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ABSTRACT
Kinetic Monte Carlo (KMC) simulations in combination with first-principles (1p)-based calculations are rapidly becoming the gold-standard
computational framework for bridging the gap between the wide range of length scales and time scales over which heterogeneous catalysis
unfolds. 1p-KMC simulations provide accurate insights into reactions over surfaces, a vital step toward the rational design of novel catalysts.
In this Perspective, we briefly outline basic principles, computational challenges, successful applications, as well as future directions and
opportunities of this promising and ever more popular kinetic modeling approach.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0083251

I. INTRODUCTION

Heterogeneous catalysts are capable of accelerating chemical
reactions, thereby achieving high conversion and product selectiv-
ity at low cost.1 For this reason, this type of catalysis is at the heart of
many processes of critical importance in the chemical industry.2,3

It not only has played a pivotal role in shaping our current
society but also will play an essential role in ensuring its sustainable
future. This role involves improving the efficiency of catalytic
materials and processes leading to significant energy and raw
material savings, as well as pollution reduction. While the develop-
ment of novel improved catalysts has typically been an empirical
trial-and-error process, computational modeling approaches are
playing an increasingly important role in the quest for the “rational
catalyst design.”4–7

However, due to the wide range of length scales and time scales
involved in heterogeneous catalysis (Fig. 1), developing pertinent
computational models is not an easy task.8 The elementary processes
happening on the catalytic surface are determined by the structure
and composition of sites onto which the reactants are adsorbed and
where the breaking and making of chemical bonds occur (i.e., the
active sites).9 At the same time, the structure and composition of

active sites evolve in response to local variations in temperature and
concentrations, which are themselves dictated by the overall mass
and heat transport at the reactor scale. In other words, there is a
dynamic interplay between the reactive elementary processes and
the large-scale environment in which they evolve.

First-principles multiscale modeling approaches have been
implemented to tackle this challenge.8,10 One of the central pillars
of these approaches is to exploit the disparities in the time scales at
which processes at different levels unfold, from the electronic to the
reactor level. In doing so, it is possible to hierarchically couple the
different levels of theoretical descriptions. In its bottom-up version,
a first-principles multiscale modeling approach starts from quan-
tum mechanical electronic structure calculations toward building
the atomic-scale model for the catalyst and exploring the energetics
of the elementary steps in the reaction mechanism. Then, the ele-
mentary steps are used as inputs into either the mean-field microki-
netics modeling (MF-MKM) approach11–21 or the so-called Kinetic
Monte Carlo (KMC) framework.22–32 The MF-MKM approach is
computationally efficient but of questionable accuracy.33 On the
other hand, KMC simulations are very accurate but computationally
demanding.34 Finally, the multiscale approach can integrate either
of these two microkinetic modeling approaches with mass and heat
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FIG. 1. The multi-scale nature of heterogeneous catalysis from the elec-
tronic/atomistic level to the macroscopic reactor scale.

transport models to account for inhomogeneities in the reactant
concentrations and temperature in the reactor.

It would not be an overstatement to claim that KMC is an essen-
tial computational tool to bridge the gap between the atomistic and
the catalyst scale toward high-fidelity (predictive) models of catalytic
kinetics. Unlike the more widely adopted MF-MKM, KMC allows
for incorporating spatial inhomogeneities and correlations in the
distribution of reactants on the catalytic surface, as well as detailed
information about their configurations on different types of active
sites. In addition, it takes into account the discrete nature of the
coverage for nanoparticles or clusters, which expose a small number
of sites. Thus, it is capable of explaining phenomena that are beyond
the limitations of the MF-MKM approach.

This Perspective aims to give a general perspective on the
1p-KMC modeling approach for heterogeneous catalysis. We
will focus on general concepts, main computational challenges,
and recent progress in implementing this versatile computational
approach. The rest of this Perspective is structured as follows: First,
we briefly present motivations and concepts behind the 1p-KMC
framework for heterogeneous catalysis. Second, we introduce the
general structure of its computational implementation and give an
overview of prominent software packages and codes that build upon
it. Third, we discuss outstanding computational challenges faced by
the 1p-KMC framework. We continue by reviewing applications to
catalytic systems of practical relevance. Finally, we discuss future
challenges and directions for further research and development and
end with our conclusions.

II. THE KMC FRAMEWORK: WHY IS IT USEFUL
AND WHY DOES IT WORK?

The accurate computational modeling of heterogeneous catal-
ysis is certainly a challenging and vital endeavor.4,6,8,10,35–42 The
acceleration of chemical reactions by the catalyst and its ability to
direct the paths to yield particular products arise as a consequence
of a highly complex interplay between a large number of elementary

events (i.e., adsorption, desorption, diffusion, and reaction events)
occurring at the active sites of the catalytic surface. A significant
challenge in modeling such events is to find efficient ways to treat the
time scale disparity arising from the fact that such elementary events
are commonly thermally activated and are thus rare on the typical
femtosecond scale of smallest atomistic vibrations.43 The effective
treatment of such a problem is essential to capture the wide range
of temporal and spatial scales involved in heterogeneous catalysis,
as outlined in Fig. 1.44 In this respect, the KMC framework has
been demonstrated to be a powerful and versatile computational
modeling approach that, by taking advantage of the aforementioned
time scale disparity, allows us to develop models that couple the
electronic, atomistic, and catalytic nanoparticle scales in a relatively
straightforward way.22–25,27–29 This coupling opens the window for
the accurate prediction of catalytic performance metrics (i.e., selec-
tivity, activity, and stability) critical for the successful design of new
catalysts and the improvement of chemical processes at the reactor
scale.

The elementary events happening on the catalytic surface are
transformations in which the atoms of a system, including those
of the active sites and their surroundings, rearrange from one
configuration to another by breaking and making chemical bonds.
The characterization of such systems requires, at the most detailed
level, a fully quantum mechanical description. However, obtaining
solutions of Schrödinger’s time-dependent many-body equation
remains a challenging task.

Over the years, this practical problem has motivated the devel-
opment of several approximations, of which the Born–Oppenheimer
(BO) one is the most widely used in the catalysis research
community.45–50 The BO approximation, along with the solution of
the time-independent quantum mechanical problem for electrons,
given different configurations of the nuclei,51,52 leads to the so-called
potential energy surface (PES). The PES provides the energy of the
system of electrons and nuclei as a function of nuclei positions and
thus contains valuable information about reaction paths, adsorption
energies, vibrational frequencies, and the existence of barriers for
the elementary events.53 A minimum in the PES represents a
stable species, and the basin of attraction around such a minimum
contains all atomistic configurations that will perform a vibrational
relaxation into that minimum. Moreover, a transition from a basin
to a neighboring one by crossing the intermediate energetic barrier
constitutes an elementary event of adsorption, desorption, diffusion,
or reaction.54,55 As in many other branches of computational
chemistry, the PES is a fundamental concept in KMC simulations
(Fig. 2).

Although this static quantum mechanical description provides
valuable information about individual chemical transformations in
terms of the PES, to understand how a catalytic reaction mecha-
nism proceeds and to calculate the reaction rate of the entire process,
dynamical simulations are required. However, quantum-dynamical
studies are still computationally very costly. To alleviate this issue,
it is often a good approximation to neglect the quantum mechan-
ical effects in the motion of the nuclei. This approximation entails
treating the system classically by solving Newton’s equations of
motion with suitable boundary conditions for all the nuclei with
the forces calculated from the PES, which, in turn, is obtained
from electronic calculation methods.51,52 Such an approach is the
well-known first-principles molecular dynamics (1p-MD),47–49 and
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FIG. 2. Illustration of a PES in the vicinity of two minima (black circles) separated
by a barrier. The initial and final states include the corresponding minima and the
basin of attraction around those minima. The transition state (black oval) and the
minimum energy path connecting these three states (white line) are also noted.
A curly line depicts a representative reactive MD trajectory on the PES. This MD
trajectory undergoes extensive wandering within the state’s basin before traversing
the energy barrier to the other state.

despite its strong predictive power, it becomes computationally
inefficient when simulating catalytic systems for practically relevant
time scales and system sizes.

Indeed, a demanding step in this method is the computation of
the PES for every time step of a MD run. Several efficient methods
to obtain good and efficient representations of the PES during MD
simulations have been introduced,56–62 each having its advantages
and drawbacks. However, the main obstacle in this approach is
that, for catalytic systems, the energetic barriers of the PES are
typically much higher than the system’s thermal energy. Therefore, if
only thermal energy drives the dynamics, the system performs many
unsuccessful attempts before the corresponding barrier is crossed
due to a large enough energy fluctuation (see Fig. 2 for an example
of a typical MD trajectory). In many cases, the time between two
successful elementary events can reach several nanoseconds or even
longer time scales. Under these circumstances, the MD algorithm,
with its time steps of the order of femtoseconds, spends most of the
time resolving irrelevant thermal vibrations inside the basin of the
PES before a catalytically relevant barrier crossing occurs. Although
the barrier crossings per se happen quickly and could be, in princi-
ple, followed by 1p-MD simulations,63,64 the infrequent occurrence
thereof means that the full functionality of a catalytic system cannot
be currently studied by this computational method. Developing
frameworks to extend the accessible time scale of MD simulations
has been a long-standing challenge for the atomistic simulation
research community.65–67

The KMC framework is specifically tailored to address the
time scale problem just discussed, and in doing so, it allows us to
access the long time dynamics necessary to explore heterogeneously
catalyzed reactions.24,28,54,55,68 As its name indicates, KMC combines
the Monte Carlo (MC) method with a kinetic approach that focuses
on the time scale of the barrier crossings and uses transition state
theory (TST)69 arguments to describe the statistics of the transi-
tions between basins of the PES. Therefore, in contrast to traditional
equilibrium MC simulations where the time variable is absent,70,71

in KMC, the temporal evolution of the catalytic system is taken into
account but just in a coarse-grained sense, namely, the simulations

pertain to the time scale of the barrier crossings rather than that of
atomic vibrations, as in MD.

KMC simulations in combination with density functional
theory (DFT)-based calculations have grown in popularity in the
catalysis research community over the past few decades.10,22,24,28,72–74

This 1p-KMC approach can cover temporal scales ranging from ms
to hours and spatial scales from nm to μm. Let us provide the funda-
mental basics of such a 1p-KMC simulation approach in the rest of
this section.

A. The temporal coarse-graining
underlying KMC simulations

In KMC simulations, the long-term time evolution of the
catalytic system is said to be governed by successive state-to-state
transitions, with a state corresponding to a single basin of the PES. A
key observation is that because the system stays inside each basin
(or KMC state) for a very long time (relative to the time scale
of the fastest atomistic vibration), it “forgets” how it got there.
Then, it is possible to assume that such state-to-state dynamics
is Markovian.54,55,75–77 This assumption allows assigning to each
elementary event leading from a state ω to a different state ω′ a rate
constant kωω′ that represents the probability, per unit time, that the
transition to state ω′ occurs.77 This hopping probability is indepen-
dent of the previous history of state ω and is calculated via TST,
taking into account the properties of the PES.78

Therefore, during a KMC simulation, the system passes
through a large number of states. The collection of all possible such
states define the state space, Ω, to which ω and ω′ belong, and thus,
a KMC trajectory is simply a random walk on Ω. In Fig. 3, we
present an example of a KMC state space together with two pos-
sible ways to mathematically represent it. If all elementary events
are known for every state the KMC trajectory goes through, the rate
constant expressions are exact, and the Markovian approximation is
valid, a state-to-state trajectory generated by KMC simulation will be
statistically identical to the trajectory generated by the MD method
projected onto the states—provided, of course, both methods use the
same PES.79

The Markovian approximation underpinning KMC is typically
valid because once the catalytic system reaches a particular PES
basin, it equilibrates very rapidly within that basin, which represents
a KMC state. This equilibration breaks any connection between the
state visited before the current state and any state the system will
visit next. Moreover, as the system vibrates within a basin, it also
repeatedly loses memory about where it was vibrating before. As a
result, the probability of waiting for a certain amount of time until a
transition occurs to another new state is the same at every moment
spent in the current state (assuming, of course, no prior informa-
tion about how much time has passed since the last transition).
This behavior gives rise to a Poisson process with exponential decay
statistics.54,55,75–77

In a KMC simulation, we are interested in all possible elemen-
tary events that may bring state ω to a new possible state. Thus,
under Poisson statistics, the probability that the system has escaped
from state ω at some time less than or equal to τ (i.e., the cumulative
probability of the time to escape from state ω to any other state) is
given by

pescaped(τ) = 1 − exp(−ktotτ), (1)
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FIG. 3. Representation of the state space for a catalyst surface with three active
sites. (a) Coordinate transformation from the state ω to the adsorbates’ number
and positions ωalt . The active sites of the surface are labeled 1, 2, and 3, and there
are two adsorbates occupying sites 2 and 3, while site 1 is vacant (empty). This
state can be represented as a binary 3-element vector with 0 denoting a vacant
site and 1 denoting an occupied site (ω). Alternatively, one can report the number
of adsorbates (in this case 2) and the sites they occupy (ωalt). (b) There are eight
possible states that can be represented in terms of ω or ωalt . (c) The states with
the same number of adsorbates υ belong to discrete (hyper)planes. The planes for
υ = 0 and 3 have each only one point. In a KMC trajectory, the transition between
states is dictated by the elementary events of the catalytic system under consider-
ation. Although not shown in this figure, the state space encompasses not only all
the possible adsorbate configurations on the lattice but also the associated num-
bers of gas-phase molecules (produced or consumed during elementary events),
which are specified up to an additive constant.24,30

where

ktot = ∑
ω′≠ω

kωω′ (2)

is the total escape rate constant from state ω due to all possible
transitions (elementary events). Then, the probability density
function that a transition will occur at time t + τ, given that the
system is at state ω at time t, is given by the following exponential
distribution:

p(τ) = ktot exp(−ktotτ). (3)

Since the elementary events bringing the system from state ω to
another new state ω′ are uncorrelated, the escape time of each
separately follows an exponential distribution, given as

pωω′(τ) = kωω′ exp(−kωω′τ). (4)

We are now in the position to generate random escape times
by properly sampling from these distributions. After invoking the
inversion generation method,76,77 one obtains

τωω′ = −
ln(1 − u)

kωω′
, (5)

where u ∈ (0, 1) is a random number from the uniform distribution
and τωω′ is the escape time sought. In KMC parlance, these random
times are also referred to as occurrence, waiting, or inter-arrival
times. Although at a given state each possible elementary event has
its own individual escape time, the first event to happen is, of course,
the one with the shortest time.55,76,77

It is well-established that the distribution of the minimum
among several exponential random variables is also exponentially
distributed with a rate constant given by the sum of the rate con-
stants of the individual random variables [see Eq. (3)]. Therefore,
it is possible to advance time either by calculating the minimum
escape time among all elementary events or by sampling a random
time from Eq. (3). The latter implies that the time advancement is
given as

τadv = −
ln(1 − u1)

ktot
, (6)

where u1 ∈ (0, 1) is also a random number from a uniform distri-
bution. In this case, however, the escape time only depends on the
total rate constant and is independent of the elementary event that
brings the system out of state ω. Such an elementary event, which
propagates the system to a new state ω′, is picked with probability

Pω→ω′ =
kωω′

ktot
(7)

by mapping a second uniformly distributed random number u2 into
an integer that indicates the next event.54,55,76,77,80

We can extend the previous discussion to the case of
time-dependent rate constants, which is useful e.g., for modeling
temperature programmed desorption (TPD).55,81 In this case, the
escape time for each elementary event is obtained by solving the
following non-linear equation:

∫

τωω′

0
kωω′(t + τ′)dτ′ = − ln(1 − u), (8)

where kωω′ is now changing over time. The time advancement and
the next elementary event to occur are then given by the minimum
escape time among all events. Alternatively, one can obtain the time
advancement from

∫

τadv

0
ktot(t + τ′)dτ′ = − ln(1 − u1), (9)

where ktot is also changing over time. Then, the integer random vari-
able indicating the next event to happen would follow a probability
distribution similar to that of Eq. (7) but with the rate constants
integrated over time. If the rate constants do not change over time,
Eqs. (8) and (9) reduce to Eqs. (5) and (6), respectively.

It is now evident that both the random selection of an escape
time and the identification of the associated elementary event are
the foundation of any KMC algorithm. This information is almost
all that we need to discuss the computational implementation of
the KMC framework. However, before doing that, let us discuss
in Sec. II B important aspects required for implementing KMC in
combination with first-principles methods.

B. Detailed balance, rate constants,
and lattice energetics

A KMC simulation provides the temporal evolution of the
number and location of molecules (i.e., adsorbates) bound onto a
catalyst surface. The latter is conveniently represented as a lattice
whose nodes mimic the ensemble of active sites on which the
elementary events take place (Fig. 4).55,84 Given that these
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FIG. 4. Example of a KMC implementation for the simulation of CO oxidation on Pd(111). The model simulated is as in Fig. 8 of Ref. 82 for an 81 × 81 lattice, with a total of
13 122 sites (see also Ref. 83). (a) Lattice for the Pd(111) surface used in the KMC simulation. Two kinds of adsorption sites are considered (i.e., active sites): face-centered
cubic (fcc) and hexagonal close-packed (hcp). (b) Snapshot showing the spatial arrangement of the absorbates in a portion of the lattice during a KMC simulation. (c) Time
evolution of the O, CO, and O2 coverages on the surface. These coverages reach a stationary state after some initial transient due to initializing the simulation with an empty
lattice. (d) Time evolution of the O2, CO, and CO2 molecule numbers in the gas phase. Since the system is far from equilibrium and the gas phase is assumed to be a
large reservoir with a fixed composition, there is a continuous depletion of CO and O2, with the production of CO2. (e) Frequency of occurrence of the simulated elementary
events. Plotted are the forward, reverse, net-forward, and net-reverse frequencies per fcc site. The net-forward frequency is the difference between forward and reverse
frequency; if that difference is negative, its absolute value is plotted as the net-reverse frequency. For all of the diffusion steps, the forward direction is from the fcc to the
hcp site (conversely for the reverse direction). The event “O2_dissociation_fcc” starts with O2 on an fcc site and yields two O adatoms on neighboring hcp sites (conversely,
for “O2_dissociation_hcp,” the initial state is O2 on the hcp site, and the final state is two O adatoms on fcc sites). The vertical dashed line corresponds to the (normalized)
frequency of a single event.
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elementary events are treated as independent Poisson processes,
the evolution of the catalytic system is described by the so-called
Markovian master equation (MME),75

dPω(t)
dt

= −∑
ω≠ω′

kωω′Pω(t) + ∑
ω≠ω′

kω′ωPω′(t), (10)

where kωω′ represents, as mentioned above, the rate constant for a
transition from state ω to state ω′ due to an elementary event and
kω′ω represents the rate constant of the reverse transition. The sums
in the right-hand side of this equation are taken over all possible
states of the state space Ω, keeping always in mind that if there is
no elementary event connecting two states, the corresponding rate
constant is zero.55

The state space Ω encompasses all the possible adsorbate con-
figurations on the lattice and the associated numbers of gas-phase
molecules (produced or consumed during elementary events), which
are specified up to an additive constant.24,30 The MME is a set of
coupled differential equations whose solution gives the probability
of being in state ω at time t. However, obtaining analytical or even
numerical solutions of this set of equations is a challenging task
due to the high-dimensional state space of typical catalytic systems.
Instead, it is more convenient to perform a sampling of trajectories
that adhere to the MME via KMC simulation. One can then obtain
the correct probability Pω(t) by averaging over many KMC trajecto-
ries or, if the system is ergodic, by time-averaging over a long enough
KMC trajectory.

The MME imposes constraints on the rate constants. If the
system reaches stationarity (the equivalent of the deterministic
steady-state for random processes), it is clear from Eq. (10) that

∑
ω≠ω′

kω′ωPst
ω′ = ∑

ω≠ω′
kωω′Pst

ω , (11)

where the symbol st indicates stationarity. This equality expresses
that, under stationary conditions, the total probability flux leaving a
state must be balanced by the total probability flux toward that state.
Moreover, if this stationary solution corresponds to a state of ther-
modynamic equilibrium, microscopic reversibility imposes the even
stronger constraint of detailed balance. The detailed balance con-
dition demands that each microscopic process has a corresponding
reverse process and that the average rate of every elementary event
is equal to the average rate of its reverse event. This, together with
the fact that the system at thermodynamic equilibrium in a partic-
ular state follows a Boltzmann distribution, allows us to conclude
that

kωω′

kω′ω
= exp(−

εω′ − εω

kBT
), (12)

where kB is the Boltzmann factor, T is the temperature, and εω and
εω′ are the free energies associated with states (or PES basins) ω
and ω′, respectively.24,28 Because the free energy contains contribu-
tions for the electronic and vibrational energies of the lattice species
and the rotational, vibrational, translational, and electronic energies
from the gas species, Eq. (12) can be rewritten as

kωω′

kω′ω
=

Qω′

Qω
exp(−

ΔErxn

kBT
), (13)

where Qω and Qω′ are quasi-partition functions for the initial and
final states, respectively.24 Each of these partition functions incor-
porates the vibrational contributions of adsorbates, as well as the
translational, rotational, and vibrational contributions of gas species.
Regarding the vibrational contributions, we are assuming that the
vibrational energy levels are with respect to the bottom of the
potential energy well; if the ground state is chosen as a reference,
zero-point energy corrections need to be accounted for in the acti-
vation and reaction energies (but not in the vibrational partition
functions anymore, to avoid double-counting). ΔErxn is the change
of electronic energy of the system due to a transition from ω to ω′
brought about by removing all the reactant molecules from the lat-
tice and the gas phase (depending on the nature of the elementary
event), as well as adding the product molecules onto the lattice and
gas phase. In other words, ΔErxn, is the reaction energy,

ΔErxn = (Eω′ − Eω) + (Egas
ω′ − Egas

ω ), (14)

where E and Egas denote the electronic energy of the given lattice
configuration and gas species, respectively.

Because the reaction energy, ΔErxn, is obtained from Eq. (14),
the task is to find the electronic energies of the initial and final
states. To achieve this, we need an appropriate energetic model of the
system. Accounting for the contributions of the gas species is
straightforward because the gas reservoir is typically assumed to
be an ideal gas.24 However, modeling the lattice energetics (e.g.,
electronic energy of the lattice configuration) is a more delicate
issue.72,85,86 In this respect, the so-called cluster expansion Hamil-
tonian (CEH) approach has gained much popularity in recent
years.30,87–93 CEHs are typically fitted to a limited dataset derived
from DFT calculations, which, however, can become costly and
tedious. However, in recent years, efforts have been dedicated to
reducing the computational cost of getting accurate CEHs.94,95

Hence, Eqs. (12)–(14) enable the implementation of thermodynam-
ically consistent models in 1p-KMC, and we now turn our attention
to the calculation of the rate constants.

The rate constant of an elementary event leading to a transi-
tion from the initial state ω to the final state ω′ is calculated from
TST,24,28,69

kTST
ωω′ = κ

KBT
h

Q‡

Qω
exp(−

E‡
ωω′

KBT
). (15)

In the above equation, parameter κ is known as the dynamic trans-
mission coefficient. It is a correction term, typically calculated from
short MD simulations, that captures the possibility of trajectories
recrossing the transition state region of the PES back to the initial
state.1 h is Planck’s constant, Q‡ is the quasi-partition function of
the transition state, and E‡

ωω′ is the activation energy barrier of the
elementary event (i.e., the difference in the potential energy between
the transition and initial states). The latter is typically computed
from the PES using DFT calculations combined with efficient meth-
ods for locating the transition state. Examples of these methods are
the dimer method and the nudged elastic band method.43,96 In most
studies, the partition functions are obtained from first-principles
calculations within the harmonic TST (hTST) approximation.1,30

However, recent efforts to account for anharmonic effects, either
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FIG. 5. Conceptual plot of the energy with respect to reaction coordinate. The
blue solid line pertains to the reaction energy profile in the limit of zero coverage
(absence of spectators on the surface). The red dotted line pertains to the reac-
tion energy in the presence of spectators that destabilize the initial state due to
lateral interactions with the reactants. E‡

f wd and E‡
rev are the activation energies of

the forward and reverse transitions and ΔErxn is the reaction energy. The param-
eterization with 0 and σ classifies the transitions into reactions in the absence of
spectators (zero coverage limit) and reactions in the presence of spectators (finite
coverage). Reproduced from Nielsen et al., J. Chem. Phys. 139, 224706 (2013)
with the permission of AIP Publishing.

directly or via the hindered translator and rotor models, have been
put forward in the literature.53,97–100 Invoking the detailed balance
condition together with the TST rate constants for the forward
(ω→ ω′) and reverse (ω′ → ω) elementary events gives24

ΔErxn = E‡
ωω′ − E‡

ω′ω, (16)

where E‡
ωω′ and E‡

ω′ω are the activation energies of the forward and
reverse transitions. Equation (16) implies that any variation of the
energy change of an elementary event brought about by attractive or
repulsive interactions between adsorbates and spectators (i.e., lateral
interactions) must also affect the kinetics of the elementary events
(see Fig. 5).28,87 However, since there may be several different config-
urations of the spectators, it is impractical to calculate distinct DFT
activation energy barriers for every possible configuration. Instead,
a convenient way to model the impact of lateral interactions on the
activation energy is by using the so-called Brønsted–Evans–Polanyi
(BEP) relations, which represent a linear correlation between the
activation barrier and the reaction energy of an elementary step in
a reaction mechanism.87,88 Such BEP relations are obtained by linear
fitting to appropriate DFT calculations.

Having described the critical aspects behind the 1p-KMC
approach, we now proceed to briefly discuss how the KMC
framework works and how one can implement it.

III. FROM KMC ALGORITHMS TO CODES
Let us now briefly outline the computational implementation

of the KMC framework, as well as software packages and codes
particularly devoted to simulate catalytic surface reactions.

A. The general flow chart of KMC algorithms
KMC is a computational framework that generates stochastic

trajectories fulfilling the fundamental premises of the MME (see

Sec. II B).75 The general flow chart of a KMC algorithm is presented
in Fig. 6. To begin with a KMC simulation, it is necessary to specify
in advance the lattice structure of the catalytic surface, the chemical
processes that can happen on the lattice (i.e., reaction mechanism),
the energetics of the system (i.e., lateral interactions), and the
simulation parameters (i.e., pressure, temperature, and composition
of the gas phase). Once the simulation setup and parameters are
established, one can start the KMC simulation from a desired initial
lattice configuration and the number of gas molecules specified up
to additive constants. Then, at each time step of the simulation,
the KMC algorithm scans the lattice and detects all the elemen-
tary events that can happen on it. Based on this detection, a lattice
queue of lattice processes/events is created, and the next elementary
event is selected. The execution of such an event is accompanied
by the appropriate update of the lattice configuration and time
clock. The lattice process queue is then updated so that the ele-
mentary events that cannot happen anymore are deleted and newly
appeared events are added. The simulation ends once a predeter-
mined termination criterion is fulfilled (e.g., the KMC simulation
time exceeds a target value). The information contained in a KMC
trajectory can be post-processed to obtain, for instance, catalytic
performance metrics, calculate surface coverages, or perform reac-
tion pathway analysis (see Fig. 4 for examples of some typical KMC
outputs).24

A large part of the computational cost in a KMC simulation
comes from selecting the elementary event to be executed and updat-
ing the data structures carrying information about the possible
lattice events and lattice configuration. The way to decide which

FIG. 6. The general structure of a KMC algorithm presented in as a flow chart. The
event selection procedure and the update of the data structures varies depending
on the particular algorithm implemented (see Sec. III A).
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event will happen next and when gives rise to two broad algorithms,
namely, the null-event and rejection-free algorithms.24,55,101 In the
former, not all selected elementary events are realizable, and if a
non-realizable event is selected, the KMC time is advanced but no
event is executed. On the contrary, in the latter, all selected elemen-
tary events are executed. Although these algorithms are, in principle,
exact and yield statistically equivalent results, they typically do
so at different computational costs, as will be discussed in more
detail later (see Sec. IV A).101 The null-event algorithm has mini-
mum bookkeeping and was one of the early approaches employed
to simulate catalytic surface reactions. However, it becomes quite
inefficient when the number of null events is significant, which is
quite likely when dealing with realistic systems having multiple site
types, many-site events, and mechanisms with several elementary
steps. Additionally, KMC clock updates in a null-event algorithm
are complicated in the presence of lateral interactions, since one
would have to consider all possible spectator arrangements for
each reaction event. Due to these issues, the null-event method has
given way to the rejection-free method, which has become, over the
years, the gold standard in modeling the kinetics of heterogeneous
catalysts.

The rejection-free algorithm is implemented either by the
direct method (DM) or the first reaction method (FRM).24,55,102 The
DM generates the next elementary event and its occurrence time
directly from Eqs. (6) and (7). On the other hand, the FRM gener-
ates a putative time for each possible elementary event using Eq. (5)
and selects, as the next event, the one having the shortest time of all.
Both methods are equivalent and reproduce the statistics of the mas-
ter equation exactly (up to numerical accuracy, of course).55,101,102

However, their efficient implementation depends heavily on the data
structure employed to handle the selection of the elementary event,
the execution of this event, and the post-execution updates. The
latter can also be computationally intensive, especially for systems
with long-range lateral interactions or, more generally, complicated
energetics.

Detailed discussions on KMC algorithms have been carried out
by several authors.24,55,101 Therefore, rather than extending our dis-
cussion here, let us move on to comment on some of the KMC
software packages and codes that build on these algorithms in
Sec. III B. Readers interested in practical guides for constructing and
evaluating KMC models for the simulation of catalytic surface reac-
tions are referred to, e.g., the recent tutorials by Andersen et al.28 and
Prats et al.27

B. Computational codes
KMC simulations of surface reactions have been steadily

gaining popularity since KMC was coupled with first-principles
calculations in the late 1990s.72,85 Although the computational pack-
ages that perform first-principles calculations are more numer-
ous and mature, at the present time, several general-purpose
KMC software packages are at the disposal of researchers
working in the areas of heterogeneous catalysis and surface
science.

To the best of our knowledge, the first two general-purpose
KMC software packages that were developed are CARLOS55,103

and SPPARKS104,105 (Stochastic Parallel PARticle Kinetic Simu-
lator). CARLOS was probably the first user-friendly KMC code

primarily devoted to simulating molecular phenomena on catalytic
surfaces.55,103 CARLOS employs null-event and rejection-free
algorithms and is optimized for memory and speed utilization. The
influence of lateral interactions on the system’s catalytic perfor-
mance is treated by explicitly defining the different rate constants
for the various configurations of the lattice. On the other hand,
SPPARKS has been mostly implemented to investigate material sci-
ence problems and biochemical reaction networks.104,105 This KMC
code was the first to implement parallelization techniques and spatial
decomposition of the simulation domain. SPPARKS uses null-event
and rejection-free algorithms as well and is designed to facilitate
its modification and extension. The code has been sporadically
used to study catalytic systems. Examples include the hydrogenation
of benzene on Pt(111)106 and the catalytic CO oxidation on Pt
surfaces.107

The last decade has witnessed the appearance of new power-
ful KMC software packages and codes. We briefly describe some
representative such tools, noting that our list is not intended to be
exhaustive. The first in this list is the versatile software package
Zacros,108 which was developed at University College London
(UCL) and made available in 2013. Zacros is written in Fortran
2003, implements the FRM, and couples the so-called graph-
theoretical KMC (GT-KMC) framework with CEHs for the adlayer
energetics.22,24,26,30,84 Moreover, to deal with the environment-
dependent activation energies of elementary events, the code uses
BEP relations that enable the calculation of rate constants on-the-fly
(OTF). With Zacros, one can perform simulations that consider
species that bind to more than one active site, complex reac-
tion patterns, spatial correlations and ordering arising from lateral
interactions involving many-body contributions, as well as changes
in the activation energies of elementary events due to interactions
of reactants and spectators. Zacros applies OpenMP paralleliza-
tion along with a sophisticated caching scheme to tackle the high
computational cost arising from the presence of lateral interac-
tions, especially when the CEH involves long-range interactions or
a large number of contribution terms.87,109 In addition, the code
implements domain decomposition and lookahead-rollback parallel
algorithms, built on the message passing interface (MPI) framework,
to enable the distributed simulation of very large domains.82 Zacros
can be used for KMC simulation but is also capable of performing
equilibrium MC simulations.110,111 An interactive post-processing
and visualization tool is also available (Zacros-post graphical user
interface), and a Python wrapper has been developed and is made
available independently by Núñez et al.112,113 This wrapper can
run multiple simulations with parallel processing, rescale rate con-
stants of fast equilibrated reactions to accelerate the simulation, and
perform parametric sensitivity analyses.

About a year after the release of Zacros, the software packages
kmos and KMCLib were introduced. kmos uses the DM to generate
KMC trajectories.28,114,115 The code is an application programming
interface (API) that simulates reactions involving multiple active
sites and species that bind to more than one site. Although the stan-
dard backend of kmos handles lateral interactions in a way similar to
CARLOS, to run complex catalytic systems containing lateral inter-
actions, kmos also implements the OTF backend, which uses BEP
relations to modify rate constants during runtime.114 On the other
hand, KMCLib is a general KMC framework that can simulate the
time evolution of systems of up to millions of particles in one, two, or
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three dimensions.116–118 The code uses MPI parallelization to detect
elementary events on the lattice and calculate the associated rate
constants. KMCLib uses the DM as well.

The software package MoCKA (Monte Carlo Karlsruhe) also
appeared around the same time as Zacros, kmos, and KMCLib.119

MoCKA provides a general KMC framework combining
graph-theoretical and lattice-based approaches to model molecular
phenomena on nanoparticles. The code can efficiently handle the
simulation of nanoparticles exposing several nanofacets, which
may exhibit different chemical environments. To this end, the
code uses multiple lattices to represent the nanofacets and handles
the communication effects between catalytic particle nanofacets
or between support and particle facets. MoCKA uses an efficient
implementation of the DM and makes the FRM also available.
MoCKa addresses only pairwise lateral interactions but, in princi-
ple, could be extended to three-body and higher-order interactions
as they can be derived from CEHs.

A recent addition to the list of user-friendly software packages
is MonteCoffee.120 This code is an open-source object-oriented
programmable (OOP) application, which exploits similar ideas to
the graph-theoretical (or GT) approach and has the advantage of
quick extension. Several challenging tasks are possible with this
code, such as evaluation of lateral interactions, sensitivity analysis
(SA), and descriptor-based energy landscapes. The code uses
neighbor lists to represent the lattice connectivity. The FRM is the
primary KMC simulation driver, but the code can be extended in a
straightforward way to incorporate other algorithms.

Moreover, Excimontec121,122 is a recent KMC software package
developed in modern C++ and optimized for efficient execution
on high-performance computing clusters using MPI. It allows users
to create simulation models on a cubic lattice and combines the
DM and several variations of the FRM. This software package uses
object-oriented design and extends the KMC_Lattice framework.123

Finally, the software package SuSmoST (SUrface Science MOdeling
and Simulation Toolkit)124 consists of computer programs and
libraries intended to support surface investigation, focusing on
adsorption systems and phase transitions. The code implements
mainly transfer-matrix and tensor-network methods, as well as
Metropolis Monte Carlo simulations, with KMC support as a
recently added feature.

The computational codes and software package just described
are broadening the adoption of 1p-KMC simulations for het-
erogeneous catalysis. Although this could indicate certain matu-
rity reached by this simulation technique, several computational
challenges still have to be overcome to fully exploit its predictive
power. Key such challenges and recent attempts to address them are
the subjects of Sec. IV.

IV. COMPUTATIONAL CHALLENGES
AND METHODOLOGICAL DEVELOPMENTS

KMC is a numerical simulation framework, and as such, it
faces computational challenges when dealing with realistic catalytic
systems. These challenges, but also the increasing popularity of
1p-KMC as a tool for understanding and predicting catalytic perfor-
mance metrics, have motivated the development of novel methods,
as discussed in this section.

A. Scheduling and executing elementary events

As mentioned in Sec. III A, at every step of a KMC simulation
(i.e., KMC iteration), we have to create a list of all of the possible
elementary events that may occur on the lattice. Then, we need to
randomly select one of these events and its time of occurrence and
execute it. Finally, we conduct the necessary updates on both the list
of possible events and the lattice configuration. These procedures
are at the heart of any KMC simulation and can become a significant
computational bottleneck for systems with many elementary events.
The bookkeeping of these procedures depends on the KMC method
implemented and is usually performed employing appropriate data
structures.

In a series of early studies aiming at finding efficient KMC
methods for the simulation of catalytic surface reactions, Jansen and
co-workers implemented binary trees and binary search to store the
elementary events of the KMC simulation.55,81,125–129 In a similar
effort, Reese et al.130 explored the implementation and efficiency of
rejection-free and null-event approaches with local and global search
and update algorithms. In a global such algorithm, the entire library
containing the information of interest is sequentially searched and
updated, whereas in a local one, only a portion of the library is
searched and updated. Reese et al. concluded that when the reaction
mechanism involves events occurring at disparate frequencies, e.g.,
fast diffusion, slow reactions rejection-free algorithms can be much
faster than null-event ones (this disparity of frequencies/time scales
is referred to as “stiffness;” see Sec. IV D for more details). However,
Reese et al. also found that null-event algorithms could, under some
conditions, outperform rejection-free approaches due to the fewer
operations per KMC iteration that the former entails. Along similar
lines, Dooling and Broadbelt explored a KMC tool that maintains
detailed information about the current state of the catalytic surface
and only updates the information locally, thereby greatly increasing
the efficiency of the simulations.131

In a general context beyond heterogeneous catalysis, Gibson
and Bruck employed a dependency graph for locally updating only
the rate constants that are actually affected when a particular event
is executed.102 Furthermore, they implemented an indexed priority
queue to identify the elementary events with the least waiting time
when using the FRM. Such an indexed priority queue enabled the
retrieval of an arbitrary elementary event in constant time (though,
of course, updates are more costly). Moreover, for both the DM
and FRM, a complete tree data structure was proposed in which the
amount of time per KMC iteration is proportional to the logarithm
of the number of elementary events on the lattice, not to the number
of events itself.

More recently, Chatterjee and Vlachos101 reviewed several
KMC simulation methods and explored the implementation and
efficiency of several search and update algorithms.128 They con-
cluded that rejection-free approaches, which use efficient search
and update algorithms, are very efficient but require much more
complicated coding than null-event approaches. They reported that
implementations involving linear search on the data structure scale
as O(Nqueue), where Nqueue is the total number of elements in the
queuing data structure. They also found that extensions of the
linear search, such as the two-level and n-level linear searches,
scale as O(

√
Nqueue) and nO( n

√
Nqueue), respectively. The so-called

binary and hash-table searches80,128 were also discussed in this
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review. This work also discussed techniques for updating the lattice
configuration, lattice energetics, and rate constants.102,130

In a latest effort, Savva and Stamatakis implemented and com-
pared four data structures (i.e., the unsorted list, the binary heap,
the pairing heap, and the one-way skip list),128,133,134 as alternative
queuing systems to handle the elementary event queue during the
implementation of the FRM, and further developed the two-way skip
list-based queuing data structure [see Fig. 7(a) for the schematic rep-
resentation of three of the data structures implemented by Savva
and Stamatakis].132 These five approaches were implemented in
the Zacros software package and benchmarked against one another
using a CO oxidation model adapted from the seminal work by Ziff,
Gulari, and Barshad (the ZGB system),135 a simplified model of the
water–gas shift (WGS) reaction on Pt(111),136 and a TPD model
of CO on Cu(111).137 They also investigated the effect of compiler

FIG. 7. Schematic representation of the binary heap (a), pairing heap (b), and
two-way skip-list (c) data structures. (d) Runtime scaling of the various queuing
systems for simulating 106 KMC steps while stationary conditions in the WGS
model, with compiler optimization disabled. Reproduced with permission from G.
D. Savva and M. Stamatakis, J. Phys. Chem. A 124, 7843 (2020). Copyright 2020,
American Chemical Society.

optimizations on the performance of these data structures. This
work found the unsorted list to be, as expected, impractical. How-
ever, as presented in Fig. 7(b), they observed a 3× speedup of the
binary or pairing heaps compared to the one-way skip list. They also
found that compiler optimization delivers a speedup of up to 1.8×.

Since a KMC simulation involves the iterative scheduling and
executing elementary events, efficient implementations of these
operations are of paramount importance. A fundamental part of
this endeavor consists in adopting the latest approaches or devel-
oping novel ones. In this respect and to the best of our knowledge,
data structures, such as the Brodal queue or the Fibonacci heap,
have not yet been implemented for kinetic simulations of catalysts.
Both approaches are known to have better time complexities than
the binary or pairing heaps, though large memory requirements and
high constant factors might make them competitive for only spe-
cific applications. Therefore, these non-trivial considerations might
represent an opportunity for further algorithm development and
optimization.

B. Treating complicated energetic models
of non-ideal adlayers

In reaction mechanisms for which adsorbate–adsorbate lat-
eral interactions are significant, the non-ideal mixing in the adlayer
could result in the formation of islands and ordered structures
on the catalytic surface. Such phenomena can dramatically affect
the observed reaction kinetics and should be properly taken into
account when performing 1p-KMC simulations (see Sec. II B).

The incorporation of lateral interactions into a comprehensive
kinetic modeling framework has been a long-standing challenge.
Even at the present time, for simplicity and computational efficiency,
such interactions are often disregarded altogether with the use of a
“hard-sphere” (lattice) model, also referred to as the “site blocking”
model.28 The minimum-effort approach beyond this approximation
considers simple pairwise additive nearest neighbor (1NN) interac-
tions within a lattice-gas model.138,139 In a more elaborate approach,
early 1p-KMC simulations implemented various versions of the so-
called bond-order conservation (BOC) method to account for 1NN
and longer-range interactions in a realistic way.72,85 Currently, a
popular methodology to accurately treat lateral interaction within
the 1p-KMC framework is the CEH approach,30,87–95,140 which is
based on a general formalism for representing a real-valued function
of a lattice configuration variable.

In this approach, the electronic energy of the lattice of a state
is represented by a sum of interaction clusters (patterns). Each of
them represents an energetic interaction pattern or figure in which
the adsorbates are arranged, for instance, single body, two-body,
three-body, and larger contributions. Interaction patterns typically
included in the different CEH models are presented in Fig. 8(a).
While this approach enables, in principle, the most accurate mod-
eling of lateral interactions, it dramatically increases the compu-
tational cost (or runtime) of KMC simulations. For this reason, a
number of strategies to reduce such computational burden have
been implemented in recent years.

Parallelizing the detection of the interaction clusters has been
a successful approach to this end. For instance, Nielsen et al.87

developed an implementation of this idea, which uses open multi-
processing (OpenMP)141 in the update of kinetic constants after the
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FIG. 8. (a) Energetic interaction patterns typically taken into account in the CEHs.
Filled blue circles represent sites occupied by an adsorbate. Open circles repre-
sent sites that may or may not be occupied.87 (b) Comparison of performance
without and with caching enabled for simulations considering CEHs of different
complexity. The dashed line represents the ideal linear scaling with the number of
threads used in the absence of caching. A model for the NOx oxidation/reduction
on Pt was used for this performance analysis.109 Panel (a) adapted from Nielsen
et al., J. Chem. Phys. 139, 224706 (2013) with the permission of AIP Publishing.

execution of a reaction event. By simulating a kinetic model for NOx
oxidation/reduction on Pt(111) as a benchmark, this approach was
found to significantly reduce computational time by about 10× for
16 threads with a CEH containing up to eighth-NN (8NN) inter-
actions. However, the results of these benchmarks also revealed
that the performance improvement reaches a plateau as the number

of threads increases. This plateau was attributed to a synchroniza-
tion overhand when collecting the updated rate constants from
the different threads. Motivated by the need for further improve-
ment, Ravipati et al.109 recently developed a novel and exact scheme
that implements a sophisticated caching data structure along with
OpenMP for faster updating of the rate constants. The approach
is based on caching information about the energetic interaction
patterns associated with the products of each possible elementary
event. The scheme was also benchmarked for the same NOx oxi-
dation/reduction system and yielded acceleration factors of up to
20× when comparing single-thread runs without caching to runs
on 16 threads with caching for simulations with up to 8NN inter-
actions [Fig. 8(b)]. The two approaches just mentioned have been
implemented in the software package Zacros. It is worth noting that
OpenMP parallelization alone merely distributes the workload to
several threads (with the unavoidable overhead), while only the sec-
ond approach (caching) actually reduces it. However, due to the
complicated nature of the caching algorithm, no formal estimates
of computational complexity have yet been derived.

Aiming at reducing the computational complexity of 1p-KMC
simulations with lateral interactions, Hess recently proposed the
supercluster approach, subtraction schemes, and the supersite algo-
rithm.95 The supercluster approach improves the computational
performance of evaluating the CEH by essentially reducing the num-
ber of terms in the CEH, and when tested on several compilers and
central processing unit (CPU) architectures, it showed a significant
speedup compared to the traditional CEH approach. The subtrac-
tion scheme was introduced to optimize the calculation of the sum
of rate constants when implementing the DM. This scheme exploits
the well-established strategy of performing local updates, i.e., recom-
puting rate constants only in the vicinity of an elementary event and
within lateral interaction range. This way, the recalculation of the
total rate constant scales as O(1) with the number of sites of the
lattice. Finally, the supersite search implements Maksym’s two-level
algorithm,142 as opposed to the traditional linear search implemen-
tation of the DM,101 in which the sites of the lattice are visited
successively. Overall, it was demonstrated that one must combine
the three algorithms to reach the best performance. In such a case, it
was found that the computational cost when including lateral inter-
actions increases by less than a factor of 3 as compared with the case
without lateral interactions. The performance studies were mainly
carried out with simple models, However, simulations of a full model
of HCl oxidation over RuO2(110) confirmed the improvements in
computational savings.

At the present time, lateral interactions are an integral
part of most of the existing KMC software packages. How-
ever, the computational burden associated with its implementation
remains quite high. Although a number of acceleration schemes
have appeared in recent years,87,95,109 further developments are
necessary.38,86,90,91,94,143,144 Along these lines, further improvements
in the efficiency of lateral interaction pattern detection, e.g., via
fingerprinting and precomputing, could be a way forward.

C. Treating large surface domains with distributed
simulations

Conventional KMC algorithms are sequential in the sense that
they handle one elementary event at a time. For this reason, KMC
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does not scale well with the lattice size. In particular, even if the
execution of a KMC event happens at constant time (i.e., is inde-
pendent of the lattice size), thermodynamic scaling laws imply that
the number of events needed to reach a target/final KMC time scales
linearly with system size. This poor scalability has limited the appli-
cation of 1p-KMC simulations to relatively small lattices, typically
on orders of up to 10 × 10 nm2. Although KMC simulations of such
lattices can yield good estimates of catalytic performance metrics,
understanding long-range spatiotemporal phenomena, such as pat-
tern formation in the context of surface reconstruction, necessitates
the simulation of larger lattices. The size of these lattices is dictated
by the wavelength of the pattern, which could be in the order of μm
to mm.145–147 These large-sized lattice simulations pose challenges
in terms of computational time and memory footprint.101 With the
hardware available at present, using the sequential KMC framework
to simulate complex chemistries on catalytic surfaces that span μm
in size is impractical or infeasible.

A way to address this challenge is by implementing distributed
parallelization techniques for discrete event simulation.148–158 Appli-
cations of these techniques are possible because of the typi-
cally localized character of the elementary events on the catalytic
surface. Among these approaches, we note as representative
the synchronous,148 the synchronous relaxation,149 the optimistic
synchronous relaxation,150,151 the optimistic Time-Warp,159 and the
semi-rigorous synchronous algorithms.152–157 In general terms, they
rely on domain decomposition and event execution protocols that
either keep the different processors synchronized as the simulation
proceeds, thereby avoiding boundary conflicts, or carry on simu-
lating in an “optimistic spirit” until such conflicts arise, at which
point they employ rollback and re-simulation procedures to rec-
tify the pertinent causality violations. Thus, in the latter approach,
provisional KMC trajectories are progressively amended and finally
incorporated into the global simulation history, provided they are
mutually consistent.

Although an approach similar to the semi-rigorous syn-
chronous algorithm is already implemented in SPPARKS104–106,154

and features of the Time-Warp algorithm have also been incorpo-
rated into the software package SPOCK (Scalable Parallel Optimistic
Crystal Kinetics),160 it was only recently that a general and vali-
dated approach was made available to the computational physics
community by the coupling of the optimistic Time-Warp algo-
rithm with the GT-KMC framework, as implemented in Zacros.82

In the Time-Warp-GT-KMC framework, the lattice is decomposed
into domains that are assigned to different “processing elements”
(each of which may be handled by a single CPU core or involve
several threads). Each processing element carries out the KMC algo-
rithm for the assigned domain and communicates with the neighbor
domains, if necessary. This way, elementary events that occur far
from domain boundaries are handled privately and asynchronously,
while events close to those boundaries must be appropriately com-
municated. The communication among processes is handled by
using the message passing interface (MPI) framework.161 Because
each processing element follows its own simulation time, when
boundary events happen, causality violations may arise. Such vio-
lations are resolved using the protocols of the Time-Warp algorithm
(i.e., state-saving, rollback, and message/anti-message sending pro-
tocols). Further protocols for the computation of the collective KMC
time of all processing elements (or global virtual time) and the

FIG. 9. Strong-scaling benchmark of a model for CO oxidation on Pt(111), using a
2592 × 2592 lattice (more than 13.4 × 106 sites). The calculated efficiencies (blue
squares) are compared with the ideal scaling (red line). In the strong scaling, the
number of processing elements (nPE) is increased while keeping the lattice size
fixed so that the workload per processing element is progressively reduced. The
left-most point is a serial run for which the efficiency is 1 by definition. Reproduced
with permissions from Ravipati et al., Comput. Phys. Commun. 270, 108148 (2022)
Copyright 2022, Elsevier.

corresponding termination of the distributed run are implemented
as well. Scaling benchmarks of the Time-Warp-GT-KMC frame-
work revealed that the overhead associated with the Time-Warp-
related procedures can be significant. However, the approach was
found to scale well with the lattice size and outperformed the sequen-
tial KMC for large lattices. The simulation runs were performed
for two simple models and a more realistic one that captured CO
oxidation dynamics on Pt(111) and made use of an elaborate CEH
energetic model (Fig. 9).83 Crucially, Ravipati et al.82 devised a serial
simulation protocol that delivers, by construction, the same results
as the Time-Warp-GT-KMC, thereby validating the implementation
in a general way.

Approaches such as the Time-Warp-GT-KMC are very
promising and will allow the investigation of heterogeneous catalysis
at spatial and temporal scales of unprecedented magnitude. The
research topic of distributed parallel KMC for heterogeneous catal-
ysis and surface science applications is still in its infancy, and we
envision further exciting developments, both from a method devel-
opment and from an applications standpoint, in the years to come.
Thus, the development and implementation of more efficient exact
simulation protocols, as well approximate schemes whose accuracy
can be assessed by comparisons with exact ones, could pave the road
for unraveling the molecular origins of emergent behaviors at the
macro-scale, such as pattern formation on catalytic surfaces,146 and
lead to novel applications in the area of spatiotemporal control of
reactive systems.162

D. Treating event frequency disparity
By performing simulations on the long time scale of the ele-

mentary events, KMC achieves an enormous speedup over MD
simulations. However, a time scale disparity problem can emerge
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even at that level of description because, in many cases, these events
can occur at vastly different time scales (i.e., their rate constants can
span multiple orders of magnitude). For instance, it is common to
encounter surface reaction mechanisms that involve very fast sur-
face diffusion events but also slow reactions. Then, because in KMC
simulations, elementary events are selected based on their relative
rate constants (see Sec. II A), it is far more likely that a diffusion
event will occur at each KMC step. Typically, these slow reactions
are the events of interest (i.e., the ones directly related to the cat-
alytic performance metrics). In contrast, the fast diffusion events
lead to a quasi-equilibrated adlayer but do not contribute to the net
evolution of reactants and products. Furthermore, because these fast
(frequent) diffusion events are the limiting factor in the advance-
ment of the simulation, numerous KMC steps will be needed in
order to sample over a sufficient number of reactions so as to obtain
accurate estimates of catalytic activity or other metrics. This prob-
lem, which is also known as KMC stiffness (similar to stiffness in
differential equations),40 can severely undermine KMC simulation
performance and has motivated the development of acceleration
schemes that address it.

An early such scheme is the so-called absorbing Markov chain
KMC (AMC-KMC) framework.163–165 Fundamental to this scheme
is the concept of a superbasin, i.e., a set of basins (KMC states) con-
nected by fast (low energy barrier) quasi-equilibrated elementary
events. The AMC-KMC framework formulates the escape from a
superbasin as an absorbing Markov chain, with the repeatedly vis-
ited states within the superbasin referred to as “transient states” and
the states outside the superbasin, to which the system exits, called
“absorbing states.” This framework is exact and relies on creating the
so-called Markov matrix to describe the transitions among transient
and absorbing states. The determination of the absorbing state that
the system enters (thereby escaping the superbasin), as well as the
time when this happens, requires the diagonalization or inversion of
the Markov matrix. AMC-KMC works well with and without time
scale separation and has been implemented in the software pack-
age EON for off-lattice (adaptive or OTF) KMC simulations.43,166–171

However, a downside of this approach is that the matrix oper-
ations can become computationally intensive when dealing with
large Markov matrices (i.e., large superbasins). Moreover, the
method does not explicitly specify how to group states to form a
superbasin.

An approximate method that does not require expensive matrix
manipulations is the accelerated superbasin KMC (AS-KMC) intro-
duced by Chatterjee and Voter.173 AS-KMC relies on the construc-
tion of a database of elementary events and counting the number
of times each event has occurred. A larger number of occurrences
for an event indicates that a superbasin may be present. If the sys-
tem is considered to be in a superbasin, the rate constants of all
quasi-equilibrated elementary events that connect the basins of the
superbasin are lowered (by, e.g., raising the activation barriers). This
scaling increases the probability for a non-equilibrated elementary
event to be selected, leading to a transition to a new superbasin (see
Fig. 10). In doing so, AS-KMC offers a significant computational
speedup over “standard” KMC simulations, incurring an error that
has been shown to increase asymptotically linearly with the factor
used to downscale the fast events.174 This factor can be taken such
that the error of the approximation is negligible compared to the
error of the KMC sampling. However, a potential drawback of this

FIG. 10. Schematic example of the (a) unscaled and (b) scaled rates for a set
of simple isomerization reactions occurring on disparate time scales. The final
isomerization (D→ E) is the rate-limiting reaction with a rate equal to r1. This
reaction is rarely sampled in a “standard” KMC simulation due to the fast rates
of the other reactions. In an accelerated KMC scheme, the rate constants of the
quasi-equilibrated reactions are scaled to give rates of r2 = Nf r1 so that the slow
reactions will be sampled more frequently during the course of simulations.172

Nf is a adjustable parameter, referred to as the equilibration parameter. (c) PES
for a hypothetical system with processes occurring at disparate time scales due
to larger differences in the activation barriers. As illustrated, a set of states con-
nected by fast (low-barrier), quasi-equilibrated processes constitutes a superbasin.
The escape from one superbasin to another occurs through occurrence of slow
(high barrier), non-equilibrated process. A KMC simulation is accelerated by scal-
ing the rate constants (e.g., increasing the barriers) of fast, quasi-equilibrated
processes.28 Panels (a) and (b) adapted with permission from Dybeck et al., J.
Chem. Theory Comput. 13, 1525 (2017). Copyright 2017, American Chemical
Society. Panel (c) adapted with permission from Andersen et al., Front. Chem.
7, 202 (2019). Copyright 2019, Frontiers.

method is that the identification of even a single superbasin can be
computationally too expensive for complex catalytic systems, where
the state space is typically so large that many states may only be
visited very infrequently during the entire simulation.

More recent KMC acceleration methods are essentially based
on the fundamental concepts and approximations just discussed
and largely focus on overcoming the computational shortcomings
of the AS-KMC framework. For instance, Dybeck et al.172 intro-
duced a method that automatically partitions the elementary events
into equilibrated and non-equilibrated and scales down the rate
constants of the quasi-equilibrated ones (i.e., the elementary events
inside the current superbasin). The partitioning and scaling are
applied collectively to all lattice events in a given reaction chan-
nel rather than to the individual lattice events (a reaction channel
includes all the events of, e.g., adsorption of some species at a given
site type that have been detected on the lattice, independently of
where they occur). The classification of events according to reaction
channels allows identifying those events efficiently. Once a transition
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to a new superbasin is executed, the rate constants are unscaled
again to their original values to allow for sufficient sampling of
the new superbasin. This approach was used to model the complex
Fisher–Tropsch synthesis reaction over ruthenium nanoparticles
and exhibited computational saving spanning several orders of mag-
nitude. In this work, for simplicity, surface diffusion and lateral
interactions were not taken into account.

Following the development of the AS-KMC framework by
Dybeck et al.,172 Andersen et al.13,28 implemented it on the software
package kmos and applied it for the simulation of CO methana-
tion over stepped transition metal surfaces using scaling-relation-
based rate constants. Although the scheme was found to perform
quite well, some challenging cases were encountered, for which
the scheme exhibited artifacts. For instance, problems may arise
when simulating reactions between two low-coverage species, which
are both produced by independent quasi-equilibrated elementary
events. In this case, the method may scale the rate constants of the
quasi-equilibrated events too aggressively for an adequate sampling
of states where the two low-coverage species are found at neigh-
boring lattice sites for their reaction to proceed. The problem was
linked to the fact that the method does not track system states and
therefore cannot verify if all states within a superbasin have been
sufficiently sampled. To address the breakdown, Andersen et al.13

proposed a correction to the original version of the scheme that takes
into account lattice configurations of the nearest neighbor sites in
the definition of the reaction channels. However, such a corrected
version was shown to work well only for the simple case of a reaction
between two low-coverage species formed directly at neighboring
sites. The correction does not apply if the low-coverage species are
created at distant lattice sites and rely on diffusion events in order to
“meet” and react.

Other methods, similar to the ones described above, have
appeared in the literature. For instance, Núñez et al.113 addressed
the challenge by employing rate constant rescaling techniques.
Motivated by the problem of establishing a direct correspondence
between the MF-MKM and KMC, Hoffmann and Bligaard pre-
sented a KMC acceleration scheme in which, before rescaling the
rate constants of the fast elementary events, the algorithm auto-
matically makes sure the system is at steady-state.175 A common
feature between these two schemes is that the rate constants of fast
elementary events are not restored (“unscaled”) once the system
enters a new superbasin.

The “staggered quasi-equilibrium rank-based throttling for
steady-state” (SQERTSS) algorithm is another recent example in
which the idea of rate constant rescaling is implemented to accel-
erate KMC simulations.176 The SQERTSS algorithm was designed to
decrease the occurrence of the rapid elementary events that do not
significantly progress the system toward a steady-state and increase
the occurrence of slower but relevant ones. A variant of SQERTSS
is the “staggered quasi-equilibrium rank-based throttling geared
toward transient kinetics” (SQERT-T) algorithm, which deals with
ameliorating the time disparity problem in the context of transient
kinetics simulations.177 The SQERT-T algorithm is helpful in the
context of simulating temperature programming desorption and
temperature programming reaction.

The accelerated KMC algorithms described above automati-
cally treat the time scale disparity problem (to the extent that this
is feasible). However, a manual adjustment and verification of the

fast elementary events is also possible, provided the catalytic surface
reaction is simple enough.83,178,179 There exist also algorithms that
require the user to supply in advance information about fast and
slow elementary steps or identify the quasi-equilibrated ones.180,181

For surface reaction mechanisms with a small number of fast dif-
fusion elementary events coexisting with slow reactions, such a
piece of information is, in principle, easy to establish. However,
having such information in advance does not always help because
the quasi-equilibrated elementary events may change as the sim-
ulation progress. In other cases, the system can be too complex
for the user to correctly classify the elementary events into fast vs
slow.

A method that adopts the strategy of separating in advance fast
diffusion events and slow reaction events is the recently introduced
“extended phenomenological kinetics” (XPK) approach.182–187 This
approach is a hybrid between a diffusion-only KMC explicitly tak-
ing place on the lattice, which enables the evaluation of the reaction
propensities for elementary events, and a subsequent implicit-lattice
KMC that evolves the number of species on the surface. Another
method that addresses the problem of fast diffusion is the recently
introduced fast species redistribution (FSR) method.188,189 The FSR-
KMC method builds on the idea that fast diffusion steps hardly
affect the system’s time evolution but result in the redistribution of
the fast diffusive species. A prerequisite for applying the FSR-KMC
method is the identification of the fast and slow diffusion ele-
mentary events, which is performed automatically. The FSR-KMC
method takes into account detailed spatial and energetic informa-
tion to ensure a proper species redistribution. Finally, accelerated
KMC algorithms to address KMC stiffness in the presence of cata-
lyst deactivation by site blocking have been also introduced in the
literature.190

Although we have focused our discussion on accelerated KMC
frameworks within the context of heterogeneous catalysis, the time
scale disparity problem is a generic computational challenge of the
KMC framework. It is also important to reiterate that, with the
exception of the AMC-KMC, the schemes discussed are approx-
imate, and due to the heuristics involved, it is quite difficult to
estimate the magnitude of the error incurred in the simulation
observables. Thus, even though progress has been made and sev-
eral numerical approaches and algorithms have been developed
to tackle the issue of event frequency disparity, important issues
remain unresolved. The challenge remains to develop an acceler-
ation approach that provides approximate solutions within pre-
specified error tolerances and that is also robust and generic or
transferable, i.e., applicable to, in principle, any (type of ) KMC
simulation.

E. Steady-state detection, sensitivity analysis,
and uncertainty quantification

In KMC simulations of catalytic surface reactions, we are typ-
ically interested in estimating observables at steady-state. Typical
examples of such observables are the average surface coverage of cer-
tain species and the average rate of production of a certain molecule
per lattice site, referred to as the turnover frequency (TOF). We are
also often required to identify the most influential rate constants of
the system and understand how the uncertainty in the rate constants
influences the estimates of the observables of interest; these aims are

J. Chem. Phys. 156, 120902 (2022); doi: 10.1063/5.0083251 156, 120902-14

© Author(s) 2022

 14 July 2024 07:59:59

https://scitation.org/journal/jcp


The Journal
of Chemical Physics PERSPECTIVE scitation.org/journal/jcp

achieved via sensitivity analysis (SA) and uncertainty quantification
(UQ), respectively. These two aspects are important in assessing the
accuracy of 1p-KMC simulations, and since the pertinent analyses
have to be done at “steady-state” conditions, identifying the latter is
also important in this context.

It is important to stress that the term “steady-state” is used
somewhat loosely in our discussions (and in the cited literature),
and such a “state” should not be confused with any of the KMC
states visited during the simulation. The mathematically acceptable
term referring to time-invariant conditions in the context of random
processes is “stationarity,” and several definitions thereof exist,
capturing different levels of rigor. For instance, if the mean and auto-
covariance are constant and the second moment is finite at all times,
then the stochastic process is referred to as “wide-sense stationary.”
The much more restrictive definition of a “strictly stationary”
processes requires all joint probability distributions, Pω(t1),
Pω(t1),ω(t2), . . . to be time-invariant. Of interest, in practice, is the
probability of the state variable at stationary conditions, Ps

st , which is
known to be the long-time limit of Pω(t), at least for “well-behaved”
random processes.

Thus, for an ensemble of KMC runs starting from the same
state (e.g., empty lattice), the sharp probability corresponding to
the initial condition evolves toward the stationary probability. Once
“steady-state” (stationarity) has been reached, it is possible to invoke
the assumption of ergodicity to calculate an average quantity of
interest as a time average from a single KMC run instead of an
ensemble average. This is the strategy typically followed in practice;
however, when performing multiple simulations, e.g., for parametric
analyses, verifying that the system has reached steady-state can be
tedious. Indeed, the “steady-state” behavior of the system depends
on the pressure, the temperature, and the composition of the gas
phase in contact with the catalyst. Given the large number of pos-
sible such conditions, the number of KMC steps required to reach
steady-state can extend over a wide range, and manual verification
of steady-state behavior for each simulation would be impractical.
What would be needed is to implement parallel processing for simul-
taneously conducting large numbers of simulations, coupled with
automated algorithms able to decide with enough confidence when a
KMC simulation has reached steady-state and exclude the transient
period from sampling. As an example, Fig. 4(c) shows a fluctuat-
ing KMC trajectory exhibiting a transient up to about 10 s, before
approaching what appears to be a “statistical steady-state” behav-
ior. Multiple types of different fluctuating profiles like that can be
produced by KMC simulations.

It is only very recently that attempts to develop robust and
computationally efficient steady-state detection (SSD) algorithms
for KMC simulations have been made, based on the implementa-
tion of appropriate statistical tests. For instance, Núñez et al.113,191

implemented a criterion for having achieved steady-state, which
uses a batch means test complemented with a t-test. In another
work, Nellis et al.192 developed the F-t-Pj-RG method, which relies
on the subsequent application of an F-test, a t-test, and a pro-
jection test on adjacent windows of the time series while rolling
and growing the windows when any of the tests fail. Passing the
F-t-Pj-RG test requires that all three individual tests pass. Upon
passing the test, a statistical steady-state is considered to have been
detected within a confidence level and tolerances provided by the
user. The F-t-Pj-RG method determines the appropriate window

size on the fly and does not require advance empirical knowledge
of the system under consideration. The computational cost of the
method was proved to be on average less than one percent of the
computational cost of the KMC simulations, and it was also shown
to be suitable for various types of data trends that can occur in real
KMC applications. Despite all that, further testing will be needed to
verify whether the F-t-Pj-RG method can be applied in more general
settings.

In recent years, the development of comprehensive and accu-
rate SA and UQ approaches to 1p-KMC simulations of catalyzed
surface reactions has also gained attention. This development is
motivated by the high computational cost of calculating rate con-
stants from DFT calculations. Ideally, one would like to know in
advance how those rate constants influence the simulated behav-
ior of the catalytic system. Then, one could dedicate computational
resources to the accurate calculation of the most influential kinetic
constants using expensive electronic structure methods, while the
remaining kinetic constants could be estimated by low-cost meth-
ods. In addition, such analyses can help us quantify the propagation
of errors from the electronic structure calculations of choice to the
quantities of interest.193 In this respect, both local and global SA and
UQ approaches have been advocated.

One of the most popular methods of local SA in heteroge-
neous catalysis is the Campbell’s degree of rate control (DRC) that
evaluates the partial derivative of the average reaction rate with
respect to a rate constant parameter while keeping other parame-
ters constant.194 Despite its successful application to first-principles
MF-MKM (1p-MF-MKM), the implementation of such a local SA
method is computationally demanding in KMC simulations. In this
respect, Meskine et al.195 were among the first to explore the useful-
ness of implementing various definitions of the DRC to understand
the propagation of errors from electronic structure calculations to
1p-KMC simulations. Although the results of this seminal work
were encouraging, the application of DRC to perform SA has been
hampered by the high computational effort required to accurately
sample numerical derivatives of quantities obtained from stiff KMC
simulations. To address these issues, Hoffmann et al.196 proposed
an efficient and robust approach that was proven capable of per-
forming a reliable evaluation of the sensitivity measures for stiff
KMC simulations. Moreover, local SA of KMC simulations based
on log-likelihood estimators have been recently carried out. For
instance, Nuñez and Vlachos introduced the singularly perturbed
steady-state likelihood ratio (SP-SSLR) method to address the prob-
lem of SA in stiff KMC simulations.113,191 Techniques based on the
likelihood ratio reduce the computational cost of sensitivity analy-
sis by obtaining all gradient information in a single KMC run. A
novel element of this method is also that it enables the study of
how parameter influences propagate from fast time scales to slow
dynamics.

In the local SA approach, the results of sensitivity measures
are valid locally in the input parameter space (i.e., an assumption
of linearity is made). However, kinetic models of catalytic surface
reactions often exhibit highly non-linear behavior and strong para-
meter correlations. For such cases, global approaches that focus
on the entire parameter space of the system are needed. These
approaches have been applied mostly to 1p-MF-MKM models but
also to KMC simulations. For instance, by performing a correl-
ative derivative-based global sensitivity analysis, Sutton et al.197
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showed that neglecting correlations in reaction and species’ ener-
gies can lead to incorrect identification of key reaction intermedi-
ates and influential parameters when performing KMC simulations.
However, the drawback of such an approach is again that deriva-
tives are difficult to estimate from 1p-KMC simulations. In this
respect, Döpking and Matera proposed a probability distribution-
based approach that allows quantifying the error propagation in
1p-KMC simulation with reasonable cost.198

The development of ever refined approaches that assess how
errors from electronic structure calculations propagate to essential
outcomes of 1p-KMC simulations, such as catalytic activity and
selectivity, is an active and vital topic of research. The challenge is
to develop dynamical schemes that tune the rate constants’ accu-
racy depending on the kinetic importance of the associated chemical
pathways in the reaction mechanism.

F. Coupling with larger scales
Chemical kinetics has a central role in the modeling of reactors

and chemical processes; yet, in practice, simplistic approaches based
on empirical kinetic models are typically employed. Over the last
decade, the vision of the bottom-up reactor design has been steadily
gaining attention; to this end, the equations describing mass trans-
port need to be coupled with high-fidelity kinetic models, and it is
attractive to use 1p-KMC for the latter. The coupling of 1p-KMC
simulations to computational fluid dynamics (CDF) or continu-
ous models described by partial differential equations (SDEs) is
a relatively young area of research that opens up interesting new
avenues for method development. The ultimate goal of such a cou-
pling is to properly integrate the descriptions of the momentum,
heat, and mass transport phenomena occurring in either small-
scale laboratory reactive chambers or industrial reactors, with the
molecular-scale processes occurring on the catalyst surface. To this
end, continuous models are used to simulate the gas-phase reac-
tion mixture, while the KMC-derived reaction rates (or TOF values)
are used in the boundary conditions of the problem. However,
the stochastic character and computational cost of KMC simula-
tions poses challenges. For instance, the noise in the KMC outputs
could negatively affect the stability of the numerical methods used
to model the transport phenomena, and the computational costs
for obtaining those outputs may render the coupling challenging.
The situation is complicated further by the inherent computational
burden of CFD simulations.

This coupling can be carried out in a direct or an indirect
way.8,10,138,199–214 In the direct coupling, at each time step of the
simulation, the KMC outputs are used as the in situ boundary con-
ditions for the continuous model. The temperature and pressure
obtained from the continuous model simulations are used as the
operating conditions for the KMC simulations in the next time
step. Thus, this approach establishes a concurrent coupling with a
direct exchange of information between the two scales. The direct
coupling has been achieved for simple continuous models and/or
surface reaction systems.199–204 Most of them follow a domain
decomposition approach in which the entire heterogeneous catalytic
reaction system is decomposed into the catalyst surface domain,
which is simulated with the lattice KMC framework, and a gas phase
domain, which is captured by a continuous model. If the descrip-
tions of these two domains are simple enough, the direct coupling

is relatively straightforward.199,200,202 However, KMC simulations
of the whole surface domain may become computationally pro-
hibitive for complicated spatially heterogeneous systems with strong
concentration gradients. For such scenarios, patch dynamics
approaches have been proposed, such as the so-called gap-tooth
scheme.201,203,204 In this framework, the entire surface domain is
subdivided into periodically spaced patches, referred to as “teeth,”
separated by spaces referred to as “gaps.” Each “tooth” is simu-
lated as an independent KMC lattice that gives the surface coverage
at its location within the domain. Then, the surface concentration
across the gaps is approximated using interpolation. Such attempts
for direct coupling have been carried out for steady and non-steady-
state conditions in the fluid phase.199–204 Several methods to reduce
the impact of the noise of KMC simulations on the numerical stabil-
ity of the schemes employed have also been proposed for this type of
coupling.204

In recent years, interesting indirect coupling attempts have
also been carried out, most based on the so-called steady-state
approximation.138,205–214 The latter relies on the fact that upon a
change of the gas-phase conditions (pressure, temperature, and gas
species molar fractions), the surface kinetics typically relaxes rapidly
to the steady-state corresponding to those conditions. Thus, under
this approximation, the KMC reaction rates required at each time
step for the boundary conditions of the continuous model can be
replaced by the steady-state KMC reaction rates for the current
gas-phase conditions. The drawback of this approach is that the
constant generation of steady-state KMC simulations is a compu-
tationally demanding task for most systems of interest. A strategy
to address this issue is to construct surrogate models from several
pre-calculated data points obtained via independent KMC sim-
ulations. To this end, KMC simulations are first carried out to
determine the steady-state reaction rate for a wide range of sur-
face conditions. Different interpolation schemes, such as splines
or Shepard interpolation variants, are then applied to the resulting
data toward the development of a continuous representation, which,
in turn, provides the required necessary boundary conditions for
the continuous model.209,212 This methodology has been success-
fully used to compare simulations with experiments (Fig. 11)138,210

and has allowed the integration of KMC into several CDF soft-
ware packages [e.g., CatalyticFOAM and Multiphase Flow with
Interphase eXchanges (MFIX)].138,209 However, traditional inter-
polation techniques typically suffer from accuracy and efficiency
issues as the number of variables increases. In this respect, machine
learning techniques, such as random forests, are already making a
game-changing contribution.213

The coupling of 1p-KMC simulations to transport models, in
order to capture the local environment experienced by the catalytic
surface, is still at a relatively early stage of development. Although
progress has been accomplished, direct coupling approaches are
still only applicable to simple systems, while indirect coupling ones
necessitate advanced surrogate modeling techniques able to han-
dle noisy datasets and high-dimensional spaces. The generation
of the training dataset for the surrogate model by pre-computing
can also be challenging in such cases, and it may happen that
a large portion of the dataset corresponds to conditions that are
never actually realized in the reactor-level CFD simulation. As a
potential remedy, OTF training of the surrogate model (while the
CFD simulation is running) could reduce the number of samples
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FIG. 11. 1p-KMC and reactor modeling analysis of laser-induced fluorescence
(LIF) experiments of the CO oxidation reaction over Pd(100) at near-ambient reac-
tion conditions.210 (a) Schematic of the experimental reactor employed in the LIF
measurements. (b) (Top panel) The LIF measurements reveal the production of
CO2 concentration in the gas-phase inside the indicated sheet above the catalyst.
The white circle in the center of the image indicates the area over which the LIF
signal is analyzed for other operation conditions. (Bottom panel) Simulated CO2
concentration profile for the same feed conditions. Adapted with permission from
Matera et al., ACS Catal. 5, 4514 (2015). Copyright 2015, American Chemical
Society.

needed for training and focus on the relevant conditions, thereby
improving efficiency. However, this could introduce computa-
tional challenges if the KMC simulations needed to generate new
data points are quite slow. The acceleration methods discussed in
Secs. IV A and IV D could address such issues. Overall, the efforts
toward the efficient coupling between 1p-KMC simulations and full
CFD descriptions are expected to draw from multiple fields, includ-
ing machine learning, software engineering, and high-performance
computing.

V. CHEMICAL MECHANISMS AND PHYSICAL
PHENOMENA UNRAVELED BY KMC SIMULATIONS

The 1p-KMC framework has played a key role in helping to elu-
cidate the underlying chemical mechanisms and physical phenom-
ena of many heterogeneous catalytic reactions of practical relevance.
We will briefly discuss some of these contributions in this section,
with special attention to the last five to six years. Readers interested
on older contributions can consult Refs. 22 and 24.

A. Adlayer non-ideality and effects of lateral
interactions

As discussed in Secs. II B and IV B, lateral interactions typically
lead to the formation of non-ideal adlayers that strongly influence
the kinetic behavior of catalytic surface reactions. Such interac-
tions are nowadays mostly modeled by the CEH approach, and
CEH-based 1p-KMC (1p-CEH-KMC) models have already demon-
strated the accurate simulation of surface reactions of increasingly
complexity. In this section, we will comment on some represen-
tative works that have implemented such models to rationalize
phenomena induced by non-ideal adlayers and lateral interactions.

Recent studies by Stamatakis and Piccinin explored the impact
of lateral interactions on the CO oxidation on Pd(111),83,178,215 a
model catalytic reaction with various practical applications, includ-
ing the treatment of automotive gas exhausts. These studies rational-
ized the different reaction orders with respect to oxygen coverage at
different temperatures that were observed in the context of titration
experiments.216 In the latter, oxygen-precovered Pd(111) surfaces
were exposed to gas CO, and the CO oxidation rates as well as the
adlayer ordering were monitored as the reaction progressed (see
Fig. 12 for a schematic of the process). The reaction was shown to
exhibit half order kinetics with respect to O coverage at high tem-
peratures and first order kinetics at low temperatures, a behavior
that was explained on the basis of island formation at high temper-
atures. This explanation was, however, somewhat counter-intuitive,
since if island formation were possible, it should be favored at the
low temperature range. The 1p-CEH-KMC simulations were shown
to reproduce the experimental orders with remarkable accuracy,

FIG. 12. Schematic of the CO oxidation reaction over an O-precovered Pd(111)
surface exposed to a CO atmosphere. The surface exhibits a (

√
3 ×
√

3)R30○

oxygen adlayer structure that is treated by CEHs. Adapted with permission from M.
Stamatakis and S. Piccinin, ACS Catal. 6, 2105 (2016). Copyright 2016, American
Chemical Society.
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and analysis of the results demonstrated that subtle coverage effects
due to lateral interactions are responsible for the observed reac-
tion orders, contrary to the previous explanation, based on island
formation.

The role of lateral interactions on the catalytic oxidation of NO
to NO2, another model reaction and a key step in NOx elimina-
tion from exhaust gases, has also been recently explored by the CEH
approach.93 In this work, adlayer structure and lattice size effects
on catalytic rates were explored in detail and, among others, it was
found that highly ordered overlayer structures due to short-range
lateral interactions were responsible for lattice size effects on the
catalytic rates. As shown in Fig. 13, it was also found that if the lat-
tice was non-commensurate to the lowest energy adlayer structure,
defective regions and anti-phase boundaries emerge, which give rise
to short-lived, highly reactive configurations that promote catalytic
activity.

1p-CEH-KMC simulations have also shed light on the role of
lateral interactions on the experimentally observed promoting effect
of O2 on the HCL oxidation reaction over RuO2 (i.e., the so-called
Sumitomo–Deacon process).217,218 This reaction is a green chem-
istry route to recover high purity Cl2 from HCL waste. Extensive
KMC simulations revealed that, in contrast to previous sugges-
tions, neither the adsorption of O2 nor the associative desorption
of chlorine are rate-determining during typical reaction conditions.
Instead, hydrogen transfer in the water formation step is likely to
determine the rate of the overall reaction. It was found that such
hydrogen transfer processes are not highly activated, but they are
strongly configuration controlled. Such configurations were found
to be strongly determined by lateral interactions.

Recently, Chen et al.185 implemented a protocol that combines
the XPK method for accelerating KMC simulations (see Sec. IV D)

with the CEH approach to investigate how the microscopic surface
nonuniformity affect the syngas (CO + H2) conversion on Rh(111)
under operando conditions. Experimental observations of this reac-
tion show that the selectivity toward acetaldehyde can increase
with pressure, while the selectivity of methane exhibits the oppo-
site trend (decreases with pressure).219–222 Increasing the pressure
increases the surface coverages and the impact of lateral interac-
tions on the reaction mechanism. The operando theoretical analysis
of Chen et al.185 was found to agree with the experimental find-
ings and demonstrated the power of 1p-CEH-KMC simulations in
elucidating how the dynamic and intermediate-specific local cover-
age controls the selectivity. In a separate article, the same authors
successfully implemented the methodology to elucidate the role
of lateral interactions on the bistable region of the catalytic CO
oxidation on platinum group metals.186

Catalytic surface reactions typically occur under conditions
in which lateral interactions affect activity and selectivity. There-
fore, the accurate modeling of these interactions is of paramount
importance in obtaining a detailed mechanistic understanding of
the catalytic reaction mechanism. Such a relevance appears to be
progressively more appreciated, as demonstrated by the fact that an
increasing number of studies incorporate lateral interactions into
their KMC simulations.

B. The complexity of chemical pathways
1p-KMC simulations are excellent for validating reaction

mechanisms, identifying dominant pathways and rate-determining
steps, and calculating species coverages to detect the most abun-
dant reaction intermediates. These analyses are of paramount

FIG. 13. Snapshots from 1p-CEH-KMC simulations of the catalytic oxidation of NO to NO2 on Pt(111) at 480 K.93 Panels (a) and (b) show the adlayer structure of a 42 × 42
and a 44 × 44 lattice, respectively; oxygen adatoms are represented by black circles and empty sites are represented by gray circles. The zoomed-in view on the left of panel
(a) indicates a phase domain local configuration, while zoomed-in views on the left and right of panel (b) show the local anti-phase boundary and point defect configurations,
respectively. Note that the size of the 44 × 44 lattice is not commensurate to the stable (

√
3 ×
√

3)R30○ adlayer structure. Panels (c) and (d) show the same snapshots

but colored according to the local O2 dissociation activation energy where low values and high values are shown in blue and red, respectively. Because O2 dissociation is
the rate-determining step of the reaction, regions with low values of this activation energy have high catalytic rates. Adapted from Papanikolaou et al., J. Chem. Phys. 149,
184701 (2018) with the permission of AIP Publishing.
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importance because surface reactions can be complex, and mecha-
nisms with parallel or competing pathways are common. Moreover,
understanding the surface reaction mechanisms provides insight
into how changes in the operating conditions affect the overall
reaction outcome and, hence, the catalyst’s performance. In this
section, we discuss how 1p-KMC simulations have helped eluci-
date the complexity of chemical pathways in reactions of practical
interest.

Let us start our discussion with the industrially important
water–gas shift reaction (WGSR).223–225 This reaction involves car-
bon monoxide and water vapor as reactants toward hydrogen and
carbon dioxide and, thus, provides a route for the production of
high-purity hydrogen. Hence, it is involved in several critical indus-
trial and technological processes related, for instance, to the synthe-
sis of ammonia and methanol. The interest in this reaction is also
linked to the tight requirements of high purity hydrogen needed
in fuel cells. The mechanism of the WGSR has been a subject of
intense study during recent years; it is, however, still widely debated.
Examples of reaction pathways include the redox or regenerative
mechanism and the associative or carboxyl mechanism.223,224 In the
redox mechanism, the adsorbed water molecule is dissociated into
H and O atoms; the resulting adsorbed oxygen atom then interacts
with the adsorbed CO to form CO2. In the associative mechanism,
the adsorbed water molecule partially dissociates into OH and H
adspecies. The resulting OH reacts with adsorbed CO to give a car-
boxyl (COOH) intermediate, which then decomposes to CO2 and an
H adatom.

Although several theoretical and experimental studies have
been carried out to identify the most efficient WGSR catalysts, Cu-
based catalysts are still the most widely used industrially. For this
reason, a lot of effort has been devoted to understanding the mech-
anism of the WGSR catalyzed by Cu-based catalysts. In one of these
studies, experimental evidence was presented that the activity of the
CuO/ZnO/Al2O3 catalyst on the WGSR can be closely correlated
with the Cu surface area.226 In such a catalyst, large Cu particles were
present, predominantly exhibiting (111) facets. This finding moti-
vated Prats et al.227 to perform a comprehensive 1p-KMC study of
the WGSR on the Cu(111) surface. This study revealed that the reac-
tion proceeds predominantly through the associative mechanism
via a carboxyl intermediate and that the rate-limiting steps change
at higher temperatures. Furthermore, a surface coverage analysis
indicated that H2O and H are the main adsorbed species at low tem-
peratures, whereas OH and O are dominant at high temperatures.
The simulations also revealed that reactant mixture compositions
with high CO proportion enhance the production of H2.

Recently, Chutia et al.228 performed a 1p-KMC study of the
WGSR on the Pd(100) surface. Their focus on the Pd surface was
motivated by the fact that Pd-based membranes are known to be
able to isolate hydrogen in large quantities while maintaining stabil-
ity during the WGSR. On the other hand, the choice of the Pd(100)
surface was based on the fact that it is well characterized, relatively
active, and sufficiently stable. 1p-KMC simulations allowed Chutia
et al. to probe a reaction mechanism in which the redox and associa-
tive pathways operated simultaneously. These simulations indicated
that H2O and OH decomposition are the most common events. The
split of H2O is followed by the production of an H adatom and an
OH species on the Pd(100) surface. Then, the OH molecule either
reacts with the CO molecule to form carboxyl, which subsequently

generates CO2, or it may break down to oxygen, which then reacts
with CO to form CO2 via direct CO oxidation. Thus, the study indi-
cated that the proposed redox-associative mechanism progress via
both direct oxidation and carboxyl pathways that occur in parallel.

Decomposition of formic acid (HCOOH) to H2 is another
catalytic reaction relevant to hydrogen production, storage, and
transportation, which has been recently explored with the 1p-KMC
approach.229,230 The selective release of H2 from this reaction is
a challenge because formic acid can either (i) dehydrate into
CO + H2O or (ii) dehydrogenate to CO2 + H2. In this regard,
some recent experimental and theoretical studies have found that
Au supported nanoclusters decompose formic acid with complete
selectivity toward H2.231 However, the reasons behind this selec-
tivity and activity remain unclear. Intending to clarify these Au
nanoclusters properties, Chen et al.229 recently performed KMC
simulations of formic acid decomposition over Au18. The objective
was to determine the nature of the active sites and the reaction mech-
anism. Their simulation results showed that indeed Au18 is highly
active and selective for formic acid decomposition, with triangu-
lar ensembles of atoms with a coordination number (CN) of five
being the likely active sites (see Fig. 14). Interestingly, it was found
that even though there are two of these active sites on Au18, only
one HCOOH molecule can be dehydrogenated at a time. This is
because the strong stabilizing interactions between the adsorbates
when they occupy both active sites lead to poisoning of the active
sites by a pair of H and HCOO. Dissociation of additional HCOOH
molecules is prohibited because of this transient poisoning of the
cluster. These results constituted one of the first examples of het-
erogeneous catalysis by clusters one molecule at a time. The KMC
simulations were also consistent with the selectivity of H2 by the
HCOO pathway, in agreement with aforementioned theoretical and
experimental studies.

1p-KMC simulations have also delivered insights into the het-
erogeneously catalyzed CO2 hydrogenation reaction.214,232,233 This
reaction has gained attention as an approach to mitigate the green-
house effect of CO2 and as an economical source of single carbon
(C1) products (e.g., CO, methane, methanol, and formic acid).234 By
choosing the metal and type of support, it is possible to direct this
reaction toward a particular product. For example, CO is mainly
obtained through the reverse WGSR (RWGSR) using Rh-, Pt-, or
Ni-based catalysts, methane can be produced using Ru-, Ni-, Pd-, or
Pt-based catalysts via the so-called Sabatier reaction, and methanol
is generated via CO2 partial reduction using Pd-, Au-, or Cu-based
catalysts.232 Among all these catalysts, Ni is one of the most com-
monly used because of its low price compared to noble metals and
its relatively high activity. Much investigation has been directed
toward the hydrogenation of CO2 on the ideal Ni(111) surface
because it constitutes the most stable extended Ni surface. How-
ever, despite many efforts, the overall mechanism of this reaction
is not fully understood, with opposing theoretical and experimen-
tal results regarding selectivity toward the RWGSR or the Sabatier
reaction.232,235

Thus motivated, Lozano-Reis et al.232 recently carried out
1p-KMC simulations to investigate the molecular mechanism of
CO2 hydrogenation on a Ni(111) surface. This investigation aimed
to determine the leading products and give insights regarding the
dominant pathways governing the reaction under relevant operating
conditions. The study considered several mechanisms for both the

J. Chem. Phys. 156, 120902 (2022); doi: 10.1063/5.0083251 156, 120902-19

© Author(s) 2022

 14 July 2024 07:59:59

https://scitation.org/journal/jcp


The Journal
of Chemical Physics PERSPECTIVE scitation.org/journal/jcp

FIG. 14. 1p-KMC simulations of the decomposition of formic acid over Au18.229 (a) Structure of the Au18 cluster: top and two side views (from top to bottom). Representative
high-symmetry adsorption sites are shown in turquoize and annotated by their site name. Atoms are colored according to their CN, with pink atoms having a CN = 5. (b) KMC
lattice representation of the Au18 cluster constructed by mapping the unique high-symmetry site types on a plane, with lines connecting neighboring sites. (c) and (d) KMC
analysis of the species fluxes (c) and occurrences of the elementary events (d) in the HCOO pathway. All relevant elementary events involve at least one of the t1, t2, or b3
site types, confirming that the CN = 5 sites are the active sites for this reaction. More details about these simulations can be found in Ref. 229. Adapted with permission from
Chen et al., ACS Catal. 9, 9446 (2019). Copyright 2019, American Chemical Society.
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RWGSR and the Sabatier pathways. In contrast to the suggestion of
early DFT calculations,236 the KMC simulations showed no methane
formed on Ni(111) for any operating conditions investigated. The
same simulations also showed that the RWGSR dominates mainly
through the redox mechanism but also through the carboxyl mech-
anism to a lesser extent. Furthermore, the simulations identified
the CO2 dissociation step as the only rate-determining step. These
results led Lozano-Reis et al. to speculate that the methane produc-
tion typically observed experimentally on Ni-based catalysts is not
due to the presence of Ni(111) facets of the Ni nanoparticles but
the result of other contributions, for instance, the interplay between
the nanoparticle and the support or the presence of other active
sites.

The mechanism behind the CO2 reduction to methanol over
Cu-based catalysts has also been investigated by using the 1p-KMC
approach.233 This work focused on pure Cu(111) catalysts, and
KMC simulations were performed at various pressures and temper-
atures to study the selectivity, conversion, and TOF dependence at
multiple conditions. The simulations demonstrated that methanol
production is favored at low temperatures and high pressures, selec-
tivity is highly dependent on pressure, and conversion and TOF
are low. These results showed qualitative trends as obtained from
experiments.

Similarly, the possibility of alcohol synthesis from syngas on
Cu(111) supported defect-rich molybdenum disulfide (MoS2) has
also been studied by the 1p-KMC framework.237 The purpose of
this work was to understand the role of metal support, which
affects the electronic structure and geometry of defect-rich MoS2.
The combination of first-principles thermodynamics with 1p-KMC
simulations showed that the support boosts the reactivity and
product selectivity of defect-rich MoS2, making it promising for
ethanol synthesis. In particular, while thermodynamics appeared
to favor reaction pathways whereby the Cu(111) support promotes
both methanol and ethanol production, KMC simulations actually
suggested a high selectivity toward the formation of ethanol.

The catalytic conversion of alcohols, an essential step in the
valorization of biomass,238–240 has also been investigated through
1p-KMC simulations. For instance, Réocreux et al.241 recently per-
formed KMC simulations of temperature programmed oxidation
(TPO) spectra to investigate the role of oxygenated species in the
mechanism of methanol oxidative coupling toward methyl formate
(HCOOCH3) on O pre-covered Au(111), with CO2 being a key
by-product due to overoxidation. In this study, a detailed com-
parison of the simulations with experimental TPO spectra enabled
the validation of the proposed mechanism and the identification of
rate-determining steps. Moreover, the simulations reproduced well
the desorption temperatures of CO2 and HCOOCH3 and demon-
strated the importance of considering van der Waals forces and
adsorbate–adsorbate lateral interactions for the accurate modeling
of the system.

The conversion of alcohols over oxide catalysts has also been
the subject of attention. For instance, Sutton et al.242 predicted
below-room-temperature release of formaldehyde from methanol
over CeO2. KMC simulations showed that C–H bond breaking
occurs via the disproportionation of adjacent methoxy species at
such low temperatures. This finding is important because the con-
version of alcohols by C–H activation is typically difficult to achieve
at low temperatures, and CeO2 is an inexpensive and abundant

natural oxide. The mechanism behind the catalytic conversion
of ethanol over the reducible La0.7Sr.0.3MnO3−x(100) surface to
acetaldehyde and ethene was also recently investigated by 1p-KMC
simulations in conjunction with pre-exposure temperature-
programming reaction (PE-TPR) experiments.243 A branched
mechanism was revealed by which ethene is produced by a
β-dehydrogenation reaction and acetaldehyde is produced by a
previously unknown disproportionation reaction.

Due to the increasing demand for light alkenes, catalytic dehy-
drogenation of light alkanes has received a lot of focus in recent
years.244–248 It constitutes an environmentally friendly alternative
route to the energetically costly and unselective production of
alkenes by the traditional cracking of oil products. The pertinent
mechanisms can be classified as direct (non-oxidative) or oxida-
tive, depending on whether an oxidant is used or not.244,249 Direct
dehydrogenation (DH) is currently used in industry, and conven-
tional catalysts are platinum and chromium oxide. A problem with
DH is the deactivation of the catalysts by the coke formed during
the reaction.244,250 On the other hand, the oxidant used in oxida-
tive dehydrogenation can help prevent coke formation.244 However,
oxidative dehydrogenation is not commonly implemented due to its
low selectivity toward desired alkenes. In this context, 1p-KMC sim-
ulations were recently implemented to investigate the oxidative C–C
and C–H bond cleavage of ethane with CO2 as soft oxidant on a
bimetallic PtNi(111) model surface.251 The simulations were used to
explore the selectivity of PtNi(111) toward syngas (CO + H2) and
ethylene (CH2CH2) under typical experimental reaction conditions.
It was shown that oxidative ethane dehydrogenation to ethylene pri-
marily occurs by two successive C–H bond scissions. The propane
DH on Pt(111) was also recently studied by Lian et al.252 In this
work, KMC simulations were used to reveal the dominant reaction
pathway to propylene formation and the origin of coke formation. It
was found that the availability of active sites crucially affects both
propylene and coke formation and that the quick deactivation of
the catalysts occurs because most of the active sites are occupied by
cracking products that are difficult to remove from the surface.

The DH of propane and butane on Cr2O3(0001) has also been
investigated by 1p-KMC simulations.253–255 Chromiun oxide cata-
lysts are used in the so-called CATOFIN process for the production
of olefins, such as propylene (from propane) and iso-butylene (from
iso-butane).255 Such studies have delivered insights into the most
abundant products of the reaction pathways investigated, unwanted
pathways leading to side-products or poisons, and the nature of
catalyst deactivation by coking. In the case of DH of propane on
Cr2O3(0001),254 it was found that the accumulation of propylene
and propyne in the reaction mixture adversely affects the reac-
tion rate and selectivity. It was also reported that higher pressures
increase the reaction rate and coke formation rate. The simulations
also revealed that the deactivation of the catalyst has a strong tem-
perature dependence and is caused by the accumulation of coke and
coke-like intermediates. On the other hand, 1p-KMC simulations
of butane DH on Cr2O3(0001)253 demonstrated that 2-butene is the
most abundant product of dehydrogenation. KMC simulations were
also used to investigate the rate at which the modeled catalyst gets
deactivated. In particular, it was shown that coking is negligible at
low temperatures and becomes relevant at higher temperatures and
that deactivation of the catalyst was caused by the formation of coke
deposits.
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Finally, let us briefly comment on two new “frontier topics”
in catalysis research to which the 1p-KMC framework has also
been successfully applied. The first is single-atom catalysts (SACs),
whereby one reduces the active site of the heterogeneous catalyst to
a single isolated precious metal, typically coordinated to an oxide
support.189,256–261 In this respect, Alexopoulos et al.261 recently per-
formed 1p-KMC simulations of CO oxidation over Pd atoms on
α-alumina as a test case to provide insights into this area of research.
The results of this investigation demonstrated that KMC analy-
sis can help discriminate between different mechanisms as well as
between different active sites. It was also shown that KMC can be
a complementary tool to current spectroscopic methods typically
implemented to investigate the active site(s) on reactions over SACs.
In another interesting study, Su et al.260 implemented 1p-KMC sim-
ulations to show that Pt atoms doped into a CeO2 surface exhibit
a very high CO oxidation activity and thermodynamic stability in
comparison to models involving Pt single atoms on terrace and steps
of CeO2.

The second “frontier topic” is single-atom-alloy (SAA) cata-
lysts. SAAs are another type of SACs in which catalytically active
components, such as Pt, Ni, Pd, Ru, and Rh, are atomically dis-
persed in more inert, but more selective, host metals, such as Cu,
Au, and Ag.7,256,262–271 In this regard, 1p-KMC simulations in con-
junction with surface science experiments have shed light into the
mechanisms behind the efficient and selective C–H activation on
coke-resistant PtCu SAAs264 and C–C coupling on coke-resistant
PdAu and NiAu SAAs.265,267 A similar approach was recently imple-
mented to explore how to control hydrocarbon (de)hydrogenation
pathways with bi-functional PtCu SAAs.266

The works described in this subsection are just a represen-
tative sample of a larger number of studies that have successfully
implemented the 1p-KMC approach to validate and elucidate com-
plex chemical pathways in heterogeneous catalysis. Let us now move
onto Sec. V C, where we will discuss the first-principles multiscale
modeling of structure-sensitive catalytic reactions.

C. Structural changes of the catalyst surface
and structure sensitivity effects

It is widely recognized that the structural complexity of real
catalysts can often affect the catalytic performance. Real catalysts
are highly dynamic materials that adapt their morphology (geomet-
ric structure) to the constantly changing chemical environment and
operating conditions. In doing so, they may exhibit a variable num-
ber of active sites (i.e., low-coordination sites and defects) at which
the elementary steps of the reaction considered might proceed. Such
spatial and/or temporal variability may affect the active pathways of
the so-called “structure-sensitive” reactions, whose investigation is
a persistence challenge.272 In this section, we briefly comment on
recent 1p-KMC investigations devoted to obtaining a fundamental
understanding of the role of structural sensitivity on heterogeneous
catalytic systems.

The structure sensitivity in catalytic activity and selectivity is
typically approached from a reductionist perspective in which the
catalyst is divided into isolated facets. Such an approach has been
recently implemented, in conjunction with 1p-KMC simulations,
to investigate several relevant structure-sensitive catalytic reactions.
For instance, Prats et al.273 compared the catalytic activity of the

WGSR on the stepped Cu(321) surfaces with the one on a flat
Cu(111) surface. Their simulations revealed that in contrast to the
prevalence of the associative mechanism for Cu(111), both the redox
and associative mechanism are possible for Cu(321). It was also
found that despite exhibiting lower activation energies, stepped sur-
faces (i.e., low coordinated sites) do not necessarily have an overall
high catalytic activity. This unexpected observation was rationalized
based on a detailed investigation of the coverage effects due to lateral
interactions and the relative contribution of several elementary steps
to the overall TOF.

The effect of the structure of Cu catalyst surfaces on the
catalytic CO2 hydrogenation to methanol,274 under experimental
conditions, was also recently investigated using 1p-KMC simula-
tions by Kopač et al.275 Flat Cu(111) and stepped Cu(533) surfaces
were considered in this work. As expected, the stepped Cu(533)
surface enhances the activity and selectivity toward methanol com-
pared to the Cu(111) surface. Surface coverage studies revealed
information about the most abundant intermediates. At steady-
state, HCOOH is the most abundant on Cu(111), while hydrogen is
the most abundant on Cu(533). Furthermore, this study also gave
a clear perspective on which reactions on the methanol synthesis
pathway are favored on both surfaces. In this respect, the event fre-
quency per active site indicated that Cu(533) enables the otherwise
suppressed H2COH hydrogenation, resulting in a higher CH3OH
yield.

The industrially important ethylene epoxidation reaction on
silver catalysts has also been investigated by extensive 1p-KMC sim-
ulations by Huš et al.276,277 The reaction was modeled on three
pristine silver surfaces: Ag(100), Ag(110), and Ag(111), as well as on
the missing-row reconstructed Ag(110) surface. One of the objec-
tives was to understand how oxygen coverage affects selectivity and
activity. The simulation results revealed that Ag(111) maintains very
low oxygen coverage while being the least active surface with a
moderate selectivity, Ag(100) exhibits the highest selectivity at high
oxygen coverage, and both pristine and reconstructed Ag(110) sur-
faces lack any appreciable selectivity but are the most active. These
observations were compared with previous experimental reports and
were found to be in good agreement with the data for Ag(111) and
Ag(100). The agreement between predicted results and experimen-
tal data for Ag(110) was less satisfactory due to the fact that the
model did not take into account reconstruction as a dynamic phe-
nomenon. It turns out that, on this surface, reconstruction can be
brought about by the adsorption of oxygen.

The reductionist approach has also been used to investigate the
structure sensitivity of several prototypical catalytic reactions.278–281

For instance, Fajín et al.278 conducted 1p-KMC simulations to clar-
ify the role of the silver facets in the catalytic CO oxidation on
nanoporous gold (NPG) catalysts obtained by dealloying an AuAg
alloy. This catalytic system is important for cleaning hydrogen
before feeding it into fuel cells. Fajín et al.,278 thus, performed com-
puter simulations for the reaction on both Au(110) and Ag(110)
surfaces, and based on their results, it was proposed that the small
silver microfacets can be responsible for the CO activation on such
NPG catalysts.

The reductionist approach of dividing the catalysts into sepa-
rate components, which are studied individually, delivers significant
insights into the role of the structural complexity of real catalysts but
certainly has limitations. To properly unveil synergistic effects due
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to such complexity, a holistic approach is needed. In this respect, the
1p-KMC framework is also proving to be a valuable computational
tool, for instance, the work of Guo and Vlachos is an interesting
example of such a holistic 1p-KMC simulation approach.282 This
work entailed 1p-KMC simulations of ammonia decomposition on
patched bimetallic Ni/Pt surfaces, a prototypical system for structure
sensitivity. By varying the size and/or shape of Ni clusters on Pt, the
bifunctional behavior of such patched bimetallic surfaces was elu-
cidated. Among other things, it was shown that the Ni terrace sites
catalyze N–H bond scission and the (110) edges of the Ni patches
catalyze N2 association. Furthermore, the computational analysis
revealed that such a dual-site behavior is responsible for the higher
activity of patched bimetallic surfaces compared to full Ni mono-
layers on Pt or the pure metal surfaces of Ni and Pt. Interestingly,
it was also found that the structure sensitivity of the reaction was
rather weak on these patched surface bimetallics under the chosen
reaction conditions. In an interesting follow-up work, Núñez and
Vlachos283 combined KMC simulations with active learning to opti-
mize the Ni/Pt catalysts surface microstructure to enhance reaction
rates of the ammonia decomposition reaction.

1p-KMC simulations have also been recently implemented to
understand the mechanism behind the enhancement of the cat-
alytic activity and/or selectivity due to the so-called strong metal
support interactions (SMSIs).284 In several cases, SMSIs lead to cat-
alyst deactivation. However, it has been found experimentally that
SMSIs make Au nanoparticles dispersed on molybdenum carbide
(MoC), a highly active catalyst for the low-temperature WGSR.285

In this respect, KMC simulations have unraveled the origin of the
experimentally observed high activity and have provided strong evi-
dence for a cooperative effect between the different regions of the
catalysts. In particular, it was found that the clean MoC regions
are responsible for adsorbing and dissociating water molecules and
that the interface regions between the nanoparticles and support
act as attractors for CO molecules. The latter subsequently react
with OH molecules produced in the clean MoC region to form
COOH, which then produces CO2 via the associative (carboxyl)
mechanism.

The structure sensitivity of the RWGSR in SrTiO3-based
perovskite-supported copper catalysts was also recently investigated
by Kopač et al.286 Their KMC simulations revealed that considering
copper and the support sites in addition to the interface sites results
in higher predicted rates for the reaction compared to the case in
which the interface alone is modeled. In a separate work,287 the same
authors explored the synergistic effect of bifunctional Cu/perovskite
catalysts on the catalytic hydrogenation of CO2 to methanol. In this
investigation, KMC simulations were performed on a Cu phase with
four perovskite substrate materials (i.e., Cu/CaTiO3, Cu/SrTiO3,
Cu/BaTiO3, and Cu/PdTiO3). It was found that all systems outper-
formed the pure Cu, with Cu/PbTiO3 and Cu/SrTi3 being the most
promising copper/perovskite catalysts.

Nanometer-sized particles dispersed on oxide supports are gen-
erally ill-defined with respect to size and shape and expose a range
of different interconnected active sites from which complex kinetic
behavior could arise. 1p-KMC simulations demonstrating genuine
nanoscale effects on catalytic activity have also been performed.
For instance, Nikbin et al.288 carried out a 1p-KMC analysis to
elucidate the experimentally observed “magic number” behavior of
sub-nanoscale Au clusters toward CO oxidation. Traditionally, low

coordinated sites are thought to be highly active, and thus, it would
be expected that all types of Au nanoparticles would be effective
catalysts. However, experimental observation on small Aun clusters
(n = 2–20 atoms) on a O-defective MgO support revealed that the
most active clusters were Au8, Au18, and Au20.289,290 Thus moti-
vated, Nikbin et al. investigated the catalytic behavior of Au−n clusters
with n = 6, 8, and 10 atoms. They used negatively charged clusters
because Au clusters up to the Au13 size, when supported on MgO
with O vacancies, are known to be negatively charged. Apart from
unraveling a high degree of complexity in the catalytic behavior of
these Au clusters, the simulation results were in good agreement
with the experimental observations that Au−6 is inert, Au−8 is active,
and Au−10 is less active than Au−8 (Fig. 15). More specifically, the KMC
simulations predicted that Au−6 gets poisoned by carbonate, while
Au−8 and Au−10 exhibit sustained activity, via pathways involving
CO–O2 intermediates.

To further enrich our understanding of structure-sensitive cat-
alytic reactions over nanoparticles, it is of paramount importance
to “map out” complex reaction energy landscapes by considering
all catalytically relevant pathways on a potentially large number of
inequivalent active sites. A full treatment of such landscapes is as of
yet impractical or even infeasible. Instead, the problem has recently
been tackled by constructing KMC models incorporating DFT-
based structure sensitivity scaling relations.120,291 In such scaling
relations, generalized coordination numbers are used as descrip-
tors for adsorption energies and reaction barriers. In doing so, one
can efficiently and accurately address the structural complexity of
nanoparticles and the synergistic effects emerging from assemblies
of active sites. This first-principles scaling-relation KMC (1p-SR-
KMC) approach has been successfully applied to model structure
sensitivity features of the archetypal CO oxidation reaction on
nanoparticles.120,292–296 It has also been implemented to study more
complex surface reaction systems, such as the selective acetylene
hydrogenation over SAA nanoparticles297 and oxygen reduction on
oxide-supported PtNi nanoalloys.298

Motivated by the need to understand the performance of sub-
nanometer catalysts and explain how catalyst treatment and expo-
sure to spectroscopic probe molecules change the structure, Wang
et al.143 developed a 1p-KMC framework that incorporates machine
learning-based Hamiltonians. This framework was used to follow
the evolution of subnanometer clusters at experimentally relevant
time scales. Wang et al. choose Pd (n = 1–40) on CeO2(111) in a
CO atmosphere as a case study, since CO is the most common
probe molecule in infrared (IR) spectroscopy.299 The approach gave
important insights into the effect of temperature, CO partial pres-
sure, metal loading, and initial catalyst state on cluster formation at
that scale.

A catalytic phenomenon also addressed to some extent by the
KMC framework is the so-called surface morphological rearrange-
ment (or surface reconstruction). Such a dynamical behavior can
have a significant impact on the observed catalytic activity and
selectivity. Thus, recently, Hoffmann et al.300 introduced a multi-
lattice 1p-KMC approach to describe the dynamics of morphological
transitions on solid surfaces in the special case whereby the recon-
structed and the pristine structures can be captured by commensu-
rate lattices. As a case study, they modeled the reduction of surface
oxide on Pd(100). The simulation results reproduced the observed
experimental trends in the reduction rates and revealed the crucial
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FIG. 15. KMC simulations of CO oxidation on sub-nanoscale Au clusters.288 Left
panels show the number of CO2 molecules produced as a function of time. Right
panels show the KMC lattice structures of the corresponding Au nanoclusters. (a)
Average number of CO2 molecules produced per Au−6 nanocluster in an ensem-
ble of 100 clusters. After exhibiting some transient activity, Au−6 is deactivated
(poisoned by carbonate). (b) Number of CO2 molecules produced per site in an
ensemble of 10 Au−8 clusters; the average number is denoted by the thick black
line. (c) Number of CO2 molecules produced per site in an ensemble of 10 Au−10
clusters; the average number is denoted by the thick black line. Adapted with per-
mission from Nikbin et al., Catal. Sci. Technol. 5, 134 (2015). Copyright 2015, The
Royal Society of Chemistry.

role of elementary steps at the boundary between oxide and metal
domains.

In a recent work, Huš et al.301 investigated how Cr2O3 catalyzes
the propane dehydrogenation reaction in oxidative and reducing
environments. An interesting contribution of this work is that the
catalytic system was studied on a mixed surface, consisting of equal
parts of oxidized and reduced areas. It was shown that this mixed
surface exhibits considerably better performance than each individ-
ual surface. Furthermore, investigation of the surface with varying
degrees of oxidation showed that there exists an optimal degree of
surface oxidation with respect to propene yield.

In this section, we have discussed several representative stud-
ies showcasing the versatility of the 1p-KMC approach in exploring
structural changes of the catalyst surface and structure sensitivity
effects. Even though much progress is being made in this area, chal-
lenges remain, which motivate exciting developments. Thus, the
computational expense and the amount of effort required toward
developing comprehensive models of complex chemistries (involv-
ing numerous pathways) on realistic catalysts (exposing various
types of active sites) remain prohibitive. In addition, a general frame-
work for modeling complex catalytic reconstruction effects is still
lacking. Descriptor-based approaches facilitated by the implemen-
tation of machine learning could be critical in overcoming these
challenges.

VI. FUTURE CHALLENGES
KMC simulations in combination with first-principles-based

calculations are becoming essential in modeling heterogeneous
catalysis. As highlighted in this Perspective, such a computational
approach enables us to explore the wide range of length scales
and time scales over which structure–function relationships unfold.
Here, we briefly introduced this versatile modeling framework,
discussed the main outstanding computational challenges, and com-
mented on successful applications. The latter clearly demonstrate
the power of 1p-KMC in delivering insights into reaction mecha-
nisms and rate-determining steps, the role and interplay of different
active sites, as well as the impact of operating conditions and
the reaction micro-environment on catalytic performance metrics
(observables).

1p-KMC is a bottom-up simulation framework, and as such,
its capacity to generate reliable results depends on the accuracy and
efficiency of the first-principles methods employed to obtain the
rate constants fed into it. At present, the first-principles method
widely used for this purpose is DFT. However, using DFT in build-
ing detailed KMC models can become computationally expensive
because the number of rate constants to be obtained can be very
large, particularly when lateral interactions are taken into account.
To this end, a common approach is to implement CEH-based BEP
relations to calculate activation energies and hTST to get prefac-
tors.87 The quest for efficient and accurate ways to obtain rate
constants from first-principles is thus of paramount importance to
eventually reach the full potential of this powerful computational
tool.

Another challenge in obtaining rate constants via DFT calcula-
tions is that the errors arising from such calculations may lead to rate
constants that are potentially inaccurate by several orders of magni-
tude. This issue underlines the need for more reliable DFT (or, in
general, first principles) methods but also efficient approaches for
estimating the sensitivity of the model predictions on the rate con-
stants and quantifying the uncertainties on these predictions. In this
Perspective, we have discussed recent progress in developing such
methods for KMC simulations. The ultimate goal of such SA and
UQ approaches is to direct computational efforts into improving the
truly relevant first-principles calculations.

A major problem in modeling heterogeneous catalysis by
1p-KMC is that elementary events often happen at vastly different
time scales. The development of algorithms to overcome this issue
is an active area of research. While progress has been (and is
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being) made, the current algorithms are still not robust or reliable
enough for “out-of-the-box” usage. Having generic and easy-to-use
algorithms to tackle this issue is paramount for performing direct
comparisons of KMC predictions with experimental data and
for expanding the applicability of 1p-KMC simulations to more
complex catalytic systems.

The poor scalability of KMC with respect to the lattice size
has prevented its implementation in simulating large catalytic sur-
face domains, relevant to catalytic reaction systems that exhibit
pattern formation. Previously proposed approximate methods have
seen limited adoption, potentially due to the fact that the errors
incurred by these approximations have not been thoroughly stud-
ied and quantified. Ideally, for simulations of spatiotemporal pattern
formation, exact KMC schemes would be preferable, ensuring simu-
lations free of artifacts due to numerical error. Latest research efforts
have started to address this challenge by implementing distributed
parallelization techniques that properly handle causality errors aris-
ing from boundary conflicts due to the domain decomposition of
the lattice.82 The development and application of such distributed
KMC approaches is quite an exciting research area with lots of scope
for further efforts in algorithm development. Equally important is
developing and improving algorithms for event search and execu-
tion, as well as KMC state update, in order to evolve the state-to-state
dynamics in KMC simulations more efficiently.109,132

The 1p-KMC framework discussed throughout this Perspec-
tive is based on a rigid lattice representation of the catalytic surface.
This representation poses challenges when modeling situations in
which dynamical reconstruction or other morphological changes of
the catalyst take place. Although some authors have addressed the
kinetics of such transformations within the rigid on-lattice KMC
approach,300 there is a growing demand for new tools and method-
ological developments to investigate the effects of such dynamical
changes on catalytic kinetics. The so-called off-lattice or adap-
tive KMC approach could, in principle, be useful for this pur-
pose.170 However, its implementation is currently computationally
too expensive. A boost to solve this challenge could also be provided
by integrating machine learning approaches into the 1p-KMC-based
multiscale modeling framework.8,38,302

The bottom-up modeling approach for heterogeneous catalysis
aims to bridge the gap between the supported metal nanoparticle, the
catalytic pellet, and the reactor. From a computational standpoint,
the goal is thus to reach a direct coupling between CFD models and
1p-KMC simulations. This topic is a rather new area of research full
of many exciting challenges.

VII. CONCLUSIONS
In the past decade, the KMC approach has steadily matured in

the computational catalysis field. An indicator of this maturity is the
emergence of several user-friendly software applications/packages
devoted to 1p-KMC simulations for heterogeneous catalysis. These
software packages have contributed to the impressive growth in the
number of studies employing this computational framework. This
growth will continue, driven by the need for kinetic simulations in
catalysis, enabling detailed comparisons of theoretical predictions
with experimental data. Moreover, this growth will potentially accel-
erate, facilitated by advances in algorithm development for the effi-
cient computational implementation of the KMC framework itself,

but also advances in the generation, processing, sharing, and re-
use of large amounts of data on catalyst–adsorbate interactions and
reaction mechanisms. This impetus is expected to spread to other
branches of heterogeneous catalysis not covered in this Perspec-
tive, for instance, electrocatalysis,303–308 and photocatalysis.309–311

The KMC approach will thus (continue to) drive exciting break-
throughs in the quest toward understanding and predicting catalytic
materials for niche applications.
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254M. Huš, D. Kopač, and B. Likozar, J. Catal. 386, 126 (2020).
255L. Skubic, J. Sovdat, N. Teran, M. Huš, D. Kopač, and B. Likozar, Catalyst 10,
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2870M. Huš, D. Kopač, and B. Likozar, ACS Catal. 9, 105 (2019).
288N. Nikbin, N. Austin, D. G. Vlachos, M. Stamatakis, and G. Mpourmpakis,
Catal. Sci. Technol. 5, 134 (2015).

289B. Yoon, H. Häkkinen, U. Landman, A. S. Wörz, J.-M. Antonietti, S. Abbet, K.
Judai, and U. Heiz, Science 307, 403 (2005).
290A. Sanchez, S. Abbet, U. Heiz, W.-D. Schneider, H. Häkkinen, R. N. Barnett,
and U. Landman, J. Phys. Chem. A 103, 9573 (1999).
291F. Calle-Vallejo, D. Loffreda, M. T. M. Koper, and P. Sautet, Nat. Chem. 7, 403
(2015).
292M. Jørgensen and H. Grönbeck, ACS Catal. 7, 5054 (2017).
293M. Jørgensen and H. Grönbeck, Angew. Chem., Int. Ed. 57, 5086 (2018).
294T. Nilsson Pingel, M. Jørgensen, A. B. Yankovich, H. Grönbeck, and E. Olsson,
Nat. Commun. 9, 2722 (2018).
295M. Jørgensen and H. Grönbeck, Top. Catal. 62, 660 (2019).
296N. Bosio and H. Grönbeck, J. Phys. Chem. C 124, 11952 (2020).
297M. Jørgensen and H. Grönbeck, J. Am. Chem. Soc. 141, 8541 (2019).
298D. Schmidt, G. G. Asara, and F. Baletto, J. Chem. Phys. 152, 034107 (2020).
299J. L. Lansford and D. G. Vlachos, Nat. Commun. 11, 1513 (2020).
300M. J. Hoffmann, M. Scheffler, and K. Reuter, ACS Catal. 5, 1199 (2015).
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