Contents
1 Introduction

2 Overview

Memo: UVHS5 file format

Paul La Plante, and the pyuvdata team

November 28, 2018
Revised April 2, 2021
Revised July 14, 2022
Revised April 17, 2024

3 Header
3.1 Required Parameters
3.2 Optional Parameters
3.3 Extra Keywords
4 Data
4.1 Visdata Dataset L L
4.1.1 Conjugation Convention
4.2 Flags Dataset e
4.3 Nsamples Dataset

5 Version History

5.1 wersiondataset L
5.2 Version 0.x/0.1o
5.2.1 integration_time dataset
5.2.2 Flexible Spectral Windows
5.3 Version 1.0 oL
5.3.1 Rank-3 Array Convention
54 Version 1.1 o
5.5 Table Summarizing Changes 0.
Appendices

© N whN

10
10
11
11

11
12
12
12
12
14
14
14
15

16

Appendix A Strings in HDF5 16

A1 Target String Type 17
A.2 Writing strings in python2 oL 18
A.3 Writing strings in python3 o oL 19
Appendix B Integer Datatype Support for Visibility Data 19
Appendix C Defining Python Boolean Types in C 20

1 Introduction

This memo introduces a new HDF5'-based file format of a UVData object in pyuvdata?,
a python package that provides an interface to interferometric data. Here, we describe the
required and optional elements and the structure of this file format, called UVHS.

Note that this file format is specifically designed to represent UVData objects. Other
HDF5-based datasets for radio interferometers, such as katdal® or HDFITS?* are not com-
patible with the standard as defined here. We refer the reader to the documentation of
those other formats to find out more about them.

We assume that the user has a working knowledge of HDF5 and the associated python
bindings in the package h5py”, as well as UVData objects in pyuvdata. For more infor-
mation about HDF5, please visit https://portal.hdfgroup.org/display/HDF5/HDF5.
For more information about the parameters present in a UVData object, please visit
https://pyuvdata.readthedocs.io/en/latest/uvdata.html. An example for how to
interact with UVData objects in pyuvdata is available at http://pyuvdata.readthedocs.
io/en/latest/tutorial.html.

Note that throughout the documentation, we assume a row-major convention (i.e., C-
ordering) for the dimension specification of multi-dimensional arrays. For example, for
a two-dimensional array with shape (N, M), the M-dimension is varying fastest, and is
contiguous in memory. This convention is the same as Python and the underlying C-
based HDF5 library. Users of languages with the opposite column-major convention (i.e.,
Fortran-ordering, seen also in MATLAB and Julia) must transpose these axes.

2 Overview

A UVHS5 object contains the interferometric data from a radio telescope, as well as the
associated metadata necessary to interpret it. A UVHS5 file contains two primary HDF5

"https://www.hdfgroup.org/
*https://github.com/RadioAstronomySoftwareGroup/pyuvdata
3https://github.com/ska-sa/katdal
‘https://github.com/telegraphic/fits2hdf
Shttps://www.hbpy.org/

https://portal.hdfgroup.org/display/HDF5/HDF5
https://pyuvdata.readthedocs.io/en/latest/uvdata.html
http://pyuvdata.readthedocs.io/en/latest/tutorial.html
http://pyuvdata.readthedocs.io/en/latest/tutorial.html
https://www.hdfgroup.org/
https://github.com/RadioAstronomySoftwareGroup/pyuvdata
https://github.com/ska-sa/katdal
https://github.com/telegraphic/fits2hdf
https://www.h5py.org/

groups: the Header group, which contains the metadata, and the Data group, which con-
tains the data itself, the flags, and information about the number of samples corresponding
to the data. Datasets in the Data group are also typically passed through HDF5’s compres-
sion pipeline, to reduce the amount of on-disk space required to store the data. However,
because HDF5 is aware of any compression applied to a dataset, there is little that the
user has to explicitly do when reading data. For users interested in creating new files, the
use of compression is not strictly required by the UVH5 format, again because the HDF5
file is self-documenting in this regard. However, be warned that most UVHS5 files “in the
wild” typically feature compression of datasets in the Data group.

In the discussion below, we discuss required and optional datasets in the various groups.
We note in parenthesis the corresponding attribute of a UVData object. Note that in nearly
all cases, the names are coincident, to make things as transparent as possible to the user.

3 Header

The Header group of the file contains the metadata necessary to interpret the data. We
begin with the required parameters, then continue to optional ones. Unless otherwise
noted, all datasets are scalars (i.e., not arrays). The precision of the data type is also
not specified as part of the format, because in general the user is free to set it according
to the desired use case (and HDF5 records the precision and endianness when generating
datasets). When using the standard h5py-based implementation in pyuvdata, this typically
results in 32-bit integers and double precision floating point numbers. Each entry in the list
contains (1) the exact name of the dataset in the HDF5 file, in boldface, (2) the expected
datatype of the dataset, in italics, (3) a brief description of the data, and (4) the name
of the corresponding attribute on a UVData object. Note that unlike in other formats,
names of HDF5 datasets can be quite long, and so in most cases the name of the dataset
corresponds to the name of the UVData attribute.

Note that string datatypes should be handled with care. See Appendix A for appropri-
ately defining them for interoperability between different HDF5 implementations.

3.1 Required Parameters

latitude: float The latitude of the telescope site, in degrees. (latitude)

longitude: float The longitude of the telescope site, in degrees. (longitude)

altitude: float The altitude of the telescope site, in meters. (altitude)

telescope_name: string The name of the telescope used to take the data. The value
is used to check that metadata is self-consistent for known telescopes in pyuvdata.
(telescope_name)

instrument: string The name of the instrument, typically the telescope name. (in-
strument)

history: string The history of the data file. (history)

Nants_data: int The number of antennas that have visibility data in the file. May
be smaller than the number of antennas in the array. (Nants_data)

Nants_telescope: int The number of antennas in the array. May be larger than the
number of antennas with data corresponding to them. (Nants_telescope)

ant_1_array: int An array of the first antenna numbers corresponding to baselines
present in the data. All entries in this array must exist in the antenna_numbers array.
This is a one-dimensional array of size Nblts. (ant_1_array)

ant_2_array: int An array of the second antenna numbers corresponding to baselines
present in the data. All entries in this array must exist in the antenna_numbers array.
This is a one-dimensional array of size Nblts. (ant_2_array)

antenna_numbers: int An array of the numbers of the antennas present in the
radio telescope (note that these are not indices, they do not need to start at zero or
be continuous). This is a one-dimensional array of size Nants_telescope. Note there
must be one entry for every unique antenna in ant_1_array and ant_2_array, but there
may be additional entries. (antenna-names)

antenna _names: string An array of the names of antennas present in the radio
telescope. This is a one-dimensional array of size Nants_telescope. Note there must
be one entry for every unique antenna in ant_1_array and ant_2_array, but there may
be additional entries. (antenna-names)

Nbls: int the number of baselines present in the data. For full cross-correlation data
(including auto-correlations), this should be Nants_datax (Nants_data+1)/2. (Nbls)

Nblts: int The number of baseline-times (i.e., the number of spectra) present in the
data. Note that this value need not be equal to Nbls x Ntimes. (Nblts)

Nspws: int The number of spectral windows present in the data. (Nspws)

Nfreqgs: int The total number of frequency channels in the data across all spectral
windows. (Nfregs)

Npols: int The number of polarization products in the data. (Npols)

Ntimes: int The number of time samples present in the data. (Ntimes)

e uvw_array: float An array of the uvw-coordinates corresponding to each observation
in the data. Baselines are specified as from ant_1_array to ant_2_array, implying
the position of antenna 2 minus the position of antenna 1. This is a two-dimensional
array of size (Nblts, 3). Units are in meters. (uvw_array)

e time_array: float An array of the Julian Date corresponding to the temporal mid-
point of the corresponding baseline’s integration. This is a one-dimensional array of
size Nblts. (time_array)

e integration_time: float An array of the duration in seconds of an integration. This
is a one-dimensional array of size Nblts. (integration_time)

e freq_array: float An array of all the frequencies (centers of the channel, for all
spectral windows) stored in the file in Hertz. This is a one-dimensional array of size
(Nfregs). (freg-array)

e channel width: float The width of frequency channels in the file in Hertz. This is
a one-dimensional array of size (Nfregs). (channel_width)

e spw_array: int An array of the spectral windows in the file. This is a one-dimensional
array of size Nspws. (spw_array)

e flex_spw: python bool® Whether the data are saved using flexible spectral windows.
If more than one spectral window is present in the data, this must be True. See
Sec. 5.2.2 for a discussion of the details. (flex_spw)

e polarization_array: int An array of the polarizations contained in the file. This is a
one-dimensional array of size Npols. Note that the polarizations should be stored as
an integer, and use the convention defined in AIPS Memo 117. (polarization_array)

e antenna_positions: float An array of the antenna coordinates relative to the refer-
ence position of the radio telescope array, which is implicitly defined by the latitude,
longitude, and altitude (LLA) parameters. More explicitly, these are the ECEF coor-
dinates of individual antennas minus the ECEF coordinates of the reference telescope
position, such that the telescope position plus the values stored in antenna_positions
equals the position of individual elements in ECEF. The conversion between LLA and
ECEF is given by WGS84. This is a two-dimensional array of size (Nants_telescope,
3). (antenna_positions)

e Nphase: int The number of phase centers present in the phase_center_catalog. (Nphase)

e phase_center_catalog: A series of nested datasets, similar to a dict in python
(phase_center_catalog). The top level keys are integers giving the phase center catalog

5See Appendix C

IDs which are used to identify which baseline-times are phased to which phase center
via the phase_center_id_array. The next level keys must include:

cat_name: string The phase center catalog name. This does not have to be
unique, non-unique values can be used to indicate sets of phase centers that
make up a mosaic observation.

cat_type: string One of four allowed values: (1) sidereal, (2) ephem, (3)
driftscan, (4) unprojected. Sidereal means a phase center that is fixed in RA
and Dec in a given celestial frame. Ephem means a phase center that has an
RA and Dec that moves with time. Driftscan means a phase center with a fixed
azimuth and elevation (note that this includes w-projection, even at zenith).
Unprojected means no phasing, including w-projection, has been applied.

cat_lon: float The longitudinal coordinate of the phase center, either a single
value or a one dimensional array of length Npts (the number of ephemeris data
points) for ephem type phase centers. This is commonly RA, but can also be
galactic longitude. It is azimuth for driftscan phase centers.

cat_lat: float The latitudinal coordinate of the phase center, either a single
value or a one dimensional array of length Npts (the number of ephemeris data
points) for ephem type phase centers. This is commonly Dec, but can also be
galactic latitude. It is elevation (altitude) for driftscan phase centers.

cat_frame: string The coordinate frame that the phase center coordinates are
defined in. It must be an astropy supported frame (e.g. fk4, k5, icrs, gers, cirs,
galactic).

And may include:

cat_epoch: float The epoch in years for the phase center coordinate. For most
frames this is the Julian epoch (e.g. 2000.0 for j2000) but for the FK4 frame
this will be treated as the Bessel-Newcomb epoch (e.g. 1950.0 for B1950). This
parameter is not used for frames without an epoch (e.g. ICRS) unless the there
is proper motion (specified in the cat_pm_ra and cat_pm_dec keys).

cat_times: float Time in Julian Date for ephemeris points, a one dimensional
array of length Npts (the number of ephemeris data points). Only used for
ephem type phase centers.

cat_pm_ra: float (sidereal only) Proper motion in RA in milliarcseconds per
year for the source.

cat_pm _dec: float (sidereal only) Proper motion in Dec in milliarcseconds per
year for the source

cat_dist: float Distance to the source in parsec (useful if parallax is important),
either a single value or a one dimensional array of length Npts (the number of
ephemeris data points) for ephem type phase centers.

3.2

— cat_vrad: float Radial velocity of the source in km/sec, either a single value or
a one dimensional array of length Npts (the number of ephemeris data points)
for ephem type phase centers.

— info_source: string Information about provenance of the source details. Typ-
ically this is set either to “file” if it originates from a file read operation, and
“user” if it was added because of a call to the phase() method in pyuvdata.
But it can also be set to contain more detailed information.

(phase_center_catalog)

phase_center_id_array: int A one dimensional array of length Nblts containing the
cat_id from the phase_center_catalog that each baseline-time is phased to.
(phase_center_id_array)

phase_center_app_ra: float Apparent right ascension of the phase center in the
topocentric frame of the observatory, in radians. This is a one-dimensional array of
size Nblts. In the event that there are multiple phase centers, the phase_center_id_array
can be used to identify which phase center is used for this calculation. For unpro-
jected phase types, this is just the apparent LST (LAST). (phase_center_app_ra)

phase_center_app_dec: float Apparent declination of the phase center in the topocen-
tric frame of the observatory, in radians. This is a one-dimensional array of size Nblts.
In the event that there are multiple phase centers, the phase_center_id_array can be
used to identify which phase center is used for this calculation. For unprojected phase
types, this is just the telescope latitude. (phase_center_app-ra)

phase_center_frame_pa: float Position angle between the hour circle (which is
a great circle that goes through the target postion and both poles) in the appar-
ent/topocentric frame, and the frame given in the phase_center_catalog under the
cat_frame dataset. This is a one dimensional array of length Nblts. In the event that
there are multiple phase centers with different frames, the phase_center_id_array can
be used to identify which frame is used for each baseline-time in this calculation.
This is set to zero for unprojected phase types. (phase_center_frame_pa)

version: string The version of the HDF5 file. The latest version (and the one
described in this memo) is Version 1.1. Note it should be a string, such as "1.1".
See Sec. 5 for the version history of the HDF5 specification. (No corresponding
UVData attribute)

Optional Parameters

vis_units: string The units of the visibilities. Supported options are “Jy”, “K str”
or “uncalib” for uncalibrated data. Note that some older files may have “UNCALIB”

which pyuvdata supports for backwards compatibility, but all future files should use
the lower case string. Not required but encouraged, assumed to be “uncalib” if not
specified. (vis-units)

pol_ convention: string The convention for how instrumental polarizations (e.g.
XX and YY) are converted to Stokes parameters. Supported options are “sum” and
“avg”, corresponding to I = XX +YY and [= % (for linear instrumental
polarizations) respectively. This only makes sense for calibrated data, so should only
be present if vis_units is present and is not “uncalib”. (pol_ convention)

flex_spw_id_array: int The mapping of individual channels along the frequency axis
to individual spectral windows, as listed in the spw_array. This is a one-dimensional
array of size (Nfregs). Note this is required if the file uses flexible spectral windows
(see Sec. 5.2.2). (flex_spw_id_array)

flex_spw_polarization_array: int Allows for labeling individual spectral windows
with different polarizations. If set, Npols must be 1 (i.e., only one polarization
per spectral window allowed). This is a one-dimensional array of size (Nspws,).
(flex_spw_polarization_array)

Ist_array: float An array corresponding to the local sidereal time of the center of
each observation in the data in units of radians. If it is not specified, it is calculated
from the latitude/longitude and the time_array. Saving it in the file can be useful
for files with many values in the time_array, which would expensive to recompute.
(Ist_array)

telescope_frame: string The coordinate frame for the telescope. Supported options
are “itrs” for telescopes on earth or “mcmf” for telescopes on the moon. Not required
but encouraged, assumed to be “itrs” if not specified. (telescope_frame)

x_orientation: string The orientation of the x-arm of a dipole antenna. It is assumed
to be the same for all antennas in the dataset. For instance, “East” or “North” may
be used. (z_orientation).

antenna_diameters: float An array of the diameters of the antennas in meters.
This is a one-dimensional array of size (Nants_telescope). (antenna_diameters)

dutl: float difference between UT1 (defined with respect to the Earth’s angle of
rotation, which includes whole and partial “leap seconds”) and UTC (which only
includes whole leap seconds), in seconds, with typical precision of 1 ms. AIPS 117 calls
it UT1UTC. Note that this is slightly different from the value DUT1 which is broadcast
by various time signal services (e.g., NIST), which only supply this difference with
precision of 0.1 seconds. (dutl)

e earth_omega: float Earth’s rotation rate in degrees per day. Note the difference in
units, which is inherited from the way this quantity is handled in UVFITS datasets
(AIPS 117 calls it DEGPDY). (earth_omega)

e gst0: float Greenwich sidereal time at midnight on reference date, in degrees. AIPS
117 calls it GSTIAO (gst0)

e rdate: string Date for which GSTO (or whichever time saved in that field) applies.
Note this is different from how UVFITS handles this quantity, which is saved as
a float rather than a string. The user is encouraged to ensure it is being handled
self-consistently for their desired application. (rdate)

e timesys: string Time system. pyuvdata currently only supports UTC. (timesys)

e blts_are_rectangular: python bool” Indicates whether the baseline-time axis is rect-
angular (i.e. each baseline is present for each time). This can be determined from
the other metadata if it is not provided, but that can take time, so providing it can
provide code efficiencies. (blts_are_rectangular)

e time_axis_faster_than_bls: python bool® If the baseline-time axis is rectangular,
this indicates whether the time axis is the fastest-moving virtual axis. Should only
be present if blts_are_rectangular is present and is True. This can be determined from
the other metadata if it is not provided, but that can take time, so providing it can
provide code efficiencies. (time_azis_faster_than_bls)

e blt_order: string Indicates the ordering of the data along the baseline-time axis.
This can either be a single string two comma delimited strings giving the first and op-
tionally second ordering criteria. Supported strings are: “time”, “baseline”, “ant1”,
“ant2”, “bda”. For example, data that is ordered first by time then by the first
antenna number (so times are in order and change slowest and within each time, the
first antenna numbers are in order and change next fastest) would be recorded here
as “time, antl”. The “bda” option is for data that has been averaged to different
integration times depending on baseline length and orientation and should only ever
appear as a single string (in this case, the axis is ordered first by integration time,
then by baseline number and then by time). Not required, but can allow for code
efficiencies if known. (blt_order)

e eq_coeffs: float An array per-antenna and per-frequency equalization coefficients.
This is a two-dimensional array of size (Nants_telescope, Nfreqs). (eq-coeffs)

e eq_coeffs_convention: string The convention for how to remove eq_coeffs from data.
Supported options are “divide” and “multiply”. (eq-coeffs_convention)

"See Appendix C
8See Appendix C

e uvplane_reference_time: int The time at which the phase center is normal to
the chosen UV plane for phasing. Used for interoperability with the FHD package”’.
(uvplane_reference_time)

3.3 Extra Keywords

UVData objects support “extra keywords”, which are additional bits of arbitrary metadata
useful to carry around with the data but which are not formally supported as a reserved
keyword in the Header. In a UVHS5 file, extra keywords are handled by creating a datagroup
called extra_keywords inside the Header datagroup. In a UVData object, extra keywords
are expected to be scalars, but UVH5 makes no formal restriction on this. Also, when
possible, these quantities should be HDF5 datatypes, to support interoperability between
UVHS5 readers. Inside of the extra_keywords datagroup, each extra keyword is saved as
a key-value pair using a dataset, where the name of the extra keyword is the name of
the dataset and its corresponding value is saved in the dataset. Though the use of HDF5
attributes can also be used to save additional metadata, it is not recommended, due to
the lack of support inside of pyuvdata for ensuring the attributes are properly saved when
writing out.

4 Data

In addition to the Header datagroup in the root namespace, there must be one called Data.
This datagroup saves the visibility data, flags, and number of samples corresponding to
each entry. All three datasets must be present in a valid UVHS5 file. They are also all
expected to be the same shape: (Nblts, Nfregs, Npols). Note that due to the intermixing
of the baseline and time axes, it is not required for data to exist for every baseline and
time in the file. This behavior is similar to UVFITS and MIRIAD file formats. Also note
that there is no explicit ordering required for the baseline-time axis. A common ordering is
to write the data in “correlator order”, and have all baselines for a single time t;, followed
by all baselines for the next time ¢;;1, etc. However, this is merely a convention, and is
not explicitly required for the UVH5 format.

4.1 Visdata Dataset

The visibility data is saved as a dataset named visdata. It should be a 3-dimensional,
complex-type dataset with shape (Nblts, Nfreqs, Npols). Most commonly this is saved
as an 8-byte complex number (a 4-byte float for the real and imaginary parts), though
some flexibility is possible. 16-byte complex floating point numbers (composed of two
8-byte floats), as well as 8-byte complex integers (two 4-byte signed integers), are also
common. In all cases, a compound datatype is defined, with an ‘r’ field and an ‘i’ field,

Shttps://github.com/EoRImaging/FHD

10

https://github.com/EoRImaging/FHD

corresponding to the real and imaginary parts, respectively. The real and imaginary types
must also be the same datatype. For instance, they should both be 8-byte floating point
numbers, or 32-bit (4-byte) integers. Mixing datatypes between the real and imaginary
parts is not allowed.

Using h5py, the datatype for visdata can be specified as ‘c8’ (8-byte complex num-
bers, corresponding to the np.complex64 datatype) or ‘c16’ (16-byte complex numbers,
corresponding to the np.complex128 datatype) out-of-the-box, with no special handling
by the user. hbpy transparently handles the definition of the compound datatype. For
examples of how to handle complex integer datatypes in h5py, see Appendix B.

4.1.1 Conjugation Convention

A cross-correlation between two antennas is defined by the baseline connecting them, and
the conjugation of one of the input data streams. Accordingly, the uvw coordinates and
the conjugation of the visibility data are interconnected, based on the definition of one’s
coordinate system. For UVHS5 files, it is assumed that the convention for the Radio In-
terferometer Measurement Equation (RIME) of a visibility V for antennas ¢ and j is as
follows [1]:

V(uj — ui,vj —v5) = /dl dm I(l,m)gi(l,m)e*%i(“"l*”im)g;(l, m)e?miualvm) ()

That is, the baseline vector defined by the uvw coordinates is directed from antenna i to
antenna j (so the baseline vector can be computed as rj —r;, where r is the position vector
of a given antennas), and the data corresponding to antenna j is conjugated. Following the
specification of the baselines, antenna ¢ is given by ant_1_array and j by ant_2_array.
Note that if a file is generated with the opposite convention, it is usually sufficient to
multiply uwvw coordinates by —1 to generate a self-consistent dataset, as well as conjugate
the data in the data_array.

4.2 Flags Dataset

The flags corresponding to the data are saved as a dataset named flags. It is a 3-
dimensional, boolean-type dataset with shape (Nblts, Nfreqs, Npols). Values of True corre-
spond to instances of flagged data, and False is non-flagged. Note that the boolean type of
the data is not the HDF5-provided H5T_NATIVE_HBOOL, and instead is defined to conform
to the hbpy implementation of the numpy boolean type. When creating this dataset from
h5py, one can specify the datatype as np.bool_. Behind the scenes, this defines an HDF5
enum datatype. See Appendix C for an example of how to write a compatible dataset from
C.

As with the nsamples dataset discussed below, compression is typically applied to the
flags dataset. The LZF filter (included in all HDF5 libraries) provides a good compromise

11

between speed and compression, and is used in most HERA datasets. Note that HDF5
supports many other types of filters, such as ZLIB, SZIP, and BZIP2.'” In the special cases
of single-valued arrays, the dataset occupies virtually no disk space.

4.3 Nsamples Dataset

The number of data points averaged into each data entry is saved as a dataset named
nsamples. It is a 3-dimensional, floating-point type dataset with shape (Nblts, Nfregs,
Npols). Note that it is not required to be an integer, and should not be saved as an integer
type. The product of the integration_time array and the data in the nsample array reflects
the total amount of time that went into a visibility. The best practice is for the nsamples
dataset to track flagging within an integration time (leading to a decrease of the nsamples
array value to be less than 1) and LST averaging (leading to an increase in the nsamples
array value). Datasets that have not been LST averaged should have values in nsamples
that are less than or equal to 1. Although this convention is not adhered to by all data
formats serviced by pyuvdata, it is recommended to follow it as closely as possible in UVH5
files. What should be true is the product of the integration_time array and nsamples array
corresponding to the total amount of time included in a visibility.

5 Version History

The UVHS5 specification has been through several minor version updates, and in the interest
of maximizing interoperability between different readers and writers external to pyuvdata,
it is useful to define a version history. This is not a strict semantic versioning scheme, but
instead intended to capture some of the important changes that the specification has gone
through. Note that, as much as possible, pyuvdata intends to be fully compatible, and
be able to read any valid UVHS5 file written. Those interested in writing fully compatible
readers/writers may look there for further details.

It is strongly encouraged that independent UVHS writers conform to the latest version
(Version 1.1 at time of writing), while readers are encouraged to support backwards com-
patibility as much as possible. If readers cannot support all revisions, reading more recent
versions should be prioritized.

5.1 version dataset

When present, the version information is stored in the Header as a string-based dataset
with the key version. Note that files have not always contained this dataset, but as much
as possible, new files written should contain this dataset to clarify.

0For more information, see the documentation on using compression filters in HDF5.

12

https://portal.hdfgroup.org/display/HDF5/Using+Compression+in+HDF5

5.2 Version 0.x/0.1

Historically, UVHS5 files written by pyuvdata and the HERA correlator did not include
the version dataset as part of the header. Implicitly, these files are v0.x. More recently,
pyuvdata has begun writing the version information to files, and so the version dataset
is present in these files. Below, we discuss some of the changes that occurred within the
Version 0.1 generation, to make users aware of the different flavors of UVHS5 files they may
encounter “in the wild.”

5.2.1 integration_time dataset

Initially, UVHS5 files were written with a single value for integration_time. It has since
been modified to its current length of Nblts to allow for data with varying integration time
between time samples or baselines.

5.2.2 Flexible Spectral Windows

A significant update to how the frequency axis was handled in UVData objects was im-
plemented to allow for a more flexible handling of data from different spectral windows.
Initially, following the method of handling multiple spectral windows in UVFITS files, the
spectral window (spw) axis was treated as a separate axis in metadata and data arrays.
However, this approach is relatively inflexible, because it requires all spectral windows to
have the same number of frequency channels to efficiently store the data (the alternatives
being to use ragged-length arrays, which are inefficient for storing or accessing the data,
or padded arrays which can contain a large amount of wasted storage to ensure arrays are
regularly spaced).

To overcome these limitations, taking inspiration from how frequency data are stored
in MIRIAD, the idea of “flexible spectral windows” was adopted to save the frequency
information. Analogously to how baselines and times are collapsed to a “baseline-time
axis”, frequencies and spectral windows are collapsed to a “frequency-spectral window”
axis. This allows for more versatility in how data from different spectral windows are
stored inside of a single file, but it requires the change of several important components of
metadata. We summarize these changes here.

e The value for Nfreqgs is the total number of frequency channels saved in the data
across all spectral windows.

e Where required, the number of spectral windows Nspws is required to be 1.

e The channel_width dataset was changed from a single number to a 1-d array of
length Nfregs.

e The flex_spw dataset was added to identify whether the file in question supports
flexible spectral windows (if True) or not (if False).

13

C A

Multiple spectral windows, Multiple spectral windows,
Yes can have different number of can have different number of
channels per window channels per window

Flexible
Spectral
Windows

One spectral window,
can have any number of channels

No

4 3
(UVH5 v0.1) (UVH5 v1.0)

Data array rank

Figure 1: A summary of the different combinations of the rank of data arrays (reflected by
UVHS5 version), and flexible spectral windows. The various data and metadata values and
ranks are listed in detail in Table 2.

e The flex_spw_id_array dataset was added to identify which spectral window a
given channel belongs. This is required if flex_spw is True.

It is possible to save files self-consistently without using flexible spectral windows if
and only if there is a single spectral window. We outline the various (valid) combinations
below in Sec. 5.5.

14

5.3 Version 1.0
5.3.1 Rank-3 Array Convention

Version 1.0 of UVHS5 represents a significant change in the way that the data arrays
(visdata, flags, and nsamples) and metadata arrays are stored. The previously vestigial
spectral-window axis is removed, meaning that data arrays are rank-3 instead of rank-4.
Explicitly, these arrays have shape (Nblts, Nfregs, Npols), where Nfregs includes the num-
ber of channels across all spectral windows. This also affects the freq_array dataset, which
went from a rank-2 array to rank-1 of size (Nfregs). The description of data and metadata
in the body of this memo assumes the Version 1.0 specification. Although pyuvdata plans
to indefinitely support files written with the previous convention (i.e., having an explicit
spectral window-axis), UVHS5 files should be written such that they conform to Version
1.0.

5.4 Version 1.1

Historically, only a single phase center was supported and only sidereal or unprojected
(zenith drift without w projection) phasing types were supported. When multiple phase
center phasing was added, along with support for more types of phase centers, the following
parameters were added (described in 3.1):

e phase_center_catalog

e phase_center_id_array

e phase_center_app_ra

e phase_center_app_dec

e phase_center_frame_pa

and the following header items (found in versions less than 1.1) were removed:

e phase_center_ra: float The right ascension of the phase center of the observation
in radians. Required if phase_type is “phased”. (phase_center_ra)

e phase_center_dec: float The declination of the phase center of the observation in
radians. Required if phase_type is “phased”. (phase_center_dec).

e phase_center_epoch: float The epoch year of the phase applied to the data (e.g.,
2000.). Required if phase_type is “phased”. (phase_center_epoch)

e phase_center_frame: string The frame the data and uvw_array are phased to.
Options are “gcrs” and “icrs”, with default “icrs”. These frames are defined as
coordinate systems in astropy. (phase_center_frame)

15

https://docs.astropy.org/en/stable/coordinates/index.html

Dataset Current Previous Version

Convention Convention Changed
Header/version String . corresponding Not present v0.1

to version

ingle float d
Header/ Array of float, shape | D5° 0% (e | 0.1
integration_time (Nblts) imes)
Header/ nested datasets, simi- Not present vl.l
phase_center_catalog | |ar to a dict in python P
Header/ Array of int, shape N vl.1
phase_center_id_array] (Nblts) ot present
Header/ Array of float, shape Not present vl
phase _center _app.ra | (Nblts) p
Header/ Array of float, shape N vl.1
phase_center_app_dec (Nblts) ot present
vl.1l

Header/
phase_center_app_pa

Array of float, shape
(Nblts)

Not present

Table 1: A table summarizing changes that have occurred in the UVHS5 specification.

e object_name: string The name of the object tracked by the telescope. For a drift-
scan antenna, this is typically “zenith”. (object_name)

e phase_type: string The phase type of the observation.

Should be “phased” or

“drift”. Note that “drift” in this context more accurately means “unphased”, in that

baselines are computing using ENU coordinates, without any w-projection.

other value is treated as an unrecognized type. (phase_type)

Any

Prior to version 1.1, the new phase attributes were sometimes written to files along with
the header items listed above. During this time, the phase_center_catalog was written
as a python dict converted to a JSON-formatted string. This intermediate file format was
undocumented and not widely used, but it is possible some files like this exist “in the wild”.

5.5 Table Summarizing Changes

In the interest of summarizing all of the historical changes in a single place, we outline
below the changes that have occurred in the UVHS5 specification. We note what they are
currently, along with how they were saved previously.

16

Dataset [Type A [Type B [Type C [Type D
Header/Nspws N}lmber of spectral 1 N}lmber of spectral N}lmber of spectral
windows windows windows
Number of frequencies Number of frequencies .
. . . Number of frequencies
Header/Nfregs across all spectral win- | Number of frequencies across all spectral win- .
per spectral window
dows dows
Scalar (assumed to ap-
Header/ ply to all frequencies)

channel _width

Shape (Nfregs)

Shape (Nfregs)

Shape (Nfregs)

Header/
flex_spw_id_array

Shape (Nfregs)

Not present

Shape (Nfregs)

Not present

Header/flex_spw

True

False

True

False OR not present

Header/
freq_array

Shape (Nfreqs)

Shape (Nfregs)

Shape (Nfreqs)

Shape (Nspws, Nfregs)

Shape (Nblts, Nfiregs,

Shape (Nblts, Nfregs,

Shape (Nblts, 1,

Shape (Nblts, Nspws,
Nfregs, Npols)

Data/visdata Npols) Npols) Nfregs, Npols)
; (. < (. o (Shape (Nblts, Nspws,
hape (Nblts, Nfregs, | Shape (Nblts, Nfregs, | Shape (Nblts, 1, | Nfregs, Npols)
Data/flags Npols) Npols) Nfregs, Npols)
Data/nsenples Shape (Nblts, Nfreqs, | Shape (Nblts, Nfreqs, | Shape (Nblts, 1, | Shape (Nblts, Nspws,

Npols)

Npols)

Nfregs, Npols)

Nfregs, Npols)

Table 2: A table summarizing the different data and metadata values for different file
types. Type A, B, C, and D refer to the combinations of data array rank and flexible
spectral windows in Figure 1. Note that UVH) writers are strongly encouraged to write
files compatible with Type A or B (i.e., UVH5 v1.0), whereas readers are encouraged to
be as flexible as possible (within reason).

We also summarize the combination of data and metadata properties for the cases
of: (A) rank-3 data arrays, flexible spectral windows; (B) rank-3 data arrays, no flexible
spectral windows; (C) rank-4 data arrays, flexible spectral windows; (D) rank-4 data arrays,
no flexible spectral windows. See Figure 1 for a visual representation. Note that we
include the following only as a reference! We encourage UVHS5 writers to
conform as much as possible to the v1.0 specification (options A or B).

References

[1] A. Richard Thompson, James M. Moran, and George W. Swenson, Jr., “Interferometry
and Synthesis in Radio Astronomy, 3rd Edition”, 2017.

17

Appendix A Strings in HDF5

String datatypes are finicky, and require special handling to ensure that they are compatible
with the HDF5 bindings in various languages. This is especially true for files written from
h5py, which handles strings differently between python2 and python3. Though python2 is
nearing its end-of-life, UVH5 should be backwards compatible with older versions of h5py
as much as possible. To help service this, all string-type metadata in UVHS5 files must be
fixed-length ASCII type. Not only does this allow for interoperability between different
hb5py versions, but it also ensures that strings can be round-tripped through other HDF5
bindings, such as those in C, MATLAB, IDL, Fortran'!, etc. Note that the string should
use one byte per character, and be null-terminated. This corresponds to the numpy S
datatype in both versions of python2 and python3.

When writing a string-like dataset from h5py, scalar data should be written by casting
a string to a numpy . string_ object. Array data should be written as a S<n> dataset, where
<n> represents the length of the strings to be saved. Upon reading, strings can be cast to
bytes using the tostring() method, at which point the data is <str>-type (python2) or
can be decoded as UTF-8 to become <str>-type (python3).

Below is an example for how to read and write string scalar and array-type datasets
using h5py in python2 and python3.

A.1 Target String Type

The following is the output of h5dump for a string-like dataset in a UVHS5 file. UVH5
writers are strongly encouraged (though not required) to follow the same convention. Al-
though something like UTF-8 is more flexible, restricting strings to ASCII allows for greater
interoperability with other file formats such as MIRIAD and UVFITS.

$ h5dump -V
h5dump: Version 1.12.0
$ h5dump -d Header/history -A simulated_bda_file.uvhb
HDF5 "simulated_bda_file.uvh5" {
DATASET "Header/history" {
DATATYPE H5T_STRING {
STRSIZE 1035;
STRPAD H5T_STR_NULLPAD;
CSET H5T_CSET_ASCII;
CTYPE H5T_C_S1;
b
DATASPACE SCALAR

M1 Strings in Fortran are not null-terminated, so these require special handling.

18

A.2 Writing strings in python2

import numpy as np
import hbpy
open file and write string datasets
with hbpy.File(’test_file.uvh5’, ’w’) as f:
header = f.create_group(’Header’)
scalar dataset
header[’scalar_string’] = np.bytes_(’Hello world!’)

array dataset

str_array = np.array([’hello’, ’world’])

n_words = len(str_array)

max_len_words = np.amax([len(n) for n in str_array])

dtype = "S{:d}".format(max_len_words)

header.create_dataset(’array_string’, (n_words,), dtype=dtype,
data=str_array)

read the data back in again
with hbpy.File(’test_file.uvh5’, ’r’) as f:
header = f[’Header’]
read scalar dataset
scalar_string = header[’scalar_string’][()].tobytes()
assert scalar_string == ’Hello world!’

read array dataset
str_array_file = [n.tobytes() for n in header[’array_string’][()]]
assert np.all(str_array_file == str_array)

A.3 Writing strings in python3

import numpy as np
import hbpy
open file and write string datasets
with hbpy.File(’test_file.uvh5’, ’w’) as f:
header = f.create_group(’Header’)
scalar dataset
header[’scalar_string’] = np.bytes_(’Hello world!’)

19

array dataset
str_array = [’hello’, ’world’]
header[’array_string’] = np.bytes_(str_array)

read the data back in again
with hbpy.File(’test_file.uvh5’, ’r’) as f:
header = f[’Header’]
read scalar dataset
scalar_string = header[’scalar_string’] [()].tobytes() .decode(’UTF-8’)
assert scalar_string == ’Hello world!’

read array dataset
str_array_file = [n.tobytes().decode(’UTF-8’)

for n in header[’array_string’][()]1]
assert np.all(str_array_file == str_array)

Appendix B Integer Datatype Support for Visibility Data

The HERA correlator writes datasets which have 32-bit integer real and imaginary com-
ponents. Due to the self-describing nature of HDF5 datasets, this information is captured
by the file format. Nevertheless, special handling must be used to interpret these datasets
as complex numbers. The astype context manager in h5py is used to convert the datatype
on the fly from integers to complex numbers. Below is an example of how to do this.

import numpy as np

import hbpy

define integer datatype

int_dtype = np.dtype([(’r’, ’<i4’), (’i’, ’<i4’)])

open file and read in the dataset
with hbpy.File(’test_file.uvh5’, ’r’) as f:
visdata = f[’Data/visdata’]
dshape = visdata.shape
data = np.empty(dshape, dtype=np.complex128)
with visdata.astype(int_dtype):
data.real = visdatal[’r’]1[:, :, :]
data.imag = visdatal’i’][:, :, :]

20

Appendix C Defining Python Boolean Types in C

Several header items and the flags array (Sec. 4.2) are booleans, which are not encoded as
the H5T_NATIVE _HBOOL type; instead, they are an H5Tenum type, with an explicit TRUE and
FALSE value. When creating such a datatype using h5py, the user simply needs to ensure the
datatype np.bool_. The building of the enum is transparent. When building the enum
from a different language, the precise specification is necessary to ensure compatibility.
The following code is a template for how to build the appropriate datatype using C. The
construction in other languages, such as Fortran, should follow analogously.

#include <hdf5.h>
#define CPTR(VAR,CONST) ((VAR)=(CONST),&(VAR))

typedef enum {
FALSE,
TRUE

} bool_t;

int main() {
bool_t val;
static hid_t boolenumtype;
hid_t file_id, dspace_id, flags_id;
herr_t status;

/* define enum type */

boolenumtype = H5Tcreate (HST_ENUM, sizeof(bool_t));
H5Tenum_insert(boolenumtype, "FALSE", CPTR(val, FALSE));
H5Tenum_insert(boolenumtype, "TRUE" , CPTR(val, TRUE));

/* open a new file */
file_id = HbFcreate("test_file.h5", HS5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);

/* define array dimensions */

int Nblts 10;

int Nfreqs = 16;

int Npols = 4;

hsize_t dims[3] = {Nblts, Nfreqs, Npols};

/* initialize data array with FALSE values */
bool_t data[Nblts] [Nfreqs] [Npols];
for (int i=0; i<Nblts; i++) {

21

for (int j=0; j<Nfreqgs; j++) {
for (int k=0; k<Npols; k++) {
datal[il [j1[k] = FALSE;
}
}
}

/* make dataspace and write out data */
dspace_id = Hb5Screate_simple(3, dims, dims);
flags_id = H5Dcreate(file_id, "flags", boolenumtype, dspace_id,
HS5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
status = H5Dwrite(flags_id, boolenumtype, H5S_ALL, H5S_ALL,
H5P_DEFAULT, data);

/* close doumn */
H5Dclose(flags_id);
H5Sclose(dspace_id);
H5Fclose(file_id);
return O;

22

	Introduction
	Overview
	Header
	Required Parameters
	Optional Parameters
	Extra Keywords

	Data
	Visdata Dataset
	Conjugation Convention

	Flags Dataset
	Nsamples Dataset

	Version History
	version dataset
	Version 0.x/0.1
	integration_time dataset
	Flexible Spectral Windows

	Version 1.0
	Rank-3 Array Convention

	Version 1.1
	Table Summarizing Changes

	Appendices
	Appendix Strings in HDF5
	Target String Type
	Writing strings in python2
	Writing strings in python3

	Appendix Integer Datatype Support for Visibility Data
	Appendix Defining Python Boolean Types in C

