

Report on GitHub, Inc.’s Description

of Its “GitHub Copilot Business”

Service and on the Suitability of the

Design of Its Controls Relevant to

Security as of April 30, 2024

SOC 2® - SOC for Service Organizations: Trust Services Criteria

 2 / 54

Table of Contents

Section 1

Independent Service Auditor’s Report ... 3

Section 2

Assertion of GitHub, Inc. Management .. 7

Section 3

GitHub, Inc.’s Description of Its GitHub Copilot Business service as of April 30, 2024 9

Section 4

Trust Services Criteria and Related Controls Relevant to the Security Category 35

 3 / 54

Section 1

Independent Service Auditor’s Report

 877.224.8077 | info@coalfirecontrols.com | CoalfireControls.com 4 / 54

Independent Service Auditor’s Report

To: GitHub, Inc. (“GitHub”)

Scope

We have examined GitHub’s accompanying description of its GitHub Copilot Business service found in

Section 3 titled “GitHub, Inc.’s Description of Its GitHub Copilot Business service as of April 30, 2024”

(description), based on the criteria for a description of a service organization’s system set forth in DC

Section 200, 2018 Description Criteria for a Description of a Service Organization’s System in a SOC 2®

Report (With Revised Implementation Guidance—2022) (2018 description criteria), and the suitability of the

design of controls stated in the description as of April 30, 2024, to provide reasonable assurance that

GitHub’s service commitments and system requirements would be achieved based on the trust services

criteria relevant to security (applicable trust services criteria) set forth in TSP Section 100, 2017 Trust

Services Criteria for Security, Availability, Processing Integrity, Confidentiality, and Privacy (With Revised

Points of Focus—2022) (2017 TSC).

The description indicates that complementary user entity controls that are suitably designed and operating

effectively are necessary, along with controls at GitHub, to achieve GitHub’s service commitments and

system requirements based on the applicable trust services criteria. The description presents GitHub’s

controls, the applicable trust services criteria, and the complementary user entity controls assumed in the

design of GitHub’s controls. Our examination did not include such complementary user entity controls and

we have not evaluated the suitability of the design or operating effectiveness of such controls.

GitHub uses subservice organizations to provide data center colocation services. The description indicates

that complementary subservice organization controls that are suitably designed and operating effectively

are necessary, along with controls at GitHub, to achieve GitHub’s service commitments and system

requirements based on the applicable trust services criteria. The description presents GitHub’s controls,

the applicable trust services criteria, and the types of complementary subservice organization controls

assumed in the design of GitHub’s controls. The description does not disclose the actual controls at the

subservice organizations. Our examination did not include the services provided by the subservice

organizations, and we have not evaluated the suitability of the design or operating effectiveness of such

complementary subservice organization controls.

Service Organization’s Responsibilities

GitHub is responsible for its service commitments and system requirements and for designing,

implementing, and operating effective controls within the system to provide reasonable assurance that

GitHub’s service commitments and system requirements would be achieved. In Section 2, GitHub has

provided the accompanying assertion titled “Assertion of GitHub, Inc. Management” (assertion) about the

description and the suitability of the design of controls stated therein. GitHub is also responsible for

preparing the description and assertion, including the completeness, accuracy, and method of presentation

of the description and assertion; providing the services covered by the description; selecting the applicable

trust services criteria and stating the related controls in the description; and identifying the risks that threaten

the achievement of the service organization’s service commitments and system requirements.

mailto:info@coalfirecontrols.com

 877.224.8077 | info@coalfirecontrols.com | CoalfireControls.com 5 / 54

Service Auditor’s Responsibilities

Our responsibility is to express an opinion on the description and on the suitability of design of controls

stated in the description based on our examination. Our examination was conducted in accordance with

attestation standards established by the American Institute of Certified Public Accountants. Those

standards require that we plan and perform our examination to obtain reasonable assurance about whether,

in all material respects, the description is presented in accordance with the description criteria and the

controls stated therein were suitably designed to provide reasonable assurance that the service

organization’s service commitments and system requirements would be achieved based on the applicable

trust services criteria. We believe that the evidence we obtained is sufficient and appropriate to provide a

reasonable basis for our opinion.

We are required to be independent and to meet our other ethical responsibilities in accordance with relevant

ethical requirements relating to the examination engagement.

An examination of a description of a service organization’s system and the suitability of the design of

controls involves—

 Obtaining an understanding of the system and the service organization’s service commitments and

system requirements.

 Assessing the risks that the description is not presented in accordance with the description criteria

and that controls were not suitably designed.

 Performing procedures to obtain evidence about whether the description is presented in

accordance with the description criteria.

 Performing procedures to obtain evidence about whether controls stated in the description were

suitably designed to provide reasonable assurance that the service organization would achieve its

service commitments and system requirements based on the applicable trust services criteria.

 Evaluating the overall presentation of the description.

Our examination also included performing such other procedures as we considered necessary in the

circumstances.

Inherent Limitations

The description is prepared to meet the common needs of a broad range of report users and may not,

therefore, include every aspect of the system that individual report users may consider important to meet

their informational needs. There are inherent limitations in any system of internal control, including the

possibility of human error and the circumvention of controls. The projection to the future of any conclusions

about the suitability of the design of controls is subject to the risk that controls may become inadequate

because of changes in conditions or that the degree of compliance with the policies or procedures may

deteriorate.

Other Matter

We did not perform any procedures regarding the operating effectiveness of controls stated in the

description and, accordingly, do not express an opinion thereon.

mailto:info@coalfirecontrols.com

 877.224.8077 | info@coalfirecontrols.com | CoalfireControls.com 6 / 54

Opinion

In our opinion, in all material respects—

a. The description presents the GitHub Copilot Business service that was designed and implemented

as of April 30, 2024, in accordance with the description criteria.

b. The controls stated in the description were suitably designed as of April 30, 2024, to provide

reasonable assurance that GitHub’s service commitments and system requirements would be

achieved based on the applicable trust services criteria, if its controls operated effectively as of that

date and if the subservice organizations and user entities applied the complementary controls

assumed in the design of GitHub’s controls as of that date.

Restricted Use

This report is intended solely for the information and use of GitHub, user entities of the GitHub Copilot

Business service as of April 30, 2024, business partners of GitHub subject to risks arising from interactions

with the GitHub Copilot Business service, practitioners providing services to such user entities and business

partners, prospective user entities and business partners, and regulators who have sufficient knowledge

and understanding of the following:

 The nature of the service provided by the service organization.

 How the service organization’s system interacts with user entities, business partners, subservice

organizations, and other parties.

 Internal control and its limitations.

 Complementary user entity controls and complementary subservice organization controls and how

those controls interact with the controls at the service organization to achieve the service

organization’s service commitments and system requirements.

 User entity responsibilities and how they may affect the user entity’s ability to effectively use the

service organization’s services.

 The applicable trust services criteria.

 The risks that may threaten the achievement of the service organization’s service commitments

and system requirements and how controls address those risks.

This report is not intended to be, and should not be, used by anyone other than these specified parties. If

a report recipient is not a specified party as defined above and has obtained this report, or has access to

it, use of this report is the non-specified user’s sole responsibility and at the non-specified user’s sole and

exclusive risk. Non-specified users may not rely on this report and do not acquire any rights against Coalfire

Controls, LLC as a result of such access. Further, Coalfire Controls, LLC does not assume any duties or

obligations to any non-specified user who obtains this report and/or has access to it.

Greenwood Village, Colorado
May 16, 2024

mailto:info@coalfirecontrols.com

7 / 54

Section 2

Assertion of GitHub, Inc. Management

88 Colin P Kelly Jr Street,
San Francisco, CA 94107

Tel: 415-448-6673 (main)

8 / 54

Assertion of GitHub, Inc. (“GitHub”) Management

We have prepared the accompanying description of the GitHub Copilot Business service titled “GitHub,

Inc.’s Description of Its GitHub Copilot Business service as of April 30, 2024” (description), based on the

criteria for a description of a service organization’s system set forth in DC Section 200, 2018 Description

Criteria for a Description of a Service Organization’s System in a SOC 2® Report (With Revised

Implementation Guidance—2022) (2018 description criteria). The description is intended to provide report

users with information about the GitHub Copilot Business service that may be useful when assessing the

risks arising from interactions with GitHub’s system, particularly information about system controls that

GitHub has designed, implemented and operated to provide reasonable assurance that its service

commitments and system requirements were achieved based on the trust services criteria relevant to

security (applicable trust services criteria) set forth in TSP Section 100, 2017 Trust Services Criteria for

Security, Availability, Processing Integrity, Confidentiality, and Privacy (With Revised Points of Focus—

2022) (2017 TSC).

GitHub uses subservice organizations for data center colocation services. The description indicates that

complementary subservice organization controls that are suitably designed and operating effectively are

necessary, along with controls at GitHub, to achieve GitHub’s service commitments and system

requirements based on the applicable trust services criteria. The description presents GitHub’s controls,

the applicable trust services criteria, and the types of complementary subservice organization controls

assumed in the design of GitHub’s controls. The description does not disclose the actual controls at the

subservice organizations.

The description indicates that complementary user entity controls that are suitably designed and operating

effectively are necessary, along with controls at GitHub, to achieve GitHub’s service commitments and

system requirements based on the applicable trust services criteria. The description presents GitHub’s

controls, the applicable trust services criteria, and the complementary user entity controls assumed in the

design of GitHub’s controls.

We confirm, to the best of our knowledge and belief, that:

a. The description presents the GitHub Copilot Business service that was designed and implemented

as of April 30, 2024, in accordance with the description criteria.

b. The controls stated in the description were suitably designed as of April 30, 2024, to provide

reasonable assurance that GitHub’s service commitments and system requirements would be

achieved based on the applicable trust services criteria, if its controls operated effectively as of that

date, and if the subservice organizations and user entities applied the complementary controls

assumed in the design of GitHub’s controls as of that date.

GitHub, Inc.

9 / 54

Section 3

GitHub, Inc.’s Description of Its

GitHub Copilot Business service as of

April 30, 2024

Description of the System Provided by GitHub 10 / 54

Type of Services Provided
GitHub (“the Company”) is an independently operated subsidiary of Microsoft, and generated its first commit

in 2007. It’s headquartered in San Francisco, California, with additional offices in Bellevue, WA and Oxford,

UK. GitHub currently employs approximately 3,000 employees, with approximately 95 percent of the

workforce being remote.

GitHub is a web-based software development platform built on the Git version control software. Primarily

used for software code, GitHub offers the distributed version control and source code management

functionality of Git with additional features and enhancements.

GitHub Copilot is an Artificial Intelligence (AI)-powered coding assistant that helps developers write code

faster. GitHub Copilot is available through GitHub personal accounts with GitHub Copilot Individual or

through organization or enterprise accounts with GitHub Copilot Business.

The system description in this section of the report details GitHub Copilot Business service (GitHub Copilot

Business). Any other Company services are not within the scope of this report. The accompanying

description includes only the policies, procedures, and control activities at the Company and does not

include the policies, procedures, and control activities at any subservice organizations (see below for further

discussion of the subservice organizations).

Principal Service Commitments and System

Requirements
Commitments are declarations made by management to customers regarding the performance of GitHub

Copilot Business. System requirements are the specifications about how the Copilot business service

should function. System requirements should:

- Support Service Commitments: Ensure it functions in a way that fulfills promises made to users,

their customers, vendors, and business partners.

- Follow Rules and Regulations: Operate within all relevant laws and any guidelines set by industry

groups.

- Meet Additional Goals: Help the organization achieve other objectives important to building trust

with those it serves.

Description of the System Provided by GitHub 11 / 54

The Company’s principal service commitments and system requirements related to GitHub Copilot

Business include the following:

Trust Services
Category

Service Commitments

Security The GitHub leadership team will continually establish reasonable and appropriate

security measures, along with identifying and mitigating risks to the entity and

customers.

 The GitHub leadership team is committed to building a culture of security within GitHub

and the software development and open source communities.

 GitHub attracts, develops, and attempts to retain competent individuals in all areas of

the organization to accomplish effective technical and human security measures.

 GitHub designs reasonable and appropriate security controls to effectively mitigate

risks and conducts periodic internal and external assessments to analyze the design

and operating effectiveness of the security controls. Where control design or

operational flaws are identified, GitHub works to remediate those flaws in a timely

manner.

 GitHub will utilize reasonable and appropriate security measures related to

configuration and software development change management, highlighted specifically

by the core use cases and features directly built into the GitHub platform.

 GitHub will utilize reasonable and appropriate security and legal measures to manage

vendor and business partner risks.

 GitHub will utilize reasonable and appropriate security measures to safeguard sensitive

information against unauthorized access, use, modification, destruction, or disclosure.

 If GitHub becomes aware of a security incident, GitHub will notify the customer without

undue delay.

 GitHub Copilot Business communications will be encrypted in-transit between GitHub

and the customer, using Transport Layer Security (TLS) v1.2 and above with HTTP

Strict Transport Security (HSTS) enabled.

 As documented in the Copilot Product Terms, Prompts will not be retained by GitHub

when using Copilot Business Chat and Code Completion in the Interactive

Development Environment (IDE).

 Copilot Business will not retain Suggestions produced by Copilot when using Copilot

Business Chat and Code Completion in the IDE.

 Copilot Business will not retain user content (e.g. code from the user’s editor) when

using Copilot Business Chat and Code Completion in the IDE.

 As documented in the Copilot Product Terms, GitHub will allow customer

administrators to enable the Duplicate Detection feature to filter suggestions that match

existing public code.

 Copilot Business does not use the customer’s code to improve the model.

 Copilot Business does not send information to OpenAI, the software company.

The Company designs its processes and procedures to provide a secure environment for customer data.

GitHub’s security commitments and system requirements are documented and communicated to customers

in the Terms of Service and at the other resources listed below:

- Security at GitHub: https://github.com/security

- GitHub Privacy Statement https://help.github.com/en/articles/github-privacy-statement

- Terms of Service https://github.com/customer-terms

https://github.com/security
https://help.github.com/en/articles/github-privacy-statement

Description of the System Provided by GitHub 12 / 54

The Components of the System Used to

Provide the Services
The boundaries of GitHub Copilot Business are the specific aspects of the Company’s infrastructure,

software, people, procedures, and data necessary to provide its services and that directly support the

services provided to customers. Any infrastructure, software, people, procedures, and data that indirectly

support the services provided to customers are not included within the boundaries of GitHub Copilot

Business.

The components that directly support the services provided to customers are described in the subsections

below.

Infrastructure

The Company utilizes Microsoft Azure and GitHub-managed colocation data centers to provide the

resources to host GitHub Copilot Business. The Company leverages the experience and resources of

Microsoft Azure to scale quickly and securely as necessary to meet current and future demand. However,

the Company is responsible for designing and configuring the GitHub Copilot Business architecture within

Microsoft Azure and GitHub-managed colocation data centers to ensure security and resiliency

requirements are met.

The in-scope hosted infrastructure also consists of multiple supporting tools, as shown in the table below:

Infrastructure

Production Tool Business Function Operating System Hosted Location

Border/Edge Routers GitHub load balancers,

application layer proxies,

and firewalls are the

systems that connect to

the internet. These

routers, application

proxies, and firewalls are

the first line of defense in

protecting the system.

Juniper JUNOS / Azure

VMs

Azure and GitHub

Colocation Data Centers

GitHub Copilot Business

API

Application programming

interface (API) front-end

servers are the interface

to GitHub Copilot

Business Chat clients

Ubuntu Azure and GitHub

Colocation Data Centers

GitHub Copilot Business

Proxy

Service that manages

connections between

Code Completion plugins

and AI models

Ubuntu Azure and GitHub

Colocation Data Centers

GitHub Enterprise Cloud GitHub Copilot Business

authentication and license

management

Ubuntu, Mysql Azure and GitHub

Colocation Data Centers

Description of the System Provided by GitHub 13 / 54

Software

Software consists of the programs and software that support GitHub Copilot Business (operating systems

[OSs], middleware, and utilities). The list of software and ancillary software used to build, support, secure,

maintain, and monitor GitHub Copilot Business include the following applications, as shown in the table

below:

Software

Production Application Business Function

Azure OpenAI AI models

Datadog Application and infrastructure monitoring

GitHub Actions Continuous Integration / Continuous Deployment

(CI/CD)

GitHub Advanced Security Dependency Management, Static Code Analysis,

Secret Scanning

GitHub Enterprise Cloud Source Code Management, authentication, license

management

Jamf / Defender Endpoint security

MySQL Account and license storage

Puppet Infrastructure Configuration Management

Splunk Security information and event management (SIEM),

logging system, intrusion detection

Terraform Infrastructure Configuration Management

Ubuntu OS Baseline

ZenDesk Customer Support

People

The Company develops, manages, and secures GitHub Copilot Business via separate departments. The

responsibilities of these departments are defined in the following table:

People

Group/Role Name Function

Customer Support Responsible for providing technical and account-related support to GitHub Copilot Business

customers and for resolving customer issues via email, chat, social media, and phone from

developers and customer entities around the globe.

Description of the System Provided by GitHub 14 / 54

People

Group/Role Name Function

Engineering Responsible for working with the Product team to plan and coordinate releases, and

accountable for building, testing, and deploying GitHub Copilot Business code and feature

changes.

Responsible for maintaining service availability, including performance and scale monitoring

and reporting, incident command, and on-call readiness for any production issues.

Responsible for configuration management, building, testing, and deploying software

relevant to the operation and management of production assets, patching and remediation

of vulnerabilities reported by the Security team, and data center operations management.

Responsible for managing Git and database storage backups and restores.

Legal Responsible for negotiating contractual obligations with third parties and technology

partners/suppliers, legal terms and conditions, and ensuring compliance with internal

contractual standards.

People Operations Responsible for talent acquisition, diversity and inclusion, learning and development, and

employee engagement on everything from benefits and perks to career development and

growth.

Privacy Responsible for determining which privacy laws and regulations apply to GitHub and

determining the best way to comply with them, ultimately ensuring GitHub can offer its

products to every developer anywhere in the world.

Product

Management

Responsible for understanding customer requirements, collecting, defining, and clarifying

feature requests and development efforts, and managing feature rollouts and related

customer communication efforts.

Security Responsible for ensuring the security of GitHub products. Security consists of multiple

teams with specific missions: Threat Hunting Operations and Response Incident Response

(THORIR), Product Security Incident Response Team (PSIRT), Security Lab, Security

Operations, Secure Access Engineering, Security Telemetry, Vulnerability Management,

Cloud and Enterprise Security, and Governance, Risk, Compliance, and Communication

(GRCC). These teams manage security incident detection and response, monitoring,

vulnerability scanning, network and application layer penetration testing, security

architecture, security engineering and operations, access management, endpoint asset

management, and risk and compliance oversight.

Senior Leadership Responsible for the overall governance of GitHub. This group includes the Chief Executive

Officer (CEO), Head of Finance, Chief Revenue Officer (CRO), Chief Security Officer

(CSO), Chief Human Resource Officer (CHRO), Head of Design, Chief Operations Officer,

Chief of Staff, Vice President, Senior Vice President of Engineering, Chief Legal Officer,

and Vice President of Communities.

Policies, Standards, and Procedures

GitHub maintains Policies, Standards, and Procedures necessary to securely operate GitHub Copilot

Business. Policies and Standards are centrally managed in The Hub, GitHub’s centralized internal

communication platform. The Hub is backed by a repository, which is used to implement annual reviews

and control changes to Policies and Standards. Once a change has been approved by the owner of the

Policy or Standard, it is automatically updated on The Hub. Procedures are developed and documented

Description of the System Provided by GitHub 15 / 54

within the GitHub repositories maintained by every team to provide end-user documentation and guidance

on the multitude of operational functions performed daily by GitHub security and product engineers,

developers, administrators, and support personnel. These procedures are drafted in alignment with the

overall Policies and Standards and are updated as necessary to reflect changes in the business.

GitHub Policies and Standards establish controls to enable security, efficiency, availability, and quality of

service. The GitHub Information Security and Privacy Management System (ISPMS) Policy and related

policies define information security practices, roles, and responsibilities. The ISPMS outlines the security

roles and responsibilities for the organization and expectations for employees, contractors, and third parties

utilizing GitHub systems or data.

This overarching security policy is supported by a number of dependent security policies, standards, and

procedures applicable to the operation and management of security across the organization. Security-

related policies, standards, and procedures are documented and made available to individuals responsible

for their implementation and compliance.

Below is the current inventory of security and audit-related policies and standards that inform procedures

operating in support of the GitHub ISPMS Policy objectives.

The following table details the procedures as they relate to the operation of GitHub Copilot Business:

Procedures

Policy Associated Standards and Procedures

GitHub ISPMS No Associated Standards or Procedures

GitHub ISPMS Scope No Associated Standards or Procedures

GitHub ISPMS Statement of

Applicability (SOA)

 ChatOps Command Security and Risk Standard

 Controls Monitoring Standard

 Controls Monitoring SOP

 Data Classification Standard

 Domain Management Standard

 Endpoint Security Standard

 Enterprise Administration Standard

 External File Sharing Standard

 Git Systems Server Site Failure plan

 High-Risk Application Access Standard

 Organization Administration Standard

 Production VPN Access Standard

 Repository Security Baseline Configuration Standard

 Reviewing Pull Requests

 Server Operating System Standard

Corporate Data Retention Policy Audit Video Retention Standard

 Corporate Data Retention Standard

 Product Telemetry Data Retention Standard

 Slack Retention Standard

Contractor Termination Policy No Associated Standards or Procedures

Full Time Employee Termination

Policy

No Associated Standards or Procedures

Description of the System Provided by GitHub 16 / 54

Procedures

Policy Associated Standards and Procedures

Identity and Access Management

Policy

Identity and Access Management Standard

 IAM Onboarding SOP

 IAM Entitlements SOP

 IAM Privileged Systems and Elevated Access SOP

 Granting Slack Access to Contractors and Consultants SOP

 IAM Non-Human Accounts in Okta

 IAM Offboarding SOP

 IAM On-Leave SOP

Physical and Environmental

Protection Policy

Production Datacenter Standard

 Datacenter Physical Access SOP

 Production Media Destruction SOP

 Datacenter Access compliance guidelines

Privacy Statement No Associated Standards or Procedures

Private Information Removal Policy

- External Customer Facing Policy

No Associated Standards or Procedures

Secure Coding Policy Secure Coding Standard

 Secure Coding - Dotcom

 Secure Coding - General Guidance

 Security Requirements for New Applications

Security Awareness and Privacy

Training Policy

Security Awareness Training Standard

Security Event Logging and

Monitoring Policy

 Security Event Logging Standard

 Security Event Logging SOP

 Security Event Monitoring and Alerting Standard

Security Incident Response and

Data Breach Notification Policy

 Data Breach Notification Standard

 Security Incident Response Standard

 Security Incident Response Procedure

 Data Breach Notification Procedure

 Security Concern Reporting Procedure

Security Policy Exception Policy No Associated Standards or Procedures

Security Risk Management Policy Security-GRCC Vendor Risk Assessment Process

 Security Risk Reporting - Standard Operating Procedure

System and Services Acquisition

Policy

 Vendor Security Standard

 Purchasing Workflow

 Vendor Security Reviews SOP

 Procurement Workflow

 Vendor Off-boarding Checklist

 Decommissioning a GitHub-Owned App

 Vendor Offboarding SOP

 Encryption Standard

Description of the System Provided by GitHub 17 / 54

Procedures

Policy Associated Standards and Procedures

Vulnerability Management Policy Container Hardening Standard

 Exception Handling Process

 Vulnerability Management Process

 Checklist for Docker Baseline Security

 Database Hardening Standard

 OS Hardening Standard

 Patch Management Standard

 FedRAMP Vulnerability Reporting Standard

 FedRAMP Annual Vulnerability Exception Review

 FedRAMP Monthly Vulnerability Management Reporting Procedure

Background Checks Policy No Associated Standards or Procedures

IT Asset Management Policy No Associated Standards or Procedures

Network Policy No Associated Standards or Procedures

Resilience Program Policy Resiliency Standard

Security Document Management

Policy

Security Document Management Standard

Data

Data refers to transaction streams, files, data stores, tables, and output used or processed by the Company.

Customers interact with GitHub Copilot Business by providing prompts from editor plugins, and optionally

from the mobile app, the command-line interface (CLI), or Chat surfaces in GitHub.com. GitHub Copilot

Business returns a suggestion based on the prompt. GitHub Copilot Business does not retain prompts or

suggestions when used from editor plugins. GitHub Copilot Business may retain prompts and suggestions

for up to 28 days when optionally used with the mobile App, the CLI or Chat surfaces in GitHub.com.

Customer data is managed, processed, and stored in accordance with relevant data protection and other

regulations and with specific requirements formally established in client contracts.

The Company has deployed secure methods and protocols for transmission of confidential or sensitive

information over public networks.

The following table details the types of data contained in the production application for GitHub Copilot

Business:

Data

Production Application Description Data Store

Authentication / License

Data

GitHub Enterprise Cloud holds user authentication

data and license information

GitHub Enterprise Cloud

Description of the System Provided by GitHub 18 / 54

Data

Production Application Description Data Store

Prompts “Prompt” means the collection of code and

supporting contextual information that GitHub Copilot

Business sends to GitHub to generate Suggestions.

This also includes the content that you submit

through a chat interface.

Not Stored when using

GitHub Copilot Business

Chat and Code Completion in

the IDE. Stored in

CosmosDB when using the

optional CLI or Mobile app, or

Chat in GitHub.com.

Suggestions “Suggestions” means the code, functions, and other

output returned to you by GitHub Copilot Business.

Not Stored when using

GitHub Copilot Business

Chat and Code Completion in

the IDE. Stored in

CosmosDB when using the

optional CLI or Mobile app, or

Chat in GitHub.com.

User Engagement Data User engagement data is usage information about

events generated when interacting with a code editor.

These events include user edit actions (for example:

whether a suggestion was accepted or dismissed,

but not the content of the suggestion), error

messages, and general usage data to identify user

metrics such as latency and feature engagement.

This information may include personal data, such as

pseudonymous identifiers.

GitHub Copilot Business

Telemetry Service

System Incidents
There were no identified significant system incidents that (a) were the result of controls that were not

suitably designed or operating effectively to achieve one or more of the service commitments and system

requirements or (b) otherwise resulted in a significant failure in the achievement of one or more of those

service commitments and system requirements as of April 30, 2024.

The Applicable Trust Services Criteria and

Related Controls

Applicable Trust Services Criteria

The Trust Services Category that is in scope for the purposes of this report is:

 Security: Information and systems are protected against unauthorized access, unauthorized

disclosure of information, and damage to systems that could compromise the information or

systems and affect the entity's ability to meet its objectives.

Description of the System Provided by GitHub 19 / 54

The security criteria are organized as follows:

1. Control environment: The criteria relevant to how the entity is structured and the processes the

entity has implemented to manage and support people within its operating units. This includes

criteria addressing accountability, integrity, ethical values, qualifications of personnel, and the

environment in which they function.

2. Information and communication: The criteria relevant to how the entity communicates its policies,

processes, procedures, commitments, and requirements to authorized users and other parties of

the system and the obligations of those parties and users to the effective operation of the system.

3. Risk assessment: The criteria relevant to how the entity (i) identifies potential risks that would affect

the entity’s ability to achieve its objectives, (ii) analyzes those risks, (iii) develops responses to

those risks including the design and implementation of controls and other risk mitigating actions,

and (iv) conducts ongoing monitoring of risks and the risk management process.

4. Monitoring activities: The criteria relevant to how the entity monitors the system, including the

suitability and design and operating effectiveness of the controls, and acts to address deficiencies

identified.

5. Control activities: The criteria relevant to the actions established through policies and procedures

that help ensure that management’s directives to mitigate risks to the achievement of objectives

are carried out.

6. Logical and physical access controls: The criteria relevant to how the entity restricts logical and

physical access, provides and removes that access, and prevents unauthorized access.

7. System operations: The criteria relevant to how the entity manages the operation of system(s) and

detects and mitigates processing deviations, including logical and physical security deviations.

8. Change management: The criteria relevant to how the entity identifies the need for changes, makes

the changes using a controlled change management process, and prevents unauthorized changes

from being made.

9. Risk mitigation: The criteria relevant to how the entity identifies, selects, and develops risk

mitigation activities arising from potential business disruptions and the use of vendors and business

partners.

This report is focused solely on the Security category. The Company has elected to exclude the Availability,

Processing Integrity, Confidentiality, and Privacy categories.

Control Environment

Integrity and Ethical Values

The internal control environment reflects the overall attitude, awareness, and actions of executive

management and other stakeholders concerning the importance of controls and the emphasis given to

controls in the company’s policies, procedures, methods, and organizational structure.

Management is responsible for directing and controlling operations and for establishing, communicating,

and monitoring policies and procedures. Maintaining sound internal controls and establishing the integrity

and ethical values of personnel is a critical management function.

During the onboarding process, new employees complete security and privacy awareness training and

review and acknowledge the employee guide to company policies and practices, the Hubber Handbook.

The Handbook includes the GitHub Standard of Conduct, Security Policy Awareness and Responsibilities,

and other information security topics. An annual Standard of Business Conduct training occurs that is

Description of the System Provided by GitHub 20 / 54

mandatory for all employees and contractors. This training covers key policies, describes how to report

issues, and emphasizes the importance of ethical behavior. Each employee and contractor must attest to

the completion of the training. Any ethical issue reported is investigated and appropriate action is taken up

to the termination of employment.

Board of Directors

As a wholly owned Microsoft subsidiary, GitHub management directs the strategy and operations of the

business but is accountable to Microsoft's management and reporting structures, including the Microsoft

Board of Directors. GitHub does not have a separate Board of Directors. The GitHub CEO meets with

leaders within Microsoft regularly (bimonthly, monthly, and quarterly) and GitHub is ultimately reported on

to Microsoft’s Board of Directors through processes within Microsoft. GitHub relies on these Microsoft

processes.

Organizational Structure

GitHub’s organizational structure provides the framework within which its activities for achieving company-

wide objectives and key results are defined, planned, sponsored, executed, controlled, and monitored.

Management believes that establishing a relevant organizational structure includes considering key areas

of authority and responsibility and lines of reporting. Senior leadership sets company-wide objectives and

key results and also reports on and reviews progress towards meeting those objectives semiannually.

GitHub has established appropriate lines of reporting considering the nature, size, and culture of the

company. People Operations maintains an organizational chart that outlines security responsibilities across

the company. The organizational chart is available for employees both on GitHub’s intranet and internal

human resource information system (HRIS) and is updated through automation. Management continues to

evaluate its organizational structure and makes changes as necessary. Hubber responsibilities are

communicated through documented job descriptions which are maintained by GitHub.

GitHub’s organizational structure is designed to meet the company’s security commitments and

requirements to customers. GitHub’s Senior Leadership team, specifically those reporting to the CEO,

provide direction and oversight and includes members who are independent from control operations. In

addition, management is responsible for establishing, communicating, and monitoring policies and

procedures as well as aligning operations with leadership’s defined objectives and key results.

When leadership changes occur within the organization, the Security team is notified where there may be

a compliance impact. New incoming leadership is announced to the organization on the company intranet,

and in regular all-hands meetings.

The Security team, headed by the CSO and SVP of Engineering, is responsible for monitoring and

enhancing GitHub’s overall security posture. This function includes managing security risks and threats,

educating employees on security-related best practices, building security awareness, responding to

security incidents, and performing internal security audits and security reviews. Security leadership

considers out-of-band changes based on newly identified risk findings or service changes and addresses

such changes as deemed appropriate.

Security leadership is also accountable for planning and staffing appropriately to address risk remediation

and mitigation as identified in prescribed risk monitoring activities. Security leadership reviews these

components as part of an annual headcount and budgeting process.

Description of the System Provided by GitHub 21 / 54

Management’s Philosophy and Operating Style

Management across the company is accountable for ensuring necessary policy, standards, and standard

operating procedures aid in assessing and addressing operational risks. These owners review and update

these policy-related documents at least annually, to reflect changes and help ensure completeness and

accuracy, based upon the annual risk assessment, strategic business initiatives driven by leadership, and

other events that dictate changes. Security leadership reviews and approves the materials and any changes

on an annual basis.

The Security team administers security awareness training to personnel during their new hire onboarding,

and on an annual basis thereafter. The Security team follows up with employees who are delinquent in

completing the training until these employees are compliant. Moreover, periodic security awareness

notifications are sent to employees as needed, highlighting new controls, or warning them of known threats.

Authority and Responsibility

All layers of GitHub management are accountable for managing to objectives and key results and

established policies and standards. Managers are expected to engage with the Security and Legal

organizations in appropriate work, decision making and response to reduce risk to the company, customers,

users, and employee data. They are responsible for day-to-day oversight of employees and nonemployees

on obligations to ensure compliance with security, privacy, and risk management requirements.

Employees are accountable for understanding their individual responsibilities as outlined in the Hubber

Handbook and are individually responsible for designing tools and features in a secure manner, and

ensuring issues and findings they identify that impact security are raised to the appropriate Management

contact or directly to the Security organization. Individuals are also accountable for executing their work

with a security-first mindset, ensuring compliance with the organization's security policies, standards and

procedures, regardless of level and role.

Non-employees, including Contingent Workers, Contractors, and Vendors are accountable for

understanding and upholding the contractual obligations to GitHub for data protection, and to comply with

Management oversight provided to ensure understanding of those obligations.

The Chief Security Officer (CSO) is responsible for the overall security posture, programs, and capabilities

within GitHub. The CSO works with members of GitHub's leadership team and management, product

management and engineering, business and system owners, and users to develop and implement prudent

security services, policies, procedures, and controls, subject to the approval of leadership at GitHub.

The Deputy Chief Security officer reports to the CSO and is responsible for many of the day-to-day

operations of the Security organizations and acts in the CSO's place when they are unavailable or as

appropriately delegated.

Specific responsibilities of GitHub Security leadership include, but is not limited to:

 Ensuring security policies, standards, and procedures are in place and understood by Hubbers.

 Providing basic security direction and support for all systems and users.

 Advising software and product design and engineering, corporate systems development, and

business owners in the implementation of security controls from the point of system design, through

testing, implementation, and decommissioning.

 Educating employees at onboarding about security controls and processes relevant to GitHub.

 Providing on-going employee security skills and awareness education.

Description of the System Provided by GitHub 22 / 54

 Performing and facilitating product security audits.

 Reporting regularly to GitHub leadership on GitHub's status regarding information security.

Human Resources

GitHub People Operations is responsible for the GitHub employee lifecycle.

GitHub evaluates candidates’ abilities in the interview process against established job descriptions. Fit to

the role is scored, tracked, and approved by the hiring manager in GitHub’s recruitment management

system.

In order to be employed by GitHub, candidates must successfully complete a background check. The

background check is initiated after the candidate signs the offer letter. Employees are not allowed to

onboard until the background check is cleared. The Talent Coordinator is notified once a candidate clears,

which is then relayed to the hiring manager. In instances where negative or incomplete information is

obtained, the VP of Global Talent Acquisition, or a delegate, assesses, in consultation with Legal, the

potential risk and liabilities related to the job’s requirements and makes a final decision on the hire. Before

any adverse action is taken based on a background check, GitHub provides the applicant with a notice that

includes an opportunity to respond or clarify any discrepancies. If GitHub does not hire a candidate based

on the results of a background check, GitHub provides the candidate with an adverse-action notice and

informs them of their rights to see the information reported and to correct inaccurate information.

New employees undergo a company orientation session, at which time they are provisioned with a

company-issued laptop and their GitHub organization and relevant system credentials as commensurate

with their new role. During orientation, new employees are introduced to the roles of Security, Security

GRCC, and data protection in GitHub. In addition to attending orientation, new employees are required to

complete security and privacy awareness training within forty-five days of joining GitHub.

GitHub requires that management and peers evaluate and provide feedback to employees annually in

accordance with a process led by People Operations.

People Operations is responsible for the processes associated with Hubbers leaving the company. When

Hubbers leave the company, People Operations notifies the appropriate parties within GitHub to ensure

that property is collected and accounts are terminated within twenty-four hours of their departure.

Information and Communication

To help align GitHub business strategies and goals with operating performance, management is committed

to maintaining effective communication with employees and customers.

Internal Communications:

GitHub has published policies and procedures, both included in the Hubber Handbook and published

separately, outlining the responsibility of employees to report security and operational failures, incidents,

system problems, and complaints. The document owner(s) and Security leadership review and approve

security policies and procedures annually. Significant changes to policies result in communication to

personnel regarding policy updates. Policies and Standards are available on The Hub, GitHub’s centralized

internal communications platform.

Every Hubber, depending on their role, is responsible for designing and executing work and services in a

secure manner in alignment with company standards and policies, and for reporting issues and findings

that impact security up their management chain or directly to the Security team. GitHub’s employee

handbook contains ethics expectations for Hubbers, including compliance with Microsoft’s Standards of

Description of the System Provided by GitHub 23 / 54

Business Conduct, instructions for reporting ethics and integrity concerns to Microsoft (including

anonymous channels), and details of GitHub’s policies against retaliation for reporting concerns.

External Communications:

GitHub communicates the description of GitHub Copilot Business systems, features, responsibilities,

customer commitments, and instructions to report incidents and complaints using the external website

(https://github.blog/). The blog maintains a changelog, which is a chronological list of information on

customer-facing feature changes, bug fixes, or security notifications made available to end users. GitHub’s

changelog is live on the blog site (https://github.blog/changelog/) and available for RSS feed subscription.

It is also accessible via GitHub’s changelog X (formerly known as Twitter) account (@GHchangelog).

GitHub Copilot Business users have access to support resources at GitHub Support

(https://support.github.com/) and GitHub Docs (https://docs.github.com/).

Customer commitments and responsibilities are communicated through GitHub’s Terms of Service

(https://docs.github.com/en/site-policy/github-terms/github-terms-of-service and

https://github.com/customer-terms/github-copilot-product-specific-terms) as well as in contracts. The

Terms of Service includes GitHub’s Acceptable Use Policy, which provides the basic rules customers are

required to follow as members of the community on the GitHub Copilot Business product.

The user community can communicate directly with GitHub. GitHub Support receives reports of security

issues and many other end-user concerns and questions via email or through the ‘Contact Us’ web form.

A ticketing system is used to document and track these issues to resolution.

Risk Assessment and Mitigation

GitHub recognizes that risk management is a critical component of its operations and contributes to

ensuring customer data is properly protected. GitHub incorporates risk management throughout its

business processes and across the organization. The foundation of this process is management’s

knowledge of its operations, its close working relationship with its customers and vendors, and its

understanding of the space in which it operates.

The Security GRCC team is embedded within the larger Security team. This team monitors GitHub’s internal

controls and conducts risk monitoring in accordance with relevant regulatory and contractual compliance

requirements. This responsibility includes managing the design, implementation, and monitoring of the

GitHub Copilot Business control environment, as well as assessing, monitoring, and mitigating security,

fraud, and compliance risks.

Vendor Management

To initiate a vendor relationship, the Legal and Procurement teams negotiate and manage the vendor

contract clauses and additional data protection agreements with vendors who process or store GitHub data,

customer data, or employee data, as well as systems that connect to GitHub systems.

The Security GRCC team manages the vendor security risk assessment process. GitHub maintains

operational processes to assess security risk considerations related to vendors. These vendors are required

to undergo an initial security risk assessment prior to contracting with GitHub. Those vendors who do not

meet GitHub’s baseline security requirements in alignment with their defined business use case do not

move forward for procurement.

The Security GRCC team maintains an inventory of approved vendors, and reviews vendor security risk

assessments every two years, or upon expansion or changes to the contracted service offering. Vendors

https://docs.github.com/en/site-policy/github-terms/github-terms-of-service
https://github.com/customer-terms/github-copilot-product-specific-terms

Description of the System Provided by GitHub 24 / 54

deemed high risk, such as data center providers or other vendors storing or processing data in scope for

GitHub’s regulatory or contractual requirements, undergo reassessment annually.

Risk Identification and Treatment

GitHub has defined risk management processes to identify and manage risks that may affect the system’s

security. At least annually, Security GRCC performs a risk assessment to identify, track, and treat technical

risks related to the product and reports risks to GitHub leadership. Risks identified are documented in a

GitHub repository where the risks and mitigation actions are tracked to resolution.

Risk Reporting

Summary reporting on security risk areas is included in annual leadership reporting as part of the annual

security risk assessment. GitHub's Senior Leadership team as well as extended leadership teams across

Security, Engineering, IT, Business Systems, Legal, and Privacy review this annual risk report.

Control activities have been established to help ensure key processes operate as intended. These activities

are integrated into the policies, standards, and procedures outlined in the Procedures section above.

Vendor Inventory

A vendor inventory is generated each quarter as part of regulatory reporting for other compliance

requirements. The Security GRCC team generates this inventory using automated tools.

Vulnerability Management

The GitHub Vulnerability Management Program monitors and interrogates public-facing and internal

infrastructure to identify systems that are vulnerable to known exploits, configured in ways that

unnecessarily increase risk of compromise, or have software installed which is known to be insecure. The

program develops and maintains scanning coverage across all hosting platforms, providers, and networks.

Vulnerability scanning is executed on a monthly basis, with findings prioritized for remediation based on

risk, technology dependencies, and exposure.

GitHub has a published internal standard based on the Common Vulnerability Scoring System (CVSS)

levels for vulnerability management (critical, high, medium, and low) as reported by GitHub’s vulnerability

scanning and reporting system. GitHub's Vulnerability Management team uses the CVSS score for initial

vulnerability assessment and then conducts an impact analysis that takes into consideration the specifics

of GitHub’s infrastructure. When a credible and actionable vulnerability is identified, the Vulnerability

Management team provides the system owner with a description of the perceived impact of the vulnerability

and the required timetable for resolution/mitigation. Vulnerabilities that cannot be remediated within the

required service-level agreement (SLA) are handled via the documented exception process.

GitHub Product Security Engineering, Vulnerability Management Engineering, and Infrastructure teams

triage vulnerabilities from vendors and internal and external scanning, and patch those vulnerabilities based

on risk and exposure. GitHub prefers to run “known good” software that has been tested and operated in

production. Preference is given to running the most stable release of software possible. Patches are not

generally applied for the objective of running the latest or "bleeding-edge" version of any package.

Patching occurs to address security fixes, bug-fixes, performance issues, and to accommodate new

features. Patches are applied through a combination of automated and manual processes. Linux servers

automatically install most security patches via an unattended upgrade process that is orchestrated by

GitHub’s configuration management system.

Description of the System Provided by GitHub 25 / 54

In addition to the production network vulnerability assessments, the GitHub Product Security Engineering

team provides application security services to the Engineering teams. These services include secure

architecture and code review, developing and maintaining internal automated security testing, and secure

code training.

Penetration Testing

GitHub engages with a third-party security vendor to execute penetration and application security testing

annually. The scope of this testing varies from year to year to focus on areas assessed as presenting

significant risk, such as new features or services. Results are triaged and the risks reported are assessed

against internal environmental considerations. Where remediation is required, solutions are identified and

assigned to the relevant engineering teams for resolution with appropriate prioritization. Upon remediation,

the fixes performed are shared with the contracted vendor to confirm successful remediation. A customer-

facing report of the annual security testing is available to clients under mutual non-disclosure agreements.

Bug Bounty

In addition to third-party penetration testing, GitHub participates in HackerOne’s Bug Bounty Program to

supplement the penetration testing activities. The Bug Bounty team manages the GitHub Security Bug

Bounty program. Members of the GitHub and security research community are encouraged to submit

vulnerabilities through the program. The on-call security resource monitors the submissions and triages

accordingly. If a bug is deemed to be legitimate, Security informs the relevant engineers, and the bug is

tracked in GitHub issues to resolution. The Bug Bounty team issues bounty rewards for significant finds

that lead to security improvements to the platform.

Monitoring

The Security GRCC team at GitHub is responsible for monitoring the internal control environment for each

of the compliance frameworks adopted by GitHub.

Internal Control Reviews

The Security GRCC team conducts internal control assessments annually to assess the effectiveness of

the internal control environment. Control assessment results are formally documented and retained. Issues

are identified and escalated to the relevant internal teams to resolve control design or effectiveness issues,

and the status of the operating effectiveness of controls, identified gaps, and remediation efforts are

reported to the Senior Leadership team for awareness on a quarterly basis. Additionally, an “Internal” ISO

audit is conducted each year; because GitHub does not have its own independent audit function, this audit

is performed by a certified ISO audit firm, and results are reported to management in accordance with audit

processes.

Microsoft maintains an independent internal audit function, Microsoft Internal Audit (MSIA), that assesses

GitHub as required by the Audit Committee of the Microsoft Board of Directors. Results of MSIA

engagements are reported to GitHub management, as well as the Audit Committee of the Microsoft Board

of Directors, in accordance with audit processes.

Control Activities

Logical Access

GitHub Copilot Business Employee Access

GitHub Copilot Business is developed using GitHub Enterprise Cloud. GitHub has implemented access

protection measures to only allow authenticated and authorized users access to the portions of GitHub’s

Description of the System Provided by GitHub 26 / 54

instance of Enterprise Cloud that are not explicitly public. Access to GitHub’s instance of GitHub Enterprise

Cloud requires a valid and unique account ID, password, and two-factor authentication (2FA). GitHub

integrates with a third-party, single sign-on (SSO) provider that enforces two-factor authentication using

phishing-resistant authenticators.

Access to internal systems is restricted through unique account IDs (“handles”), password, and 2FA. To

access these environments, GitHub users leverage the same GitHub handles as Enterprise Cloud.

Employees are prohibited by policy from using shared accounts or credentials when accessing GitHub

internal systems. Exceptions to the policy are documented in the exceptions policy. Employee access to

GitHub Copilot Business production systems is restricted to authorized personnel with demonstrated need

and isolated from the Internet by virtual private network (VPN), bastion hosts, and/or a security assertion

markup language (SAML) solution enforcing Hypertext Transfer Protocol Secure (HTTPS) reverse proxy.

GitHub uses secure shell protocol (SSH) to authenticate to back-end production resources through a

bastion host. VPN and bastion hosts are configured to require user connections to reauthenticate after 24

hours of inactivity.

Employee access to production infrastructure must be approved by designated personnel before access is

granted, and that approval must be renewed during periodic access reviews. Server and database

administrative privileges are restricted to the respective system owners. Individual users, teams, and

managers request and manage access via the GitHub Entitlements system. The Secure Access

Engineering team has the ultimate responsibility for maintaining the Entitlements system, but the access

grants and review flow are the responsibility of the user(s) requesting access and their manager.

GitHub Copilot Business Customer Access

Authentication to GitHub Copilot Business requires a unique account and password. If elected, customers

can also enable 2FA for their organization through Enterprise Cloud settings, or integrate with their Identity

Provider via Single Sign On. Audit logging is also available to allow organization administrators to quickly

review actions performed by users. This log includes details such as who performed the action, what the

action was, and when it was performed. When a customer signs in to GitHub Copilot Business, GitHub

Enterprise Cloud checks whether a user has a valid GitHub Copilot Business License before granting

access.

Network Security

GitHub’s network security is enforced through a number of process and configuration controls to protect

against unauthorized access and help ensure security of data in transit. Both stateless and stateful network

firewalls restrict external points of connectivity and prevent unauthorized traffic from beyond the system

boundary.

Access to production systems is brokered through security gateway systems at the production network

perimeter. Three technologies provide access: VPN, bastion host, and SAML enforcing HTTPS reverse

proxy.

Each of these remote access mechanisms require multiple factors for authentication and employ strong

encryption in transit. Employees are provided access to production systems based on their role within the

organization. Access is granted through the GitHub Entitlements system, which updates the internal

Lightweight Directory Access Protocol (LDAP) store with the correct authorization rights for the user.

Access to machine accounts is limited and activity is logged and audited. Access to production systems

requires the use of an authorized SSH key with 2FA enabled.

Description of the System Provided by GitHub 27 / 54

GitHub personnel can only elevate privileges for their account and run commands with sudo if they are

members of the correct Entitlements group, which is strictly controlled and reviewed. Any of these actions,

including elevating to root require using the sudo command and are logged in the security information and

event management (SIEM) tool. Alerting is configured to detect unusual or unauthorized activity and, when

triggered, response is executed in accordance with the standard procedures defined within the PSIRT’s

monitoring, detection, and response program. As needed, based on the frequency and type of activity

detected, the PSIRT identifies process improvements to reduce human interactions directly with production

servers.

Encryption

GitHub Copilot Business traffic is encrypted in transit over the public internet. Transmissions via TLS require

a minimum of 2048-bit certificate keys, and GitHub uses TLSv1.2 and above to encrypt data during transit.

Internal User Provisioning

New employee permissions are added during the onboarding process based on predefined permissions

granted to individuals based on their team and their role within that team. The user’s manager and the

Security Operations team review and approve any additional privileges granted outside of those provisioned

as part of their role. GitHub’s internal systems are configured to automatically provision non-role-based

entitlements only after the user’s manager and Security Operations reviews and approves the access

request.

During onboarding, GitHub IT guides employees through configuring their account setup, 2FA, and

secondary mobile device authentication tools for GitHub’s SSO provider, and the GitHub organization.

Users are locked out of internal resources until remediated if they are found to not have required security

settings enabled in accordance with requirements.

The Security Operations team is responsible for operating periodic access tooling for sensitive systems.

Security Operations identifies systems and elevated access that pose significant risk to the organization.

Specifically, these systems include production, security management tools, user access tools, and

vulnerability management tools. Managers review, approve, and accept the risk for their user’s logical

access to critical production and access gateway systems semi-annually. The reviews allow the manager

to provide attestation that the level of access is appropriate and required for the job. User access levels

remaining after changes from the review are authorized by management, or removed if approval is not

granted within seven days.

The infrastructure team reviews physical data center access annually. Accounts belonging to unapproved

individuals are removed.

THOR builds automated monitors of user access events to identify anomalous user access activity. The

PSIRT team investigates detections, and if PSIRT concludes the activity is potentially malicious, the

account is locked to reduce risk of unauthorized access and incident response procedures are initiated.

Deprovisioning occurs within 24 hours of a user’s termination. An offboarding notification to Security

Operations is pulled from Workday, where HR updates employee termination dates, for both planned and

unplanned exits. The Security Operations team monitors the automation system for errors and can manually

trigger offboardings when required.

The timeframe for completing access removals for corporate and production network resources, and

physical access is within 24 hours of notification of the termination. High-risk access is deprovisioned first,

sometimes manually at the time of termination, to ensure a terminated employee can no longer access

GitHub’s sensitive internal resources.

Description of the System Provided by GitHub 28 / 54

System Operations

System Monitoring

THOR actively instruments and monitors a wide variety of data logging and telemetry sources across the

organization. Production systems and corporate infrastructure transmitting, processing, or storing GitHub

data are configured to generate and transmit security event logs. These include:

GitHub Copilot Business – system monitoring, audit logs, application logs, and network telemetry

Corporate – endpoint system, network telemetry, cloud service, and application logs

These logs are actively monitored for a variety of known security issues, nefarious activity, malicious

indicators, privileged actions, unauthorized access, and other anomalous activity. GitHub maintains a

comprehensive security detection framework that governs how threat and anomaly detection is performed.

Detection alerts are generated by a variety of systems including log query tools, network or endpoint

monitoring systems, or orchestration tooling. Each detection is assigned a severity and initial response SLA

based on the risk represented by the event(s) it is designed to detect and surface. SLAs are as follows:

Severity SLA Intended Response Example

Critical 30 Minutes - 24/7 Immediate Human Response Confirmed successful phishing

attempt against Hubber

High 24 Hours Human Response within One Day High Confidence IOC Match or

Behavioral Detection

Medium 1-7 Days Automated Response or Human

Response Within a Week

Low Confidence IOC Match

Low N/A Automated Response or

Contextual Only

Uptick in Password Changes from

Single IP

Each alert generated by detection monitoring is assigned to the relevant security team or accountable

individual at the time of creation, based on the severity assigned. The assigned team or individual records

any actions taken or post-mortem conclusions in the relevant security repository issue for that event and

resolves the issue when complete.

Incident Response

The THOR and PSIRT teams triage, investigate, and respond to a variety of security events reported by

internal and external sources, including:

 Automated log monitoring and alerting

 Suspected internal security compromises

 Critical GitHub Copilot Business vulnerabilities or bugs that may expose user or customer data

GitHub maintains documented incident response procedures. These procedures are triggered once an

event is detected and reported. GitHub security personnel are informed of security events, whether detected

by systems or reported by humans, internal or external, through formally documented procedures, with

alerts surfaced to responders based on their severity.

Initial reports are defined as “leads” until appropriately triaged by a member of the relevant PSIRT team.

Once either THOR or PSIRT verifies a lead, an escalation procedure is executed to engage appropriate

resources to help ensure any potential risk of breach or privacy concerns are addressed in accordance with

Description of the System Provided by GitHub 29 / 54

established protocols. Cross-functional accountabilities are documented for reference as escalation and

remediation engagement varies depending on the source, scope of impact, and severity of the incident.

Roles for incident response and handling are defined and assigned, and a multi-stage process is followed

until the risk has been mitigated and the outcomes documented. Root cause is assessed and addressed

as part of the incident response process.

The THOR and PSIRT teams also document Legal engagement and external notification processes in the

event an incident is validated as a breach or in violation of contractual commitments. GitHub informs

affected users and organizations as required. The messaging can be sent via various forms such as email,

a changelog post, a blog post, or release notes. Investigations specific to an affected customer are

managed directly with that customer, in accordance with contractual terms.

Change Management

Change Management Overview

GitHub is a collaborative, organic, and adaptable organization. GitHub Copilot Business’s code and system

change management processes leverage Enterprise Cloud’s native source code and changelog technology

available to users and organizations.

Change Development

GitHub application and configuration changes are developed and maintained within GitHub’s private

enterprise on the Enterprise Cloud product. Individual engineers are grouped by teams based on their areas

of code ownership and expertise. Access to branch, deploy, approve, and merge changes to critical GitHub

repositories is restricted to members of the Platform Health and Production Engineering teams. Engineers

responsible for the GitHub Copilot Business Repositories of the codebase receive timely notifications of

changes pushed and monitor these changes through automated issues posted in the repositories and in

Slack.

When developing code for GitHub Copilot Business, engineers create a branch from the Main Branch,

which is the ‘gold copy’ of GitHub, to begin development of changes. Depending on the change, developers

will test locally and using automated CI/CD testing described below. Once pre-production testing has

validated the change is functioning as expected and all required reviews and approvals are complete, the

branch is merged into the Main Branch and is rolled out in staged releases via Canary deployments to

GitHub’s Kubernetes clusters in production for customer use.

Description of the System Provided by GitHub 30 / 54

An automated static code analysis tool runs every time new code is committed, to detect insecure coding

practices based on third party provided lexical, syntactic, and semantic rulesets, in addition to GitHub-

developed rulesets and test scenarios. An automated alerting issue is posted on the containing issue and

in a tracking repository maintained by the Product Security Engineering team, to alert them of any potentially

insecure coding risks to product development. The developer assesses the potential vulnerabilities, and a

peer reviewer follows up on the items during change review and approval.

Peer Review

GitHub relies heavily on collaboration and peer reviews to help ensure the integrity of its products.

Requirements for performing an effective peer review are documented on The Hub and in repo-specific Pull

Request (PRs) templates. Once the code is ready for discussion and review, developers open a Pull

Request for commits added to their branch following the template. PRs are an integral feature of GitHub

used to coordinate the discussion, approval, testing, and deployment of changes.

Protected branches (branches where merging to the Main branch is gated by required review and approval

activities) are also enabled on GitHub Copilot Business code repositories. Protected branches require that

PRs are reviewed and approved by an individual who is different than proposer of the change prior to

merging the code to the Main Branch.

The Security team conducts high-level design reviews, including security reviews, and rapid risk

assessments for large projects and initiatives to assess security risk. Depending on the scope and type of

project or initiative, the appropriate security teams will be engaged to review the project and provide

recommendations and guidance to engineering and product teams. Recommendations are tracked in

GitHub issues, and teams must approve plans prior to release.

Automated Testing

CI is the process by which code changes are automatically tested and validated. When a change is

committed to a branch with an associated PR, the CI system automatically executes the configured CI

status checks for that repository. This process includes the following:

 CI is notified of changes to the repo and builds the code for testing

 CI runs the test suites selected for that repository including end-to-end integration testing,

functional/unit testing, and security testing

 CI successes and failures are referenced in the PR

Failures in CI will block merging and deploying of those changes. CI testing occurs every time a change is

committed and when a change is being deployed to production. GitHub CI testing uses a suite of tools to

automate build and test on isolated hosts. Test results are automatically exported and alerted on the

respective issues allowing teams to monitor and act on issues prior to deployment.

GitHub engineers collaborate to support the creation of CI test scripts, and the implementation of blocking

acceptance tests. These acceptance tests typically function at the browser level and focus on the overall

functionality of the module or application to help ensure customer commitments and system requirements

are met. GitHub prevents any change from deployment to production if required acceptance tests have not

passed.

Deployment

To support deployment to the production environment, changes are deployed using GitHub’s standard and

proprietary deployment tools and workflows. To deploy any application or configuration changes,

developers run a Slack Chat Operations (ChatOps) deployment command on the respective team channels

associated with the production application. Running the Slack ChatOps creates a traceable record of the

Description of the System Provided by GitHub 31 / 54

action and helps to ensure accountability and transparency within the team and other stakeholders

subscribed to the respective Slack channel. Automated deployment processes validate that required

checks are completed, including passing of mandatory acceptance checks and ensuring the most recent

Main Branch build is used, before deploying the change to production. Code commits, whether direct

commits or through a pull request, are hashed. The hash is displayed with the commit to facilitate code

integrity verification.

Monitoring, Metrics, and Change Rollback

To help ensure continued functionality, availability, and security of the GitHub Copilot Business system,

comprehensive logging and monitoring tools are built into the application, system, and network to monitor

real-time telemetrics such as network traffic, successful logins, exceptions and error messages from the

application and systems, and pseudonymized usage statistics to detect anomalies through fine-tuned fault

tolerances and historical trend analyses.

Engineering teams monitor each system component post-deployment to help ensure changes implemented

did not detrimentally impact stability. A dedicated Site Reliability Engineering team monitors and responds

to incidents 24/7 through real-time, automated monitoring and incident escalation workflow. In the event of

any detrimental impact to production resulting from a change, changes are rolled back to the last known

stable version of the Main Branch. As a matter of practice, GitHub uses branch deployments to production,

so the roll-back procedure is simple and can be performed by anyone with authorization to deploy.

Once a deployment to production is shown to be faulty or unstable, based on the continuous monitoring

described previously, manual testing, or some other measure, the assigned engineer runs a single ChatOps

command and the previous version of the Main Branch is deployed back to production. Depending on the

severity of the findings, the engineer can make immediate changes and redeploy, or unlock deploys and

begin testing again in limited environments.

To keep GitHub personnel in the loop on new feature development or other engineering efforts, the Product

teams regularly host internal demos for the organization as a part of regular company and technology all-

company get togethers. These presentations are a way for technology teams to discuss and share projects

implemented and goals achieved throughout the quarter.

New customer-impacting product and feature releases, defined as “notable changes”, go through a

standardized release process to help ensure the appropriate level of communication given the type of

change. A notable change is anything added, changed, deprecated, removed, fixed, or any security fixes

(CVEs) that customers should understand. These changes could affect the productivity or workflow of the

user, or in the case of security fixes, require notification and awareness for customers. For example, notable

changes include API deprecations, User Interface (UI) improvements, or additions to payment options.

These changes are communicated at several discrete stages of development and prior to launch. Methods

of communication include blog posts and may also include social posts and product training-videos.

Emergency Deploys

When an emergency or system failure means a deploy cannot follow the normal procedures, there is an

established process to allow engineers to circumvent the usual tooling and force a deployment into

production. The emergency deploy process, and knowing when it is justified, is a key component within

GitHub culture.

The ability to perform an emergency deploy is configured to be restricted to a limited group of engineers

(includes members in the Incident Commander rotation along with a subset group of select engineers who

may need to be involved in incidents) through assignment to the ‘gh-force-deploy’ entitlement. This group

is allowed to force deploy changes; in addition, they have the ability to temporarily grant the permission to

Description of the System Provided by GitHub 32 / 54

other users on an as-needed basis for 30-minutes. Emergency deploys are requested in the same pre-

defined deploy Slack channels used for regular deploys, and the engineer requesting the deploy specifies

a deploy reason to give context to the situation to observers and others who are monitoring these deploys.

After an engineer force deploys, the deploy queue is blocked for that repository until the engineer reverts

the changes or merges the changes into the Main Branch. Both of these paths require CI and peer review

and approval to complete, to ensure the same level of visibility and testing as any other changes to the

code base.

When an emergency deploy is executed, an alert is posted to the #incident-command Slack channel for

visibility to the on-call team. A post-mortem remediation issue is auto-created in the github/forced-deploys

repository. The issue is assigned to the engineer who deployed with a post-mortem checklist the assignee

completes within 24 hours, giving justification for the deploy, which is then reviewed by their manager and

an site reliability engineering (SRE) team member.

Post-mortem remediation issues are reviewed weekly in the Production Engineering Availability team

meeting. The deploying engineer is invited to the meeting to review the issue and the circumstances, and

to verify they have completed the expected post-deploy steps to help ensure no further issues require

resolution.

Complementary User Entity Controls (CUECs)
The Company’s controls related to GitHub Copilot Business cover only a portion of overall internal control

for each user entity of GitHub Copilot Business. It is not feasible for the service commitments, system

requirements, and applicable criteria related to the system to be achieved solely by the Company.

Therefore, each user entity’s internal control should be evaluated in conjunction with the Company’s

controls described in Section 4 of this report, taking into account the related CUECs identified for the specific

criterion. In order for user entities to rely on the controls reported herein, each user entity must evaluate its

own internal control to determine whether the identified CUECs have been implemented and are operating

effectively.

The CUECs presented should not be regarded as a comprehensive list of all controls that should be

employed by user entities. Management of user entities is responsible for the following:

Criteria Complementary User Entity Controls

CC6.1 Customer administrators are responsible for setting their authentication policy for GitHub

Enterprise Cloud user accounts. GitHub recommends the use of SAML/Single Sign On with the

customer’s identity provider.

CC5.3 Customer administrators are responsible for establishing policy and guidelines for the use of

GitHub Copilot Business by customer developers.

CC5.3 Customer administrators are responsible for configuring GitHub Copilot Business to block

suggestions matching public code

CC6.4

CC6.5

CC7.2

 Customers are responsible for deploying physical security and environmental controls for all

devices and access points residing at their operational facilities, including remote employees or

at-home agents for which the customer allows connectivity.

Description of the System Provided by GitHub 33 / 54

Subservice Organization and Complementary

Subservice Organization Controls (CSOCs)
The Company uses Microsoft Azure, CoreSite, Sabey, Equinix, and QTS as subservice organizations for

data center services. The Company’s controls related to GitHub Copilot Business cover only a portion of

the overall internal control for each user entity of GitHub Copilot Business. The description does not extend

to the data center services for IT infrastructure provided by the subservice organizations. Section 4 of this

report and the description of the system only cover the Trust Services Criteria and related controls of the

Company and exclude the related controls of Microsoft Azure, CoreSite, Sabey, Equinix, and QTS.

Although the subservice organizations have been carved out for the purposes of this report, certain service

commitments, system requirements, and applicable criteria are intended to be met by controls at the

subservice organizations. CSOCs are expected to be in place at Microsoft Azure, CoreSite, Sabey, Equinix,

and QTS related to physical security and environmental protection. The subservice organizations’ physical

security controls should mitigate the risk of unauthorized access to the hosting facilities. The subservice

organizations’ environmental protection controls should mitigate the risk of fires, power loss, climate, and

temperature variabilities.

The Company management receives and reviews the Microsoft Azure, CoreSite, Sabey, Equinix, and QTS

SOC 2 reports, International Standards Organization (ISO) 27001 and 27701 Certifications, and Payment

Card Industry Attestation of Compliance (PCI AOC) as they are issued, and at least annually. In addition,

through its operational activities, Company management monitors the services performed by Microsoft

Azure, CoreSite, Sabey, Equinix, and QTS to determine whether operations and controls expected to be

implemented are functioning effectively. Management also communicates with the subservice

organizations to monitor compliance with the service agreement, stay informed of changes planned at the

hosting facility, and relay any issues or concerns to Microsoft Azure, CoreSite, Sabey, Equinix, and QTS

management.

It is not feasible for the service commitments, system requirements, and applicable criteria related to GitHub

Copilot Business to be achieved solely by the Company. Therefore, each user entity’s internal control must

be evaluated in conjunction with the Company’s controls described in Section 4 of this report, taking into

account the related CSOCs expected to be implemented at Microsoft Azure, CoreSite, Sabey, Equinix, and

QTS as described below.

Criteria Complementary Subservice Organization Controls

CC6.1 Microsoft Azure encrypts customer data at rest.

 Microsoft Azure corrects functioning of tenant isolation of its cloud services.

 Microsoft Azure OpenAI maintains the functioning and performance of the AI models

configured by GitHub Copilot Business.

CC6.4 Microsoft Azure, CoreSite, Sabey, Equinix, and QTS restrict data center access to authorized

personnel.

 Microsoft Azure, CoreSite, Sabey, Equinix, and QTS monitor data centers 24/7 by closed circuit

cameras and security personnel.

CC6.5

CC6.7

 Microsoft Azure securely decommissions and physically destroys production assets in its

control.

Description of the System Provided by GitHub 34 / 54

Criteria Complementary Subservice Organization Controls

CC7.2

 Microsoft Azure, CoreSite, Sabey, Equinix, and QTS install fire suppression and detection and

environmental monitoring systems at the data centers.

 Microsoft Azure, CoreSite, Sabey, Equinix, and QTS protect data centers against a disruption

in power supply to the processing environment by an uninterruptible power supply (UPS).

 Microsoft Azure, CoreSite, Sabey, Equinix, and QTS oversee the regular maintenance of

environmental protections at data centers.

Specific Criteria Not Relevant to the System
There were no specific security Trust Services Criteria as set forth in TSP Section 100, 2017 Trust Services

Criteria for Security, Availability, Processing Integrity, Confidentiality, and Privacy (With Revised Points of

Focus—2022) (2017 TSC) that were not relevant to the system as presented in this report.

Report Use
The description does not omit or distort information relevant to GitHub Copilot Business while

acknowledging that the description is prepared to meet the common needs of a broad range of users and

may not, therefore, include every aspect of the system that each individual user may consider important to

their own particular needs.

35 / 54

Section 4

Trust Services Criteria and Related

Controls Relevant to the Security

Category

Trust Services Criteria and Related Controls Relevant to the Security Category 36 / 54

Trust Services Criteria and Related Controls Relevant to the Security Category

Control Environment

TSC
Reference

Trust Services Criteria and Applicable Control Activities

CC1.1 The entity demonstrates a commitment to integrity and ethical values.

 Individuals with access to the in-scope environment acknowledge and sign off on the Handbook for Hubbers as part of the onboarding

process. The Handbook includes the GitHub standards of conduct, security policy awareness and responsibilities, and other information

security topics.

Employees sign a confidentiality agreement upon hire. This agreement prohibits the disclosure of information and other data to which

the employee has been granted access during employment and after termination.

GitHub management evaluates and provides feedback to direct reports annually.

The Company has documented disciplinary actions within the Handbook for Hubbers for employees and contractors who violate the

code of conduct.

New employees undergo background screening as permissible by local laws and regulations.

CC1.2 The board of directors demonstrates independence from management and exercises oversight of the development and performance of

internal control.

 The Senior Leadership team sets Company-wide objectives and reviews key results semiannually. Operational objectives and key

results defined across the in-scope domains tie back to meeting those Company-wide organizational objectives, including security and

risk objectives. The Senior Leadership team reports and reviews progress towards meeting those objectives semiannually.

The board of directors contains members that are independent of the Company and has documented oversight responsibilities relative

to internal control.

CC1.3 Management establishes, with board oversight, structures, reporting lines, and appropriate authorities and responsibilities in the pursuit

of objectives.

 People Operations maintains a current organizational chart that outlines Hubbers' roles and is made available to employees and

contractors.

Trust Services Criteria and Related Controls Relevant to the Security Category 37 / 54

Control Environment

TSC
Reference

Trust Services Criteria and Applicable Control Activities

 The board of directors contains members that are independent of the Company and has documented oversight responsibilities relative

to internal control.

The GitHub Information Security and Privacy Management System (ISPMS) defines information security practices, including

information system management, access controls, software development, and the definition of roles and responsibilities. This policy is

published to internal personnel via the GitHub intranet. The Chief Security Officer (CSO) reviews and approves the policy annually.

Hubber responsibilities are communicated through documented job descriptions, which are stored internally.

CC1.4 The entity demonstrates a commitment to attract, develop, and retain competent individuals in alignment with objectives.

 Employees complete security and privacy awareness training upon hire and annually thereafter.

Hubber responsibilities are communicated through documented job descriptions, which are stored internally.

GitHub management evaluates and provides feedback to direct reports annually.

CC1.5 The entity holds individuals accountable for their internal control responsibilities in the pursuit of objectives.

 GitHub management evaluates and provides feedback to direct reports annually.

Individuals with access to the in-scope environment acknowledge and sign off on the Handbook for Hubbers as part of the onboarding

process. The Handbook includes the GitHub standards of conduct, security policy awareness and responsibilities, and other information

security topics.

The Company has documented disciplinary actions within the Handbook for Hubbers for employees and contractors who violate the

code of conduct.

Hubber responsibilities are communicated through documented job descriptions, which are stored internally.

Trust Services Criteria and Related Controls Relevant to the Security Category 38 / 54

Information and Communication

TSC
Reference

Trust Services Criteria and Applicable Control Activities

CC2.1 The entity obtains or generates and uses relevant, quality information to support the functioning of internal control.

 The Security Governance, Risk, Compliance & Communication (GRCC) team assesses internal security controls annually through

sample-based testing to help ensure that control design and operation continue to meet defined criteria and system requirements.

The Security Operations team scans internal and external systems monthly, reviews identified vulnerabilities, and shares confirmed

threats with responsible stakeholders.

System owners remediate vulnerabilities in accordance with established service-level agreements (SLAs) based on the severity of the

vulnerabilities. Vulnerabilities that cannot be remediated within the required SLA are handled via the documented exception process.

Logging and monitoring tools are used to collect telemetry and event logs from network devices, applications, and systems. Security

alerts are generated, prioritized, and communicated to the designated responders for follow up. GitHub Security teams use these alerts

to initiate triage and, if necessary, remediate security issues based on their assigned priority.

The security owner subscribes to industry security bulletins and email alerts and uses them to monitor the impact of emerging

technologies and security on the production systems.

CC2.2 The entity internally communicates information, including objectives and responsibilities for internal control, necessary to support the

functioning of internal control.

 Employees complete security and privacy awareness training upon hire and annually thereafter.

GitHub management evaluates and provides feedback to direct reports annually.

Hubber responsibilities are communicated through documented job descriptions, which are stored internally.

Technical reviews are performed for new features and major changes to assess security, data, and architecture risk. Cross functional

approval is required prior to release of changes to production.

The GitHub Handbook for Hubbers outlines the process for anonymously reporting potential security issues or fraud concerns.

Trust Services Criteria and Related Controls Relevant to the Security Category 39 / 54

Information and Communication

TSC
Reference

Trust Services Criteria and Applicable Control Activities

CC2.3 The entity communicates with external parties regarding matters affecting the functioning of internal control.

 Customer commitments and responsibilities are communicated through GitHub's Data Protection Agreement and customer-provided

contracts.

Formal information sharing agreements are in place with critical vendors and subservice organizations. These agreements include

confidentiality commitments applicable to that entity.

GitHub posts notifications of new releases and customer-impacting changes to the GitHub blog.

The GitHub external website communicates to internal and external users the description of the in-scope systems, features,

responsibilities, customer commitments, and instructions to report incidents and complaints.

An external-facing status webpage is used to document and communicate current information on service availability to internal and

external users.

Trust Services Criteria and Related Controls Relevant to the Security Category 40 / 54

Risk Assessment

TSC
Reference

Trust Services Criteria and Applicable Control Activities

CC3.1 The entity specifies objectives with sufficient clarity to enable the identification and assessment of risks relating to objectives.

 The Company specifies its objectives in its annual risk assessment to enable the identification and assessment of risk related to the

objectives.

GitHub has established a formal Security Risk Management Policy to identify, assess, and manage security and security compliance-

related risks. GitHub Security leadership reviews and approves the Security Risk Management Policy annually.

CC3.2 The entity identifies risks to the achievement of its objectives across the entity and analyzes risks as a basis for determining how the

risks should be managed.

 GitHub has established a formal Security Risk Management Policy to identify, assess, and manage security and security compliance-

related risks. GitHub Security leadership reviews and approves the Security Risk Management Policy annually.

Annually, GitHub performs a risk assessment that identifies, tracks, and monitors changes to in-scope systems security, related

compliance risk factors, and fraud. Risks identified are documented in a repository where the risks and mitigation actions are tracked to

resolution. The risk assessment considers the potential for fraud and how fraud may impact the achievement of objectives.

CC3.3 The entity considers the potential for fraud in assessing risks to the achievement of objectives.

 GitHub has established a formal Security Risk Management Policy to identify, assess, and manage security and security compliance-

related risks. GitHub Security leadership reviews and approves the Security Risk Management Policy annually.

Annually, GitHub performs a risk assessment that identifies, tracks, and monitors changes to in-scope systems security, related

compliance risk factors, and fraud. Risks identified are documented in a repository where the risks and mitigation actions are tracked to

resolution. The risk assessment considers the potential for fraud and how fraud may impact the achievement of objectives.

Trust Services Criteria and Related Controls Relevant to the Security Category 41 / 54

Risk Assessment

TSC
Reference

Trust Services Criteria and Applicable Control Activities

CC3.4 The entity identifies and assesses changes that could significantly impact the system of internal control.

 GitHub has established a formal Security Risk Management Policy to identify, assess, and manage security and security compliance-

related risks. GitHub Security leadership reviews and approves the Security Risk Management Policy annually.

Annually, GitHub performs a risk assessment that identifies, tracks, and monitors changes to in-scope systems security, related

compliance risk factors, and fraud. Risks identified are documented in a repository where the risks and mitigation actions are tracked to

resolution. The risk assessment considers the potential for fraud and how fraud may impact the achievement of objectives.

A configuration management tool (CMT) maintains the state of systems to an approved baseline and reverts unapproved changes,

when they are detected, back to the required configuration. Changes to the approved configuration baseline are completed through pull

requests requiring peer review.

A third party performs an annual application penetration assessment. Security Operations triages and tracks identified issues through to

resolution.

The Company maintains a Bug Bounty Program that offers rewards for discovered vulnerabilities and is designed to ensure the security

and integrity of the platform through treating these findings.

Trust Services Criteria and Related Controls Relevant to the Security Category 42 / 54

Monitoring Activities

TSC
Reference

Trust Services Criteria and Applicable Control Activities

CC4.1 The entity selects, develops, and performs ongoing and/or separate evaluations to ascertain whether the components of internal control

are present and functioning.

 The Security Governance, Risk, Compliance & Communication (GRCC) team assesses internal security controls annually through

sample-based testing to help ensure that control design and operation continue to meet defined criteria and system requirements.

A third party performs an annual application penetration assessment. Security Operations triages and tracks identified issues through to

resolution.

The Security Operations team scans internal and external systems monthly, reviews identified vulnerabilities, and shares confirmed

threats with responsible stakeholders.

System owners remediate vulnerabilities in accordance with established service-level agreements (SLAs) based on the severity of the

vulnerabilities. Vulnerabilities that cannot be remediated within the required SLA are handled via the documented exception process.

Prior to engaging a new vendor, GitHub reviews vendor security compliance and documents the results in the vendor security repo.

Annually, GitHub assesses the controls implemented at subservice organizations who receive or store customer data through the

review of relevant subservice organizations' attestation reports.

CC4.2 The entity evaluates and communicates internal control deficiencies in a timely manner to those parties responsible for taking corrective

action, including senior management and the board of directors, as appropriate.

 The Security Governance, Risk, Compliance & Communication (GRCC) team assesses internal security controls annually through

sample-based testing to help ensure that control design and operation continue to meet defined criteria and system requirements.

Prior to engaging a new vendor, GitHub reviews vendor security compliance and documents the results in the vendor security repo.

Annually, GitHub assesses the controls implemented at subservice organizations who receive or store customer data through the

review of relevant subservice organizations' attestation reports.

Trust Services Criteria and Related Controls Relevant to the Security Category 43 / 54

Control Activities

TSC
Reference

Trust Services Criteria and Applicable Control Activities

CC5.1 The entity selects and develops control activities that contribute to the mitigation of risks to the achievement of objectives to acceptable

levels.

 As part of its annual risk assessment, management selects and develops manual and IT general control activities that contribute to the

mitigation of identified risks.

GitHub has established a formal Security Risk Management Policy to identify, assess, and manage security and security compliance-

related risks. GitHub Security leadership reviews and approves the Security Risk Management Policy annually.

CC5.2 The entity also selects and develops general control activities over technology to support the achievement of objectives.

 As part of its annual risk assessment, management selects and develops manual and IT general control activities that contribute to the

mitigation of identified risks.

GitHub has established a formal Security Risk Management Policy to identify, assess, and manage security and security compliance-

related risks. GitHub Security leadership reviews and approves the Security Risk Management Policy annually.

CC5.3 The entity deploys control activities through policies that establish what is expected and in procedures that put policies into action.

 Security incident response and escalation policies and procedures are documented and provide guidance to Company personnel for

detecting, responding to, and recovering from security events and incidents and to address breach or privacy considerations, which

varies depending on the severity of the incident.

Formal procedures are documented that outline the process the Company's staff follows to perform the following system access control

functions:

- Authorizing and granting new user access

- Maintaining existing user access

- Managing entitlements

- Revoking existing user access

- Restricting access based on entitlement membership and access request approval

GitHub maintains and communicates key security standards and procedures on the GitHub intranet that address the security of

systems, facilities, data, personnel, and processes.

Trust Services Criteria and Related Controls Relevant to the Security Category 44 / 54

Control Activities

TSC
Reference

Trust Services Criteria and Applicable Control Activities

GitHub has established a formal Security Risk Management Policy to identify, assess, and manage security and security compliance-

related risks. GitHub Security leadership reviews and approves the Security Risk Management Policy annually.

Formal procedures that outline requirements for vulnerability management are documented and include the following components:

- Methods for identifying vulnerabilities and frequency

- Assessing the severity of identified vulnerabilities

- Prioritizing and implementing remediation or mitigation activities for identified vulnerabilities based on severity and defined timelines

- Handling of system components for which no measures are initiated to remediate or mitigate vulnerabilities

Formal policies and procedures that outline the requirements for vendor management are documented and include the following

components:

- Maintaining a list of critical vendors

- Requirements for the assessment of risks resulting from the procurement of third-party services

- Requirements for the classification of third parties

- Information security requirements for the processing, storage, or transmission of information by third parties

- Requirements for dealing with vulnerabilities, security incidents, and malfunctions

- Specifications for the contractual agreement and monitoring of third-party vendor requirements

- Requirements for critical vendors to maintain their own security practices and procedures

- Annually reviewing attestation reports for Tier 1 vendors or performing a vendor risk assessment

Formal policies and procedures that outline the technical and organizational safeguards for change management of system

components are documented and include the following components:

- Change management roles and responsibilities

- Criteria for risk assessment, categorization, and prioritization of changes

- Approvals for implementation of changes

- Requirements for the performance and documentation of tests, including rollback plans

- Requirements for segregation of duties during development, testing, and release of changes

- Requirements for the implementation and documentation of emergency changes

A formal security and software development life cycle (SDLC) methodology is in place that governs the project planning, design,

acquisition, testing, implementation, maintenance, and decommissioning of information systems and related technologies.

Trust Services Criteria and Related Controls Relevant to the Security Category 45 / 54

Control Activities

TSC
Reference

Trust Services Criteria and Applicable Control Activities

GitHub has defined hardening standards based on its security hardening practices. The Security Operations team reviews and

approves changes to the standard hardening procedures.

Formal data retention and disposal procedures are documented to guide the secure retention and disposal of Company and customer

data.

Policies and procedures derived from the information security policy are documented, version controlled, reviewed at least annually,

approved by management, and communicated to authorized users.

Trust Services Criteria and Related Controls Relevant to the Security Category 46 / 54

Logical and Physical Access Controls

TSC
Reference

Trust Services Criteria and Applicable Control Activities

CC6.1 The entity implements logical access security software, infrastructure, and architectures over protected information assets to protect

them from security events to meet the entity's objectives.

 Authentication to the following in-scope production system components requires unique usernames and passwords or authorized

Secure Shell (SSH) keys:

- Network

- Operating system (OS)

- Application(s)

- Data stores

- Azure console

- Firewalls

- Log data

- Backup data

A unique account and password are required to authenticate customers to their organization for in-scope systems.

Remote access to internal administration tools is restricted through unique account IDs, passwords, and a one-time token.

Remote access to in-scope production systems is restricted through Virtual Private Networks (VPN), bastion hosts, or Security

Assertion Markup Language (SAML) enforcing Hypertext Transfer Protocol Secure (HTTPS) reverse proxy, which require multi-factor

authentication (MFA).

VPN and bastion hosts are configured to require user connections to reauthenticate after 24 hours of inactivity.

Passwords for in-scope system components are configured according to the Company's policy, which required the following (unless

there is a system limitation):

- 8 characters long, if it includes a number and a lowercase letter

or

- 15 characters long with any combination of characters

Test environments are logically separated from production environments.

Trust Services Criteria and Related Controls Relevant to the Security Category 47 / 54

Logical and Physical Access Controls

TSC
Reference

Trust Services Criteria and Applicable Control Activities

GitHub tracks production components and third-party services to help ensure that various aspects of the system inventory are reviewed

and updated quarterly.

Customer Git repositories are encrypted at rest.

CC6.2 Prior to issuing system credentials and granting system access, the entity registers and authorizes new internal and external users

whose access is administered by the entity. For those users whose access is administered by the entity, user system credentials are

removed when user access is no longer authorized.

 GitHub's internal systems are configured to automatically provision logical and physical access based on the user's job role and require

manager approval prior to being provisioned. GitHub's internal systems are configured to automatically provision non-role-based

entitlements only after the user's manager reviews and approves the access request.

The Security Operations team revokes logical production access and Production Engineering revokes physical production access for

terminated personnel (employee and contractors) within 24 hours of termination.

Semi-annually, the Security Operations team reviews and reauthorizes elevated access permissions to confirm that users with this

access are restricted based on the principle of least privilege.

The Infrastructure team reviews physical access to production data centers annually; any unapproved accounts are removed.

CC6.3 The entity authorizes, modifies, or removes access to data, software, functions, and other protected information assets based on roles,

responsibilities, or the system design and changes, giving consideration to the concepts of least privilege and segregation of duties, to

meet the entity’s objectives.

 Privileged access to the following in-scope production system components is restricted to authorized users with a business need:

- Network

- OS

- Application(s)

- Data stores

- Azure console

- Firewalls

- Log data

- Backup data

Trust Services Criteria and Related Controls Relevant to the Security Category 48 / 54

Logical and Physical Access Controls

TSC
Reference

Trust Services Criteria and Applicable Control Activities

 GitHub's internal systems are configured to automatically provision logical and physical access based on the user's job role and require

manager approval prior to being provisioned. GitHub's internal systems are configured to automatically provision non-role-based

entitlements only after the user's manager reviews and approves the access request.

The Security Operations team revokes logical production access and Production Engineering revokes physical production access for

terminated personnel (employee and contractors) within 24 hours of termination.

Semi-annually, the Security Operations team reviews and reauthorizes elevated access permissions to confirm that users with this

access are restricted based on the principle of least privilege.

CC6.4 The entity restricts physical access to facilities and protected information assets (for example, data center facilities, backup media

storage, and other sensitive locations) to authorized personnel to meet the entity’s objectives.

 The Company’s production environment is hosted at third-party data centers, which are carved out for the purposes of this report.

CC6.5 The entity discontinues logical and physical protections over physical assets only after the ability to read or recover data and software

from those assets has been diminished and is no longer required to meet the entity’s objectives.

 Data center media used to store production data are destroyed onsite. Certificates verifying media destruction are documented and

retained.

GitHub tracks production components and third-party services to help ensure that various aspects of the system inventory are reviewed

and updated quarterly.

Formal data retention and disposal procedures are documented to guide the secure retention and disposal of Company and customer

data.

CC6.6 The entity implements logical access security measures to protect against threats from sources outside its system boundaries.

 Remote access to internal administration tools is restricted through unique account IDs, passwords, and a one-time token.

Remote access to in-scope production systems is restricted through Virtual Private Networks (VPN), bastion hosts, or Security

Assertion Markup Language (SAML) enforcing Hypertext Transfer Protocol Secure (HTTPS) reverse proxy, which require multi-factor

authentication (MFA).

Trust Services Criteria and Related Controls Relevant to the Security Category 49 / 54

Logical and Physical Access Controls

TSC
Reference

Trust Services Criteria and Applicable Control Activities

VPN and bastion hosts are configured to require user connections to reauthenticate after 24 hours of inactivity.

GitHub uses SSH to authenticate to back-end production resources through a bastion host.

Network firewalls restrict external points of connectivity and prevent unauthorized traffic from beyond the system boundary.

Firewall rulesets are reviewed at least annually. Change tickets are created to track any firewall modifications as a result of the review.

Production traffic is encrypted when transmitted over the public internet.

An intrusion detection system (IDS) is used to provide continuous monitoring of the Company's network and early detection of potential

security breaches. Alerts are configured to notify administrators to investigate and take appropriate action based on the severity of the

alert.

Infrastructure supporting the service is patched as a part of routine maintenance and as a result of identified vulnerabilities to help

ensure that servers supporting the service are hardened against security threats.

CC6.7 The entity restricts the transmission, movement, and removal of information to authorized internal and external users and processes,

and protects it during transmission, movement, or removal to meet the entity’s objectives.

 Production traffic is encrypted when transmitted over the public internet.

CC6.8 The entity implements controls to prevent or detect and act upon the introduction of unauthorized or malicious software to meet the

entity’s objectives.

 Threat detection software is installed on Company endpoints to monitor for malicious software or unauthorized activity.

An intrusion detection system (IDS) is used to provide continuous monitoring of the Company's network and early detection of potential

security breaches. Alerts are configured to notify administrators to investigate and take appropriate action based on the severity of the

alert.

Infrastructure supporting the service is patched as a part of routine maintenance and as a result of identified vulnerabilities to help

ensure that servers supporting the service are hardened against security threats.

Trust Services Criteria and Related Controls Relevant to the Security Category 50 / 54

System Operations

TSC
Reference

Trust Services Criteria and Applicable Control Activities

CC7.1 To meet its objectives, the entity uses detection and monitoring procedures to identify (1) changes to configurations that result in the

introduction of new vulnerabilities, and (2) susceptibilities to newly discovered vulnerabilities.

 The Security Operations team scans internal and external systems monthly, reviews identified vulnerabilities, and shares confirmed

threats with responsible stakeholders.

System owners remediate vulnerabilities in accordance with established service-level agreements (SLAs) based on the severity of the

vulnerabilities. Vulnerabilities that cannot be remediated within the required SLA are handled via the documented exception process.

Annually, GitHub performs a risk assessment that identifies, tracks, and monitors changes to in-scope systems security, related

compliance risk factors, and fraud. Risks identified are documented in a repository where the risks and mitigation actions are tracked to

resolution. The risk assessment considers the potential for fraud and how fraud may impact the achievement of objectives.

A configuration management tool (CMT) maintains the state of systems to an approved baseline and reverts unapproved changes,

when they are detected, back to the required configuration. Changes to the approved configuration baseline are completed through pull

requests requiring peer review.

CC7.2 The entity monitors system components and the operation of those components for anomalies that are indicative of malicious acts,

natural disasters, and errors affecting the entity's ability to meet its objectives; anomalies are analyzed to determine whether they

represent security events.

 Logging and monitoring tools are used to collect telemetry and event logs from network devices, applications, and systems. Security

alerts are generated, prioritized, and communicated to the designated responders for follow up. GitHub Security teams use these alerts

to initiate triage and, if necessary, remediate security issues based on their assigned priority.

The Security Operations team scans internal and external systems monthly, reviews identified vulnerabilities, and shares confirmed

threats with responsible stakeholders.

System owners remediate vulnerabilities in accordance with established service-level agreements (SLAs) based on the severity of the

vulnerabilities. Vulnerabilities that cannot be remediated within the required SLA are handled via the documented exception process.

Trust Services Criteria and Related Controls Relevant to the Security Category 51 / 54

System Operations

TSC
Reference

Trust Services Criteria and Applicable Control Activities

An intrusion detection system (IDS) is used to provide continuous monitoring of the Company's network and early detection of potential

security breaches. Alerts are configured to notify administrators to investigate and take appropriate action based on the severity of the

alert.

An infrastructure monitoring tool is utilized to monitor system or infrastructure availability and performance and generates alerts when

specific, predefined thresholds are met.

A third party performs an annual application penetration assessment. Security Operations triages and tracks identified issues through to

resolution.

Infrastructure supporting the service is patched as a part of routine maintenance and as a result of identified vulnerabilities to help

ensure that servers supporting the service are hardened against security threats.

CC7.3 The entity evaluates security events to determine whether they could or have resulted in a failure of the entity to meet its objectives

(security incidents) and, if so, takes actions to prevent or address such failures.

 Security incident response and escalation policies and procedures are documented and provide guidance to Company personnel for

detecting, responding to, and recovering from security events and incidents and to address breach or privacy considerations, which

varies depending on the severity of the incident.

GitHub security personnel are informed of security events, whether detected by systems or reported by humans, and alerts are

surfaced to responders based on severity as defined in formally documented procedures.

A third party performs an annual application penetration assessment. Security Operations triages and tracks identified issues through to

resolution.

The Security Operations team scans internal and external systems monthly, reviews identified vulnerabilities, and shares confirmed

threats with responsible stakeholders.

System owners remediate vulnerabilities in accordance with established service-level agreements (SLAs) based on the severity of the

vulnerabilities. Vulnerabilities that cannot be remediated within the required SLA are handled via the documented exception process.

Trust Services Criteria and Related Controls Relevant to the Security Category 52 / 54

System Operations

TSC
Reference

Trust Services Criteria and Applicable Control Activities

Infrastructure supporting the service is patched as a part of routine maintenance and as a result of identified vulnerabilities to help

ensure that servers supporting the service are hardened against security threats.

CC7.4 The entity responds to identified security incidents by executing a defined incident response program to understand, contain, remediate,

and communicate security incidents, as appropriate.

 Security incident response and escalation policies and procedures are documented and provide guidance to Company personnel for

detecting, responding to, and recovering from security events and incidents and to address breach or privacy considerations, which

varies depending on the severity of the incident.

All incidents related to security and involving a data breach are logged, tracked, evaluated, and communicated to affected parties by

management until the Company has recovered from the incidents.

CC7.5 The entity identifies, develops, and implements activities to recover from identified security incidents.

 Security incident response and escalation policies and procedures are documented and provide guidance to Company personnel for

detecting, responding to, and recovering from security events and incidents and to address breach or privacy considerations, which

varies depending on the severity of the incident.

All incidents related to security and involving a data breach are logged, tracked, evaluated, and communicated to affected parties by

management until the Company has recovered from the incidents.

GitHub has incident response procedures that are triggered once an incident is identified or reported. GitHub has an escalation

procedure to address breach or privacy considerations, which varies depending on the severity of the incident. Roles are assigned, and

a multi-stage process is followed until the incident has been remedied and documented. Root cause is assessed and addressed as part

of the incident response process. Incident post-mortems are documented and include lessons learned.

Trust Services Criteria and Related Controls Relevant to the Security Category 53 / 54

Change Management

TSC
Reference

Trust Services Criteria and Applicable Control Activities

CC8.1 The entity authorizes, designs, develops or acquires, configures, documents, tests, approves, and implements changes to

infrastructure, data, software, and procedures to meet its objectives.

 An independent reviewer evaluates and approves software and infrastructure change requests via a GitHub pull request.

Technical reviews are performed for new features and major changes to assess security, data, and architecture risk. Cross functional

approval is required prior to release of changes to production.

GitHub engineering code owners create and execute automated regression test cases to address functionality and security

requirements.

Application changes pass automated continuous integration testing prior to deployment to the production environment.

A security code analysis tool scans code during commits and merges. The scanning tool posts potential vulnerabilities on the change

pull request. The developer assesses the potential vulnerabilities, and a peer reviewer follows up on the items during change review

and approval.

Test environments are logically separated from production environments.

Branch protection system configurations enforce peer reviews and integration tests prior to the deployment of changes to the

production environment and alert code owners of any forced deployments.

The Production Engineering team monitors emergency deployments on a real-time basis, and post-mortem reviews are performed for

emergency changes impacting production systems.

Infrastructure supporting the service is patched as a part of routine maintenance and as a result of identified vulnerabilities to help

ensure that servers supporting the service are hardened against security threats.

Trust Services Criteria and Related Controls Relevant to the Security Category 54 / 54

Risk Mitigation

TSC
Reference

Trust Services Criteria and Applicable Control Activities

CC9.1 The entity identifies, selects, and develops risk mitigation activities for risks arising from potential business disruptions.

 GitHub has established a formal Security Risk Management Policy to identify, assess, and manage security and security compliance-

related risks. GitHub Security leadership reviews and approves the Security Risk Management Policy annually.

Security incident response and escalation policies and procedures are documented and provide guidance to Company personnel for

detecting, responding to, and recovering from security events and incidents and to address breach or privacy considerations, which

varies depending on the severity of the incident.

GitHub has incident response procedures that are triggered once an incident is identified or reported. GitHub has an escalation

procedure to address breach or privacy considerations, which varies depending on the severity of the incident. Roles are assigned, and

a multi-stage process is followed until the incident has been remedied and documented. Root cause is assessed and addressed as part

of the incident response process. Incident post-mortems are documented and include lessons learned.

CC9.2 The entity assesses and manages risks associated with vendors and business partners.

 Prior to engaging a new vendor, GitHub reviews vendor security compliance and documents the results in the vendor security repo.

Annually, GitHub assesses the controls implemented at subservice organizations who receive or store customer data through the

review of relevant subservice organizations' attestation reports.

Formal information sharing agreements are in place with critical vendors and subservice organizations. These agreements include

confidentiality commitments applicable to that entity.

