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● Results showed similar performance on pure noise and actual EEG data with previous methodologies.

● Highlighted potential for inflated metrics with teacher-forcing and previous evaluation methods.

● Regularly incorporating noise baselines during evaluation is crucial for establishing a reliable performance benchmark.

● Adoption of these practices will enhance research reliability and accelerate the development of robust EEG-to-Text communication systems. 

● This work critically analyzes existing models for 

open-vocabulary EEG-to-Text translation.

● We identify a crucial limitation: previous studies often 

employed implicit teacher-forcing during evaluation, 

which gives an illusion of high performance in terms

of text generation metrics [1].

● Additionally, they lacked a critical benchmark, comparing 

model performance on pure noise inputs.

● We propose a methodology to differentiate between 

models that truly learn from EEG signals and those 

that simply memorize training data [2].

● This approach will lead to reliable model assessments 

and pave the way for robust EEG-to-Text communication 

systems.

● We aim to assess the model’s ability to learn from EEG 

data and address issues with implicitly employed 

teacher-forcing discussed by Yang [4]. 

● We followed the approach of Wang and Ji [1] and utilized 

the publicly available ZuCo dataset [3].
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Pretrained model Training Testing BLEU-1 (%) ROUGE-1 (%) WER (%)

BART EEG EEG 13.69 11.98 108.43

EEG Random 13.87 12.23 108.31

Random EEG 14.05 11.46 110.96

Random Random 14.22 11.62 110.98

BART w/tf EEG EEG 39.31 26.41 78.08

EEG Random 39.34 26.44 78.07

Random EEG 39.67 26.29 78.09

Random Random 39.69 26.32 78.09

Table 1. EEG-to-Text model evaluation on the ZuCo 1.0 dataset, incorporating reading tasks from SR, NR, 
and TSR. "w/tf " denotes results obtained using teacher-forcing during evaluation. ● Previous methodologies perform similarly on noise 

and actual EEG data.

● Teacher-forcing during evaluation resulted in a substantial 

performance by at least three-fold compared to evaluations 

without it.

● Similar evaluation results were observed across models 

trained on EEG or random input data, regardless of the 

evaluation data type. 
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● We split the data into three sets: 80% (training), 10% (development), 10% (testing).

● The model architecture consists of two components:

(1) A transformer encoder: processing word-level EEG features and generates embeddings.

(2) A pretrained BART model takes the encoder's embeddings and decodes them into text 

sequences.

● To assess the impact of teacher-forcing, we evaluated the model’s performance 

under two conditions: (1) With teacher-forcing, (2) Without teacher-forcing.

● Evaluated the model’s translation performance using BLEU, ROUGE, and WER. 

● We designed four distinct scenarios.

(1) EEG (training and testing)

(2) Random (training and testing)

(3) EEG (training) + Random (testing)

(4) Random (training) + EEG (testing).
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* Code is available at https://github.com/NeuSpeech/EEG-To-Text.
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