
Memo: CalH5 file format

Bryna Hazelton, and the pyuvdata team

October 5, 2023

1 Introduction

This memo introduces a new HDF51 based file format of a UVCal object in pyuvdata2 a
python package that provides package that provides an interface to interferometric data.
UVCal is an object that supports calibration solutions and metadata for interferometric
telescopes. Here, we describe the required and optional elements and the structure of this
file format, called CalH5.

We assume that the user has a working knowledge of HDF5 and the associated python
bindings in the package h5py3, as well as UVCal objects in pyuvdata. For more informa-
tion about HDF5, please visit https://portal.hdfgroup.org/display/HDF5/HDF5. For
more information about the parameters present in a UVCal object, please visit https:

//pyuvdata.readthedocs.io/en/latest/uvcal.html. Examples of how to interact with
UVCal objects in pyuvdata are available at https://pyuvdata.readthedocs.io/en/latest/
tutorial.html.

Note that throughout the documentation, we assume a row-major convention (i.e., C-
ordering) for the dimension specification of multi-dimensional arrays. For example, for
a two-dimensional array with shape (N , M), the M -dimension is varying fastest, and is
contiguous in memory. This convention is the same as Python and the underlying C-
based HDF5 library. Users of languages with the opposite column-major convention (i.e.,
Fortran-ordering, seen also in MATLAB and Julia) must transpose these axes.

2 Overview

A CalH5 file contains calibration solutions for a radio telescope, as well as the associated
metadata necessary to interpret it. A CalH5 file contains two primary HDF5 groups: the
Header group, which contains the metadata, and the Data group, which contains the gains
or delays as well as flags and measures of calibration quality (optional). Datasets in the

1https://www.hdfgroup.org/
2https://github.com/RadioAstronomySoftwareGroup/pyuvdata
3https://www.h5py.org/

1

https://portal.hdfgroup.org/display/HDF5/HDF5
https://pyuvdata.readthedocs.io/en/latest/uvcal.html
https://pyuvdata.readthedocs.io/en/latest/uvcal.html
https://pyuvdata.readthedocs.io/en/latest/tutorial.html
https://pyuvdata.readthedocs.io/en/latest/tutorial.html
https://www.hdfgroup.org/
https://github.com/RadioAstronomySoftwareGroup/pyuvdata
https://www.h5py.org/


Data group are also typically passed through HDF5’s compression pipeline, to reduce the
amount of on-disk space required to store the data. However, because HDF5 is aware
of any compression applied to a dataset, there is little that the user has to explicitly do
when reading data. For users interested in creating new files, the use of compression is not
strictly required by the CalH5 format, again because the HDF5 file is self-documenting in
this regard, but compression is quite common.

In the discussion below, we discuss required and optional datasets in the various groups.
We note in parenthesis the corresponding attribute of a UVCal object. Note that in nearly
all cases, the names are coincident, to make things as transparent as possible to the user.

3 Header

The Header group of the file contains the metadata necessary to interpret the data. We
begin with the required parameters, then continue to optional ones. Unless otherwise
noted, all datasets are scalars (i.e., not arrays). The precision of the data type is also
not specified as part of the format, because in general the user is free to set it according
to the desired use case (and HDF5 records the precision and endianness when generating
datasets). When using the standard h5py-based implementation in pyuvdata, this typically
results in 32-bit integers and double precision floating point numbers. Each entry in the
list contains (1) the exact name of the dataset in the HDF5 file, in boldface, (2) the
expected datatype of the dataset, in italics, (3) a brief description of the data, and (4) the
name of the corresponding attribute on a UVCal object. Note that unlike in other formats,
names of HDF5 datasets can be quite long, and so in most cases the name of the dataset
corresponds to the name of the UVCal attribute.

Note that string datatypes should be handled with care. See Appendix A in the UVH5
memo4 for appropriately defining them for interoperability between different HDF5 imple-
mentations.

3.1 Required Parameters

• cal type: string The calibration type, supported options are “gain” or “delay”.
(cal type)

• cal style: string The calibration style, supported options are “sky” or “redundant”.
(cal style)

• gain convention: string The convention for applying the calibration solutions to
data. Supported options are “divide” or “multiply”, indicating that to calibrate one

4https://github.com/RadioAstronomySoftwareGroup/pyuvdata/blob/main/docs/references/uvh5_

memo.pdf

2

https://github.com/RadioAstronomySoftwareGroup/pyuvdata/blob/main/docs/references/uvh5_memo.pdf
https://github.com/RadioAstronomySoftwareGroup/pyuvdata/blob/main/docs/references/uvh5_memo.pdf


should divide or multiply uncalibrated data by gains. Mathematically this indicates
the α exponent in the equation:

vij, calibrated = gαi g
α
j ∗ vij, uncalibrated (1)

A value of “divide” represents α = −1 and “multiply” represents α = 1 . (gain convention)

• wide band: python bool5 Indicates whether this is a wide band calibration solutions
with gains or delays that apply over a range of frequencies rather than having distinct
values at each frequency. Delay type calibration solutions are always wide band. If it
is True several other header items and data sets are affected: the data-like arrays have
a spectral window axis that is Nspws long rather than a frequency axis that is Nfreqs
long; the freq range header item is required and the freq array and channel width
header options should not be present. (wide band)

• latitude: float The latitude of the telescope site, in degrees. (latitude)

• longitude: float The longitude of the telescope site, in degrees. (longitude)

• altitude: float The altitude of the telescope site, in meters. (altitude)

• telescope name: string The name of the telescope used to take the data. The value
is used to check that metadata is self-consistent for known telescopes in pyuvdata.
(telescope name)

• x orientation: string The orientation of the x-arm of a dipole antenna. It is assumed
to be the same for all antennas in the dataset. Supported options are “east” or
“north”. (x orientation).

• Nants telescope: int The number of antennas in the array. May be larger than the
number of antennas with data corresponding to them. (Nants telescope)

• antenna numbers: int An array of the numbers of the antennas present in the
radio telescope (note that these are not indices, they do not need to start at zero or
be continuous). This is a one-dimensional array of size Nants telescope. Note there
must be one entry for every antenna in ant array, but there may be additional entries.
(antenna names)

• antenna names: string An array of the names of antennas present in the radio
telescope. This is a one-dimensional array of size Nants telescope. Note there must
be one entry for every antenna in ant array, but there may be additional entries.
(antenna names)

5Note that this is not the same as the H5T NATIVE HBOOL type; instead, it is an H5Tenum type, with an
explicit TRUE and FALSE value. Such a type is created automatically when using h5py, both for Python
bool and numpy np.bool types. See the UVH5 memo, Appendix C for an example of how to define this
in C. Such a definition should follow analogously in other languages.

3



• Nants data: int The number of antennas that have calibration data in the file. May
be smaller than the number of antennas in the array. (Nants data)

• ant array: int An array of the antenna numbers corresponding to calibration solu-
tions present in the file. All entries in this array must exist in the antenna numbers
array. This is a one-dimensional array of size Nants data. (ant array)

• Nspws: int The number of spectral windows present in the data. (Nspws)

• Nfreqs: int The total number of frequency channels in the data across all spectral
windows. Should be 1 for wide band calibration solutions. (Nfreqs)

• spw array: int An array of the spectral windows in the file. This is a one-dimensional
array of size Nspws. (spw array)

• Njones: int Number of Jones calibration parameters in data. (Njones)

• jones array: int An array giving the Jones calibration parameters contained in the
file. This is a one-dimensional array of size Njones. Note that the Jones parameters
should be stored as an integer with the following mapping:

– linear pols: -5 to -8 denoting: jxx, jyy, jxy, jyx

– circular pols: -1 to -4 denoting: jrr, jll. jrl, jlr

– unknown: 0

(jones array)

• Ntimes: int The number of time samples present in the data. (Ntimes)

• integration time: float Integration time of a calibration solution, units seconds.
This is a one-dimensional array of size Ntimes. Should be the total integration
time of the data that went into calculating the calibration solution (i.e. the visibility
integration time for calibration solutions that are calculated per visibility integration,
the sum of the integration times that go into a calibration solution that was calculated
over a range of integration times). (integration time)

• history: string The history of the data file. (history)

3.2 Optional Parameters

• telescope frame: string The coordinate frame for the telescope. Supported options
are “itrs” for telescopes on earth or “mcmf” for telescopes on the moon. Not required
but encouraged, assumed to be “itrs” if not specified. (telescope frame)

4



• instrument: string The name of the instrument, typically the telescope name. (in-
strument)

• antenna diameters: float An array of the diameters of the antennas in meters.
This is a one-dimensional array of size (Nants telescope,). (Nants telescope)

• gain scale: string The gain scale of the calibration, which indicates the units of the
calibrated visibilities. For example, Jy or K str. (gain scale)

• pol convention: string The convention for how instrumental polarizations (e.g.
XX and YY) are converted to Stokes parameters. Options are “sum” and “avg”,
corresponding to I=XX+YY and I=(XX+YY)/2 (for linear instrumental polariza-
tions) respectively. This header item is not required, but is highly recommended. If
pol convention is present, gain scale should also be present. (pol convention)

• freq array: float An array of all the frequencies (centers of the channel, for all
spectral windows) stored in the file in Hertz. This is a one-dimensional array of size
(Nfreqs,). Required for per-frequency calibration solutions, should not be present for
wide band calibration solutions. (freq array)

• channel width: float The width of frequency channels in the file in Hertz. This
is a one-dimensional array of size (Nfreqs,). Required for per-frequency calibration
solutions, should not be present for wide band calibration solutions. (channel width)

• flex spw id array: int The mapping of individual channels along the frequency axis
to individual spectral windows, as listed in the spw array. This is a one-dimensional
array of size (Nfreqs,). Required for per-frequency calibration solutions, should not
be present for wide band calibration solutions. (flex spw id array)

• freq range: float Frequency range that the calibration solutions are valid for. This
should be an array with shape (Nspws, 2) where the second axis gives the start fre-
quency and end frequency (in that order) in Hertz. Required for wide band calibration
solutions, should not be present for per-frequency calibration solutions. (freq range)

• flex jones array: int Optional array that allows for labeling individual spectral
windows with different polarizations. This is a one-dimensional array of size Nspws.
If present, Njones must be set to 1 (i.e., only one Jones vector per spectral window
is allowed). (flex jones array)

• time array: float An array of the Julian Date corresponding to the temporal mid-
point of the calibration solution. This is a one-dimensional array of size Ntimes.
Should be present for calibration solutions calculated per visibility integration. Only
one of time range and time array should be present. (time array)

5



• lst array: float An array corresponding to the local sidereal time of the temporal
midpoint of each solution in units of radians. If it is not specified, it is calculated
from the latitude/longitude and the time array. Saving it in the file can be useful for
files with many values in the time array, which would expensive to recompute. This
is a one-dimensional array of size Ntimes. Should only be present for calibration
solutions calculated per visibility integration. Only one of lst range and lst array
should be present. (time array)

• time range: float Time range in Julian Date that calibration solutions are valid
for. This should be an array with shape (Ntimes, 2) where the second axis gives the
start time and end time (in that order) in JD. Should be present if the calibration
solutions apply over a range of times. Only one of time range and time array should
be present. (time range)

• lst range: float Local sidereal time range in radians corresponding to the time range.
This should be an array with shape (Ntimes, 2) where the second axis gives the start
LST and end LST (in that order). Should only be present if the calibration solutions
apply over a range of times. Only one of lst range and lst array should be present.
(time range)

• ref antenna name: string Phase reference antenna name. If there are different
reference antennas for different times, this will be “various” and the ref antenna array
will be present. Required for sky based calibrations. (ref antenna name)

• ref antenna array: int Reference antenna number array, only used for sky-based
calibration solutions if the reference antenna varies by time. This is a one-dimensional
array of size Ntimes. (ref antenna array)

• sky catalog: string Name of the sky catalog used in calibration, Required for sky
based calibration solutions. (sky catalog)

• diffuse model: string The name of the diffuse model used in the calibration, only
used for sky based calibration solutions. (diffuse model)

• Nsources: int The number of sources used in the calibration, only used for sky
based calibration solutions. (Nsources)

• baseline range: float Range of baseline lengths used for calibration. This is a
array of length 2 giving the shortest and longest baselines used in calculating the
calibrations solutions. Only used for sky based calibration solutions. (baseline range)

• Nphase: int The number of phase centers present in the phase center catalog.
(Nphase)

6



• phase center catalog: A way to specify where the data where phased to when the
calibration solutions were calculated (most commonly seen with calibration solutions
derived from measurement sets). This is nearly identical to the dataset with the
same name in UVH5 files. A series of nested datasets, similar to a dict in python
(phase center catalog). The top level keys are integers giving the phase center catalog
IDs which are used to identify which times are phased to which phase center via the
phase center id array. The next level keys must include:

– cat name: string The phase center catalog name. This does not have to be
unique, non-unique values can be used to indicate sets of phase centers that
make up a mosaic observation.

– cat type: string One of four allowed values: (1) sidereal, (2) ephem, (3)
driftscan, (4) unprojected. Sidereal means a phase center that is fixed in RA
and Dec in a given celestial frame. Ephem means a phase center that has an
RA and Dec that moves with time. Driftscan means a phase center with a fixed
azimuth and elevation (note that this includes w-projection, even at zenith).
Unprojected means no phasing, including w-projection, has been applied.

– cat lon: float The longitudinal coordinate of the phase center, either a single
value or a one dimensional array of length Npts (the number of ephemeris data
points) for ephem type phase centers. This is commonly RA, but can also be
galactic longitude. It is azimuth for driftscan phase centers.

– cat lat: float The latitudinal coordinate of the phase center, either a single
value or a one dimensional array of length Npts (the number of ephemeris data
points) for ephem type phase centers. This is commonly Dec, but can also be
galactic latitude. It is elevation (altitude) for driftscan phase centers.

– cat frame: string The coordinate frame that the phase center coordinates are
defined in. It must be an astropy supported frame (e.g. fk4, fk5, icrs, gcrs, cirs,
galactic).

And may include:

– cat epoch: float The epoch in years for the phase center coordinate. For most
frames this is the Julian epoch (e.g. 2000.0 for j2000) but for the FK4 frame
this will be treated as the Bessel-Newcomb epoch (e.g. 1950.0 for B1950). This
parameter is not used for frames without an epoch (e.g. ICRS) unless the there
is proper motion (specified in the cat pm ra and cat pm dec keys).

– cat times: float Time in Julian Date for ephemeris points, a one dimensional
array of length Npts (the number of ephemeris data points). Only used for
ephem type phase centers.

– cat pm ra: float (sidereal only) Proper motion in RA in milliarcseconds per
year for the source.

7



– cat pm dec: float (sidereal only) Proper motion in Dec in milliarcseconds per
year for the source

– cat dist: float Distance to the source in parsec (useful if parallax is important),
either a single value or a one dimensional array of length Npts (the number of
ephemeris data points) for ephem type phase centers.

– cat vrad: float Radial velocity of the source in km/sec, either a single value or
a one dimensional array of length Npts (the number of ephemeris data points)
for ephem type phase centers.

– info source: string Information about provenance of the source details. Typ-
ically this is set either to “file” if it originates from a file read operation, and
“user” if it was added because of a call to the phase() method in pyuvdata.
But it can also be set to contain more detailed information.

(phase center catalog)

• phase center id array: int A one dimensional array of length Ntimes containing
the cat id from the phase center catalog that the data were phased to for each cali-
bration time.
(phase center id array)

• observer: string Name of observer who calculated solutions in this file. (observer)

• git origin cal: string Origin (e.g. on github) of calibration software. Url and
branch. (git origin cal)

• git hash cal: string Commit hash of calibration software (from git origin cal) used
to generate solutions. (git hash cal)

• scan number array: int Measurement set scan numbers. This is a one-dimensional
array of size Ntimes. May be present if the calibration solutions derive from mea-
surement sets. (scan number array)

3.3 Extra Keywords

UVData objects support “extra keywords”, which are additional bits of arbitrary metadata
useful to carry around with the data but which are not formally supported as a reserved
keyword in the Header. In a UVH5 file, extra keywords are handled by creating a datagroup
called extra_keywords inside the Header datagroup. In a UVData object, extra keywords
are expected to be scalars, but UVH5 makes no formal restriction on this. Also, when
possible, these quantities should be HDF5 datatypes, to support interoperability between
UVH5 readers. Inside of the extra keywords datagroup, each extra keyword is saved as
a key-value pair using a dataset, where the name of the extra keyword is the name of

8



the dataset and its corresponding value is saved in the dataset. Though the use of HDF5
attributes can also be used to save additional metadata, it is not recommended, due to
the lack of support inside of pyuvdata for ensuring the attributes are properly saved when
writing out.

4 Data

In addition to the Header datagroup in the root namespace, there must be one called Data.
This datagroup saves the gain or delay calibration solutions, flags, and optionally, quality
measure arrays. Either a delay or gain datasets and a flag dataset must be present in a
valid CalH5 file. Per-frequency calibration solutions have arrays of shape: (Nants data,
Nfreqs, Ntimes, Njones) while wide band solutions have arrays of shape: (Nants data,
Nspws, Ntimes, Njones) (see the wide band header item for more details). There can also
be a total quality dataset that provides a quality across the entire telescope (so drops the
Nants data axis).

4.1 Gain Dataset

Gain data is saved as a dataset named gains, which must be present in the cal type header
item is “gain”. It should be a 4-dimensional, complex-type dataset with shape (Nants data,
Nfreqs, Nfreqs, Npols) for a per-frequency solution (i.e. the wide band header item is False)
or shape (Nants data, Nspws, Ntimes, Njones) for a wide band solution (i.e. the wide band
header item is True). Commonly this is saved as an 8-byte complex number (a 4-byte float
for the real and imaginary parts), though some flexibility is possible and 16-byte complex
floating point numbers (composed of two 8-byte floats) are also common. In all cases, a
compound datatype is defined, with an ‘r’ field and an ‘i’ field, corresponding to the
real and imaginary parts, respectively. The real and imaginary types must also be the
same datatype. For instance, they should both be 8-byte floating point numbers. Mixing
datatypes between the real and imaginary parts is not allowed.

Using h5py, the datatype for gains can be specified as ‘c8’ (8-byte complex numbers,
corresponding to the np.complex64 datatype) or ‘c16’ (16-byte complex numbers, corre-
sponding to the np.complex128 datatype) out-of-the-box, with no special handling by the
user. h5py transparently handles the definition of the compound datatype.

4.2 Delay Dataset

Delay data is saved as a dataset named delays, which must be present in the cal type
header item is “delay”. It should be a 4-dimensional, float-type dataset with shape
(Nants data, Nspws, Ntimes, Njones).

9



4.3 Flags Dataset

The flags corresponding to the calibration solutions are saved as a dataset named flags.
It is a 4-dimensional, boolean-type dataset with shape (Nants data, Nfreqs, Nfreqs, Npols)
for a per-frequency solution (i.e. the wide band header item is False) or shape (Nants data,
Nspws, Ntimes, Njones) for a wide band solution (i.e. the wide band header item is True).
Values of True correspond to instances of flagged data, and False is non-flagged. Note that
the boolean type of the data is not the HDF5-provided H5T NATIVE HBOOL, and instead is
defined to conform to the h5py implementation of the numpy boolean type. When creating
this dataset from h5py, one can specify the datatype as np.bool. Behind the scenes, this
defines an HDF5 enum datatype. See the UVH5 memo, Appendix C for an example of
how to write a compatible dataset from C.

Compression is typically applied to the flags dataset. The LZF filter (included in all
HDF5 libraries) provides a good compromise between speed and compression, and is the
default for CalH5 files written with pyuvdata. Note that HDF5 supports many other types
of filters, such as ZLIB, SZIP, and BZIP2.6 In the special cases of single-valued arrays, the
dataset occupies virtually no disk space.

4.4 Quality Dataset

The quality measure corresponding to the calibration solutions can optionally be saved as a
dataset named qualities. It is a 4-dimensional, float-type dataset with shape (Nants data,
Nfreqs, Nfreqs, Npols) for a per-frequency solution (i.e. the wide band header item is
False) or shape (Nants data, Nspws, Ntimes, Njones) for a wide band solution (i.e. the
wide band header item is True). The definition of the calibration quality measure depends
on the calibration software, but χ2 values are a common choice.

As with the flags dataset described above, it is common to apply compression to the
qualities dataset.

4.5 Total Quality Dataset

A telescope array-wide quality measure corresponding to the calibration solutions can
optionally be saved as a dataset named total qualities. It is a 3-dimensional, float-type
dataset with shape (Nfreqs, Nfreqs, Npols) for a per-frequency solution (i.e. the wide band
header item is False) or shape (Nspws, Ntimes, Njones) for a wide band solution (i.e. the
wide band header item is True). The definition of the calibration total quality measure
depends on the calibration software, but array-averaged χ2 values are a common choice.

As with the flags dataset described above, it is common to apply compression to the
total qualities dataset.

6For more information, see the documentation on using compression filters in HDF5.

10

https://portal.hdfgroup.org/display/HDF5/Using+Compression+in+HDF5

	Introduction
	Overview
	Header
	Required Parameters
	Optional Parameters
	Extra Keywords

	Data
	Gain Dataset
	Delay Dataset
	Flags Dataset
	Quality Dataset
	Total Quality Dataset


