation 

parameters. Four different transition rules were selected based on the observed 

historical population change dynamics and urban land-use change rate, thus they 

influence the speed and the shape of urban development in a particular region. During 

each iteration, existing urban cells remain unchanged as well as those classified as 

snow, ice, and water bodies. The UGS model also incorporates the impact of urban 

development restrictions and constraints. For every iteration, the model verifies if the 

number of simulated cells has reached the urban demand for each country and updates 
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the land-use data representing new input for the subsequent iteration until the final 

simulation has been completed. 

Based on the United Nations population projections (UN-DESA, 2020), two 

distinct population growth scenarios are developed to characterize global urban 

expansion under different population growth dynamics: scenario 1, zero-migration, and 

scenario 2, constant-fertility. Generally, zero-migration has a lower population growth 

trend than the constant-fertility scenario. The zero-migration scenario assumes no 

migration between countries with medium fertility and mortality rates. Under the 

constant-fertility scenario, fertility levels remain unchanged at the level estimated for the 

previous period with normal mortality and international migration rates. 

3.4.3. Model Evaluation and Implementation 

The spherical CA model was operationalized using DGGRID (Sahr, 2020) and 

Uber’s H3 open-source DGGS library (Uber Technologies Inc, 2020) and code from the 

Python programming language (Van Rossum & Drake, 2009). DGGRID is an open-

source library designed to generate multi-resolution spherical cells with hierarchical 

indexes and supports both the Icosahedral Snyder Equal Area (ISEA) projection and the 

R. Buckminster Fuller Icosahedral projection. 

The developed model was evaluated by performing model calibration and 

validation. In this research study, datasets for the period 1995-2005 were used to 

calibrate and then 2005-2015 to validate the spherical CA model. Calibration was 

accomplished to obtaining appropriate transition rules by adjusting the simulation 

parameters after multiple runs of the model. To validate the model, the model was run to 

simulate urban land-use change between 2005 and 2015. After each iteration run, the 

simulated output is assessed against actual land-use data using standard simulation 

output comparison metrics such as the Figure of Merit (FoM) index (Varga et al., 2019) 

that can be calculated as: 

 
𝐹𝑜𝑀 =  

𝐵

𝐴 + 𝐵 + 𝐶
 

(2) 
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where A is the number of actual changed cells simulated as non-changed cells; B is the 

number of actual changed cells simulated as changed cells; and D is the number of 

actual non-changed cells simulated as changed cells. In this research study, as only 

urban land-use change was modelled and urban cell states do not change during the 

simulations, the Figure of Merit index is composed of three components. 

To enable model comparison, a raster grid CA was also implemented with the 

same model mechanism and parameters as the spherical CA model. All spatial datasets 

used in the raster CA model are reprojected into the Goode’s Homolosine equal-area 

projection with a spatial resolution of 2.12 km, and consistent with the size of hexagonal 

cells in the spherical CA model. The global raster CA model was implemented with the 

Moore neighbourhood configuration. 

The obtained values for FoM for the spherical CA model calibration and 

validation were 40.2% and 38.7% respectively. This is comparatively better than the 

FoM values computed for the raster CA model with 33.1% and 28.5% for calibration and 

validation respectively. The FoM values obtained from the spherical CA model were 

relatively better than the results of other global land-use change simulation models such 

as Cao et al. (2019), Chen et al. (2020), and Li et al. (2017) who obtained average FoM 

values of 28%, 24.4% and 19% respectively in these research studies. 

3.5. Results 

3.5.1. Simulation Results of Global Urbanization Process 

Figure 3.3 presents the simulation results of urban land-use change at the global scale 

for 2095 under both scenarios and for selected geographic regions.  
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Figure 3.3. Generated simulation results showing urban growth at various 
scales for year 2095 in a) North America, b) Asia, and c) Africa, 
under zero-migration and constant-fertility scenarios. 
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Comparatively, the simulated urban growth was more extensive under the 

constant-fertility than the zero-migration scenario. The obtained simulation results from 

the spherical CA model indicate the total global urban extent by the year 2095 amounts 

to 1.24 million km2 under the zero-migration scenario and 1.56 million km2 for the 

constant-fertility scenario. Under zero-migration scenario, the total global urban extent 

simulated between 2015 and 2095 represents a growth of 0.47 million km2, while the 

total urban area under the constant-fertility scenario increases by 0.78 million km2 which 

corresponds to 62% and 105% urban expansion respectively. The global urban land 

consumption also rises from 97 m2 in 2015 to 133 m2 and 168 m2 in 2095 under zero-

migration and constant-fertility respectively, which represents an increase of 37% under 

the zero-migration scenario and 73% under constant-fertility. 

Although the simulation results reveal urban expansion would occur in all regions 

across the globe, differences in urban expansion patterns can be observed and 

expressed in the urban land size values and rates of urban expansion. Figure 3.4a 

presents values obtained for continental contribution to total global urban expansion in 

the period from 2015 to 2095 while Figure 3.4b displays the rates of urban expansion 

under both scenarios. The rate of urban expansion has been derived as the change in 

urban extent between base year 2015 and last year 2095, compared to the base year 

and expressed as percentage. The total simulated urban area per continent in the period 

from 2015 to 2095 is also presented in Table 3.1. 

According to the simulation results, Asia will continue to be the hot spot of 

urbanization, with nearly half of the global urban growth between 2015 and 2095 

occurring in Asia (Figure 3.4a). In terms of urban land size, the results further indicate 

the total urban extent of cities in Asia will expand by 0.21 million km2 under zero-

migration and 0.32 million km2 under the constant-fertility scenario. By the year 2095, the 

urban extent of Asia will account for 40% of the total global urban extent under the 

constant-fertility scenario. Simulation outputs from the model demonstrate that Africa will 

also contribute a significant amount of urban expansion to the total global urban extent, 

accounting for 27% of the total urban expansion that will occur between 2015 and 2095 

under the constant-fertility scenario. Together, Asia and Africa will account for 65% of 

the global urban expansion simulated between 2015 and 2095 under zero-migration and 

68% in the constant-fertility scenario. Although Asia will contribute the largest urban 

extent, cities in Africa are shown to have the highest rates of urban expansion. The 



68 

simulation outputs indicate that urban areas in Africa will expand by 210% under zero-

migration and 470% in the constant-fertility scenario (Figure 3.4b). 

 

Figure 3.4. Obtained values in (%) for continental (a) contribution to overall 
global urban expansion, and (b) rates of urban expansion between 
2015 and 2095 under both scenarios. 

Compared to Asia and Africa, developed regions like Europe and North America 

are indicated to have relatively lower rates of urbanization under both scenarios. 

Although the urban land-use growth in percentage terms is smaller than what simulation 

results show for Asia and Africa, the spatial extent of urban growth in developed regions 

is still significant. Under the constant-fertility scenario for example, the total urban area in 

Europe increases by 101 thousand km2, whereas the total urban area of Africa expands 

by 222 thousand km2 in the period from 2015 to 2095. However, the results indicate the 

rate of urban expansion in Africa will be 9 times more than that of Europe which is 

mainly due to the relatively small coverage of Africa’s urban extent in 2015. For instance, 
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in 2015, the total urban extent of Europe (including Russia) was 202 thousand km2 while 

Africa only had 47 thousand km2 of urban land.  

Table 3.1. Simulated urban land-use growth (in thousand km2) by continent 
between 2015 and 2095 under scenario 1 zero-migration, and 
scenario 2 constant-fertility. 

Continent Scenario 2015 2025 2035 2045 2055 2065 2075 2085 2095 

Africa 
1 47.1 60 73.5 87.7 101.6 114.5 126.3 136.9 145.9 

2 47.1 60.2 76.6 96.9 121.9 151.3 185 224.3 268.7 

Asia 
1 269.1 323 368 403.5 430 448.5 462.4 473.2 481.6 

2 269.1 335.6 393.7 408.1 451.1 489.2 524.1 558.4 593.1 

Europe 
1 202.3 215.5 225.8 235.3 243.8 251.9 259.1 264.9 270 

2 202.3 221.6 236.8 250.7 263.6 275.5 286.2 295.2 303.1 

North America 
1 159.9 173.6 186.5 196.7 204.8 213.1 220.8 226.8 232.1 

2 159.9 178.6 196.1 209.9 221 232.3 243 251.4 258.8 

Australia/ 
Oceania 

1 16.3 17.7 18.2 18.4 18.5 18.5 18.5 18.5 18.5 

2 16.3 18.1 19.7 21.2 22.6 24.1 25.5 26.9 28.5 

South America 
1 66.5 75.1 81.9 86.1 88.5 89.6 90 90.1 90.1 

2 66.5 73.8 81 87.2 92.3 96.9 101 104.7 108.1 

 

In terms of the relationship between population growth and urban development, 

the simulation outputs indicate that most regions would have increased urban land 

consumption values. Though population growth in developed countries is projected to 

stagnate in the coming decades with some regions experiencing negative population 

changes, reasonable urban development was still simulated. The ULC in Europe will 

increase from 272 m2 in 2015 to 447 m2 and 502 m2 in 2095 under zero-migration and 

the constant-fertility scenarios respectively. In contrast, Asia and Africa have the lowest 

levels of ULC in comparison to the other continents despite having the highest rates of 

urbanization. For the zero-migration scenario, the ULC of Asia increases from 61 m2 in 

2015 to 102 m2 in 2095 whilst that of Africa increases from 40 m2 to 45 m2 within the 

same period. Compared to all regions, Asia will have the largest change in urban land 

consumption by the year 2095 under both scenarios. 
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3.5.2. Regional and Sub-regional Variations of Urban Land-use 
Growth 

When looking further into the 20 world sub-regions, it has been noticed that 

different dynamics of urban land-use change has occurred. Figure 3.5a presents the 

graph with comparisons of total simulated urban land by 2095. The rates of urban 

expansion at the sub-regional level is also presented in Figure 3.5b. Simulation results 

indicate that Eastern Asia will have the most extensive growth of cities with the urban 

extent of this sub-region expanding by 116 thousand km2 under zero-migration and 142 

thousand km2 under constant-fertility. Under the constant-fertility scenario, 56% of the 

total simulated urban expansion on the Asian continent will occur in Eastern Asia.  

 

Figure 3.5. Values for 20 world sub-regions (a) total simulated urban area 
between 2015 and 2095, and (b) rate of expansion at the sub-
regional level under both scenarios. 
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3.5.3. Country Level Variation of Urbanization Growth 

Figure 3.6 presents the values of urban growth change in countries with largest 

urban extent in each sub-region under both scenarios. At the country level, the 

simulation outputs demonstrate China, the United States, Russia, and India will have the 

largest urban extent globally by the year 2095. Under the constant-fertility scenario, the 

total urban extent of these four countries will account for 37% of the global urban extent 

by the year 2095. These countries are also indicated to contribute 32% of the global 

urban expansion that will occur between 2015 and the end of the century under the zero-

migration scenario. 

 

Figure 3.6. Obtained simulation values for countries with the largest urban size 
in each sub-region for the year 2095 compared with the base year 
2015. 

Using the United States, China, and Nigeria as examples of countries with 

different dynamics of urbanization, distinct urban land-use growth patterns emerge. 

Urbanized countries like the United States have a relatively slow rate of urban expansion 

while urbanization in China continues at a steady rate. Using the constant-fertility 

scenario as an example, the rate of urban expansion of the USA and China will be 62% 

and 91% respectively. Also, the total urban extent of the United States is calculated to 

reach 232 thousand km2 while that of China will expand to 238 thousand km2 by the year 

2095 under the constant-fertility scenario (Figure 3.6). On the other hand, the urban 

extent of Nigeria will continue to expand rapidly with the total urban area reaching 48 
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thousand km2 by the year 2095. This increase represents an urban expansion rate of 

644%. 

In addition to the global, continental, and country level urban expansion 

simulation analysis, urban development trends at the metropolitan level were also 

evaluated. Figure 3.7 depicts maps with the simulated urban growth for specific 

metropolitan areas that exhibit different urbanization dynamics in the period from 2015 to 

2095 under the two scenarios. In this research study, metropolitan areas are 

characterized as slow if its obtained urban expansion rates are lower than 100%, 

moderate if between 100% and 200%, and rapid if the obtained values are higher than 

200%. Based on the obtained simulation results and rates of urban expansion at the 

metropolitan level, different cities can be classified as slow (e.g., Chicago, Paris, Sao 

Paulo, London), moderate, (e.g., New Delhi, Johannesburg, Moscow, Mexico City) and 

rapidly urbanizing (e.g., Beijing, Lagos, Cairo, Bangkok). Metropolitan areas of Chicago 

(Figure 3.7a), Beijing (Figure 3.7b), and New Delhi (Figure 3.7c) are used as examples 

of metropolitan regions with these distinct urbanization rates in the period from 2015 to 

2095. The simulation results also indicate variations in the size of the extent of urban 

areas among the three classes of metropolitan regions. For slow urbanizing metropolitan 

regions like Chicago, London and Paris, there are no substantial growth in urban extent 

between 2015 and 2095. However, metropolitan areas labelled as rapid urbanization 

such as Beijing, Cairo, and Lagos experience significant increase in urban extent 

between the same period. Moderate urbanization regions like Johannesburg, Moscow 

and New Delhi also show considerable increase in urban extent although less than what 

is seen in rapid urbanization cities. 
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Figure 3.7. Simulated urban extent for year 2095 under zero-migration and 
constant-fertility scenarios in comparison with initial urban extent at 
year 2015 in selected metropolitan regions a) Chicago, USA, b) 
Beijing, China c) New Delhi, India, and d) Lagos/Ibadan 
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From Figure 3.7 it can be observed that smaller cities at the outskirt of the 

metropolitan core experience less urban growth under zero-migration while in the 

constant-fertility scenario, all metropolitan areas including the core and peripheries 

experience extensive urbanization. Moreover, the urban expansion rates of these 

metropolitan regions are faster than that of their respective countries’ averages, 

especially under the constant-fertility scenario. As cities expand outward and towards 

each other, regions with multiple metropolitan cores are merging into larger continuous 

urban agglomerations or megapolis especially in regions with rapid urban expansion 

rates as can be seen in the Beijing-Tianjin-Hebei (Jing-Jin-Ji) and Lagos/Ibadan regions 

as depicted in Figures 3.7b and 3.7d respectively. 

3.6. Discussion  

This research study proposed and implemented a spherical cellular automata 

modelling approach to address global and long-term forecast of urban land-use change. 

The presented model is intended to provide a new and different spatial framework for 

representing and evaluating urbanization process while considering the global scale and 

Earth’s curvature. Based on obtained results the model was capable of realistically 

representing the global urban land-use change and FoM values for model evaluation 

indicate the proposed model performs better than the corresponding raster CA model in 

simulating urban land-use change. The total global urban land size obtained from the 

spherical model for the year 2015 was 763 thousand km2 and is commensurate with 

calculations of other scholars such as Kuang (2019) and Gong et al. (2020) who used 

finer 30-meter spatial resolution data and divided the Earth surface into 583 sub-grids to 

compute the global urban land size. The developed spherical CA model simulated a total 

global urban extent ranging between 1.24 and 1.56 million km2 by the year 2095 for the 

two scenarios which is consistent with the study of Gao and O’Neill (2020) who projected 

a total global urban extent of 1.6 million km2 close to the end of the 21st century. In 

addition, the total simulated urban extent of China and USA for the year 2095 is 

comparable to the simulation outputs obtained by Li et al. (2019). Obtained simulation 

results are also coherent with urban land-use change theories and research findings. For 

example, it is widely known that cities are becoming more expansive as the rate of urban 

growth is higher than the population change (Angel et al., 2011). Thus, the urban land 
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consumption for most countries based on the simulation outcomes increase over time 

which indicate unsustainable urban development. 

The obtained simulation results are consistent with the literature and confirm that 

in the next few decades, the urbanization process in developing countries would be 

more extensive and rapid compared to that of developed countries (Seto et al., 2012). 

Developing countries particularly in Africa and Asia will experience the most dramatic 

change in growth of cities and urbanization. For example, altogether, cities in China, 

India, Nigeria, Pakistan, Egypt, and Russia account for 33% of new urban areas by the 

year 2095 under the constant-fertility scenario, reaching almost an area about the size of 

the United Kingdom. In addition, more than two thirds of the global urban growth 

simulated between 2015 and 2095 will take place in Africa and Asia (Huang et al., 2019) 

which is coherent with the obtained results from this spherical modelling approach.  

Given that developing countries are more at risk from environmental problems 

caused by urbanization and land-use change, and least able to remedy its 

consequences, the economic, social and environmental gaps between advanced and 

developing countries is likely to worsen. This means that the UN’s Sustainable 

Development Goals (SDG) (UN-DESA, 2020) regarding urban development, 

environmental conservation, and reducing inequality between countries are unlikely to 

be achieved. There is however still a window of opportunity to formulate and implement 

sustainable urban policies and conservation schemes at global level to handle the 

negative impacts of rapid urbanization for this century. If these policies are well 

formulated and implemented, cities in developing countries could become engines of 

economic development. The comprehensive observation of the global urbanization 

process, predominantly in developing countries is important in attaining the UN’s SDGs 

(Sun et al., 2020) and the proposed new spherical cellular automata model from this 

research study can contribute to the improved long-term planning at the global level. 

3.7. Conclusions 

Urbanization is often seen as a local phenomenon with most urban land-use 

geosimulation models implemented to simulate land-use change are designed to 

operate at the local and regional scales. However, the consequences of the urbanization 

process have several environmental impacts that also include the global scale. Existing 
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global urban land-use models mostly depend on the raster datasets from remote sensing 

and GIS data, thus do not consider the effects of geometric distortions due to the nature 

of Earth surface. This research study and proposed spherical automata model 

represents a first step towards developing the spherical modelling framework for 

representing long-term global urbanization process and considering the curved Earth’s 

surface.  

Although the simulation results from the proposed model are in agreement with 

results obtained from other global urban land-use studies, this research study has some 

limitations and can further be improved by using factors like population density, gross 

domestic product (GDP) and other drivers of urban land-use change or including multi-

criteria evaluation to further guide transition rules. The estimation of the urban land 

demand using only population data is insufficient as urbanization is influenced by other 

factors such as economic growth, technology, political conditions, etc. This limitation 

could lead to underestimation of urban growth in some countries where urban 

development is not strongly associated with population growth. Additionally, the model 

could be enhanced if datasets containing wider number of land-use classes and finer 

spatial or temporal resolution such as for example Sentinel 2A global land-use/land-

cover data, however assuming the global coverage is available, this would demand 

higher computational power to execute the model. In addition, the model can be 

amended by exploring multiple scenarios related to climate change, decrease of rainfall 

and sea level rise. It would be beneficial to include multiple indicators to estimate urban 

land demand as well as other scenarios such as the Shared Socioeconomic Pathways 

(SSP) and incorporating Earth systems model components with the S-CA to represent 

the feedback between urban land-use change and other natural systems. 

The proposed spherical cellular automata approach implemented in this research 

study has the potential to be used as a tool to assess present and future global long 

term urbanization planning strategies, to evaluate possible challenges associated with 

environment and climate change due to anthropogenic effects and to explore ecological 

risks. The model outputs can also be an important source of information for global policy 

building for regional or intergovernmental bodies like the United Nations and its 

agencies. 
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Chapter 4.  
 
Integrating Multi-criteria Analysis and Spherical 
Cellular Automata Approach for Modelling Global 
Urban Land-use Change3 

4.1. Abstract 

Existing geosimulation land-use change models are predominantly designed to operate 

at local or regional spatial scales. When these models are applied on data at the global 

level, they do not consider the effects of spatial distortions caused by the curvature of 

the Earth’s surface and often lack some refinements related to land suitability analysis. 

Therefore, the main objective of this study is to integrate multi-criteria evaluation with 

spherical cellular automata, to develop a novel modelling approach for simulating global 

urban land-use change. The world region is clustered into sub-regions to improve the 

suitability analysis. The obtained results reveal differences in urban growth rate and the 

size of the extent across the four clusters. The 64% of the total global urbanization are 

occurring in urban region clusters characterized by high gross domestic product and 

population density, while urban regions in isolated locations have the lowest urban 

growth rate. 

4.2. Introduction 

Land-use and land-cover changes can be perceived as a complex dynamic 

spatial system that characterize the alteration of the Earth surface mainly through human 

activities thus having different consequences on the natural environment (Turner et al., 

2021; Winkler et al., 2021). Urban land-use change research studies have become 

prominent in the past decades due to the several global sustainability problems and 

consequences associated with urban sprawl (Nuissl & Siedentop, 2021). To examine 

and model urban land-use dynamics, a number of spatially explicit land-use change 

models reported in the scientific literature were designed mainly for small scale 

 

3 A version of this chapter is published: Addae, B., & Dragićević, S. (2023). Integrating multi-
criteria analysis and spherical cellular automata approach for modelling global urban land-use 
change. Geocarto International, 38(1). 
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applications. The utilization of these models for simulating urban land-use change 

patterns and possible future scenarios at larger spatial scales poses challenges that are 

peculiar to spatial modelling at the global scale. 

Urban land-use models that represent the dynamics of change generally use 

geospatial data from remote sensing (RS) and geographic information systems (GIS) 

predominantly in raster GIS data format, thus they are implemented with traditional two-

dimensional (2D) spatial tessellation. While such models are suitable to address 

dynamics of urban land-use change at the local or regional levels, this however is not 

suitable when addressing global modelling due to spatial distortions caused by the 

curvature of the Earth surface. Distortions are minimal at the local level but are however 

pronounced at larger spatial scales which incur errors in some spatial and statistical 

analyses especially at the global level (Ellis et al., 2021; Hall et al., 2020). For example, 

the shape and size of geospatial data represented in geographic coordinate system 

(GCS) change from square cells at the equator to triangles at the poles (Hojati et al., 

2022; Zhai et al., 2010). Although equal-area projections such as Goode's Homolosine 

and Cylindrical equal-area are often used for large scale spatial analysis, global land-use 

change models implemented with these projections however produce spatial distortions 

(Cao et al., 2019; Li et al., 2017). Further, commonly used global equal-area projections 

still have area and shape distortions when used to represent global raster datasets (de 

Sousa et al., 2019). Discrete global grid systems (DGGS) have been developed as 

spatial referencing system which utilizes spherical tessellations to better represent the 

Earth’s surface (Purss et al., 2019). DGGS provide a geospatial framework for global 

spatial analyses and modelling with equal surface area cells. DGGS also supports 

multiple cell typologies including hexagonal grids, which have been receiving 

considerable interest recently because of the advantages they offer over square and 

triangle cell types when used for geospatial operations. For instance, hexagonal cells 

have uniform adjacency and neighbouring relationships and can closely approximate 

circular regions (Sahr, 2011; Zhao et al., 2022). Among regular cells, hexagons are the 

most compact in tessellating the sphere (Robertson et al., 2020). When used to 

implement cellular automata (CA) models, hexagonal cells also provide unambiguous 

spatial neighbourhood and have been indicated to produce more accurate outputs 

compared to square cells (Iovine et al., 2005; Nugraha et al., 2020). Hexagonal DGGS 

as a geospatial data model can offer appropriate basis for spatial analysis and 
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simulation at the global level (Kiester & Sahr, 2008). Spherical CA also provide an 

suitable grid topology for modelling and understanding naturally closed systems at the 

global scale (Ventrella, 2011). In a hexagonal grid, the relative location and 

neighbourhood of cells can be defined using the hexagonal coordinate system which has 

three coordinate axes that are evenly spaced apart and are usually denoted as 𝑖, 𝑗, 𝑘. A 

central cell has six neighbouring cells that are equidistant from each other thus making 

the neighbourhood more compact. Measuring distance on the hexagonal grid can be 

expressed as the number of cell rings from the origin (Li & Stefanakis, 2020). 

Existing global urban land-use change modelling approaches simulate urban 

change using mainly SLEUTH (Zhou et al., 2019), probabilistic (Seto et al., 2012), 

cellular automata (Li et al., 2016), statistical (Gao & O'Neill, 2019), and machine learning 

techniques (Chen et al., 2022). Although these modelling techniques are capable of 

representing the determinants of urban land-use change and simulating land-use 

patterns, the underlying techniques in these models have been criticized for lack of 

integration of decision-making capabilities (National Research Council, 2014; Verburg et 

al., 2015). Multicriteria evaluation (MCE) techniques have been developed and widely 

adopted as GIS-based decision-making approaches for solving spatial problems 

(Malczewski, 1996). MCE provides a collection of methods and procedures for 

structuring and solving decision problems involving multiple criteria and when integrated 

with GIS can assist in broad range of spatial and geographical applications (Malczewski 

& Jankowski, 2020). MCE can be utilized in characterizing decision-making processes of 

various stakeholders and subject experts to solicit their opinions in various stages from 

choice of criteria to weights. In addition, in land-use change modelling, MCE is often 

coupled with cellular automata (CA) to enhance the function of transition rules (Cao et 

al., 2014; Wu & Webster, 1998) that improves model capacity to forecast. There has 

been a significant number of studies that have incorporated MCE methods in CA models 

of urban land-use change to improve the simulation abilities (Masoudi et al., 2021; 

Mohamed & Worku, 2020; Rimal et al., 2018). However, these studies are conducted at 

smaller spatial extents with majority of them operationalized at the city or metropolitan 

region level. Currently, there are no available MCE-CA methods designed to simulate 

urban development at global scale. 

Given the capabilities of cellular automata to capture local interactions and 

complexity of space-time dynamics of urban land-use process, the merit of MCE in 
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representing human decision-making for land suitability analysis, and DGGS hexagonal 

grids in tessellating spherical surfaces, the main objective of this research study is to 

develop and implement a novel global MCE spherical-CA (MCE-S-CA) model to 

simulate urban land-use change. The proposed model can be utilized by various 

stakeholders and interested parties to simulate possible future global scale urban growth 

scenarios and examining the causes and effects of urban land-use change on the 

environment. 

4.3. Methodology 

4.3.1. Datasets 

Several geospatial datasets that allow for global Earth coverage have been used 

in this research study. Due to the unavailability of datasets originally captured in DGGS 

formats, the study utilized existing geospatial datasets in geographic coordinate system 

(GCS). Datasets for the years 1995, 2005 and 2015 were used to implement and 

evaluate the proposed MCE-S-CA model. Global land-use/land-cover data were 

acquired from the European Space Agency portal (ESA, 2017). Gridded population 

density dataset was obtained from LandScan (Rose et al., 2020) and gross domestic 

product (GDP) from National Centers for Environmental Information (NCEI) (Ghosh et 

al., 2011). Location of protected areas were obtained from the World Database on 

Protected Areas (WDPA) online data catalogue (WDPA, 2020). Global digital elevation 

model (DEM) was acquired from the United States Geological Survey (USGS) data 

portal (USGS, 2020). Also, global road dataset was obtained from the Global Road 

Inventory Project (Meijer J.R. et al., 2018). The proposed modelling framework utilizes 

data that are mapped to a specified DGGS consisting of hexagonal cells with each 

covering an area of 0.63 km2 with edge and long diagonal dimensions of 0.49 km and 

0.99 km respectively thus used as the spatial resolution of the model. The conversion of 

existing spatial datasets to DGG cells follows the techniques described in Robertson et 

al. (2020). 

4.3.2. Model Overview 

The systematic workflow of the proposed MCE-S-CA model is presented in 

Figure 4.1 and consists of four main steps. The first step entails creating geospatial 
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database and defining the decision problem which in this context involves finding 

suitable locations for urban development at the global scale and considering the 

spherical Earth surface. Subsequently, criteria that are relevant to urban development 

are identified within the urban science literature and corresponding suitability functions 

are developed for each of them. 

 

Figure 4.1. Workflow of the MCE-S-CA modelling framework for simulation of 
the long-term urban growth dynamics at the global scale. 

The second step comprises sensitivity analysis of selected criteria and 

classification of urban regions into clusters based on their similarities. Sensitivity 

analysis was performed to evaluate the influence of the selected criteria on overall 

suitability analysis. Global urbanization is characterized by diverse dynamics of various 

regions represented by different criteria that need different preferences. The clustering 

was used to identify urban regions with similar characteristics and then grouped into 

urban region clusters to enhance the suitability analysis. 
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The third step involves implementing GIS-MCE by generating criteria weights 

which reflect the relative importance of each criterion in the decision-making process. 

Given that actual stakeholders were not involved in this process, Cohen’s d criteria 

weight method has been applied to derive the values for the weights. Within the 

hexagonal data framework, criteria and weights were standardized to obtain the overall 

suitability values. The analysis is performed for each urban region cluster and combined 

to form the global suitability map which is then used as input to the spherical cellular 

automata (S-CA) model.  

In the fourth step, the model is evaluated and then implemented to simulate 

urban land-use change. The temporal resolution of the model was determined to be 10 

years based on the time interval of the available land-use datasets used in building and 

evaluating the model. This time period is also adequate to monitor and quantify the 

urban land-use change across the globe. Model evaluation comprises calibration using 

datasets for year 1995 and 2005 and validation using 2005 and 2015 data. For the 

period from 2015 to 2095 with each iteration corresponding to 10 years, the S-CA model 

generates the simulation outputs of urban land-use change based on obtained suitability 

values and considering national urban demand data and protected regions as 

constraints. The detailed description of each step of the proposed MCE-S-CA model is 

presented in the following sub sections. 

4.3.3. Selection of Criteria and Suitability Functions 

The identified criteria for this research study can be classified into three groups: 

socio-economic, biophysical, and proximity. Table 4.1 presents all selected criteria and 

their respective suitability functions in vertex notation and for GIS data layers with 

hexagonal cells. Suitability function values span from 0 to 1, where 1 indicate a full 

satisfaction for a criterion and 0 no satisfaction. Figure 4.2 was generated to present the 

spherical maps for all the criteria however depicted only for North America due to 

simplicity reasons. For each criterion, locations with maximum suitability are indicated in 

darker shades of brown while unsuitable locations are depicted in light brown. 
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Table 4.1. Identified criteria and their respective suitability functions in vertex 
notation with justifications. 

Group Criteria Suitability 
functions 

Units Justifications 

Socio-
economic 

Gross domestic 
product (GDP) 

GDP = [(816,1), 
(0,0)] 

Million 
dollars per 
cell 

Higher economic development boosts 
further urban development (Mahtta et 
al., 2022) 

 Population 
density 

Population = 
[(64161,1), (0,0)] 

Inhabitants 
per cell 

New urban development generally 
occurs closer to densely populated 
areas (Li & Cao, 2019) 

 Biophysical Slope Slope = [(5,1), 
(50,0)] 

Degrees Areas with gentle slopes are preferred 
for urban development (Yan et al., 
2020) 

 Elevation Elevation = 
[(100,1), (4000,0)] 

Metres Areas at lower elevation are more 
suitable for urban development 
(Mohamed & Worku, 2020) 

 Proximity Proximity to 
coast & inland 
water bodies 

Water = [(0.99,1), 
(4.95,0)] 

Kilometres Water bodies provide scenic views 
and recreational activities (Zhao et al., 
2021) 

 Proximity to 
commercial 
areas 

Commercial = 
[(0.99,1), (9.9,0)] 

Kilometres Proximity to commercial areas 
provides economic services and 
opportunities (Musa et al., 2019) 

 Proximity to 
exiting urban 
areas 

Urban = [(0.99,1), 
(4.95, 0)] 

Kilometres Urban expansion typically occurs in 
proximity to existing urban 
development (Rimal et al., 2018) 

 Proximity to 
major roads 

Road = [(0.99, 1), 
(5.94, 0)] 

Kilometres Connection to transportation networks 
enhances urban development (Yang 
et al., 2018) 

 
 

The socio-economic criteria consist of gross domestic product (GDP) and 

population density. The maximum and minimum values were utilized in developing the 

GDP and population density suitability functions based on previous studies (Feng et al., 

2019; Zhang et al., 2020) that applied socio-economic criteria for analysing urban 

development suitability. Economic factors are a major determinant of urban development 

and high GDP is often used as an indicator for high economic activities (He et al., 2014). 

Areas with high economic activities provide job opportunities as well as financial capital 

for urban development, thus there is a strong correlation between economic 

development and urban expansion (Mahtta et al., 2022). The GDP suitability function 

(Figure 4.2a) is expressed as a linear membership where locations of highest 

satisfaction are for a value of 816 million dollars per cell which represents the maximum 

GDP value obtained from the available GDP data. High population density create high 
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demand for urban development and are often preferred for future development by urban 

developers (Kim et al., 2020; Wu et al., 2021). These areas also indicate existing 

support for urban land development. New urban development tends to occur in and 

around densely populated areas (Bagan & Yamagata, 2015). The population density 

suitability function utilizes a linear membership based on the obtained maximum value 

from the available data which is 64,161 inhabitants per hexagonal cell (Figure 4.2b). 

 

Figure 4.2. Criterion maps of North America only and based on suitability 
functions for each criterion: a) GDP, b) Population density, c) Slope, 
d) Elevation, e) Proximity to coast & inland water bodies, f) 
Proximity to commercial areas, g) Proximity to exiting urban areas, 
and h) Proximity to major roads. 

Within the biophysical group are slope and elevation criteria. These two criteria 

can provide physical limitations to urban development. Generally, flat and gentle slopes 

are more prone to have urban development as it demands less cost and susceptible to 

surface run-off and soil erosion (Steiner et al., 2000; Zhou et al., 2021). For the slope 

suitability function (Figure 4.2c), gradients less than 5º yield maximum satisfaction and 

slopes steeper than 50º are considered unsuitable. Elevation can influence urban 

development especially in regions with rugged terrain. Urban development in higher 

elevation areas increases cost of construction and transportation. Generally, majority of 

urban development worldwide occurs in areas with lower elevation (Kii & Nakamura, 

2017). However, there are selected cities in high elevation for example Calgary, Canada, 

Denver, US, La Paz, Bolivia, Quito, Ecuador, Bogota, Columbia, and Addis Ababa, 

Ethiopia, thus they are taken into consideration for the choice of 4,000m as the 
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maximum elevation. The suitability function (Figure 4.2d) is fully satisfied in locations 

where elevation is less than 100m and decreases with increasing elevation after 100m 

with no satisfaction above 4,000m. 

The proximity criteria comprise of proximity to coast & inland water bodies, 

commercial areas, existing urban areas, and major roads. Proximity to coast and inland 

water bodies provide natural scenery, good views, and opportunities for recreational and 

sporting activities (Zhao et al., 2021). New urban development typically occurs closer to 

these areas due to the services they offer (Cai et al., 2018). The approximated distance 

of 5km was used as research suggest services provided by water bodies decreases 

significantly after 5km (Baró et al., 2016; Wen et al., 2017). The suitability function 

proximity to coast & inland water bodies (Figure 4.2e) has no satisfaction in locations 

within 0.99km of coastline and water bodies due to the risk of flood. This distance is 

equivalent to one hexagonal cell in the spatial data layer. The suitability function has 

maximum satisfaction after 0.99km and decreases monotonically with no satisfaction 

beyond 4.95km which corresponds to five rings of hexagonal cells. 

Jobs and employment opportunities are usually concentrated in the commercial 

areas of cities and also offer agglomeration advantages (Gharaibeh et al., 2020). People 

prefer to live closer to where they work to reduce the time and cost of commuting. Prior 

studies indicate compact urban growth is typically concentrated within 10km distance of 

commercial areas (Cengiz et al., 2022). The proximity to commercial areas suitability 

function (Figure 4.2f) is fully satisfied in locations within 0.99km of commercial areas and 

decreases with increasing distance with no satisfaction beyond 9.9km that is 

represented by 10 hexagonal cells. 

Proximity to existing urban areas criterion depict the influence of urban 

development process as the closer a parcel of land is to urban areas, the easier it is for 

developers to build new residential areas (Wu & Yeh, 1997). Urban areas provide 

access to good road networks, already existing amenities, and commercial services 

among others (Bhatta, 2010). Research confirms urban land develops near existing 

urban areas and 5km is typically used as the maximum distance for suitability in urban 

land-use change studies (Rimal et al., 2018). The suitability function for proximity to 

existing urban areas (Figure 4.2g) is fully satisfied in locations within 0.99km of existing 
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urban areas and decreases after 0.99km becoming unsuitable beyond 4.95km while 

considering the size of the hexagons. 

Major roads link urban areas together, boost fringe development and provide 

access to amenities hence, urban development usually occurs in areas with access to 

major roads (Luo & Wei, 2009). The chosen distance for the suitability function is based 

on studies by Yang et al. (2018) who indicated no significant change in urban 

development suitability beyond 6km of major roads. The suitability function proximity to 

major roads (Figure 4.2h) yields maximum satisfaction in locations within 0.99km of 

major roads and decreases gradually with no satisfaction after 5.94km, and the distance 

is equivalent to six hexagonal cells. 

4.3.4. Criteria Sensitivity Analysis and Urban Region Clustering 

Typically, sensitivity analysis examines the influence of input parameters on the 

model output variability (Saltelli et al., 2000). To determine the impact of individual 

criteria on overall suitability in different regions, criteria sensitivity test was performed 

using global sensitivity analysis (Ligmann-Zielinska & Jankowski, 2014). The technique 

computes sensitivity and uncertainly from suitability surfaces generated using Monte 

Carlo simulations and applies variance decomposition methods to allocate model 

variability to each criterion. Table 4.2 presents results of the global sensitivity analysis 

for some selected urban regions with distinctive characteristics.  

Table 4.2. Obtained sensitivity values for all criteria in some selected urban 
regions. 

Criteria London Shanghai Quito Riyadh Moscow New Delhi Indianapolis 

GDP 0.279 0.176 0.333 0.454 0.366 0.208 0.425 

Population density 0.196 0.202 0.182 0.294 0.193 0.034 0.305 

Slope 0.039 0.076 0.056 0.012 -0.106 -0.069 0.016 

Elevation -0.006 -0.058 0.612 0.044 -0.089 0.092 0.282 

Proximity to coast & 
inland water bodies 

0.102 0.114 0.125 -0.049 0.262 -0.103 0.134 

Proximity to 
commercial areas 

0.164 0.203 0.676 0.688 0.417 0.218 0.472 

Proximity to exiting 
urban areas 

0.209 0.056 0.655 0.705 0.661 0.543 0.470 

Proximity to major 
roads 

0.067 0.079 0.347 0.357 0.268 0.136 0.315 
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While urban development is influenced by similar criteria across different regions, 

the degree of influence varies. For this reason, there was the need to perform clustering 

analysis of urban regions to capture the specific similarities within them. The aim is to 

minimize the differences between urban regions in the same cluster while maximizing 

differences between the clusters. The world region was divided into 1860 sub areas 

based on the location of existing cities with population greater than 300,000 inhabitants 

as per data from 2018 of the United Nations Department of Economic and Social Affairs 

(UN-DESA)(UN-DESA, 2020). The k-means clustering technique (Jain, 2010) was used 

due its ability to specify number of clusters (k) suitable for the purpose of this study. Too 

many or too few clusters would not capture the main characteristics of urban regions. 

Therefore, four clusters have been chosen to group the sub areas based on similarities 

related to their biophysical and socioeconomic characteristics. The resulting clusters as 

global maps are presented in Figure 4.3. 

 

Figure 4.3. Results of urban region classification into four clusters based on 
their characteristics. 

Cluster 1 consists of urban regions with high population density and GDP, 

located mainly along the coast or major water bodies consisting of metropolitan areas 

such as London, New York, Tokyo, Shanghai, Sao Paulo, Los Angeles, and Paris. 

Cluster 2 represents urban regions with average population density and GDP in low 

elevation urban regions like Montreal, Houston, Melbourne, Abidjan, and New Orleans. 

Cluster 3 characterizes urban regions with low population density and GDP in isolated 

locations such as Brisbane, Anchorage, Manaus, and Niamey. Cluster 4 comprises of 
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inland urban regions with average population density and GDP in areas with high 

elevation including Denver, Brasilia, Johannesburg, Riyadh, Calgary, and Quito. 

4.3.5. Criterion Weights and GIS-MCE Technique 

Criterion weights are generated to reflect the relative influence of each criterion 

on suitability for urban development. In most GIS-based MCE methods, weights are 

generally determined by subject experts or stakeholders. Given that this research study 

addresses the first global MCE-CA urban land-use change model and due to lack of 

resources, it was however not possible to elicit the opinions of various stakeholders and 

interest groups. Thus, criterion weights were generated for each urban region cluster 

using the Automatic Weight Selection technique (Veronesi et al., 2017). The technique 

uses statistical analysis based on the comparison between randomly sampled cells from 

spatial data layer representing the selected criteria and urban land-use type cells within 

each urban region cluster from the land-use data layer. From these two data layers, the 

Cohen’s d (Cohen, 1988) values are computed for each criterion. The generated 

Cohen’s d values are normalized so their sum is equal to 1. This technique is applied to 

obtain the criterion weights for each urban region cluster and the obtained values are 

presented in Table 4.3. 

Table 4.3. Criterion weights based on Cohen’s d for the four urban region 
clusters. 

 
Criteria weight for urban region 

Criteria Cluster 1 Cluster 2 Cluster 3 Cluster 4 

GDP 0.1894 0.2554 0.2169 0.2211 
Population density 0.1259  0.1108 0.1639 0.1166 

Slope 0.0159 0.0135 0.0834 0.0527 

Elevation 0.0936  0.0744 0.0870 0.0595 

Proximity to coast & inland water bodies 0.0990 0.0984 0.1187 0.0097 

Proximity to commercial areas 0.1632 0.0912 0.0099 0.1875 

Proximity to existing urban areas 0.2055 0.2213 0.1979 0.2223 

Proximity to major roads 0.1074 0.1351 0.1224 0.1308 

The final step entails calculating the suitability value of each hexagonal cell using 

the GIS-MCE method. Overall suitability value for each hexagonal cell at the global level 

𝑆𝑔𝑙𝑜𝑏𝑎𝑙
𝑡  at time 𝑡 can be calculated as sum of suitability values 𝑆𝑖 for each hexagonal cell 
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of urban region cluster i (i=1,..., m) and is based on weighted linear combination (WLC) 

approach as follows: 

𝑆𝑔𝑙𝑜𝑏𝑎𝑙
𝑡 =  ∑ 𝑆𝑖

𝑚

𝑖=1

 

𝑆𝑖 =  ∑ 𝑆𝑗𝑖 𝑤𝑗𝑖

𝑛

𝑗=1

 ;  0 < 𝑆𝑖 < 1;  sum of 𝑤𝑗𝑖 =  1 

(1) 

where 𝑆𝑗𝑖 is the standardized criterion value based on suitability function transforming 

the input value of the criterion j (j=1,..., n), n denotes number of criteria, m is number of 

urban region clusters and 𝑤𝑗𝑖 is the weight of importance assigned to criterion j and 

urban region cluster i. The generated urban development suitability values are classified 

using equal interval method into five classes such as: very low (0-0.2), low (0.21-0.4), 

medium (0.41-0.6), high (0.61-0.8), and very high (0.81-1). Figure 4.4 presents the 

global suitability output displayed as spherical maps for each part of the Earth. 

4.3.6. Spherical CA Model 

The spherical cellular automata part of the model (Figure 4.1) is designed to 

simulate urban land-use change by integrating the GIS-MCE component and the 

obtained suitability values as model input, and the constrains related to protected areas 

and national urban demand. The spherical automata SA comprises of an array of 

hexagonal cells h covering the Earth surface characterized with their states 𝑆𝐴ℎ
𝑡+1 at time 

t+1 and expressed as: 

 𝑆𝐴ℎ
𝑡+1 =  {𝑆𝐴ℎ

𝑡 ,  𝑁ℎ
𝑡 , 𝑆𝑔𝑙𝑜𝑏𝑎𝑙

𝑡 , 𝐹𝑡 , ∆𝑇} (2) 

where 𝑆𝐴ℎ
𝑡  denotes the state of the hexagonal cell at initial time t, 𝑁ℎ

𝑡 represents the 

hexagonal neighbourhood around the central cell, 𝑆𝑔𝑙𝑜𝑏𝑎𝑙
𝑡  is the overall suitability value 

obtained from the GIS-MCE component of the model for each hexagonal cell, 𝐹𝑡 is the 

function of transition rules and ∆𝑇 is the time step of one iteration. 
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Figure 4.4. Resulting MCE suitability maps at global level for a) South America, 
b) North America, c) Asia, and d) Europe and Africa. 

A total of eight iterations of the model are run to simulate new urban 

development between 2015 (𝑇𝑖) and 2095 (𝑇𝑖+8) where each iteration corresponds to a 

temporal resolution of 10 years. During each iteration, existing urban cells remain 

unchanged as well as protected areas and water bodies. The MCE-S-CA modelling 

approach is also constrained by national urban demand. The national urban demand is 

computed using GDP and population data obtained from UN-DESA (UN-DESA, 2020) 

(UN-DESA, 2020) and Organization for Economic Co-operation and Development 

(OECD) (Dellink et al., 2017) respectively. The model iteratively simulates new urban 
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development until the urban demand for each country has been reached. After each 

iteration, the S-CA model output becomes the input for the GIS-MCE component of the 

modelling framework, recalculates the suitability values based on new simulated urban 

development, and uses the updated information for the next model iteration and 

application of transition rules. The proposed MCE-S-CA model was programmed in 

Python (v3.7.7) (Van Rossum & Drake, 2009) using DGGRID and H3 DGGS python 

libraries that are capable of generating and manipulating hexagonal cells covering the 

spherical Earth surface. 

4.3.7. Model Evaluation 

Model evaluation comprises of verification, calibration, and validation. Model 

verification entails ensuring the model’s logic and operations are correct and internally 

consistent, calibration involves adjusting model parameters whereas model validation 

often requires comparing the model output with independent datasets not used in 

building the model (Manson, 2007; Rykiel, 1996). Verification was conducted during the 

model design and implementation phase to ensure the logic and output of the code used 

is correct and testing the model after each modification and improvement to ensure it is 

consistent with the theory of the modelled process. The model was calibrated using 

historical dataset for the year 1995 and 2005. In the calibration phase, parameters 

representing transition rules are adjusted to allow for meaningful simulation of urban 

land-use change process. Model validation was performed using datasets for the year 

2015 which represents data that have not been used in the model development and 

calibration phase. The simulation outputs were compared against actual land-use data 

using the Figure of Merit (FoM) approach (Pontius et al., 2008) which is the ratio of the 

intersection of simulated and observed change over the union of simulated and 

observed change and can be expressed as: 

𝐹𝑜𝑀 =  
𝑉

𝑈 + 𝑉 + 𝑊
 

(3) 

where V is the number of correctly simulated urban cells, U denotes the number of 

actual urban cells simulated as non-urban cells, and W is the number of non-urban cells 

simulated as urban cells. The FoM index constitutes three components considering only 
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one class, urban land-use, was modelled with urban cells remaining unchanged in this 

research studies. 

4.4. Results 

4.4.1. Model Testing 

For the calibration phase, the FoM value obtained from the MCE-S-CA model 

was 51.1%, which is better than the 38% obtained for the S-CA model. The integration of 

MCE into the proposed model increased the FoM value by 13%. Comparison of these 

two models indicate the significance of operationalizing geosimulation models with MCE 

to enhance the abilities of function of transition rules. The FoM value for the MCE-S-CA 

model in the validation phase was 62.3%. The calculated FoM values from the proposed 

MCE-S-CA model were relatively higher than the values obtained in other global urban 

land-use change models found in the scientific literature with FoM validation figures 

ranging between 19% to 43% (Cao et al., 2019; Chen et al., 2020; Li et al., 2017; Li et 

al., 2021). 

4.4.2. Global Overview of Urban Expansion Dynamics 

The simulation results indicate urban expansion altogether at the global scale 

would be rapid and extensive. Figure 4.5 presents the obtained global urban expansion 

simulation results for 2095 and for different parts of the world as spherical maps. The 

total global urban extent in 2015 was 747 thousand km2 and this increased to 2.12 

million km2 in 2095. This corresponds to a global urban expansion of 1.37 million km2 

and an annual growth rate of 1.31% between 2015 and 2095. Although urban expansion 

is noticeable across all regions, the rate and size of urban growth in developing regions 

especially in Asia and Africa are relatively higher. 
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Figure 4.5. Obtained simulation results of global urban expansion for year 2095 
in a) South America, b) North America, c) Asia, d) Africa, e) Europe, 
and f) Australia. 
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4.4.3. Variations in Urban Expansion Across Different Urban Region 
Clusters 

At the metropolitan level, differences in the simulated urban growth patterns can 

be observed across the four urban region clusters. The simulation results indicate cluster 

1 urban regions which typically have high GDP and population density would collectively 

have the largest urban extent by the end of the century. The urban extent of metropolitan 

regions in cluster 1 increased from 488 thousand km2 in 2015 to 1.37 million km2 in 

2095. This value represents an urban expansion of 880 thousand km2 or 180% of urban 

growth. The annual growth rate of 1.3% is however slightly lower than the global rate. 

Urban growth in cluster 2 urban regions characterized by average GDP and population 

density in low lying regions was also considerable with the total urban extent increasing 

from 160 thousand km2 in 2015 to 417 thousand km2 in 2095. Between 2015 and 2095, 

the total urban extent in cluster 2 urban regions expanded by 161% with an annual 

growth rate of 1.21%. The total size of urban areas in metropolitan regions classified as 

cluster 3 which are in isolated regions with low GDP and population density was 11 

thousand km2 in 2015 and increased to 20 thousand km2 in 2095. This represents the 

smallest urban growth rate and extent among the four urban region clusters. Urban 

areas in cluster 3 regions expanded by 79% with an annual growth rate of 0.73% in the 

period from 2015 to 2095. On the contrary, metropolitan areas in high elevation areas 

with average GDP and population density termed cluster 4 urban regions had the 

highest urban growth rate of 248% and an annual growth rate of 1.57%. The total urban 

extent of cluster 4 urban regions increased from 89 thousand km2 in 2015 to 310 

thousand km2 in 2095.  

The simulation results of spatial urban expansion between 2015 and 2095 are 

presented in Figure 4.6 for different metropolitan areas as examples of urban areas that 

are indicated to have the most rapid urbanization in the four urban region clusters. The 

simulation results also indicate 64.4% of the total global urban expansion in the period 

between 2015 and 2095 would occur in cluster 1 metropolitan regions. Further, urban 

regions in cluster 2 and 4 would account for 18.8% and 16.2% of new urban 

development respectively. However, less than 1% of the global urban expansion 

between 2015 and 2095 would occur in cluster 3 urban regions. 
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Figure 4.6. Comparison between 2015 urban land extent and obtained 
simulation results for 2095 for a) Cluster 1, Shanghai, China b), 
Cluster 2, Houston, USA c) Cluster 3, Brisbane Australia, and d) 
Cluster 4 Johannesburg, South Africa. 
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While the simulation results show a general trend of increased urban expansion 

among the four urban region clusters, differences in growth rates and urban land size 

can also be observed across continents. For example, the urban extent of cluster 2 

metropolitan regions in Africa and Asia expanded by 606% and 395% respectively 

whiles urban areas in cluster 2 urban regions in Europe and North America increased by 

65% and 67% correspondingly. Also, by 2095, Asia would account for 52.7% of the total 

urban extent in metropolitan areas classified as cluster 1 urban regions. In contrast, 

Europe and North America would account for 19% and 10.3% respectively of the total 

urban extent within cluster 1 urban regions. The simulation results also revealed more 

urban growth would occur in cluster 1 urban regions across all continents albeit different 

rates. For instance, 72% and 76% of total urban expansion in Asia and Europe would 

occur in cluster 1 urban regions respectively. In North and South America, 55% and 41% 

of new urban development between 2015 and 2095 would be in cluster 1 urban regions. 

4.5. Discussion and Conclusions 

The MCE-S-CA model presented in this research study can realistically represent 

and capture urban growth dynamics across the globe as indicated by the relatively better 

FoM values obtained during model evaluation. Also, the simulated results from the 

proposed model are comparable to other global urban land-use change simulations and 

studies. The simulation outputs indicate the total global urban extent would exceed 2.1 

million km2 by the end of the 21st century. This is consistent with other global land-use 

change studies such as Li et al. (2019) who projected the total urban extent by the year 

2100 to be 2.4 million km2 in their studies. Africa and Asia would become the frontier of 

urban expansion and are indicated to have the highest urban expansion rate and largest 

new urban land size by 2095. The high urban expansion rates observed in developing 

regions especially in Africa and Asia also correspond to research findings by Li et al. 

(2021). 

Cities are engines of economic growth and human innovation and are expected 

to play considerable roles in ensuring a globally sustainable future in the coming 

decades. This is especially true for large global cities that dominate social and economic 

interactions across the globe. Studies indicate a close correlation between urbanization 

and economic growth (Chen et al., 2014). The simulation results indicate cluster 1 urban 

regions which have distinctively high GDP and population density would account for 64% 
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of the total global urban expansion between 2015 and 2095. This trend is observable 

across all geographic regions and by the end of the century, cluster 1 urban regions 

have the largest urban extent within each continent except for Australia and Oceania. 

Also, by the end of the 21st century, 84.4% of the total global urban extent would be in 

cluster 1 and 2 urban regions. Metropolitan areas in these two urban clusters are 

typically located in low lying coastal areas and along major water bodies thus most at 

risk of the consequences of climate change including sea level rise and flooding. With 

several developing countries still in the initial phase of urbanization, cities can still shape 

the future of urbanization in these regions through sustainable urban policies and 

regional development strategies to limit the negative impacts of rapid urbanization. Cities 

in Asia and Africa for example would account for 72% of new urban-land development 

between 2015 and 2095. 

The research study has some limitations, and the implemented model can further 

be enhanced. Firstly, the proposed model does not incorporate random effects for some 

variables due to lack of data to derive probabilities and computational capacity to run the 

model at global extent multiple times to examine the convergence. Secondly, the model 

does not account for the effects of potential human induced changes such as future 

development of infrastructure of network of new highways or railways, increased 

economic activities of port cities, deforestation and agricultural land degradation or 

environmental changes ranging from natural hazards such as earthquakes and forest 

fires to climate change and sea level rise that can affect urban land use change. Also, 

the urban development suitability analysis can be improved by including other relevant 

criteria in the analysis such as local level planning and policies, land value, climate 

variables or scenarios among others. Incorporating the participation of stakeholders and 

subject experts would be beneficial to appropriately determine the selection of criteria 

and importance of criterion weights. This would then require the use of advanced spatial 

decision technique such as the Logic Scoring of Preference (LSP) method within the CA 

framework, that are capable of handling larger number of criteria based on soft 

computing logic. In addition, future research works would focus on representation and 

comparison of planer and spherical geospatial data to quantify and analyse the source of 

errors and differences in model outputs. Despite these drawbacks, the proposed 

geosimulation model is flexible and has the capability to be utilized to explore multiple 

environmental and urban development scenarios that can be postulated by different 
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stakeholders, experts, and policy makers within the scope of global urban planning and 

management procedures. 

In conclusion, this research study presents a novel MCE-S-CA geosimulation 

approach for simulating global urban land-use change by considering the curvature of 

the global Earth surface. The proposed modelling approach provides decision making 

capabilities that can represent different urban development criteria and preferences 

across diverse metropolitan regions at the global level. The model is capable of 

analysing and identifying suitable locations for urban development and simulating urban 

land-use change across different global urban regions. 
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Chapter 5.  
 
Modelling Global Deforestation using Spherical 
Geographic Automata Approach4 

5.1. Abstract 

Deforestation as a land-cover change process is linked to several environmental 

problems including desertification, biodiversity loss and ultimately climate change. 

Understanding land-cover change process and its relation to human-environment 

interactions is important for supporting spatial decisions and policy making at the global 

level. However, current geosimulation model applications mainly focus on characterizing 

urbanization and agriculture expansion. Existing modelling approaches are also 

unsuitable for simulating land-cover change processes covering large spatial extents. 

Thus, the objective of this research is to develop and implement a spherical geographic 

automata model to simulate deforestation at the global level under different scenarios 

designed to represent diverse future conditions. Simulation results from the deforestation 

model indicate the global forest size would decrease by 10.5% under the “business-as-

usual” scenario through 2100. The global forest extent would also decline by 15.3% 

under the accelerated deforestation scenario and 3.7% under the sustainable 

deforestation scenario by the end of the 21st century. The obtained simulation outputs 

also revealed the rate of deforestation in protected areas to be considerably lower than 

the overall forest cover change rate under all scenarios. The proposed model can be 

utilized by stakeholders to examine forest conservation programs and support 

sustainable policy making and implementation. 

5.2. Introduction 

Deforestation as a land-cover change (LCC) process caused by natural and 

anthropogenic factors further entailing environmental degradation with several negative 

consequences both at the regional and global scales (Foley et al., 2005; Van Asselen 

 

4 A version of this chapter is published: Addae, B., & Dragićević, S. (2023). Modelling global 
deforestation using spherical geographic automata approach. ISPRS International Journal of 
Geo-Information, 12(8), 308. 
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and Verburg (2013). Rates of deforestation especially in developing countries triggered 

by factors such as agricultural expansion, timber production, forest fire, mining, and 

urbanization have been increasing over the last century (Curtis et al., 2018; Hoang & 

Kanemoto, 2021; Lambin & Geist, 2003). These trends of decreasing forest cover and 

deteriorating conditions has resulted in deforestation becoming a major global 

environmental issue considering the several critically important ecosystem services and 

functions forests provide (Brockerhoff et al., 2017; Felipe-Lucia et al., 2018). Forests are 

important areas for biodiversity with approximately 80% of the world’s terrestrial 

biodiversity found in forest regions (FAO 2020). Further, forests represent the largest 

terrestrial sink of carbon dioxide (CO2) and are globally responsible for significant 

carbon stocks (Keenan & Williams, 2018; Pan et al., 2011). These highlight the 

important roles forests play in the Earth’s biochemical and ecological systems. 

Geosimulation modelling has become an important tool for representing land-

cover change (LCC) processes and assisting in understanding the interaction between 

anthropogenic activities and the impact of deforestation on other environmental systems, 

permitting for spatial analyses of the underlying causes of this dynamic process (Ren et 

al., 2019). Further, the simulation of possible LCC scenarios provide useful mechanism 

to inform environmental and forest management policies and decision-making for 

providing valuable insights for developing appropriate measures to alleviate the negative 

impacts of deforestation (Vannier et al., 2022). Specifically, data on forest cover and 

future trajectories provide significant information for estimating carbon stocks, 

ecosystem service evaluation, and forestry conservation (Sun et al., 2022; Yu et al., 

2022). Assessing the performance and effectiveness of environmental policies such as 

the Reduction in Emissions from Deforestation and Forest Degradation (REDD+) 

policies requires detailed spatial data on forest cover change and future scenarios (Bos 

et al., 2019). 

Forests can be considered as complex biophysical spatial systems with many 

components and some considerably depend on human interactions at the local level to 

give rise to global patterns of deforestation process over time [(Messier et al., 2016)]. 

Thus, geosimulation modelling approaches are seen as suitable for representing forest 

change processes. Accordingly, several geosimulation models have been implemented 

to represent the dynamics of forest changes as a complex spatial process including 

approaches based on cellular automata (CA) (Kura & Beyene, 2020; Moreno et al., 
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2007), and some were enhanced with techniques such as Markov Chain (Adhikari & 

Southworth, 2012; Vázquez-Quintero et al., 2016), logistics regression (Kucsicsa & 

Dumitrică, 2019; Miranda-Aragón et al., 2012), multi-criteria evaluation (MCE) 

(Monjardin-Armenta et al., 2020; Takam Tiamgne et al., 2022), machine learning (Mas et 

al., 2004), and deep learning (Ball et al., 2022). Several studies have also been 

incorporating human interactions to represent deforestation processes using agent-

based geosimulation models (ABM) (Deadman et al., 2004; Manson & Evans, 2007). 

However, these modelling approaches are all developed mainly to operate on small 

spatial extents and implemented to simulate forest cover change dynamics at the local 

and regional levels. 

The use of existing geosimulation models at larger spatial scales presents 

challenges that are peculiar to spatial modelling at the global level. Primarily, these 

models do not consider the curvature of the Earth’s surface when modelling at larger 

extents which can lead to errors in spatial and statistical analyses due to spatial 

distortions caused by planar map projections (Ellis et al., 2021). The limitations of using 

planar spatial models for analyses and simulations at the global level have been 

documented in the scientific literature (Cao et al., 2019; Hu et al., 2021; Li et al., 2017), 

with spherical models proposed as a possible solution. While spatially explicit land-cover 

change models are becoming prevalent over the last decade, geosimulation models for 

deforestation are still scarce with existing global applications typically focusing on 

simulating urbanization (G. Chen et al., 2020; Gao & O’Neill, 2020) and agricultural 

expansion (Meiyappan et al., 2014). In order to improve simulation results, CA models 

are often integrated with other techniques such as spatial multi-criteria evaluation (MCE) 

to identify suitable or susceptible locations for potential occurrence of the geographic 

phenomena and then guide transitions rules. The MCE technique provides a 

comprehensive approach that combines several criteria often conflicting based on 

suitability functions, weights, and their overall aggregation (Malczewski, 1996). The 

approach has been implemented in several applications including land-cover change 

(Deribew & Dalacho, 2019; Feng et al., 2014), deforestation (Monjardin-Armenta et al., 

2020) and urban growth (Gharaibeh et al., 2020), although all these studies address 

small spatial extents. Therefore, the main objective of this research study is to develop 

and implement a spherical geographic automata (SGA) modelling approach by 
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integrating MCE and cellular automata to simulate the process of deforestation at the 

global level and considering the curved surface of the Earth. 

5.3. Materials and Methods 

5.3.1. Spherical Deforestation Model Overview 

The methodology extends the theoretical concepts of the spherical geographic 

automata (SGA) approach (Addae & Dragićević, 2023) and integrates susceptibility 

analysis for global deforestation modelling. The methodological flow chart of the 

modelling approach is presented in Figure 5.1.  

 

Figure 5.1. Flowchart of the spherical deforestation model for simulating forest 
land-cover change at the global level. 
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The spherical component of the model is operationalized with the use of discrete global 

grid system (DGGS) (Sahr et al., 2003) and hexagonal spatial tessellations as a base 

unit that allows for geospatial data representation at the global level and with 

consideration of the curvature of the Earth’s surface. The MCE technique is used to 

identify susceptible locations for forest cover loss using several criteria as possible 

drivers of deforestation. Three scenarios have been developed to represent possible 

future deforestation processes under different conditions. 

5.3.2. Global Deforestation Spherical Geographic Automata 

The spherical geographic automata (SGA) component is the central component 

of the proposed modelling methodology, and it is designed to simulate the process of 

deforestation at the global level. The SGA utilizes a spherical cell space based on 

DGGS and comprising of hexagonal tessellation covering the Earth’s curved surface. As 

a geospatial model, DGGS applies a spherical grid framework to partition and represent 

the curvature of the Earth's surface (Sahr et al., 2003). The DGGS spatial model is 

based on the icosahedron polyhedron with equal area hexagonal cells. When used to 

tesselate spherical surfaces, hexagonal cells are the most compact and offer uniform 

adjacency and neighbouring relationships over other regular polygons such as squares 

and triangles. The global spatial datasets are transformed into hexagonal spatial 

tessellations as the model input. The spherical geographic deforestation model extends 

the previous research study (Addae & Dragićević, 2023) and can be formulated as 

follows: 

𝐺𝐴ℎ
𝑡+1 = [𝐺𝐴ℎ

𝑡 ,  𝐻𝑁ℎ
𝑡 ,  𝑆def_𝑔𝑙𝑜𝑏𝑎𝑙

𝑡 , 𝑓, 𝛥𝑇 ] (1) 

where 𝐺𝐴ℎ
𝑡+1 is the state of the hexagonal cell h at the next time step t+1, 𝐺𝐴ℎ

𝑡  denotes 

the state of hexagonal cell at initial time t, 𝐻𝑁ℎ
𝑡 represents the hexagonal neighbourhood 

of six cells surrounding the central cell, 𝑆def_𝑔𝑙𝑜𝑏𝑎𝑙
𝑡  is the overall susceptibility value 

obtained for each hexagonal cell, 𝑓 is the function of transition rules that determine how 

the state of cells change over time, and 𝛥𝑇 is the discrete time step representing one 

iteration of the model. The effects of protected areas on deforestation as constraints and 

values of susceptibility analysis of deforestation are also considered. The function of 

transition rules represents the actual dynamics of the deforestation process. During each 
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iteration, cells representing forest are converted to the dominant non-forest land-cover 

type based on the cell’s neighbourhood, susceptibility value, and constraint parameter.  

5.3.3. Datasets 

The study area in this research study encompasses the entire global land surface 

except for Antarctica and several spatial datasets with global extent are acquired to 

implement the model. Land-cover datasets are obtained from the European space 

agency (ESA) portal (ESA, 2022), global roads dataset from the Global Roads Inventory 

Project (GRIP) (Meijer J.R. et al., 2018), protected areas from the World Database on 

Protected Areas (WDPA) [(WDPA., 2023), past forest disturbance from the Global 

Wildfire Information System (GWIS) (Artés et al., 2019), population density from the 

LandScan portal (Rose et al., 2020), and elevation dataset from the United States 

Geological survey (USGS) portal (USGA, 2022). All spatial datasets are converted into 

Icosahedral Snyder Equal Area (ISEA) aperture 3 hexagonal cell format (Sahr, 2011) 

with each cell having an area of 32 km2 and intercell spacing of 6.1 km. A total of 

4,235,365 hexagonal cells were used to tessellate the Earth’s land surface which 

corresponds to an area of 135.5 million km2. The global land size excluding Antarctica 

varies between 134.1 million km2 and 135 million km2 based on the scientific literature 

(Dinerstein et al.; Gleeson et al., 2016; Williams et al., 2020). The existing spatial 

datasets were converted into hexagonal DGGS cells following the approach presented in 

Robertson et al. (2020). The temporal resolution in the research study was determined 

to be 10 years and the model was implemented and evaluated using datasets for the 

years 2000, 2010 and 2020. 

5.3.4. Susceptibility Analysis 

General multi-criteria evaluation (MCE) approaches (Malczewski, 1996) have 

been adopted to implement deforestation susceptibility analysis and has been executed 

at the global level in this research study. The susceptibility analysis assesses the 

vulnerability of specific areas to the process of deforestation by evaluating the factors 

and conditions that contribute to forest loss. Driving factors are identified to represent 

relevant criteria that characterize the process of deforestation and susceptibility 

functions are derived for each criterion. Susceptibility functions transform criterion values 

into a normalized range between 0 and 1, where 1 indicate highest satisfaction and 0 
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denotes no satisfaction for the particular criterion. Moreover, each criterion is normalized 

with respective suitability function, then weighted and aggregated to obtain the 

deforestation susceptibility scores for each hexagonal cell. Finally, susceptibility scores 

can be used to generate global deforestation susceptibility maps that can be one of the 

inputs that guide the transition rules of the SGA model. 

The selected criteria express some of the key drivers of deforestation process at 

the global level are based on the scientific literature and can be grouped into three 

categories: socioeconomic (population density), terrain (slope, elevation), and proximity 

(proximity to urban areas, major roads, water bodies, agriculture, forest edge, past forest 

disturbances) (Curtis et al., 2018; Monjardin-Armenta et al., 2020; Sharma et al., 2020). 

Table 5.1 presents the selected criteria and their respective susceptibility functions as 

graphs. 

The susceptibility functions are generated for each criterion and are informed 

from the literature (Grinand et al., 2020; Hyandye & Martz, 2017; Jana et al., 2022; 

Monjardin-Armenta et al., 2020). Socioeconomic group of criteria rooted in 

anthropogenic activities are a major determinant of deforestation and population density 

is often used as an indicator for concentration of urban regions thus human activities 

(Uusivuori et al., 2002). Increasing population density and urban area expansion causes 

pressure on nearby forest due to harvesting of wood for construction and fuel, farming, 

cattle grazing, urban and infrastructure development (Vieilledent et al., 2013). The 

population density susceptibility function is expressed as a linear membership based on 

the maximum population density value obtained from the data sets which is 1,168,691 

inhabitants per cell. Characteristics of the terrain build another group of criteria. 

Differences in elevation and slope can represent restrictions to deforestation. Areas with 

steep slopes are less prone to deforestation as they are unfavourable for other land-use 

types such as agriculture, infrastructure, and urban development (Adhikari et al., 2017; 

Sharma et al., 2020). Flat areas however allow for accessibility for clearing of forest for 

agricultural activities, urban and infrastructure development. For the slope susceptibility 

function, gradients less than 5° yield maximum satisfaction and slopes steeper than 59° 

are considered unsuitable for deforestation. The susceptibility function for elevation has 

maximum satisfaction in locations where altitude is less than 200m and decreases with 

increasing elevation until 4900m. The maximum elevation is set to 4900m given the 

highest forest stand is located at this altitude (Georg et al., 2007; Liang et al., 2016).  
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Proximity based criteria are selected due to different land-use and land-cover 

features that are driving the deforestation process. Urbanization creates increased 

demand for land and deforestation is more prone in areas closer to urban centers as 

forests are more likely to be cleared for urban expansion, wood harvesting for fuel, and 

agricultural activities. The function uses a linear membership with maximum 

susceptibility in locations within 6.1km of urban areas, which is equivalent to one 

hexagonal cell, and no susceptibility beyond 61 km of urban areas, corresponding to 10 

hexagonal cells in the spatial dataset. Major roads provide accessibility to areas 

dominated by forest land-cover for anthropogenic activities such as urbanization, 

infrastructure development, agriculture and resource extraction (Barber et al., 2014). 

Several research studies have indicated a strong positive correlation between 

deforestation rates and proximity to major roads (Bax et al., 2016; Southworth et al., 

2011). Prior studies indicate 95% of deforestation can occur with 4.5km of major roads 

with the influence of roads on deforestation extending as far as 100 km (Barber et al., 

2014). The susceptibility function decreases with increasing distance from major roads 

with no susceptibility beyond 97.6km of roads and equivalent to 16 hexagonal cells in 

the spatial data layer. Proximity to water bodies can also potentially influence the 

dynamics of deforestation by increasing accessibility to remote areas, transporting forest 

resources such as timber and providing water resources for human settlements 

(González-González et al., 2021). The proximity to water bodies susceptibility function 

also decreases with increasing distance from water bodies with no susceptibility beyond 

42.7km of water bodies that is represented by 7 hexagonal rings. Further, prior studies 

have indicated agricultural expansion to be another significant driving factor of 

deforestation (Doggart et al., 2020; Gibbs et al., 2010; Pendrill et al.). Forest areas 

closer to agricultural lands are more likely to be converted for agricultural purposes to 

support increasing demand for food, biofuels and animal production. The susceptibility 

function is based on a decreasing linear function with no susceptibility past 30.5 km, 

corresponding to 5 hexagonal cells. 

Deforestation typically proceeds from the edge of forests into the interior and 

subsequently leads to the fragmentation of large forest regions into smaller non-

contiguous areas (Broadbent et al., 2008; Precinoto et al., 2022). Thus, areas closers to 

forest edges are more prone to deforestation due to their accessibility by local 

population. The susceptibility function for proximity to forest edge decrease with distance 
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until 61 km. Also, past forest disturbance is often seen as a precursor to future forest 

degradation and several studies have indicated deforestation is more likely to occur in 

areas that have experienced some form of disturbance including forest fire, logging, 

mining, etc. (Brown et al., 2007; Hamunyela et al., 2020; Lima et al., 2012). The past 

disturbance susceptibility function also uses a linear membership where susceptibility 

decreases with distance until 67.1 km and equal to 11 hexagonal cells. 
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Table 5.1. Selected criteria of deforestation with their respective susceptibility functions with rationale and criteria 
weights. 

Category Deforestation 
criteria 

Susceptibility functions Rationale Criteria weights 

Socioeconomic Population density 

 

Population density is an indicator for the 
concentration of human activities thus 
closeness of possible deforestation 
processes. 

0.03418 

Terrain Slope 

 

Areas with gentle slopes are more 
suitable for land-use/land-cover change 

0.04323 

Elevation 

 

Areas at lower elevation are more prone 
to deforestation as they are more 
accessible. 

0.17615 

Proximity Proximity to urban 
areas 

 
 

  

Urbanization creates demand for land to 
support urban activities and 
infrastructure, thus entail deforestation of 
adjacent forests. 

0.00824 
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Proximity to major 
roads 

 

Connection to transportation networks 
enhances deforestation by providing easy 
access to forest areas.  

0.04777 

Proximity to water 
bodies  

 

Water bodies provide access ways to 
forest regions and remote areas thus 
increasing the possibility of deforestation. 

0.00645 

Proximity to  

agriculture 

 

Forest areas closer to agricultural land 
are more prone to deforestation due to 
expansion of farmlands and agroforestry.  

0.12282 

Proximity to forest 
edges 

 

Deforestation typically starts from the 
edges of existing forest regions as they 
are much easier to clear. 

0.38784 

Proximity to past  

forest disturbances 

 

Past forest disturbance areas are often 
precursors to future forest degradation or 
agricultural use. 

0.17331 
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5.3.5. Criterion Weights Generation and Global Susceptibility Maps 

Weights are generated for each criterion to reflect the relative importance of the 

selected criteria in determining deforestation. While criteria weights in most GIS-based 

MCE methods can be determined by subject experts or stakeholders, this was however 

not possible in this research study due to the global scope of the model’s application and 

resource limitations. Thus, the Automatic Weight Selection technique (Veronesi et al., 

2017) was applied to generate the weights of importance and values are normalized so 

the sum of all weights is equal to one. The technique is based on the comparison 

between locations of deforestation and random sampling sites using the Cohen’s d 

metric (Cohen, 1977). The obtained criterion weights are presented in Table 5.1. Based 

on the normalized criterion values and criterion weights, the Weighted Linear 

Combination (WLC) technique (Malczewski, 2000) is used to calculate the overall 

deforestation susceptibility scores for each hexagonal cell for deforestation. The 

obtained susceptibility scores are classified into five classes using the equal interval 

method. They are categorized such as: very low (0-0.2), low (0.21-0.4), medium (0.41-

0.6), high (0.61-0.8), and very high (0.81-1) susceptibility to deforestation. The equal 

interval method is chosen to classify the susceptibility values due to its ability to create 

categories of equal sizes and for easy comparison. Figure 5.2 depicts the obtained 

global deforestation susceptibility output maps for different parts of the Earth. 
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Figure 5.2. Global deforestation susceptibility maps for, a) Africa, b) Asia, c) 
North America, and d) South America. 

5.3.6. Deforestation Scenarios 

In this research study, three deforestation scenarios are designed and 

implemented to simulate forest land-cover change under different conditions: Business 

as Usual (BAU), Accelerated Deforestation (AD), and Sustainable Deforestation (SD) 

scenarios. The Business as Usual scenario assumes the historical rate of deforestation 

observed between 2010 and 2020 would continue in the future (Galford et al., 2010). 

Further, deforestation inside protected areas is allowed due to ineffective implementation 
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of forest conservation polices in some regions and to allow either for urbanization or 

agricultural expansion (Prevedello et al., 2019). Research reveals increased demand for 

forest products and services could amplify rates of deforestation by half in some parts of 

the world (Ceccherini et al., 2020). Therefore, the Accelerated Deforestation scenario 

assumes the rate of forest loss would be 50% higher than the current rate as well as 

loose implementation of environmental conservation policies. This represents a 

pessimistic deforestation scenario used to represent forest cover change under 

complete absence of forest management policies and lack of political commitments to 

reducing deforestation at the local and global levels. The Sustainable Deforestation 

scenario is the most optimistic and assumes a reduction in the current trend of 

deforestation by 50% through 2050 and 75% by 2100. Also, it encompasses the strict 

enforcement of forest conservation policies and programmes, and deforestation is 

restricted in protected areas under this scenario. Prior studies indicate the effective 

implementation of forest conservation policies and measures can positively impact 

global climate change. The research findings indicate reducing rates of deforestation by 

50% could potentially reduce carbon emissions from land-cover change by 13 to 50 

gigatons of carbon (GtC) (Kindermann et al., 2006; Mollicone et al., 2007).  

Under each scenario, the model is constrained by the rate of deforestation at the 

country level and calculated using the 2010 and 2020 land-cover datasets. Due to lack 

of adequate data, the conversion of forest cover to water and snow as well as the 

process of reforestation are however not considered. 

5.3.7. Model Implementation and Evaluation 

The spherical deforestation model is implemented in the Python programming 

language (Van Rossum & Drake, 2009) using the DDGRID open-source library [(Sahr, 

2022)]. The model is implemented on a workstation with Intel(R) Xeon(R) Gold 6128 

CPU @ 3.40GHz 3.39 GHz processor and 32 GB RAM with the processing time for each 

scenario implementation varying between 81 to 88 hours. The model is run for eight 

iterations with a temporal resolution of 10 years to simulate global deforestation between 

2020 (𝑇𝑖) and 2100 (𝑇𝑖+8) and for the three scenarios. 

Model evaluation was performed using the relative operating characteristic 

(ROC) technique (Swets, 1988) and the Figure of Merit (FoM) (Pontius et al., 2008). 
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ROC entails metrics for assessing the performance of binary classification with 

continuous output or rank order values (Gilmore Pontius & Pacheco, 2004; Mas et al., 

2013). ROC applies thresholds to generate a contingency table with four performance 

descriptors: true positives (TP), false negatives (FN), false positives (FP), and true 

negatives (TN) (Camacho Olmedo et al., 2022). True positives (TP) correspond to 

changed forest cells correctly simulated as change by the model, false negatives (FN) 

are unchanged forest cells wrongly simulated as changed cells, false positives (FP) are 

changed forest cells the model was unable to simulate as changed cells and true 

negatives (TN) are changed forest cells simulated to the wrong class (Pontius & 

Parmentier, 2014). From the contingency table, the true positive rates (TPR) and false 

positive rates (FPR) can be calculated as: 

𝑇𝑃𝑅 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

(2) 

 

𝐹𝑃𝑅 =  
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

(3) 

By plotting the TPR on the vertical axis and FPR on the horizontal axis of the 

graph, the ROC curve and Area Under the Curve (AUC) metrics are obtained 

(Paegelow, 2018). AUC values range between 0 and 1, where a larger value indicates 

higher model accuracy. Additionally, the simulation outputs are compared with actual 

land-cover datasets using the Figure of Merit (FoM) index which can be expressed as: 

𝐹𝑜𝑀 =  
ℎ𝑖𝑡𝑠

𝑚𝑖𝑠𝑠𝑒𝑠 + ℎ𝑖𝑡𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠
 

(4) 

where the definition of the term misses is the same as false negative, hits denote true 

positives, and false alarms is equivalent to false positives. 

In this research study, global datasets for the period 2000-2010 were used for 

model calibration and then 2010-2020 for model validation. The AUC value obtained for 

the global spherical geographic deforestation model in the calibration phase was 0.9 and 

0.87 in the validation phase. Other global geosimulation model applications in the 

scientific literature report the AUC values ranging between 0.72 and 0.93 (Čengić et al., 
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2023; Li et al., 2016; Li et al., 2021). For the FoM metric, the value obtained for the 

model calibration was 36.5 and 29.9% during model validation. FoM values obtained in 

other global geosimulation models range between 19% and 43% (G. Chen et al., 2020; 

Li et al., 2021). Thus, the evaluation of the proposed modeling methodology yields 

commensurate values. 

5.4. Results 

5.4.1. Global and Regional Variations in Forest Cover Change 

In 2020, forest covered 48 million km2 of the terrestrial Earth’s surface, 

corresponding to 35.6% of the global land area. The simulation results of deforestation 

are presented in Figure 5.3 for North America only as an illustration of detailed model 

outputs, and for each time step between 2020 and 2100 under the Accelerated 

Deforestation (AD) scenario. The obtained simulation outputs of deforestation under the 

different scenarios by the year 2100 compared with the base year 2020 are also 

presented for different parts of the globe in Figure 5.4.  

Under the BAU Scenario, the global forest extent shrinks to 43 million km2, 

decreasing by 5 million km2 between 2020 and 2100 which corresponds to an annual 

forest loss of 63 thousand km2 per year, about twice the size of the Netherlands. 

Approximately 10.5% of the forest extent in 2020 would be lost by the end of the 21st 

century based on the current trend of deforestation. Under the AD scenario, the global 

forest extent would decrease by 7.3 million km2, representing a forest loss of 15.3% by 

2100. Conversely, the simulation results indicate 1.8 million km2 of the global forest area 

would be deforested by 2100 under the SD scenario, which represents a global forest 

loss of 3.7%. Figure 5.5 presents the global cumulative deforestation obtained for the 

three scenarios. 
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Figure 5.3. Simulated deforestation for North America from 2020 to 2100 for 
each 10-year iteration under the Accelerated Deforestation (AD) 
scenario. 

The simulation results also revealed marked differences in deforestation 

dynamics at the continental level. Table 5.2 presents summaries of the simulated forest 

cover change per continent in the period between 2020 and 2100. At the continental 

level, Europe had the largest forest cover loss with 1.9 million km2 and corresponding to 

15.5% of the continent’s forest extent in 2020 under the BAU scenario. The results 

further indicate forest loss in Europe would reach 2.7 million km2 under the AD scenario. 
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It must however be noted that, the Russian Federation which is considered part of 

Europe in this research accounts for 81.8% of Europe’s forest area in 2020. 

 

Figure 5.4. Comparison of initial year 2020 forest cover with obtained 
simulation results of deforestation under Business as Usual (BAU), 
Accelerated Deforestation (AD), and Sustainable Deforestation (SD) 
scenarios for a) Africa, b) Europe, and c) South America 
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Figure 5.5. Cumulative loss of forest land-cover between 2020 and 2100 based 
on the obtained simulation results under Business as Usual (BAU), 
Accelerated Deforestation (AD), and Sustainable Deforestation (SD) 
scenarios for a) Africa, b) Asia, c) Europe, and d) South America. 
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The simulation outputs also reveal considerable deforestation in North America 

with 1.02 million km2 of forest lost under the BAU scenario and 1.5 million km2 under the 

AD scenario. Forest loss in Africa, Asia and South America are revealed to be 0.58 

million km2, 0.66 million km2, and 0.76 million km2, respectively under the BAU scenario. 

Figure 5.6 depicts simulated deforestation in 2100 compared to the base year for 

different forest regions across the globe under the three scenarios. The Amazon Forest, 

Congo basin, and Eastern USA regions are presented here due to the extensive forest 

loss revealed by the simulation results. 

Table 5.2. Simulated forest cover extent (in million km2) and percentage of 
cumulative forest lost (%) by continent between 2020 and 2100 
under the Business as Usual (BAU), Accelerated Deforestation (AD), 
and Sustainable Deforestation (SD) scenarios. 

Continent 
2020 

[106 km2] 
Scenario 2030 2040 2050 2060 2070 2080 2090 2100 

Lost 
[%] 

Africa  

8.42 BAU 8.34 8.27 8.20 8.12 8.05 7.98 7.91 7.84 6.85 

 AD 8.31 8.20 8.09 7.98 7.88 7.77 7.67 7.57 10.08 

 SD 8.38 8.34 8.31 8.29 8.27 8.25 8.23 8.22 2.40 

Asia 

7.28 BAU 7.19 7.11 7.03 6.94 6.86 6.78 6.70 6.62 9.03 

 AD 7.15 7.02 6.90 6.78 6.66 6.55 6.43 6.32 13.18 

 SD 7.24 7.20 7.15 7.13 7.11 7.09 7.07 7.05 3.21 

Australia 

1.10 BAU 1.08 1.07 1.05 1.04 1.03 1.01 1.00 0.98 10.20 

 AD 1.07 1.05 1.03 1.01 0.99 0.97 0.95 0.93 14.97 

 SD 1.09 1.08 1.07 1.07 1.07 1.06 1.06 1.06 3.61 

Europe  

12.12 BAU 11.88 11.64 11.39 11.15 10.92 10.68 10.46 10.24 15.48 

 AD 11.75 11.39 11.03 10.68 10.34 10.02 9.70 9.40 22.45 

 SD 12.00 11.88 11.77 11.71 11.65 11.58 11.52 11.46 5.41 

North 
America  

7.97 BAU 7.83 7.70 7.57 7.45 7.33 7.20 7.08 6.96 12.74 

 AD 7.77 7.57 7.38 7.19 7.01 6.84 6.66 6.49 18.61 

 SD 7.90 7.84 7.77 7.74 7.71 7.67 7.64 7.61 4.51 

Oceania 
 

0.51 BAU 0.50 0.50 0.49 0.49 0.48 0.48 0.48 0.47 6.58 

 AD 0.50 0.49 0.49 0.48 0.47 0.47 0.46 0.46 9.67 

 AD 0.50 0.49 0.49 0.48 0.47 0.47 0.46 0.46 9.67 

South 
America  

10.40 BAU 10.30 10.20 10.10 10.00 9.91 9.82 9.73 9.64 7.33 

 AD 10.25 10.10 9.95 9.81 9.68 9.55 9.42 9.30 10.58 

 SD 10.35 10.30 10.25 10.22 10.20 10.18 10.15 10.13 2.65 

 

Considerable differences in forest extent and rates of deforestation can be 

observed at the country level as well. The simulation results indicate the largest extent of 
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deforestation would occur in the Russian Federation, Canada, United States, and Brazil. 

Under the AD scenario for example, 2.3 million km2, 0.81 million km2, 0.67 million km2, 

and 0.45 million km2 of forest area were lost in the Russian Federation, Canada, United 

States, and Brazil, respectively between 2020 and 2100. In relative terms, 17.4% of 

forest in Canada and 20.3% of forest in the United States would be lost by the end of the 

21st century under this scenario. Moreover, there are several countries (over 50) with 

zero forest loss due these countries having no forest cover, lack of data, or the country 

being too small to capture the change in forest cover change. 

 

Figure 5.6. Obtained simulation results of deforestation under Business as 
Usual (BAU), Accelerated Deforestation (AD), and Sustainable 
Deforestation (SD) scenarios compared to the base year for a) 
Amazon Forest, b) Congo basin, and c) Eastern USA. 
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5.4.2. Forest Change in Protected Areas 

In 2020, about 9.3 million km2 of the global forest were in protected areas which 

corresponds to 19.5% of the global forest extent. Simulation results indicate that this 

proportion however increases to 21.8%, 23%, and 20.2% by 2100, under the BAU, AD, 

and SD scenarios, respectively. The rate of deforestation within protected areas was 

significantly lower than the global rate as well. Between 2020 and 2100, only 0.03% of 

forests in protected areas were deforested under the BAU scenario and 0.09% under the 

AD scenario. The forest extent in protected areas under the SD scenario however 

remained the same over the simulation period with no forest loss due to the restriction of 

deforestation in these areas. Table 5.3 presents the percentages of the share of forest 

extent located in protected areas at the continental level by 2100 and compared to the 

base year under the three scenarios. By 2100, 3.7 million km2 of forest in South America 

would be in protected areas under the BAU scenario which represents 38.7% of all 

forest cover on the continent, representing the largest share of protected forest area at 

the continental scale. In contrast, Oceania, North America, and Europe have the lowest 

percentage of protected forests at the continental level under all scenarios. 

Table 5.3. Proportions of forest cover in percentages (%) located in protected 
areas by 2100 at the continental level under the Business as Usual 
(BAU), Accelerated Deforestation (AD), and Sustainable 
Deforestation (SD) scenarios and compared to the base year 2020. 

Scenario [%] Africa Asia Australia Europe 
North 
America 

Oceania 
South 
America 

Base year 2020 20.92 11.22 32.53 14.55 10.70 3.91 35.90 

BAU 2100 22.44 12.34 36.23 17.21 12.26 4.18 38.73 

AD 2100 23.25 12.85 38.26 18.76 13.15 4.33 40.14 

SD 2100 21.43 11.60 33.75 15.38 11.21 4.00 36.88 

5.5. Discussion 

Based on the simulation outputs, the global forest extent is projected to decrease 

over the coming decades with total forest extent by 2100 ranging between 46 and 40 

million km2. The rate and magnitude of deforestation however differs among the three 

scenarios and at the regional and country levels. The results indicate that Europe has 

the largest extent of deforestation by 2100, with 85.4% of the deforested areas in Europe 

however occurring in the Russian Federation. The results from the model presented in 
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this research are comparable with other projections found in the literature with range of 

outcomes varying between 25 million to 50 million km2 by 2100 under different scenarios 

(Cao et al., 2019; M. Chen et al., 2020; Li et al., 2017). However, as a caveat, simulation 

results from the presented model are largely dependent on the quality of the datasets 

utilized in the research. For instance, the rate of deforestation obtained at the country 

level for implementing the scenarios are derived from the available ESA-CCI land-cover 

datasets. 

The pattern of forest cover change observed also follows the process of 

deforestation as reported by prior studies (Broadbent et al., 2008; Precinoto et al., 2022). 

From the simulation outputs, deforestation initially begins from the fringes of large forest 

regions and diminishes into the interior. This spatial pattern can be justified where forest 

regions in proximity to past forest disturbances, urban areas, water bodies and road 

networks are more prone to deforestation. Over the course of the simulation run, regions 

initially covered by large forests become fragmented as deforestation spreads into the 

forest core. This pattern can be observed from the temporal simulation outputs 

presented in Figure 5.3. 

While no forest management polices were explicitly included in the scenario 

design and implementation, the difference in results among the scenarios indicate the 

model can be utilized to assess different forest conservation policies. When properly 

implemented, protected areas can be used as effective forest conservation scheme to 

reducing deforestation. For instance, in the SD scenario where forest management 

polices are strictly implemented and deforestation in protected areas is not allowed, the 

simulation results reveal no loss of forest cover. Such an outcome would however be 

difficult to achieve due to the financial and human resources required to implement such 

a policy across large regions. The positive impact of protected areas on deforestation is 

however proven by other studies in the scientific literature (Barber et al., 2014; 

d’Annunzio et al., 2015). Research study by Qin et al (2023) indicate that deforestation 

in protected areas accounted for only 5% of net forest loss between 2000 and 2021 in 

the Brazilian Amazon. Presently, protected areas are predominantly located in tropical 

regions of Africa, Asia, and South America in contrary to the small proportion of 

protected forest areas in Europe and North America as obtained from the simulation 

results. According to FAO and UNEP (2020), less than 10% of subtropical humid forest, 
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temperate steppe and boreal coniferous forests largely found in Europe and North 

America are protected. 

Despite the model’s capabilities in simulating deforestation at the global level and 

across different regions, the research study has some limitations. The improvements can 

be made to the model pending on quality and detailed global datasets to simulate land-

cover change at finer spatial resolution as well as including more relevant criteria related 

to deforestation such as soil properties, climate variables or forest type classification. By 

experimenting with different weighting methods such as Analytic Hierarchy Process 

(AHP) (Saaty, 1980) or incorporating advanced spatial decision technique such as 

Ordered Weighted Averaging (OWA) (Yager, 1988) or Logic Scoring of Preference 

(LSP) (Dujmovic et al., 2010), the deforestation susceptibility analysis can be further 

improved for the SGA modelling framework. The selection of the relevant drivers of 

deforestation and generation of criterion weights can also be determined through 

engagement with subject experts and stakeholders in the model implementation phase 

of the research study. Considering the spatial heterogeneity and dynamics of the 

different drivers of deforestation across diverse regions and countries, implementation of 

region specific economic or climate policies would be beneficial to improve the model. 

While only homogenous forest was considered in this research, the different forest types 

such as rainforest, boreal, deciduous, mangrove, to name a few, can also be included in 

order to incorporate detailed characteristics of the different forest change dynamics. 

Additionally, the model can further be developed to incorporate multiple land-use/land-

cover change types to reflect their different dynamics. This can assist in making 

informed decisions at country or regional levels and considering REDD+ (Angelsen, 

2009) and OECD (OECD, 2018) concepts. Consideration of natural regeneration of 

forests, reforestation, afforestation, and age of forested areas would be beneficial to 

enhance the proposed modelling approach. Moreover, with climate being one of the 

drivers of forest distribution, the inclusion of climate variables and scenarios can 

enhance the model’s ability to characterize future deforestation patterns and considering 

the effects of climate change. Augmenting computational power with more efficient code 

for SGA model to run faster or on multiple processors when using global datasets would 

be another advantage. 
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5.6. Conclusions 

This research study aims to develop and implement a unique spherical 

geographic automata modelling approach that has been applied to represent and 

simulate global deforestation process. Compared to existing geosimulation models and 

applications, the proposed model considers the curvature of the Earth’s surface that is 

often ignored when modelling at the global level. For large scale spatial applications, it is 

determined that the use of planer spatial models can produce very different results. 

Further, most global land-cover change models in the literature generally focus on 

simulating agricultural and urban land-use change with few studies including 

deforestation.  

Results from this research study indicate the spherical deforestation model can 

be successfully implemented to simulate forest land-cover change process at the global 

level and under different ‘what-if’ scenarios. Ultimately, the model is flexible and allows 

for further enhancements, thus the proposed deforestation modelling approach has a 

solid foundation to be used by intergovernmental entities, policy makers, ecologist, and 

researchers to support global forest management and conservation. With the United 

Nations (UN) Sustainable Development Goal (SDG) 15 set on promoting sustainable 

use of terrestrial ecosystems, sustainable forest management, and halting biodiversity 

loss, the spherical geographic deforestation model proposed in this research study can 

provide valuable insight and spatial decision support tool for achieving these targets. 
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Chapter 6.  
 
Forecasting scenarios of global multiclass land-use 
and land-cover change using deep learning and 
spherical geographic automata model 

6.1. Abstract 

Modelling land-use/land cover (LULC) change is vital for addressing global 

environmental and sustainability issues and evaluating various land system scenarios. 

However, existing geosimulation methodologies for global LULC change are 

inappropriate as they neglect spatial distortions caused by the Earth's curvature and 

cannot incorporate multiple LULC change processes. In this research a deep learning 

(DL) is integrated with spherical geosimulation modelling approach to simulate change of 

multiple LULC types globally under the shared socioeconomic pathways (SSP) 

scenarios. Based on the simulation results, the frontiers of urbanization, cropland 

expansion, and deforestation are indicated to be in developing countries particularly in 

Asia and Africa. The simulation outputs also reveal 42.5% - 63.2% of new urban 

development would occur on croplands. The proposed modelling approach can serve as 

a valuable tool for spatial decision-making and environmental policy formulation at the 

global level. 

6.2. Introduction 

Land-use/land-cover (LULC) change characterizes the modification of the Earth’s 

surface through anthropogenic activities and manifested by processes such as 

urbanization, agricultural intensification and expansion, deforestation, afforestation, 

desertification, among others (Hu et al., 2021). According to estimates, approximately 

three quarters of the Earth’s terrestrial surface has been altered by human activities 

(IPCC, 2019; Winkler et al., 2021). LULC change is perceived as a local process but 

however has several negative consequences at the regional and global level including 

biodiversity loss, ecosystem fragmentation, soil degradation, altered carbon cycle, and 

ultimately climate change (Foley et al., 2005; Malek et al., 2019). In recent decades, 

globalization, growth in human population and its associated increase in consumption, 
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expansion of bioenergy crops, and economic development have resulted in increased 

pressure on global land resources (Lambin & Meyfroidt, 2011). Thus, understanding and 

modelling the dynamics of LULC change at larger spatial scale has become essential for 

tackling environmental and sustainability issues across the globe (Turner et al., 2021). 

Simulations provide spatial data and information for assessing the possible 

effects of policies under different trajectories and conditions, monitoring sustainable 

development, and for Earth systems modelling (Verburg et al., 2016). For instance, the 

shared socioeconomic pathways (SSP) scenarios (O’Neill et al., 2014) offer a consistent 

framework for exploring different plausible future conditions based on demographic, 

economic, human development, policies, and environmental factors. Implementing 

spatially-explicit models for global LULC change simulations in alignment with widely 

adopted long-term scenario frameworks can significantly enhance contributions to 

integrated modelling across different fields and facilitate research on large-scale 

interactions between social and environmental systems. (Gao & O'Neill, 2019). Further, 

global LULC change models are required for examining the interactions and feedback 

between LULC change processes and other socioeconomic and environmental systems 

operating at large spatial extents (Meiyappan et al., 2014). 

To characterize different spatial dynamic systems and understand the 

relationship between LULC change processes and driving factors, spatially explicit 

modelling approaches are required (Verburg et al., 2016). Geosimulation models 

particularly cellular automata (CA) have become a preferred modelling choice due to 

their simplicity, ability to represent the non-linear process of change, and capture the 

spatiotemporal characteristics of complex systems (Torrens & O'Sullivan, 2001). Over 

the past decades, hybrid modelling approaches have been developed that integrate CA 

framework with other techniques including Markov chain (Rimal et al., 2018), multi-

criteria evaluation (MCE) (Gharaibeh et al., 2020), logistic regression (Shu et al., 2020), 

etc. More recently, machine learning (ML) and deep learning (DL) techniques have also 

been integrated with CA models to simulate different LULC change processes and 

scenarios at the local and regional scale (Ball et al., 2022; Cao et al., 2019; Wang et al., 

2023; Ye et al., 2019). In contrast to conventional ML techniques, DL architecture are 

able to extract relevant correlation features from numerous geospatial datasets resulting 

in improved modeling performance (Xiao et al., 2022). DL algorithms are also integrated 

with geosimulation models to mine transitions rules for simulating different complex 
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spatial processes (He et al., 2018). These algorithms are often implemented in LULC 

change models to derive transition probabilities using drivers of LULC change based on 

biophysical, socio-economic, and proximity factors (Mithun et al., 2022). 

Despite the noted importance of large-scale LULC change models for 

environmental assessment and scenario development, several limitations in global LULC 

change modelling still persist. Primarily, existing global LULC change modelling 

approaches are implemented with conventional two-dimensional (2D) spatial data 

models that do not consider the curvature of the Earth’s surface (Hu et al., 2021). This 

limitation causes distortion of geographic features and can result in spatial and 

computational errors when these models are utilized for large scale applications (Hall et 

al., 2020). For raster GIS datasets which are commonly applied in global LULC change 

modelling, the use of conventional geospatial models for global applications can result in 

overestimation of computed cell area especially at higher latitudes due to spatial 

distortions (Kelly & Šavrič, 2021). Further, due to the complexity of modelling 

interactions between different land systems and representing the spatial heterogeneity of 

LULC change processes in geosimulation models at the global level, several existing 

global LULC change applications only consider and simulate the dynamics of only one 

type of LULC change process such as urbanization (Gao & O’Neill, 2020; Li et al., 2021), 

agricultural expansion (Cao et al., 2021; Meiyappan et al., 2014), or deforestation 

(d’Annunzio et al., 2015). These model applications often consider only one land class 

and on binary representation such as urban and non-urban or forest and non-forest, 

which over simplifies the represented mechanisms of LULC change. Considering that 

different LULC change processes occur concurrently, comprehensive multi LULC 

change simulations are required for determining ensemble of land types to generate 

more realistic possible outcomes of LULC change patterns (Liu et al., 2017). 

Given the advantages of DL techniques in handling large datasets and the gap in 

representing multi LULC types in geosimulation models at the global level, this research 

study aims to leverage the capabilities of DL and geosimulation approaches for 

characterizing the spatio-temporal dynamics of different LULC types. The main 

objectives are to 1) develop a DL-based geographic automata model for simulating 

multiple LULC types at the global scale; 2) implement the model on global datasets and 

considering the SSP scenarios to forecast LULC change across the 21st century. 
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6.3. Materials and Methods 

6.3.1. Model Overview 

The proposed multi LULC change spherical geographic automata model is based 

on the integration of the DGGS spatial framework, DL, and geographic automata for 

simulating multiple LULC change processes at the global level. The schematic 

representation of the modelling framework utilized in this research study is presented in 

Figure 6.1. The modelling framework consists of several subcomponents and 

mechanisms including the spherical spatial framework, DL, LULC conversion matrix, 

urban rank size, spherical geographic automata (SGA), and land demand model. These 

subcomponents and mechanisms are all linked together through the SGA component. 

The spherical spatial component of the model is based on the DGGS framework which 

provides a suitable spherical spatial medium for representing geospatial datasets at the 

global level by considering the curvature of the Earth’s surface. The DL technique is 

incorporated to derive transition probabilities and applied for guiding the LULC change 

transition rules. The conversion matrix characterizes the level of difficulty in converting 

one LULC type into another. This model component captures the likelihood of a specific 

land-use or land-cover type changing to another type. 

To capture the hierarchical relationship between different cities in an urban 

system, an urban rank size rule algorithm was implemented. The law highlights the 

spatial heterogeneity in urban systems, indicating that larger cities exert a bigger impact 

on urban development (Berry, 1964; Krugman, 1996; Wang et al., 2022). LULC change 

is simulated by the SGA component based on parameters such as transition rules, 

neighbourhood, cell state, constraints, LULC conversion weights, and Zipf’s law 

coefficient. A land demand model is utilized to calculate the extent of land change for the 

different LULC types and consistent with the five SSP baseline scenarios. The following 

sections describe each component of the proposed model in detail. 



150 

 

Figure 6.1. Framework of the multiclass DL-based spherical geographic 
automata modelling approach for simulating LULC change 
processes at the global level. 

Datasets 

This research study covers the entire terrestrial surface of the Earth except for 

Antarctica and employs several available geospatial datasets with global coverage to 

implement the model. Global land-use/land-cover datasets were obtained from the 
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European Space Agency (ESA) portal (ESA, 2022). The original 37 LULC classes in the 

ESA datasets were reclassified into seven main land types: urban, forest, cropland, 

grassland, bare areas, water bodies, and snow and permanent ice. Gridded population 

density dataset was acquired from the LandScan database (Sims et al., 2022) and gross 

domestic product (GDP) from (J. Chen et al., 2022). Global digital elevation model 

(DEM) was retrieved from the United States Geological Survey (USGS) data portal 

(USGS, 2022). Bioclimatic variables including temperature and precipitation datasets 

were acquired from the WorldClim portal (Fick & Hijmans, 2017) and soil properties 

datasets from the SoilGrids data portal (Hengl et al., 2017). Location of protected areas 

were obtained from the World Database on Protected Areas (WDPA) online data 

catalogue (WPDA, 2023). Additionally, global road dataset was sourced from the Global 

Road Inventory Project (GRIP) portal (Meijer et al., 2018) and past forest disturbance 

from the Global Wildfire Information System (GWIS) (Artés et al., 2019). Datasets 

detailing the boundaries of administrative regions were also acquired from the Global 

Administrative Areas (GADM) data portal (GADM, 2023). Datasets for years 2000, 2010 

and 2020 were used to build and evaluate the model, with temporal resolution of 10 

years. 

Spherical spatial framework component 

The spherical spatial framework is based on the icosahedron polyhedron and 

projected to the WGS84 ellipsoid using the icosahedral Snyder equal-area (ISEA) 

projection. The utilization of ISEA DGGS cells provide equal-area cells to partition the 

Earth’s surface while also considering its curvature (Goodchild, 2018). Hexagons are 

utilized to tessellate the spherical surface given its properties and merits over other 

regular polygons such as squares and triangles. For instance, hexagons offer uniform 

neighbouring relationships, can be used to approximate circular regions, and tessellate 

the sphere with the least average error (Sahr, 2011; Zhou et al., 2020). Thus, the 

proposed modelling framework utilizes geospatial datasets that are mapped to a 

specified DGGS composed of hexagonal spatial tessellation with each cell 

encompassing an area of 3.55km2 and intercell spacing of 2.04 km. The quantization of 

existing spatial datasets into DGGS format follows the method in Robertson et al. 

(2020), and using the DGGRID library (Sahr, 2022). 
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DL component 

In this study, the DL component is used to estimate transition probabilities for 

each LULC type and was implemented using several relevant spatial drivers informed 

from the literature and data availability including socio-economic (population density, 

gross domestic product (GDP)), proximity-based variables, biophysical (soil properties, 

elevation, slope), and climate variables (temperature, rainfall). These driver variables are 

normalized into the range [0-1] and utilized to derive the transition probability for the 

different LULC types.  

The DL component utilizes the deep neural network technique and is constructed 

with several hyperparameters including activation function, loss function, optimization 

algorithm, epoch, and batch size. The DL algorithm derives transition probabilities for the 

different LULC types based on the relationships between LULC change and the 

associated spatial driving factors. Commonly used activation functions for implementing 

DL models include the sigmoid function, tanh function, ReLU function, etc. In this 

research study the ReLU activation function was utilized due to its computational 

efficiency and also allows the model to easily obtain sparse representation, which can 

help the model capture patterns and relationships in datasets (Glorot et al., 2011). The 

binary cross entropy (BCE) is utilized as the loss function and the Adam optimization 

algorithm applied to update the weight of the DL model after each epoch. The maximum 

epoch of the DL model was set to 500 with the batch size set to 20. The combination of 

hyperparameters utilized in this study are determined based on the results of DL model 

testing. In developing the DL model, 70% of the datasets were used as training set to 

train the model and the remaining 30% was utilized as testing dataset to assess the 

performance of the DL technique. The resulting transition probability outputs, derived 

using data for years 2010 and 2020, are fed to the SGA model component and used as 

input parameter for guiding the transition rules for the different LULC types. In this study, 

the DL model is implemented in the Python programming language with the Pytorch 

deep learning library (Paszke et al., 2019). 

LULC conversion weights component 

The LULC conversion weights represent the difficulty or desirability associated 

with converting one LULC type into another. This mechanism represents the economic 

or environmental constraints linked to the conversion of a particular LULC type into a 
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different type. In the proposed modelling framework, this characterizes the likelihood of a 

hexagonal cell with a specific LULC type changing into another type. The LULC 

conversion weights are derived based on analysis of historical LULC data and in this 

research study, utilizing the 2010 and 2020 ESA land-use/land-cover datasets. To 

account for the spatial heterogeneity of LULC change processes across different 

regions, the LULC conversion weights are calculated separately for each country and for 

the different LULC types. Conversion weights range between 0 and 1, where 0 indicate 

conversion to a particular LULC type is not possible and a higher value denote increased 

likelihood of conversion to that specific LULC type. For instance, in a specific country, 

the likelihood of converting grassland into urban land-use can be very high whereas the 

cost of converting cropland into urban is very low. In this context, the higher economic 

value attributed to croplands in comparison to grasslands may render the conversion 

from grassland to urban more feasible than the conversion from cropland to urban use. 

Thus, in the proposed model, cells with state grassland are more likely to be simulated 

into urban in that specific country. 

Urban rank size component 

Generally, the size of cities or urban systems is inversely proportional to its rank 

across a specific geographic space, and this can be explained by the “Rank Size Rule” 

or Zipf’s law (Auerbach & Ciccone, 2023; Zipf, 1949). Zipf’s law also reflect the fractal 

nature of cities and the interconnectedness within a complex urban system (Batty, 

2013). Research studies indicate the size and rank of urban systems can remain steady 

over long periods at the national level and even across larger spatial extents (Jiang et 

al., 2015; Veneri, 2016). Larger cities tend to grow faster due to factors such as 

agglomerative economics, urban infrastructure, and human capital (Duranton & Puga, 

2014). Thus, to preserve the national urban size distribution in this research study, a 

rank size rule algorithm was incorporated into the modelling framework. The algorithm is 

applied at the national level using sub-region as the spatial units, derived from the 

GADM dataset. Based on the rule, urban areas in sub-regions with larger population 

have a higher rank coefficient for urban development than urban areas in sub-regions 

with smaller population. This component of the model is implemented to characterize the 

rank size effect of cities existing in urban systems at the national level. The rank size 

rule (Soo, 2005) can be formulated as: 
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 log 𝑦𝑖 = log 𝐴 −  𝛼𝑙𝑜𝑔𝑥𝑖 

 

(1) 

where 𝑥 is the size of sub-region 𝑖 in terms of population, 𝑦 is the number of sub-regions 

with population greater than sub-region 𝑖, 𝛼 is a constant, and 𝐴 is the size of the largest 

sub-region at the national level. Population values for each sub-region were extracted 

from the Landscan dataset, based on the methodology described in Dobson et al. 

(2000). In all, a total of 356,508 sub-regions were utilized to calculate the Zipf’s rank 

coefficient. 

Spherical geographic automata component 

The SGA component is designed to simulate multiple LULC changes based on 

several parameters. During each iteration, the state of each hexagonal cell changes or 

remains the same based on the cell’s neighbourhood, transition probability from the DL 

model, LULC conversion weight, constraint parameter, and in the case of urban 

development, Zipf’s law coefficient. The spherical geographic automata transition rules 

for urban LU type can be expressed as: 

 𝑆𝐺𝐴ℎ
𝑡+1 =  {𝑆𝐺𝐴ℎ

𝑡 ,  𝐻𝑁ℎ
𝑡 , 𝑇𝑃ℎ

𝑡 , 𝐶𝑊𝑙,𝑘 , 𝑍𝑟𝑠
𝑖 , 𝑓, ∆𝑇},  𝑆𝐺𝐴ℎ

𝑡 = 𝑈𝑟𝑏𝑎𝑛 (2) 

and for non-urban LULC types as: 

 𝑆𝐺𝐴ℎ
𝑡+1 =  {𝑆𝐺𝐴ℎ

𝑡 ,  𝐻𝑁ℎ
𝑡 , 𝑇𝑃ℎ

𝑡 , 𝐶𝑊𝑗,𝑘 , 𝑓, ∆𝑇},  𝑆𝐺𝐴ℎ
𝑡 ≠ 𝑈𝑟𝑏𝑎𝑛 (3) 

where 𝑆𝐺𝐴ℎ
𝑡+1 denotes the state of a hexagonal cell h at the next time step t+1, 𝑆𝐺𝐴ℎ

𝑡  is 

the state of hexagonal cell at initial time t , 𝐻𝑁ℎ
𝑡 represents the hexagonal neighbourhood 

consisting of six cells around the central cell, 𝑇𝑃ℎ
𝑡 is the transition probability obtained 

from the DL component of the model, 𝐶𝑊𝑗,𝑘 is the LULC conversion weight which 

indicate the likelihood of LULC type 𝑙 changing into another type in country 𝑘, 𝑍𝑟𝑠
𝑖  is the 

urban rank size rule coefficient obtained for sub-region 𝑖, 𝑓 is the function of transition 

rules that determine how the state of cells change over time, and ∆𝑇 is the discrete time 

increment representing one iteration of the model. For the urbanization process ( 𝑆𝐺𝐴ℎ
𝑡 =

𝑈𝑟𝑏𝑎𝑛), the additional parameter 𝑍𝑟𝑠
𝑖  is implemented to ensure cells in sub-regions with 

higher coefficient have an increased likelihood of being converted into urban at the next 

iteration. The LULC types of water bodies and permanent ice and snow remain 

unchanged. The model iteratively simulate LULC changes based on the different model 
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parameters until the demand for the different LULC types are reached for each country 

under the different SSP scenarios. One model iteration is equivalent to a temporal 

resolution of 10 years. 

Land demand component 

The shared socioeconomic pathways is a set of five distinctive scenarios of 

future socio-economic development and challenges to climate change mitigation and 

adaptation under a consistent set of assumptions over the 21st century (O’Neill et al., 

2014). The SSP scenarios do not however incorporate mitigation strategies, adaptation 

responses, or the impacts of climate change (O’Neill et al., 2017). In addition, the 

projections of possible future changes in scenario variables and indicators in the SSP 

database are limited to quantity and lack spatial components (Riahi et al., 2017). This 

research study is providing the spatial and dynamic component of the LULC change 

process and connecting with the SSP scenarios. The five scenarios are named SSP1: 

Sustainability - taking the green road, SSP2: Middle of the road (business as usual), 

SSP3: Regional rivalry - a rocky road, SSP4: Inequality - a road divided, and SSP5: 

Fossil-fuelled development - taking the highway. Table 6.1 provides a summary of the 

land-use characteristics and assumptions across the five SSPs as presented in Pop et 

al. (2017). The SSP scenario framework and data variables has been widely adopted 

and often integrated with different models to assess greenhouse gas emissions, energy 

consumption, LULC change, as well as climate impact and adaptation across different 

sectors from the local to the global scale (O’Neill et al., 2020).  
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Table 6.1. Description of land use characteristics and assumptions for the five 
SSP scenarios. Source; O’Neill et al., 2017. 

Assumptions SSP1 SSP2 SSP3 SSP4 SSP5 

Population 
Growth 

Relatively low Medium Low Relatively high Relatively low 

GDP High in LICs, 
MICs; medium 
in HICs 

Medium; 
Uneven 

Slow Low in LICs, 
medium in 
other 
countries 

High 

Urbanization High; well 
managed 

Medium; 
continuation of 
historical 
patterns 

Low; poorly 
managed 

High; mixed 
across and 
within cities 

High; better 
management. 
over time, 
some sprawl 

Land-use 
change 
regulation 

Strong 
regulation to 
avoid 
environmental 
trade-offs 

Medium 
regulation; 
slow decline in 
the rate of 
deforestation 

Limited 
regulation; 
continued 
deforestation 

Highly 
regulated in 
MICs and 
HICs; lack of 
regulation in 
LICs lead to 
high 
deforestation 
rates 

Medium 
regulation; 
slow decline in 
the rate of 
deforestation 

Agriculture 
productivity  

High 
improvements 
in agricultural 
productivity; 
rapid diffusion 
of best 
practices 

Medium pace 
of 
technological 
change 

Low 
technology 
development 

Productivity 
high for large 
scale 
industrial 
farming, low 
for small-scale 
farming 

Highly 
managed, 
resource- 
intensive; rapid 
increase in 
productivity 

Environmental 
Impact of food 
consumption 

Low growth in 
food 
consumption, 
low- meat diets 

Material-
intensive 
consumption, 
medium meat 
consumption 

Resource-
intensive 
consumption 

Elites: high 
consumption 
lifestyles; 
Rest: low 
consumption 

Material-
intensive 
consumption, 
meat-rich diets 

Land-based 
mitigation 
policies 

No delay in 
international 
cooperation for 
climate change 
mitigation. Full 
participation of 
the land use 
sector 

Delayed 
international 
cooperation 
for climate 
change 
mitigation. 
Partial 
participation of 
the land use 
sector 

Heavily 
delayed 
international 
cooperation 
for climate 
change 
mitigation. 
Limited 
participation of 
the land use 
sector 

No delay in 
international 
cooperation 
for climate 
change 
mitigation. 
Partial 
participation of 
the land use 
sector 

Delayed 
international 
cooperation for 
climate change 
mitigation. Full 
participation of 
the land use 
sector 
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In the implementation phase of the proposed multi-class DL-SGA model, the total 

amount of change required for the different LULC change types are computed with the 

land demand component using datasets including projected population, GDP, and LULC 

change from the SSP database (Popp et al., 2017; Riahi et al., 2017). Country level 

historical data on GDP and population were also obtained from the World Bank (World 

Bank, 2023) and United Nations (UN) Population Division (UN-DESA, 2023), 

respectively. The land demand component is designed to compute the magnitude of 

land change for each LULC type and country at a 10-year temporal interval between 

2020 and 2100. Country specific urban change demand is computed based historical 

data of urban land-use, GDP, and population for years 2010 and 2020 and future 

projections of population and GDP using a regression function. In this context, data on 

projected changes in GDP and population are utilized as indicators for future changes in 

urban extent at the country level. The land demand for forest and cropland are based on 

the SSP LULC database for the different scenarios. To ensure the total area of the 

different LULC types in the SSP database is consistent with the ESA LULC dataset 

utilized in this research, a harmonization function (G. Chen et al., 2022) was 

implemented and can be expressed as: 

 
𝐿𝐷𝑙,𝑟

𝑡+1 =  
𝐸𝑆𝐴𝑖

𝑡 ∗ 𝑆𝑆𝑃𝑖
𝑡+1

𝑆𝑆𝑃𝑙,𝑟
𝑡  

 

(4) 

where 𝐿𝐷𝑙,𝑟
𝑡+1 represents the adjusted land demand for LULC type 𝑙 and for region 𝑟 at 

time t+1, 𝐸𝑆𝐴𝑖
𝑡 denotes the land area for LULC 𝑙 in region 𝑟 at time 𝑡 from the ESA data, 

𝑆𝑆𝑃𝑖
𝑡+1 represents the land area for LULC 𝑙 in region 𝑟 at time t+1 from the SSP 

database, and 𝑆𝑆𝑃𝑙,𝑟
𝑡  denotes the land area for LULC 𝑙 in region 𝑟 at time 𝑡 from the SSP 

database. 

6.3.2. Multiclass DL-SGA Model Evaluation and Implementation 

Multiclass DL-SGA evaluation, consisting of calibration and validation was 

executed using different LULC change evaluation metrics such as the relative operating 

characteristic (ROC), figure of merit (FoM), producer’s accuracy (PA), and user’s 

accuracy (UA). ROC (Hanley & McNeil, 1982) is a model evaluation technique that is 

often used for assessing the performance of binary classification with continuous values 

(Mas et al., 2013). The ROC curve is derived by plotting the true positive rate against the 
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false positive rate using different value thresholds. From the ROC curve, the area under 

the curve (AUC) metric is obtained with values ranging between 0 and 1, where a higher 

AUC value indicates a more accurate model (Camacho Olmedo et al., 2022). AUC 

values were calculated for LULC types of cropland, forest, and urban. Additionally, the 

FoM metric (Pontius et al., 2008) was applied to evaluate the proposed model by 

comparing the simulation output against observed LULC data. The FoM index is a 

common measure for determining the accuracy of LULC change models as it focuses on 

the accuracy of the changed areas, rather than the entire study area. The FoM index is 

the ratio of the intersection of simulated and observed change over the union of 

simulated and observed change and expressed as: 

𝐹𝑜𝑀 =  
𝐵

𝐴 + 𝐵 + 𝐶 + 𝐷
 

(5) 

where 𝐴 is the number of observed changed hexagonal cells simulated as non-change, 

𝐵 is the number of observed changed hexagonal cells correctly simulated as change, 𝐶 

is the number of observed changed hexagonal cells simulated as change but to the 

wrong LULC type, and 𝐷 is the number of unchanged hexagonal cells simulated as 

change by the model. From the FoM components, two additional accuracy indices, 

producer’s accuracy (PA) and user’s accuracy (UA) can be derived (Paegelow, 2018). 

Producer accuracy represent the proportion of cells the model corrected simulated as 

change against observed changed cells and user accuracy is the proportion of cells the 

model corrected simulated as change against the total simulated change by the model. 

The producer’s accuracy and user’s accuracy indices are formulated as: 

𝑃𝐴 =  
𝐵

A + B + C
 

(6) 

 

𝑈𝐴 =  
𝐵

A + B + D
 

(7) 

The model was calibrated using observed datasets for the year 2000 and 2010 

and validated using data for year 2020, which represents independent dataset not used 

in the model building and calibration phases. The obtained values for FoM, PA, and UA 
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are presented in Table 6.2. The FoM values derived in the model calibration and 

validation phases were 28.61% and 23.35% respectively. These values are similar to the 

results of other global LULC change simulations with reported values in the range of 

10% and 19% (G. Chen et al., 2022; Li et al., 2017). 

Table 6.2. Obtained model evaluation values for FoM, PA, and UA metrics for 
the calibration and validation phases. 

 Metric Calibration Validation 

FoM 28.61% 23.35% 

PA 33.17% 38.59% 

UA 35.66% 42.07% 

 

Validation of the proposed model with the ROC metric reveals the AUC values 

for all LULC types to be above 0.8 with obtained values ranging between 0.81- 0.94, 

indicating an overall good performance of the model. Figure 6.2 presents the ROC 

curves and the AUC values for the different LULC types simulated in this research. The 

AUC values derived for model evaluation in this research commensurate with values 

obtain from other global geosimulation models with values from these studies varying 

between 0.72 and 0.96 (G. Chen et al., 2022; Li et al., 2016; Li et al., 2021). 

 

Figure 6.2. Obtained ROC curves and AUC values for cropland, forest, and 
urban LULC types. 

Given the evaluation results, the model is then used to simulate various LULC change 

across the five SSP scenarios. For each scenario, the proposed model is run for eight 

iterations with a temporal resolution of 10 years to simulate global LULC change 

between 2020 (𝑇𝑖) and 2100 (𝑇𝑖+8). The Multiclass DL-SGA model and its components 

are designed and implemented in the Python programming language (Van Rossum & 

Drake, 2009). 
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6.4. Simulation Results 

6.4.1. Global Trends of Land-use/Land-cover Change 

Although the different LULC types have the same initial extent in 2020 under the 

five SSP scenarios, the simulated LULC changes over the course of the simulation vary 

significantly across scenarios. Changes in the extent of the major LULC types modelled 

in this research study between 2020 and 2100 are presented in Figure 6.3. Based on the 

obtained simulation results, the global urban extent by 2100 varies between 1.4 million 

km2 and 3.08 million km2 across the five SSP scenarios. The least change in urban 

extent was observed under the SSP3 (Regional rivalry) scenario with the total global 

urban extent increasing by 78.7% between 2020 and 2100. In contrast, the global urban 

extent under the SSP5 (Fossil-fuelled development) scenario increased by 272% within 

the same time period. Despite the differences in urban growth rates across the five 

scenarios, similarities can also be observed. For example, both the SSP3 and SSP4 

scenarios have noticeably slower rates of urbanization and show similar trends between 

2020 and 2100. The SSP1 and SSP2 scenarios can also be classified as having 

moderate growth trends with the difference in urban extent between the two scenarios 

by 2100 amounting to only 123 thousand km2. Urbanization mainly occurs at the 

expense of cropland with 42.48% - 63.23% of new urban expansion occurring on 

cropland. The largest conversion of cropland to urban land-use occurs under the SSP5 

scenario with a total of 0.96 million km2 of cropland converted into urban between 2020 

and 2100. Grassland is also a key contributor to urban expansion with 25.86% - 42.28% 

of new urban expansion transitioning from grassland into urban land-use across the five 

scenarios. 

In 2020, 14.5 million km2 of the Earth’s terrestrial surface was covered by 

cropland. By 2100, the total extent of cropland at the global level obtained from the 

simulations vary between 15.8 million km2 and 23.5 million km2 across the scenarios. 

Further analysis indicate between 3.44 million km2 to 9.73 million km2 of land would be 

converted into cropland whereas 0.69 million km2 to 2.07 million km2 of cropland would 

transition into other LULC types. This represents a net cropland gain between 1.37 

million km2 and 9.03 million km2 in the period between 2020 and 2100. The largest net 

increase in the extent of cropland occurs under the SSP3 scenario whereas SSP1 has 

the least net gain in cropland. Expansion in cropland mainly comes from forest and 
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grassland which collectively contribute 85.51% – 98.37% of cropland increase at the 

global level. On the contrary, the main cause of cropland reduction across the five 

scenarios is urbanization, accounting for 26.41% to 87.44% of the observed decline in 

cropland. Conversion of cropland into urban land-use is largest under SSP5 with 0.96 

million km2 of cropland converted into urban whereas the least conversion would occur 

under SPP3 and SSP4 with 0.41 million km2 and 0.43 million km2, respectively. These 

extents represent 66.6%, 59.05%, and 26.41%, correspondingly of the total cropland 

loss under these three scenarios. 

 

Figure 6.3. Simulated land use change (million km2) for urban, cropland, and 
forest LULC types across the five SSP scenarios.  

The simulation results also reveal changes in the total global forest land-cover 

type extent across the SSP scenarios. The global forest extent in 2020 was 47.6 million 

km2 and ranges between 40.2 million km2 and 50.9 million km2 by 2100. There is a net 

loss of forest under SSP2, SSP3, SSP4 and SSP5 with the global net forest loss under 
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these four scenarios ranging between 0.64 million km2 and 7.33 million km2. There is 

however a net gain in forest extent under the SSP1 scenarios with the global net forest 

gain under this scenarios amounting to 3.36 million km2. At the global level, gains of 

forest are typically from grassland (68.53% - 97.88%) and cropland (2.04% - 31.47%). 

These two land-cover types are also the main contributor to deforestation with 39.41% - 

73.18% and 23.6% - 56.47% of forest cover converted into cropland and grassland 

respectively, across the five scenarios between 2020 and 2100. 

6.4.2. Observed LULC Changes at the Continental and Regional 
Levels 

Differences in the rates and extents of LULC changes can be observed at the 

regional level and among the different scenarios. Based on the simulation results, Asia 

would have the largest extent of new urban development with 50.16%- 63.54% of the 

total global urban expansion occurring on the Asian continent. The obtained simulation 

output also reveal Africa would have the second largest contribution to global 

urbanization accounting for 9.27%- 19.7% of new urban development at the global level. 

The extent of new urban development in Europe under SSP4 would however be larger 

than that of Africa. Collectively, Europe and North America would account for 6.61% - 

25.73% of new urban development under the five scenarios. In relative terms, the rate of 

urbanization is fastest in Africa under all scenarios except for the Inequality scenario 

(SSP4). For instance, under the SSP1 scenario, the urban extent in Africa increased by 

458% whereas the urban area in Asia increased by 258%. On the contrary, the urban 

extents in Europe and North America increased by only 76% and 67% respectively. 

Figure 6.4 presents the rate of urban growth between 2020 and 2100 under the SSP2 

scenario and across different regions and countries. 

In Africa and Asia, urban expansion mainly occurs at the expense of cropland. 

Across the five scenarios, cropland would account for 35.49% - 61.95% and 54.81% - 

76.09% of the total urban expansion on these two continents, respectively. However, on 

other continents, urban land-use expansion was mainly from grassland. In Europe and 

North America for example, 51.98% – 72.43% and 93.95% -100% of future urban 

expansion would occur on grassland. Despite the high transition of grassland into urban 

land-use in these regions, loss of cropland due to urban expansion is still prominent. For 
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instance, in Europe, 14.09% - 34.49% of all urban growth would occur on croplands 

across the five SSP scenarios. 

 

Figure 6.4. Rates of urban expansion (%) between 2020 and 2100 across 
different countries and countries under the SSP2 (Middle of the 
road) scenario. 

Beside the SSP2 and SSP3 scenarios where there is increase in the extent of 

cropland across all continents, the simulation results revealed varied changes in 

cropland patterns across different regions. The largest net increase in cropland would be 

under the SSP3 scenario for all regions except for Eastern Europe which has a net 

cropland loss of 116.4 thousand km2. At the regional level, the largest net increase in 

cropland would be in Africa with the extent increasing by 6.18 million km2 and 4.53 

million km2 under the SSP3 and SSP4 scenarios respectively. South America is also 

revealed to have extensive growth in cropland, with the extent of cropland increasing by 

1.47 million km2 and 1.37 million km2 under the SS1 and SSP3 scenarios respectively. 

On the contrary, 0.68 million km2 of cropland would be lost in Asia under the SSP1 

scenario. The net decrease in the extent of cropland in Europe would also amount to 

0.53 million km2 and 0.24 million km2 under SSP1 and SSP5, respectively. The 

expansion of cropland occurs mainly at the expense of grassland and forest across the 

different regions. Under SSP3, 26% and 59.1% of cropland expansion in Asia would be 

from forest and grassland respectively while 70.35% and 29.2% of cropland increase in 

Europe would transition from forest and grassland, correspondingly. The conversion of 

cropland into other LULC types differs across regions and the five scenarios as well. 
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However, the conversion of cropland into urban remains consistent across several 

regions and scenarios. The largest conversion of cropland into urban would be in Asia 

and Africa with the total area ranging between 315 thousand km2 - 772 thousand km2 

and 38 thousand km2 - 164 thousand km2, respectively. The conversion of cropland into 

grassland and forest is also prominent especially in Europe, North America, and South 

America. Under the SSP5 scenario for example, 81.45%, 84.12%, and 88.36% of 

cropland loss in Europe, North America, and South America, respectively would 

transition into forest and grassland collectively. 

The largest net gain in forest area would be in Asia, Europe and North America. 

The net forest gain on these three continents under the under SSP1 and SSP4 

scenarios could vary between 0.96 million km2 - 2.51 million km2, 0.092 million km2 - 0.8, 

and 0.042 million km2 - 0.98 million km2 respectively. On the contrary, Africa would 

experience the largest rate of deforestation with the net forest loss across all scenarios 

varying between 0.35 million km2 to 6.25 million km2. The pattern of deforestation in 

South America vary greatly, with the region experiencing net forest loss under the SSP2 

and SSP3. The net forest loss in South America would vary between 0.88 million km2 

and 1.67 million km2 under these two scenarios. There is however a net gain in forest 

under the other three scenarios (SSP1, SSP4, and SSP5). The transition of other LULC 

types into forest is dominated by grassland as well as cropland under the five scenarios. 

Likewise, loss of forest is mostly to cropland, grassland, and urban. Transition from 

forest to cropland is prominent in Asia, Europe, and South America whereas forest 

transition to grassland is prominent in North America. Under the SSP3 scenario for 

example, 0.42 million km2 and 0.68 million km2 of forest in Asia and South America were 

converted into cropland respectively, corresponding to 71.3% and 76.26% of deforested 

areas in these two regions. 

6.4.3. Trends in LULC Change at the National Level 

At the national level, results from the simulation output reveal variations in LULC 

change across the different scenarios and countries. Figure 6.5 presents the net change 

in cropland, forest, and urban extents for different countries under the five SSP 

scenarios. In addition, Figure 6.6 also depicts the obtained simulation outputs of LULC 

changes in 2100 compared to the base year for different regions across the globe under 

the different scenarios. In the context of urban development, China, India, and Pakistan 



165 

are among the top seven countries with the largest extent of new urban development 

across the five scenarios. The urban extent is largest under the SSP5 scenario for 

majority of countries and least under the SSP3 scenario. China is revealed to have the 

largest urban extent by 2100 across all scenarios with the urban extent varying between 

0.23 million km2 and 0.44 million km2 by 2100. This is followed by the United States with 

its total urban extent by 2100 ranging between 0.16 million km2 and 0.37 million km2.  

 

Figure 6.5. Net change in cropland, forest, and urban extent under the five 
scenarios across different countries.  
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Figure 6.6. Obtained simulation results of LULC change for year 2100 under the 
five SSP scenarios compared to the base year 2020 for a) Eastern 
USA, b) Yangtze Delta, China, c) Western Europe, and d) Rio de 
Janeiro-Sao Paulo Megalopolis; Brazil. 
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Moreover, the trend of urban expansion varies across countries at different 

stages of urbanization. Urban expansion is very extensive and rapid in countries in the 

initial stages of urbanization whereas the rate of expansion is slower in developed and 

already urbanized countries. Here the United States, China, and India are used as 

examples of countries at the mature, middle, and initial stages of urbanization 

respectively. The United States experiences moderate urban growth with the rate of 

expansion declining towards the end of the 21st century. The extent of new urban 

development in the United States ranks among the top 5 across all scenarios except for 

the SSP3 scenario where new urban growth amounts to only 6 thousand km2. 

Urbanization in China increases rapidly but begins to plateau and stall after the middle of 

the 21st century. The extent of new urban development in China would vary between 84 

thousand km2 and 290 thousand km2 across the five scenarios. Conversely, urban 

growth in India would expand rapidly with no abatement through 2100. The total urban 

extent in India would expand between 67 thousand km2 and 225 thousand km2 across 

the five scenarios. 

Given the varying socioeconomic conditions under the different scenarios, the 

simulated change patterns of cropland at the country level are widely diverse. The most 

distinct pattern of cropland change is the large expansion in South America, Western 

African and Middle Africa especially in countries such as Brazil, Democratic Republic of 

Congo (DRC), Nigeria, and Chad. Based on the simulation results, the DRC would have 

the largest increase in cropland with the net change in cropland varying between 0.15 

million km2 to 1.12 million km2 across the five scenarios (Fig 6). On the contrary, net loss 

in cropland is demonstrated to occur mainly across countries in Eastern Europe, China, 

India, and Pakistan. Under the SSP4 scenario, China is revealed to lose 0.348 million 

km2 of cropland, the largest of any country across all scenarios. The Russian Federation 

would also experience a decrease in the total extent of cropland under all scenarios 

except for the SSP2 scenario. 

Changes in forest at the country level also vary greatly across the SSP scenarios 

and countries. Based on the results, net gain in forest is demonstrated to occur mainly in 

China, Russian Federation, Canada, Brazil, and the United States. For instance, under 

the SSP1 scenario, China, Russian Federation, Canada, and United States collectively 

are responsible for 79.06% of the global net increase in forest area between 2020 and 

2100. The largest net gain in forest area at the country level would occur in China with 
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the forest extent increasing by 1.07 million km2 and 0.357 million km2 under SSP1 and 

SSP4 respectively (Figure 6.5). The total forest extent of Canada and the Russian 

Federation would also increase by 0.59 million km2 and 0.47 million km2 correspondingly 

under the SSP1 scenario. On the contrary, hotspots of deforestation are revealed to be 

in the DRC, Angola, Tanzania, Cameroon, and Brazil. Based on the simulation results, 

there is a net forest loss of 1.53 million km2 in the DRC under the SSP4 scenario and 

0.65 million km2 under SSP2 in Brazil. Across SSP3, SSP4, and SSP5, the DRC, 

Angola, Tanzania, and Cameroon would collectively contribute between 38.08% – 

60.24% of the global net forest loss between 2020 and 2100. The DRC alone is revealed 

to contribute 20.82% - 32.18% of the global net forest loss across these three scenarios. 

The results also indicate countries in South America especially Brazil could be a source 

of net forest gain or loss based on scenario. 

6.5. Discussions 

This research study implements the multiclass DL-SGA model and examines the 

obtained results of possible future LULC changes under the different SSP scenarios at 

the global level. The performance of the model, measured by the AUC and FoM metrics 

indicate the proposed model can adequately capture the patterns of different LULC 

processes at the global level. Results from the studies are logical and consistent with 

other global LULC change simulations. For example, Li et al. (2019) and Li et al. (2021) 

estimated the global urban extent in the range of 1.5 million km2 and 3.1 million km2 in 

their studies, which is comparable to the urban growth trends obtained in this research 

study. Trends in cropland and forest cover changes are also similar with values from the 

SSP database, albeit exhibiting slight variations given this research applied a different 

base LULC dataset; the ESA LULC dataset (Estoque et al., 2020). 

Variations in the SSP conditions lead to distinct patterns of LULC change at the 

various levels of analysis. The high urbanization rate under the SSP5 scenario can be 

attributed to the high levels of economic growth and technological progress across 

several regions. On the contrary, despite the relatively high population growth under 

SSP3 and SSP4, the low economic growth results in lower urbanization compared to the 

other scenarios. Urban growth occurs mainly at the expense of cropland notably in Africa 

and Asia. Urban expansion in Europe, North America and South America is however 

mainly from grassland. Under SSP2 for example, about 0.64 million km2 of cropland, 
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twice the size of Italy would be converted into urban land-use in Africa and Asia 

collectively between 2020 and 2100. Globally, loss in the total cropland extent resulting 

from urban expansion could range between 2.84% to 6.61%. Future urban growth is 

thus expected to negatively affect food production and security especially in developing 

countries. 

The extent of cropland increases under all scenarios with the largest change 

being under the SSP3 scenario. This is mainly driven by the burgeoning global 

population combined with low agricultural intensification especially in Africa. The 

increasing global population under SSP3 could be a contributing factor to the growing 

trend in cropland expansion and food demand at the global level between 2020 and 

2100 (Popp et al., 2017). Under this scenario, cropland increase is very prominent in 

Africa, Asia, and South America. Cropland expansion in Africa alone amounts to 6.18 

million km2, corresponding to 68.32% of the global cropland expansion between 2020 

and 2100 under the SSP3 scenario. Cropland increase is significantly lower under the 

SSP1 scenario due to the low demand for agricultural goods and high intensification of 

agricultural production across several regions of the world (Doelman et al., 2018). 

Although cropland shows an increasing trend across all scenarios, analysis of 

gains and losses reveals the land-use type is highly variable. Sources of cropland 

expansion are mainly from forest and grassland across all regions. Increasing cropland 

and food production could thus have implications for deforestation and biodiversity loss 

across the globe. Loss of cropland mainly transitions into urban, grassland, and forest. 

Conversion of cropland into grassland and forest could indicate agricultural 

abandonment and regrowth of the natural vegetation. This process could also be 

explained by the implementation of afforestation policies to convert unproductive 

cropland into forest as seen in China’s conversion of cropland into forest program 

(CCFP) (Gutiérrez Rodríguez et al., 2016). 

Change in forest extent at the global level is the net result of deforestation in 

some regions and afforestation in others. For instance, under SSP1 and SSP2, rate of 

deforestation in Africa is offset by afforestation in Asia, Europe, and North America 

resulting in a net increase in the global forest extent. The global increase in forest 

coverage is most significant under the SSP1 scenario due to the low population growth, 

strong environmental and LULC regulations as well as regrowth of natural vegetation 
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from abandoned croplands. Although the global forest extent decreases under the other 

four scenarios, there is afforestation in some regions and countries in Asia, Europe, and 

North America especially under the SSP2 and SSP4. This can be partially ascribed to 

the control of land-use alteration in developed nations, particularly within the context of 

the SSP4 scenario. There is a net decrease in forest extent in Africa across all scenarios 

and this can be partly attributed to the weak regulation of LULC change in the region. 

Considering forest represent the largest terrestrial sink of carbon dioxide (CO2) and a 

significant proportion of carbon stocks, changes in forest could greatly impact climate 

change and influence future mitigation policies and actions (Keenan & Williams, 2018). 

Already, international programs such as the Reducing Emissions from Deforestation and 

forest Degradation (REDD+) (Agrawal et al., 2011) have been established which focuses 

on sustainable management of forest and enhancement of forest carbon stocks. 

6.6. Conclusions 

This research study develops a novel multiclass DL-SGA model for simulating 

multiple LULC change processes. The modelling framework integrates multiple 

advancements, incorporating deep learning for generating transition rules, implementing 

the urban rank-size rule, and LULC conversion matrix. These refinements collectively 

address the different processes influencing various LULC types and their change 

dynamics on a global scale. The proposed model was implemented using a spherical 

spatial framework that accounts for the curvature of the Earth’s surface and thus enables 

improvements to conventional global geosimulation models that often ignore the problem 

of spatial distortions in large scale spatial models. The use of conventional planer spatial 

models for global spatial analyses and simulations is demonstrated to produce different 

results. Also, in comparison to commonly utilized binary global geosimulation models 

that simulation only one type of LULC, the implemented model in this research study is 

designed to characterize the dynamics of different LULC types at the global level under 

the SSP scenarios. 

Given the complexity of modelling multiple LULC types at the global scale and 

across a longer temporal interval, this research has some caveats and limitations. The 

proposed model can thus be improved to simulate LULC change at a finer resolution of 

hexagonal cells as well as inclusion of additional driver variables related to the modelled 

LULC types, depending on data availability. Considering the spatial heterogeneity in 
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LULC change across various regions, there is potential for enhancing the model through 

the integration of geospatial agent-based modelling (ABM) within the multiclass DL-SGA 

modelling framework. ABM can be incorporated to effectively represent and characterize 

diverse entities involved in the processes of LULC change across different spatial and 

temporal scales. Random effects can also be integrated into the modelling framework to 

capture inherent stochasticity and unpredictability associated with real-world land use 

changes. Incorporating random elements into future iterations of the model could 

enhance its ability to account for the dynamic and uncertain nature of LULC change. 

Also, due to computational limitations, only LULC change under the reference SSP 

marker scenarios were simulated in this research study. However, a comprehensive 

modelling of LULC change across all the multiple non-marker SSP scenarios can assist 

in exploring uncertainties in future LULC change across the five SSP scenarios. Further, 

the impact of climate and environmental change on future LULC change was not 

considered in this research.  

The proposed multiclass DL-SGA model however provides a consistent 

modelling framework for simulating the different dynamics of multiple LULC types at the 

global level and can be utilized by intergovernmental entities, policy makers, researcher, 

and ecologist, for global environmental assessments and formulation of sustainable 

environmental policies especially related to climate change, biodiversity loss, and 

sustainable land-use planning. 
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Chapter 7.  
 
Conclusions 

7.1. General Conclusions 

Land systems constitute the terrestrial component of the Earth system and 

comprise all processes and activities associated with the human use of land. LULC 

changes are results of human interaction with the natural environment and therefore are 

often characterized as complex systems, leading to the utilization of geographic 

automata modelling approaches to represent and simulate their spatio-temporal 

dynamics. While these methodologies have proven successful in simulating diverse 

complex spatial systems at the local level and smaller spatial extents, they are 

considered unsuitable for global applications. Existing geographic automata approaches 

are based on two-dimensional planar spatial models that neglect the spherical and 

curved properties of the Earth and are inadequate to represent geospatial dynamic 

phenomena at the global scale. For these reasons this dissertation research extends the 

concepts of planar geosimulation methods to operate on a spherical surface. 

The spherical geographic automata approaches proposed and developed in this 

research study are successfully applied to represent different complex spatial systems at 

the global level and under diverse possible future scenarios. The proposed suite of 

modelling approaches is well-suited for characterizing and simulating LULC change 

processes operating at the global level such as urbanization and deforestation. This 

research also represents a departure from the use of traditional two-dimensional planar 

GIS to a spherical spatial framework, that is more appropriate for global applications. 

Furthermore, the methodology offers a foundational framework for further development 

of advanced spatio-temporal modelling techniques and analysis of processes on a 

spherical surface. 

7.2. Summary of Findings 

The proposed methodology utilizes the theory of complex systems, geographic 

automata, and spherical geodesic grid for the representation, conceptualization, and 
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analysis of complex spatial systems on a spherical surface. In Chapter 2, an overview of 

spherical geodesic grids is presented as well as comparison with existing traditional 

spatial reference systems. The chapter also proposes, designs, and implements the 

spherical geographic automata (SGA) modelling approach, by integrating the techniques 

of geographic automata and spherical geodesic grid for representing complex spatial 

systems on curved surfaces. The approach also departs from the classical square grid 

cellular space commonly used in geosimulation applications by utilizing a hexagonal 

spatial tessellation. The developed approach is general and adaptable, allowing its 

application for representing and analysing various real-world complex systems, such as 

social-economic, ecological, and biogeographical. Comparative analysis with planar 

models indicates that spherical geodesic grids provide a more accurate representation of 

geographic features at the global level. Conversely, traditional geospatial models 

demonstrate different forms of spatial distortions when used for applications with global 

coverage. The research revealed that the use of traditional spatial models to represent 

global datasets could result in overestimation of the total global urban extent by almost 

20%. This findings reinforces the potential implications of using traditional raster based 

spatial models for global applications. In this chapter, the SGA model is applied as proof-

of-concept to characterize different complex spatial processes including population 

change dynamics, global urban expansion, and global deforestation at a courser spatial 

scales with hexagonal cell size of 287 km2. The application of the Game of Life global 

population model indicates an overall trend of population growth while maintaining 

equilibrium between the proportions of alive cell types. Simulation results obtained from 

the global urban growth model also indicate the global urban extent could increase by 

77% and 118% under the Stalled Development and Sustainable Development scenarios 

respectively. Further, the deforestation model indicates the global forest cover to shrink 

by 38% between 2020 and 2100. Successful implementations of the proposed 

methodology in the three case studies indicate the proposed SGA methodology can be 

utilized to characterize and simulate different real-world complex spatial systems at the 

global level. Nonetheless, the used hexagonal spatial tessellation were course and the 

more refined spatial resolutions have been used for developed models in subsequent 

chapters. 

In chapter 3, the SGA model is implemented with the use of real-world geospatial 

datasets to simulate the spatial processes of global urban land-use change across 235 
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countries with improved model parameters between 2015 and 2095 with each hexagon 

encompassing an area of 4.5 km2. The SGA framework design is capable of 

representing different “what-if’ scenarios and the global urban land-use change model 

application reveals the approach can be applied to represent different possible future 

urban land-use change conditions. Obtained simulation results from the model also 

indicate the proposed SGA approach can be utilized to capture the growth and dynamics 

of urban regions across different regions at the global scale. Based on the model 

outputs, the rate and magnitude of urban growth is extensive in Africa and Asia with 

these two continents together contributing between 65% to 68% of new urban 

development at the global level under the two scenarios. In some regions in Africa, the 

rate of urbanization would be as high as 600% across the constant fertility scenario. 

Cities in Africa and Asia therefore present several challenges and opportunities for 

achieving global sustainable goals. Evaluation of results from the proposed model and a 

traditional raster-based planar CA model with the same model parameters indicates the 

SGA model performs better than the conventional geosimulation modelling approach in 

simulating urban growth dynamics. The Figure of Merit (FoM) metric obtained for the 

proposed SGA model during the calibration and validation phases was 7.1% and 10.2% 

higher, respectively, compared to the planar CA model. 

Chapters 4 and 5 extend the SGA model to incorporate the multi-criteria 

evaluation (MCE) technique, and the MCE-SGA model is implemented to characterize 

two real-world complex spatial processes. The MCE technique is integrated to enable a 

systematic approach to decision-making, while also incorporating the inherent 

complexity and multiplicity of land-use planning. This is achieved by taking into account 

input from diverse stakeholders associated with the choice of criteria and wights related 

to the factors influencing the LULC change. It must however be noted that, given the 

global scope of the model application and limited resources, in this dissertation research, 

opinions of stakeholders were not incorporated in the two MCE-SGA model applications. 

Instead, a statistical method was applied to obtain the weight of importance for each 

criterion. In chapter 4, the model is implemented to simulate the spatial processes of 

urbanization at the global level and at a finer spatial scale, utilizing hexagonal cells 

encompassing an area of 0.63 km2. Findings from the global urban land-use change 

model implementation indicate the inclusion of the MCE component in the modelling 

framework improves the model’s capability for simulating LULC changes. Also, the 
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spatial pattern and dynamics of urban growth varies across sub-region clusters, 

revealing the difference in the urbanization process across the globe. The simulation 

results reveal 64% of the total global urban expansion is anticipated to occur in urban 

region clusters characterized by high economic development and population density, 

while cities in isolated locations would have relatively lower rates of urban development. 

This underscores the significance of major cities with substantial economic resources in 

the future development of urban areas and in the context of global urbanization. 

Furthermore, 84.4% of the total global urban extent would be in cities located in low lying 

coastal areas and along major water bodies. Considering their location, these cities are 

particularly vulnerable to the potential impacts of possible extreme climate change 

events such as flooding, erosion, rising sea levels, and saltwater intrusion.  

The second model application, presented in Chapter 5 simulates global forest 

land-cover change under three scenarios: business-as-usual, accelerated deforestation, 

and sustainable deforestation scenario. The obtained results and model evaluation 

metric indicate the MCE-SGA approach was able to appropriately capture the dynamics 

of deforestation while also considering diverse conservation strategies. Results from the 

model reveal the extent of global deforestation between 2020 and 2100 ranges between 

1.8 million km2 and 7.3 million km2 based on different forest conversation scenarios. The 

simulation outputs additionally indicated that the rate of deforestation in protected areas 

was significantly less than the overall rate of forest cover change across all scenarios. 

Chapter 6 of the dissertation focuses on the enhancement of the already 

developed MCE-SGA modelling framework to be capable of characterizing multiple 

complex spatial processes related to different LULC change types considered as part of 

overall change process. A deep learning model is also incorporated into the modelling 

framework to better capture the relationship between the change processes and their 

driving factors. The model is implemented to simulate LULC change across the five 

shared socioeconomic pathways (SSP) scenarios in the period between 2020 and 2100. 

The SSP comprises of five scenarios outlining future socio-economic development and 

challenges to climate change mitigation and adaptation based on a consistent set of 

assumptions. The five scenarios are labelled as follows: SSP1- Sustainability, taking the 

green road; SSP2- Middle of the road (business as usual); SSP3- Regional rivalry, a 

rocky road; SSP4- Inequality, a road divided; and SSP5- Fossil-fuelled development, 

taking the highway. Obtained simulation results reveal varying rates and extent of LULC 
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change under the different scenarios and regions. Under all five SSP scenarios, there is 

a notable expansion of cropland at the global level, with the most significant changes 

occurring in Africa and Asia and under the SSP3 scenario. This can partially be 

attributed to the increasing population coupled with limited agricultural intensification in 

parts of Africa and Asia. The largest rate of urbanization would occur under the SSP5 

scenarios while SSP3 would have the least change in urban extent. Future urban 

development would have negative consequences for food production, particularly in 

developing countries, with cropland being the primary contributor to urban growth. The 

results also reveal a net loss of forest (deforestation) under SSP3, SSP4, and SSP5 

while afforestation would occur under the SSP1 and SSP2 scenarios. Extensive 

deforestation rates are projected for Africa, while afforestation is anticipated 

predominantly in Asia, Europe, and North America. The successful implementation of 

the multi-LULC change SGA modelling framework demonstrates the model’s capability 

for representing different LULC change processes and interaction at the global level. 

This enhanced multi-LULC change SGA modelling approach can therefore be useful for 

exploring wider varieties of LULC change processes and scenarios at the global level 

with potential application in policy formulation and environmental assessment. 

7.3. Addressing Limitations of the Current Work and 
Linking with Future Research Directions 

Despite the obtained results demonstrating the model’s capabilities in simulating 

LULC change processes, there are some limitations to the developed approach. 

Advancements in the model could be achieved through the integration of finer hexagonal 

resolution and high-quality global datasets, enabling a more detailed simulation of LULC 

change. Improvement of the model could also involve incorporating a broader array of 

relevant criteria related to ecological, socioeconomic, and climatic factors. For instance, 

more detailed data can be used to represent and characterize different LULC types such 

high-rise, mid-rise, and low-rise urban areas, or different forest classifications. By 

incorporating a more comprehensive set of variables, the model could better capture the 

complexities of LULC change processes, thereby offering a better representation of the 

dynamics of land systems at the global scale. Advancement in remote sensing has led to 

increased availability of geospatial datasets with global coverage (Zhu et al., 2022), 

providing the opportunity to incorporate diverse datasets into the modelling framework. 
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Such improvements would however require leveraging high-performance computing 

(HPC) facilities, given the increased computational demands associated with enhanced 

spatial resolution of hexagons, increased datasets, and complexity inherent in the 

modelled system.  

Furthermore, the proposed suite of SGA models does not consider the potential 

impacts of human-induced changes such as potential expansion of transportation 

infrastructure that would entail increased economic activities among urban regions and 

port cities, and a variety of environmental changes including wildfires, climate change 

and possible sea level rise. The consideration of such events in the model is however 

contingent on the availability of datasets to represent these factors as well as 

interdisciplinary research with other related fields such as environmental and climate 

sciences. However, the flexibility of the proposed SGA models means the framework 

can be easily extended to characterize these mechanisms, thereby rendering them 

endogenous to the model. Future works would focus on advancing the modelling 

approach to properly represent and account for factors stemming from human and 

environment interactions that influence LULC change at the global level. 

The results of the proposed models may be influenced by a range of errors and 

uncertainties stemming from both data sources and model components. Data source 

errors encompass LULC type misclassifications, data transformation, and topological 

inaccuracies. Additionally, uncertainties emanate from various aspects of the CA model 

parameters such as choice of neighbourhood type and size, spatial and temporal 

resolutions, and choice of the transition rules. Other model components such as MCE 

criteria and weights, DL hyperparameters, LULC conversion weights, and Zipf’s law 

coefficient also contribute to uncertainty. While Chapter 3 of the dissertation delves into 

aspects of model sensitivity and uncertainty, there is a need for a more comprehensive 

analysis of model sensitivity which involves the identification and quantification of model 

uncertainty. This expanded analysis would encompass a broader spectrum of model 

parameters, including but not limited to transition rules, hexagonal neighborhood 

configuration, randomization, and stochasticity, as well as use of different spatial and 

temporal resolution. A crucial aspect to also prioritize is addressing uncertainly arising 

from simulated model outputs especially across multiple scenarios. However, this 

endeavour could be a dissertation per se, considering the complexity of geosimulation 

procedure and the model itself, as well as long computational time required to run only 
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one full simulation that included all iterations (Crooks et al., 2008; Kang et al., 2022; 

Ligmann-Zielinska & Jankowski, 2014). To statistically evaluate the model with random 

effects, a minimum of 30 simulation runs would be necessary. However, due to the 

extensive computational time required, particularly given the size of the dataset and the 

global scale of the research study, this poses a significant challenge. By addressing 

these aspects of sensitivity and uncertainty, the proposed suite of models could offer a 

better understanding of the proposed models’ capabilities and limitations. This, in turn, 

could enhance utility and applicability of the proposed models. 

Additionally, the proposed modelling framework can be enhanced by 

incorporating human decision-making mechanisms. This presents the opportunity to 

incorporate geospatial agent-based modelling (ABM) into the proposed modelling 

framework for representing the spatial heterogeneity of diverse entities involved in the 

processes of LULC change at different spatial and temporal scales. Changes in land-use 

and land-cover are often the outcome of decisions of individuals and collective entities in 

response to their socio-economic and natural environment. Thus, the integration of 

agent-based modelling approaches into the proposed model could be very beneficial 

especially for representing spatial heterogeneity of land systems and specifics of 

different regions on the globe (An et al., 2023; Vaz, 2016). This would also allow for 

improved characterization of different environmental and socio-economic policies 

implemented in different land systems across different regions as well as response of 

different decision-making processes and entities. Agent-based models have been 

applied for LULC change simulations for specific case studies especially at very local 

levels. However, global scale LULC change models do not yet incorporate explicit 

human decision-making and are largely based on economic theories and biophysical 

suitability-based assumptions, which limits their realism (Turner et al., 2021). Such an 

approach would however require the adoption of a data driven geosimulation 

methodology and increased computational power (Ravaioli et al., 2023; Venkatramanan 

et al., 2018). 

7.4. Research Contributions 

In general, this study contributes to the representation, modelling, analysis, and 

visualization of LULC change processes at the global level. The research builds on 

conventional geosimulation modelling approaches by integrating geographic automata 
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and spherical spatial models with hexagonal spatial tessellation to develop a novel 

modelling framework, termed spherical geographic automata (SGA) for characterizing 

different spatio-temporal processes. The developed suite of modelling approaches is 

implemented to represent different LULC change processes in this dissertation to 

demonstrate the capabilities of the proposed models in characterizing and analyzing 

spatial dynamic systems operating on spherical Earth surface. This new modelling 

approaches provide an appropriate modelling framework that can be extended to 

represent other complex systems at the global level such as ecological, socio-economic, 

and epidemiological systems. 

Specifically, the research dissertation contributes to the field of Geographic 

Information Science (GIScience) and extends existing methodological approaches in 

geographic automata systems by proposing and implementing a suite of novel spherical 

modelling approaches for simulating complex dynamic spatial systems at the global 

level. The developed SGA modelling approaches are designed to leverage the 

capabilities of geographic automata in characterizing the spatial and temporal dynamics 

of complex systems and spherical geodesic grids in representing geographic features on 

a sphere. Unlike conventional geosimulation models which are based on planar spatial 

models, the SGA modelling approach adopts a spherical spatial model to appropriately 

represent geographic features at the global scale and considering the curvature of the 

Earth’s surface. The SGA modelling approach thus focuses on the representation, 

simulation, and analysis of complex spatial systems on a curved surface. 

The SGA approaches contribute to longstanding research endeavours aimed at 

developing new spatial frameworks that effectively capture the curved surface of the 

Earth and addressing the limitations of traditional two-dimensional models used in GIS 

dating back to the works of Dutton (1984) and Tobler and Chen (1986) in the mid 80’s. 

Despite progress in this research direction including research works by scholars such as 

Kimerling et al. (1999), Sahr et al. (2003), Chrisman (2017), and Goodchild (2018) 

studies in the field of spherical GIS have mainly focused on theoretical and grid design 

specifications with limited abilities to incorporate real data and operationalize for 

practical applications (Hojati et al., 2022). The proposed SGA modelling approaches 

also provide an alternative geosimulation model with a distinct cell typology, suitable for 

applications that require the properties of hexagonal tessellation. 
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In addition, this dissertation contributes to the field of Land Use Science and 

methodological approaches for LULC change modelling through the advancement and 

development of new techniques for characterizing and simulating the dynamics of LULC 

change over large spatial extents and long time periods. This capability allows for a 

thorough understanding, quantification, and projection of changes in various land-use 

change processes at the global level. The proposed suite of SGA models is adept in 

identifying hot/cold spots and spatial patterns related to LULC change, particularly in the 

contexts of urbanization, agricultural intensification, and deforestation. Analyzing the 

outcomes of these models across diverse regions contributes to a comprehensive 

understanding of global patterns and variations in LULC change. The modelling 

approach proposed in this research is flexible and can be parametrized for different case 

studies as well as accommodating for diverse “what-if” scenarios to characterize 

different complex system conditions. This flexibility enables for the construction of 

plausible and coherent narratives about potential LULC future conditions based on 

different assumptions and driving forces. The models offer a systematic approach for 

exploring a range of plausible futures to understand the implications of different 

scenarios including the pathways of socio-economic development. The proposed 

methodology can be used as a tool for global spatial decision making by different 

stakeholders in land-use science and related field of environmental science such as 

intergovernmental agencies for global policy development, planning, conservation, and 

environmental assessment.  

Last but not least, this thesis research contributes to wider research endeavours 

that utilize simulated outcomes from global LULC change models as input data for 

modelling including integrated assessment models and Earth System models, employed 

in the fields of climate modelling and environmental conservation. Besides its application 

in the field of land-use science, the modelling framework is flexible and can be adapted 

to characterize different complex spatial systems and processes including global 

ecological, socio-economic, biogeographical, and epidemiological systems. 
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