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e This work critically analyzes existing models for
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We propose a methodology to differentiate between
models that truly learn from EEG signals and those
that simply memorize training data [2].
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e This approach will lead to reliable model assessments

and pave the way for robust EEG-to-Text communication Word-level EEG feature or Random value

Word-level EEG feature or Random value
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e \We aim to assess the model’s ability to learn from EEG EEG Random EEG Random

data and address issues with implicitly employed
teacher-forcing discussed by Yang [4]. °
e We followed the approach of Wang and Ji [1] and utilized °

We split the data into three sets: 80% (training), 10% (development), 10% (testing).

The model architecture consists of two components:

(1) A transformer encoder: processing word-level EEG features and generates embeddings.
(2) A pretrained BART model takes the encoder's embeddings and decodes them into text
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Reading task EEG signals were segmented
i AN, based on Eye-fixation
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5@ ya # During this period, McNamara Sequences.
Rﬁ " NWW WMW WMW WWM e To0 assess the impact of teacher-forcing, we evaluated the model’s performance
. Normal Roading (Wikipeda) under two conditions: (1) With teacher-forcing, (2) Without teacher-forcing.
' TaSk'Spedii;:vze:;ii‘fxzipedia) Word-level Feature eX”aCtioné e Evaluated the model’s translation performance using BLEU, ROUGE, and WER.
EEG feature (840) rifbert fransiorm e We designed four distinct scenarios.
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RESULTS

Table 1. EEG-to-Text model evaluation on the ZuCo 1.0 dataset, incorporating reading tasks from SR, NR,

and TSR. "witf " denotes results obtained using teacher-forcing during evaluation. e Previous methodologies perform similarly on noise

Pretrained model Training Testing BLEU-1 (%) ROUGE-1 (%) WER (%) and actual EEG data.
BART EEG EEG 13.69 11.98 108.43 e Teacher-forcing during evaluation resulted in a substantial
EEG Rand 13.87 12.23 108.31 -
aneem performance by at least three-fold compared to evaluations
Random EEG 14.05 11.46 110.96 _ _
Random Random 14.22 11.62 110.98 without t.
BART witf EEG EEG 39.31 26.41 78.08 e Similar evaluation results were observed across models

EEG Random 39.34 26.44 78.07 trained on EEG or random input data, regardless of the

Random EEG 39.67 26.29 78.09 evaluation data type.

Random Random 39.69 26.32 78.09

CONCLUSIONS

e Results showed similar performance on pure noise and actual EEG data with previous methodologies.

e Highlighted potential for inflated metrics with teacher-forcing and previous evaluation methods.

e Regqgularly incorporating noise baselines during evaluation is crucial for establishing a reliable performance benchmark.

e Adoption of these practices will enhance research reliability and accelerate the development of robust EEG-to-Text communication systems.
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* Code Is avalilable at https://github.com/NeuSpeech/EEG-To-Text.
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