
CIS Azure Kubernetes

Service (AKS) Benchmark
v1.5.0 - 04-22-2024

Page 1

Terms of Use

Please see the below link for our current terms of use:

https://www.cisecurity.org/cis-securesuite/cis-securesuite-membership-terms-of-use/

https://www.cisecurity.org/cis-securesuite/cis-securesuite-membership-terms-of-use/

Page 2

Table of Contents

Terms of Use ... 1

Table of Contents ... 2

Overview .. 5

Intended Audience ... 5

Consensus Guidance ... 6

Typographical Conventions .. 7

Recommendation Definitions ... 8

Title ... 8

Assessment Status .. 8
Automated ... 8
Manual.. 8

Profile ... 8

Description .. 8

Rationale Statement ... 8

Impact Statement.. 9

Audit Procedure .. 9

Remediation Procedure ... 9

Default Value ... 9

References .. 9

CIS Critical Security Controls® (CIS Controls®) .. 9

Additional Information ... 9

Profile Definitions ... 10

Acknowledgements .. 11

Recommendations ... 12

1 Master (Control Plane) Components... 12

2 Master (Control Plane) Configuration ... 12
2.1 Logging .. 13

2.1.1 Enable audit Logs (Manual) ... 14

3 Worker Nodes .. 16
3.1 Worker Node Configuration Files ... 17

3.1.1 Ensure that the kubeconfig file permissions are set to 644 or more restrictive
(Automated) ... 18
3.1.2 Ensure that the kubelet kubeconfig file ownership is set to root:root (Automated).......... 21
3.1.3 Ensure that the azure.json file has permissions set to 644 or more restrictive
(Automated) ... 24
3.1.4 Ensure that the azure.json file ownership is set to root:root (Automated) 27

Page 3

3.2 Kubelet ... 30
3.2.1 Ensure that the --anonymous-auth argument is set to false (Automated) 31
3.2.2 Ensure that the --authorization-mode argument is not set to AlwaysAllow (Automated) 34
3.2.3 Ensure that the --client-ca-file argument is set as appropriate (Automated) 37
3.2.4 Ensure that the --read-only-port is secured (Automated)... 40
3.2.5 Ensure that the --streaming-connection-idle-timeout argument is not set to 0
(Automated) ... 42
3.2.6 Ensure that the --make-iptables-util-chains argument is set to true (Automated) 45
3.2.7 Ensure that the --eventRecordQPS argument is set to 0 or a level which ensures
appropriate event capture (Automated)... 48
3.2.8 Ensure that the --rotate-certificates argument is not set to false (Automated) 51
3.2.9 Ensure that the RotateKubeletServerCertificate argument is set to true (Automated) 53

4 Policies ... 55
4.1 RBAC and Service Accounts... 56

4.1.1 Ensure that the cluster-admin role is only used where required (Automated) 57
4.1.2 Minimize access to secrets (Automated) ... 59
4.1.3 Minimize wildcard use in Roles and ClusterRoles (Automated) 61
4.1.4 Minimize access to create pods (Automated) .. 63
4.1.5 Ensure that default service accounts are not actively used (Automated) 65
4.1.6 Ensure that Service Account Tokens are only mounted where necessary (Automated) 67

4.2 Pod Security Standards ... 69
4.2.1 Minimize the admission of privileged containers (Automated) ... 70
4.2.2 Minimize the admission of containers wishing to share the host process ID namespace
(Automated) ... 73
4.2.3 Minimize the admission of containers wishing to share the host IPC namespace
(Automated) ... 75
4.2.4 Minimize the admission of containers wishing to share the host network namespace
(Automated) ... 77
4.2.5 Minimize the admission of containers with allowPrivilegeEscalation (Automated) 79

4.3 Azure Policy / OPA ... 81
4.4 CNI Plugin .. 82

4.4.1 Ensure latest CNI version is used (Automated) ... 83
4.4.2 Ensure that all Namespaces have Network Policies defined (Automated) 85

4.5 Secrets Management .. 87
4.5.1 Prefer using secrets as files over secrets as environment variables (Automated) 88
4.5.2 Consider external secret storage (Manual) .. 90

4.6 General Policies .. 92
4.6.1 Create administrative boundaries between resources using namespaces (Manual) 93
4.6.2 Apply Security Context to Your Pods and Containers (Manual) 95
4.6.3 The default namespace should not be used (Automated) ... 98

5 Managed services ... 99
5.1 Image Registry and Image Scanning.. 100

5.1.1 Ensure Image Vulnerability Scanning using Azure Defender image scanning or a third
party provider (Automated) .. 101
5.1.2 Minimize user access to Azure Container Registry (ACR) (Manual) 103
5.1.3 Minimize cluster access to read-only for Azure Container Registry (ACR) (Manual) 105
5.1.4 Minimize Container Registries to only those approved (Manual) 106

5.2 Access and identity options for Azure Kubernetes Service (AKS) ... 108
5.2.1 Prefer using dedicated AKS Service Accounts (Manual) ... 109

5.3 Key Management Service (KMS) ... 111
5.3.1 Ensure Kubernetes Secrets are encrypted (Manual) ... 112

5.4 Cluster Networking ... 113
5.4.1 Restrict Access to the Control Plane Endpoint (Automated) ... 114
5.4.2 Ensure clusters are created with Private Endpoint Enabled and Public Access Disabled
(Automated) ... 117

Page 4

5.4.3 Ensure clusters are created with Private Nodes (Automated) 119
5.4.4 Ensure Network Policy is Enabled and set as appropriate (Automated) 121
5.4.5 Encrypt traffic to HTTPS load balancers with TLS certificates (Manual) 123

5.5 Authentication and Authorization ... 124
5.5.1 Manage Kubernetes RBAC users with Azure AD (Manual) ... 125
5.5.2 Use Azure RBAC for Kubernetes Authorization (Manual) ... 126

Appendix: Summary Table .. 128

Appendix: CIS Controls v7 IG 1 Mapped Recommendations 133

Appendix: CIS Controls v7 IG 2 Mapped Recommendations 134

Appendix: CIS Controls v7 IG 3 Mapped Recommendations 136

Appendix: CIS Controls v7 Unmapped Recommendations 138

Appendix: CIS Controls v8 IG 1 Mapped Recommendations 139

Appendix: CIS Controls v8 IG 2 Mapped Recommendations 141

Appendix: CIS Controls v8 IG 3 Mapped Recommendations 143

Appendix: CIS Controls v8 Unmapped Recommendations 145

Appendix: Change History .. 146

Page 5

Overview

All CIS Benchmarks focus on technical configuration settings used to maintain and/or
increase the security of the addressed technology, and they should be used in
conjunction with other essential cyber hygiene tasks like:

• Monitoring the base operating system for vulnerabilities and quickly updating with
the latest security patches

• Monitoring applications and libraries for vulnerabilities and quickly updating with
the latest security patches

In the end, the CIS Benchmarks are designed as a key component of a comprehensive
cybersecurity program.

This document provides prescriptive guidance for running Azure Kubernetes Service
(AKS) following recommended security controls. This benchmark only includes controls
which can be modified by an end user of Azure AKS and is designed to supersede all
previous version of the Azure Kubernetes Service (AKS) Benchmark. It addresses and
has been tested against Kubernetes version/s 1.30, 1.29 and 1.28.
As a rule, this benchmark will address the Kubernetes versions available for cluster
creation at the beginning of the consensus release period and will address Kubernetes
versions that become available after that date in the next release.
To obtain the latest version of this guide, please visit www.cisecurity.org. If you have
questions, comments, or have identified ways to improve this guide, please write us at
support@cisecurity.org.

Intended Audience

This document is intended for cluster administrators, security specialists, auditors, and
any personnel who plan to develop, deploy, assess, or secure solutions that incorporate
Azure Kubernetes Service (AKS) using managed and self-managed nodes.

http://www.cisecurity.org/
mailto:support@cisecurity.org

Page 6

Consensus Guidance

This CIS Benchmark was created using a consensus review process comprised of a
global community of subject matter experts. The process combines real world
experience with data-based information to create technology specific guidance to assist
users to secure their environments. Consensus participants provide perspective from a
diverse set of backgrounds including consulting, software development, audit and
compliance, security research, operations, government, and legal.

Each CIS Benchmark undergoes two phases of consensus review. The first phase
occurs during initial Benchmark development. During this phase, subject matter experts
convene to discuss, create, and test working drafts of the Benchmark. This discussion
occurs until consensus has been reached on Benchmark recommendations. The
second phase begins after the Benchmark has been published. During this phase, all
feedback provided by the Internet community is reviewed by the consensus team for
incorporation in the Benchmark. If you are interested in participating in the consensus
process, please visit https://workbench.cisecurity.org/.

https://workbench.cisecurity.org/

Page 7

Typographical Conventions

The following typographical conventions are used throughout this guide:

Convention Meaning

Stylized Monospace font

Used for blocks of code, command, and script
examples. Text should be interpreted exactly as
presented.

Monospace font
Used for inline code, commands, or examples.
Text should be interpreted exactly as presented.

<italic font in brackets>
Italic texts set in angle brackets denote a variable
requiring substitution for a real value.

Italic font
Used to denote the title of a book, article, or other
publication.

Note Additional information or caveats

Page 8

Recommendation Definitions
The following defines the various components included in a CIS recommendation as
applicable. If any of the components are not applicable it will be noted or the
component will not be included in the recommendation.

Title

Concise description for the recommendation's intended configuration.

Assessment Status

An assessment status is included for every recommendation. The assessment status
indicates whether the given recommendation can be automated or requires manual
steps to implement. Both statuses are equally important and are determined and
supported as defined below:

Automated

Represents recommendations for which assessment of a technical control can be fully
automated and validated to a pass/fail state. Recommendations will include the
necessary information to implement automation.

Manual

Represents recommendations for which assessment of a technical control cannot be
fully automated and requires all or some manual steps to validate that the configured
state is set as expected. The expected state can vary depending on the environment.

Profile

A collection of recommendations for securing a technology or a supporting platform.
Most benchmarks include at least a Level 1 and Level 2 Profile. Level 2 extends Level 1
recommendations and is not a standalone profile. The Profile Definitions section in the
benchmark provides the definitions as they pertain to the recommendations included for
the technology.

Description

Detailed information pertaining to the setting with which the recommendation is
concerned. In some cases, the description will include the recommended value.

Rationale Statement

Detailed reasoning for the recommendation to provide the user a clear and concise
understanding on the importance of the recommendation.

Page 9

Impact Statement

Any security, functionality, or operational consequences that can result from following
the recommendation.

Audit Procedure

Systematic instructions for determining if the target system complies with the
recommendation.

Remediation Procedure

Systematic instructions for applying recommendations to the target system to bring it
into compliance according to the recommendation.

Default Value

Default value for the given setting in this recommendation, if known. If not known, either
not configured or not defined will be applied.

References

Additional documentation relative to the recommendation.

CIS Critical Security Controls® (CIS Controls®)

The mapping between a recommendation and the CIS Controls is organized by CIS
Controls version, Safeguard, and Implementation Group (IG). The Benchmark in its
entirety addresses the CIS Controls safeguards of (v7) “5.1 - Establish Secure
Configurations” and (v8) '4.1 - Establish and Maintain a Secure Configuration Process”
so individual recommendations will not be mapped to these safeguards.

Additional Information

Supplementary information that does not correspond to any other field but may be
useful to the user.

Page 10

Profile Definitions

The following configuration profiles are defined by this Benchmark:

• Level 1

Level 1 profile for running Automated Assessment

• Level 2

Level 2 profile for running Automated Assessment

Page 11

Acknowledgements

This Benchmark exemplifies the great things a community of users, vendors, and
subject matter experts can accomplish through consensus collaboration. The CIS
community thanks the entire consensus team with special recognition to the following
individuals who contributed greatly to the creation of this guide:

Acknowledgements
This benchmark exemplifies the great things a community of users, vendors, and
subject matter experts can accomplish through consensus collaboration. The CIS
community thanks the entire consensus team with special recognition to the following
individuals who contributed greatly to the creation of this guide.

Special Thanks to:

Author
Randall Mowen

Editors
Mark Larinde and Randall Mowen

Contributors
Paavan Mistry
Rafael Pereyra
Angus Lees
Abeer Sethi
Gert Van Den Berg
Rory MCcune
Thomas Dupas
Corey McDonald

Page 12

Recommendations

1 Master (Control Plane) Components

Security is a shared responsibility between Microsoft and the Azure (AKS) customer.

Master security In AKS, the Kubernetes master components are part of the managed
service provided by Microsoft. Each AKS cluster has its own single-tenanted, dedicated
Kubernetes master to provide the API Server, Scheduler, etc. This master is managed
and maintained by Microsoft.

By default, the Kubernetes API server uses a public IP address and a fully qualified
domain name (FQDN). You can limit access to the API server endpoint using authorized
IP ranges. You can also create a fully private cluster to limit API server access to your
virtual network.

You can control access to the API server using Kubernetes role-based access control
(Kubernetes RBAC) and Azure RBAC. For more information, see Azure AD integration
with AKS.

2 Master (Control Plane) Configuration

With Azure Kubernetes Service (AKS), the master components such as the kube-
apiserver and kube-controller-manager are provided as a managed service. You create
and manage the nodes that run the kubelet and container runtime, and deploy your
applications through the managed Kubernetes API server. To help troubleshoot your
application and services, you may need to view the logs generated by these master
components. This section shows you how to use Azure Monitor logs to enable and
query the logs from the Kubernetes master (control plane) components.

Page 13

2.1 Logging

Page 14

2.1.1 Enable audit Logs (Manual)

Profile Applicability:

• Level 1

Description:

With Azure Kubernetes Service (AKS), the control plane components such as the kube-
apiserver and kube-controller-manager are provided as a managed service. You create
and manage the nodes that run the kubelet and container runtime, and deploy your
applications through the managed Kubernetes API server. To help troubleshoot your
application and services, you may need to view the logs generated by these control
plane components.

To help collect and review data from multiple sources, Azure Monitor logs provides a
query language and analytics engine that provides insights to your environment. A
workspace is used to collate and analyze the data, and can integrate with other Azure
services such as Application Insights and Security Center.

Rationale:

Exporting logs and metrics to a dedicated, persistent datastore ensures availability of
audit data following a cluster security event, and provides a central location for analysis
of log and metric data collated from multiple sources.

Impact:

What is collected from Kubernetes clusters Container insights includes a predefined set
of metrics and inventory items collected that are written as log data in your Log
Analytics workspace. All metrics listed below are collected by default every one minute.

Node metrics collected The following list is the 24 metrics per node that are collected:

cpuUsageNanoCores cpuCapacityNanoCores cpuAllocatableNanoCores
memoryRssBytes memoryWorkingSetBytes memoryCapacityBytes
memoryAllocatableBytes restartTimeEpoch used (disk) free (disk) used_percent (disk)
io_time (diskio) writes (diskio) reads (diskio) write_bytes (diskio) write_time (diskio)
iops_in_progress (diskio) read_bytes (diskio) read_time (diskio) err_in (net) err_out
(net) bytes_recv (net) bytes_sent (net) Kubelet_docker_operations (kubelet) Container
metrics The following list is the eight metrics per container collected:

cpuUsageNanoCores cpuRequestNanoCores cpuLimitNanoCores memoryRssBytes
memoryWorkingSetBytes memoryRequestBytes memoryLimitBytes restartTimeEpoch
Cluster inventory The following list is the cluster inventory data collected by default:

KubePodInventory – 1 per minute per container KubeNodeInventory – 1 per node per
minute KubeServices – 1 per service per minute ContainerInventory – 1 per container
per minute

Page 15

Audit:

Remediation:

Azure audit logs are enabled and managed in the Azure portal. To enable log collection
for the Kubernetes master components in your AKS cluster, open the Azure portal in a
web browser and complete the following steps:

1. Select the resource group for your AKS cluster, such as myResourceGroup.
Don't select the resource group that contains your individual AKS cluster
resources, such as MC_myResourceGroup_myAKSCluster_eastus.

2. On the left-hand side, choose Diagnostic settings.
3. Select your AKS cluster, such as myAKSCluster, then choose to Add diagnostic

setting.
4. Enter a name, such as myAKSClusterLogs, then select the option to Send to Log

Analytics.
5. Select an existing workspace or create a new one. If you create a workspace,

provide a workspace name, a resource group, and a location.
6. In the list of available logs, select the logs you wish to enable. For this example,

enable the kube-audit and kube-audit-admin logs. Common logs include the
kube-apiserver, kube-controller-manager, and kube-scheduler. You can return
and change the collected logs once Log Analytics workspaces are enabled.

7. When ready, select Save to enable collection of the selected logs.

Default Value:

By default, cluster control plane logs aren't sent to be Logged.

References:

1. https://kubernetes.io/docs/tasks/debug-application-cluster/audit/
2. https://docs.microsoft.com/en-us/azure/aks/view-master-logs
3. https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-

logging-threat-detection#lt-4-enable-logging-for-azure-resources

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

8.1 Establish and Maintain an Audit Log Management
Process
 Establish and maintain an audit log management process that defines the
enterprise’s logging requirements. At a minimum, address the collection, review,
and retention of audit logs for enterprise assets. Review and update documentation

annually, or when significant enterprise changes occur that could impact this
Safeguard.

● ● ●

https://kubernetes.io/docs/tasks/debug-application-cluster/audit/
https://docs.microsoft.com/en-us/azure/aks/view-master-logs
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-logging-threat-detection#lt-4-enable-logging-for-azure-resources
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-logging-threat-detection#lt-4-enable-logging-for-azure-resources

Page 16

Controls
Version

Control IG 1 IG 2 IG 3

v8
8.2 Collect Audit Logs
 Collect audit logs. Ensure that logging, per the enterprise’s audit log
management process, has been enabled across enterprise assets.

● ● ●

v7 6 Maintenance, Monitoring and Analysis of Audit Logs
 Maintenance, Monitoring and Analysis of Audit Logs

3 Worker Nodes

This section consists of security recommendations for the components that run on
Azure AKS worker nodes.

Page 17

3.1 Worker Node Configuration Files

Node security AKS nodes are Azure virtual machines that you manage and maintain.
Linux nodes run an optimized Ubuntu distribution using the Moby container runtime.
Windows Server nodes run an optimized Windows Server 2019 release and also use
the Moby container runtime. When an AKS cluster is created or scaled up, the nodes
are automatically deployed with the latest OS security updates and configurations.

The Azure platform automatically applies OS security patches to Linux nodes on a
nightly basis. If a Linux OS security update requires a host reboot, that reboot is not
automatically performed. You can manually reboot the Linux nodes, or a common
approach is to use Kured, an open-source reboot daemon for Kubernetes. Kured runs
as a DaemonSet and monitors each node for the presence of a file indicating that a
reboot is required. Reboots are managed across the cluster using the same cordon and
drain process as a cluster upgrade.

For Windows Server nodes, Windows Update does not automatically run and apply the
latest updates. On a regular schedule around the Windows Update release cycle and
your own validation process, you should perform an upgrade on the Windows Server
node pool(s) in your AKS cluster. This upgrade process creates nodes that run the
latest Windows Server image and patches, then removes the older nodes. For more
information on this process, see Upgrade a node pool in AKS.

Nodes are deployed into a private virtual network subnet, with no public IP addresses
assigned. For troubleshooting and management purposes, SSH is enabled by default.
This SSH access is only available using the internal IP address.

To provide storage, the nodes use Azure Managed Disks. For most VM node sizes,
these are Premium disks backed by high-performance SSDs. The data stored on
managed disks is automatically encrypted at rest within the Azure platform. To improve
redundancy, these disks are also securely replicated within the Azure datacenter.

Kubernetes environments, in AKS or elsewhere, currently aren't completely safe for
hostile multi-tenant usage. Additional security features like Pod Security Policies, or
more fine-grained Kubernetes role-based access control (Kubernetes RBAC) for nodes,
make exploits more difficult. However, for true security when running hostile multi-tenant
workloads, a hypervisor is the only level of security that you should trust. The security
domain for Kubernetes becomes the entire cluster, not an individual node. For these
types of hostile multi-tenant workloads, you should use physically isolated clusters. For
more information on ways to isolate workloads, see Best practices for cluster isolation in
AKS.

Page 18

3.1.1 Ensure that the kubeconfig file permissions are set to 644 or

more restrictive (Automated)

Profile Applicability:

• Level 1

Description:

If kubelet is running, and if it is configured by a kubeconfig file, ensure that the proxy

kubeconfig file has permissions of 644 or more restrictive.

Rationale:

The kubelet kubeconfig file controls various parameters of the kubelet service in the

worker node. You should restrict its file permissions to maintain the integrity of the file.
The file should be writable by only the administrators on the system.

It is possible to run kubelet with the kubeconfig parameters configured as a Kubernetes

ConfigMap instead of a file. In this case, there is no proxy kubeconfig file.

Impact:

None.

Audit:

Method 1
SSH to the worker nodes
To check to see if the Kubelet Service is running:

sudo systemctl status kubelet

The output should return Active: active (running) since..

Run the following command on each node to find the appropriate kubeconfig file:

ps -ef | grep kubelet

The output of the above command should return something similar to --kubeconfig

/var/lib/kubelet/kubeconfig which is the location of the kubeconfig file.

Run this command to obtain the kubeconfig file permissions:

Page 19

stat -c %a /var/lib/kubelet/kubeconfig

The output of the above command gives you the kubeconfig file's permissions.
Verify that if a file is specified and it exists, the permissions are 644 or more restrictive.

Method 2
Create and Run a Privileged Pod.
You will need to run a pod that is privileged enough to access the host's file system.
This can be achieved by deploying a pod that uses the hostPath volume to mount the
node's file system into the pod.
Here's an example of a simple pod definition that mounts the root of the host to /host
within the pod:

apiVersion: v1

kind: Pod

metadata:

 name: file-check

spec:

 volumes:

 - name: host-root

 hostPath:

 path: /

 type: Directory

 containers:

 - name: nsenter

 image: busybox

 command: ["sleep", "3600"]

 volumeMounts:

 - name: host-root

 mountPath: /host

 securityContext:

 privileged: true

Save this to a file (e.g., file-check-pod.yaml) and create the pod:

kubectl apply -f file-check-pod.yaml

Once the pod is running, you can exec into it to check file permissions on the node:

kubectl exec -it file-check -- sh

Now you are in a shell inside the pod, but you can access the node's file system through
the /host directory and check the permission level of the file:

ls -l /host/var/lib/kubelet/kubeconfig

Verify that if a file is specified and it exists, the permissions are 644 or more restrictive.

Remediation:

Run the below command (based on the file location on your system) on the each worker
node. For example,

Page 20

chmod 644 <kubeconfig file>

Default Value:

See the Azure AKS documentation for the default value.

References:

1. https://kubernetes.io/docs/admin/kube-proxy/
2. https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-

posture-vulnerability-management#pv-3-establish-secure-configurations-for-
compute-resources

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

3.3 Configure Data Access Control Lists
 Configure data access control lists based on a user’s need to know. Apply data

access control lists, also known as access permissions, to local and remote file
systems, databases, and applications.

● ● ●

v7

5.2 Maintain Secure Images
 Maintain secure images or templates for all systems in the enterprise based on
the organization's approved configuration standards. Any new system deployment
or existing system that becomes compromised should be imaged using one of
those images or templates.

 ● ●

https://kubernetes.io/docs/admin/kube-proxy/
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-posture-vulnerability-management#pv-3-establish-secure-configurations-for-compute-resources
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-posture-vulnerability-management#pv-3-establish-secure-configurations-for-compute-resources
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-posture-vulnerability-management#pv-3-establish-secure-configurations-for-compute-resources

Page 21

3.1.2 Ensure that the kubelet kubeconfig file ownership is set to

root:root (Automated)

Profile Applicability:

• Level 1

Description:

If kubelet is running, ensure that the file ownership of its kubeconfig file is set to

root:root.

Rationale:

The kubeconfig file for kubelet controls various parameters for the kubelet service in

the worker node. You should set its file ownership to maintain the integrity of the file.
The file should be owned by root:root.

Impact:

None

Audit:

Method 1
SSH to the worker nodes
To check to see if the Kubelet Service is running:

sudo systemctl status kubelet

The output should return Active: active (running) since..

Run the following command on each node to find the appropriate kubeconfig file:

ps -ef | grep kubelet

The output of the above command should return something similar to --kubeconfig

/var/lib/kubelet/kubeconfig which is the location of the kubeconfig file.

Run this command to obtain the kubeconfig file ownership:

stat -c %U:%G /var/lib/kubelet/kubeconfig

The output of the above command gives you the kubeconfig file's ownership. Verify that
the ownership is set to root:root.

Method 2
Create and Run a Privileged Pod.
You will need to run a pod that is privileged enough to access the host's file system.
This can be achieved by deploying a pod that uses the hostPath volume to mount the
node's file system into the pod.
Here's an example of a simple pod definition that mounts the root of the host to /host
within the pod:

Page 22

apiVersion: v1

kind: Pod

metadata:

 name: file-check

spec:

 volumes:

 - name: host-root

 hostPath:

 path: /

 type: Directory

 containers:

 - name: nsenter

 image: busybox

 command: ["sleep", "3600"]

 volumeMounts:

 - name: host-root

 mountPath: /host

 securityContext:

 privileged: true

Save this to a file (e.g., file-check-pod.yaml) and create the pod:

kubectl apply -f file-check-pod.yaml

Once the pod is running, you can exec into it to check file ownership on the node:

kubectl exec -it file-check -- sh

Now you are in a shell inside the pod, but you can access the node's file system through
the /host directory and check the ownership of the file:

ls -l /host/var/lib/kubelet/kubeconfig

The output of the above command gives you the kubeconfig file's ownership. Verify that
the ownership is set to root:root.

Remediation:

Run the below command (based on the file location on your system) on each worker
node. For example,

chown root:root <proxy kubeconfig file>

Default Value:

See the Azure AKS documentation for the default value.

References:

1. https://kubernetes.io/docs/admin/kube-proxy/
2. https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-

posture-vulnerability-management#pv-3-establish-secure-configurations-for-
compute-resources

https://kubernetes.io/docs/admin/kube-proxy/
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-posture-vulnerability-management#pv-3-establish-secure-configurations-for-compute-resources
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-posture-vulnerability-management#pv-3-establish-secure-configurations-for-compute-resources
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-posture-vulnerability-management#pv-3-establish-secure-configurations-for-compute-resources

Page 23

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

3.3 Configure Data Access Control Lists
 Configure data access control lists based on a user’s need to know. Apply data
access control lists, also known as access permissions, to local and remote file
systems, databases, and applications.

● ● ●

v7

5.2 Maintain Secure Images
 Maintain secure images or templates for all systems in the enterprise based on
the organization's approved configuration standards. Any new system deployment
or existing system that becomes compromised should be imaged using one of

those images or templates.

 ● ●

Page 24

3.1.3 Ensure that the azure.json file has permissions set to 644 or

more restrictive (Automated)

Profile Applicability:

• Level 1

Description:

The azure.json file in an Azure Kubernetes Service (AKS) cluster is a configuration file
used by the Kubernetes cloud provider integration for Azure. This file contains essential
details that allow the Kubernetes cluster to interact with Azure resources effectively. It's
part of the Azure Cloud Provider configuration, enabling Kubernetes components to
communicate with Azure services for features like load balancers, storage, and
networking.

Ensure the file has permissions of 644 or more restrictive.

Rationale:

The azure.json file in AKS structure typically includes:

• Tenant ID: The Azure Tenant ID where the AKS cluster resides.
• Subscription ID: The Azure Subscription ID used for billing and resource

management.
• AAD Client ID: The Azure Active Directory (AAD) application client ID used by

the Kubernetes cloud provider to interact with Azure resources.
• AAD Client Secret: The secret for the AAD application.
• Resource Group: The name of the resource group where the AKS cluster

resources are located.
• Location: The Azure region where the AKS cluster is deployed.
• VM Type: Specifies the type of VMs used by the cluster (e.g., standard VMs or

Virtual Machine Scale Sets).
• Subnet Name, Security Group Name, Vnet Name, and Vnet Resource Group:

Networking details for the cluster.
• Route Table Name: The name of the route table for the cluster.
• Storage Account Type: The default type of storage account to use for Kubernetes

persistent volumes.

Impact:

None.

Audit:

Method 1
First, SSH to the relevant worker node:
To check to see if the Kubelet Service is running:

Page 25

sudo systemctl status kubelet

The output should return Active: active (running) since..

Run the following command on each node to find the appropriate Kubelet config file:

ps -ef | grep kubelet

The output of the above command should return something similar to --config

/etc/kubernetes/azure.json which is the location of the Kubelet config file.

Run the following command:

stat -c %a /etc/kubernetes/azure.json

The output of the above command is the Kubelet config file's permissions. Verify that
the permissions are 644 or more restrictive.

Method 2
Create and Run a Privileged Pod.
You will need to run a pod that is privileged enough to access the host's file system.
This can be achieved by deploying a pod that uses the hostPath volume to mount the
node's file system into the pod.
Here's an example of a simple pod definition that mounts the root of the host to /host
within the pod:

apiVersion: v1

kind: Pod

metadata:

 name: file-check

spec:

 volumes:

 - name: host-root

 hostPath:

 path: /

 type: Directory

 containers:

 - name: nsenter

 image: busybox

 command: ["sleep", "3600"]

 volumeMounts:

 - name: host-root

 mountPath: /host

 securityContext:

 privileged: true

Save this to a file (e.g., file-check-pod.yaml) and create the pod:

kubectl apply -f file-check-pod.yaml

Once the pod is running, you can exec into it to check file permissions on the node:

kubectl exec -it file-check -- sh

Now you are in a shell inside the pod, but you can access the node's file system through
the /host directory and check the permission level of the file:

ls -l /host/etc/kubernetes/azure.json

Verify that if a file is specified and it exists, the permissions are 644 or more restrictive.

Page 26

Remediation:

Run the following command (using the config file location identified in the Audit step)

chmod 644 /etc/kubernetes/azure.json

Default Value:

See the Azure AKS documentation for the default value.

References:

1. https://kubernetes.io/docs/tasks/administer-cluster/kubelet-config-file/
2. https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-

posture-vulnerability-management#pv-3-establish-secure-configurations-for-
compute-resources

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

3.3 Configure Data Access Control Lists
 Configure data access control lists based on a user’s need to know. Apply data
access control lists, also known as access permissions, to local and remote file
systems, databases, and applications.

● ● ●

v7

5.2 Maintain Secure Images
 Maintain secure images or templates for all systems in the enterprise based on
the organization's approved configuration standards. Any new system deployment

or existing system that becomes compromised should be imaged using one of
those images or templates.

 ● ●

https://kubernetes.io/docs/tasks/administer-cluster/kubelet-config-file/
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-posture-vulnerability-management#pv-3-establish-secure-configurations-for-compute-resources
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-posture-vulnerability-management#pv-3-establish-secure-configurations-for-compute-resources
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-posture-vulnerability-management#pv-3-establish-secure-configurations-for-compute-resources

Page 27

3.1.4 Ensure that the azure.json file ownership is set to root:root

(Automated)

Profile Applicability:

• Level 1

Description:

The azure.json file in an Azure Kubernetes Service (AKS) cluster is a configuration file
used by the Kubernetes cloud provider integration for Azure. This file contains essential
details that allow the Kubernetes cluster to interact with Azure resources effectively. It's
part of the Azure Cloud Provider configuration, enabling Kubernetes components to
communicate with Azure services for features like load balancers, storage, and
networking.

Ensure that the file is owned by root:root.

Rationale:

The azure.json file in AKS structure typically includes:

• Tenant ID: The Azure Tenant ID where the AKS cluster resides.
• Subscription ID: The Azure Subscription ID used for billing and resource

management.
• AAD Client ID: The Azure Active Directory (AAD) application client ID used by

the Kubernetes cloud provider to interact with Azure resources.
• AAD Client Secret: The secret for the AAD application.
• Resource Group: The name of the resource group where the AKS cluster

resources are located.
• Location: The Azure region where the AKS cluster is deployed.
• VM Type: Specifies the type of VMs used by the cluster (e.g., standard VMs or

Virtual Machine Scale Sets).
• Subnet Name, Security Group Name, Vnet Name, and Vnet Resource Group:

Networking details for the cluster.
• Route Table Name: The name of the route table for the cluster.
• Storage Account Type: The default type of storage account to use for Kubernetes

persistent volumes.

Impact:

None

Audit:

Method 1
First, SSH to the relevant worker node:
To check to see if the Kubelet Service is running:

Page 28

sudo systemctl status kubelet

The output should return Active: active (running) since..

Run the following command on each node to find the appropriate Kubelet config file:

ps -ef | grep kubelet

The output of the above command should return something similar to --config

/etc/kubernetes/azure.json which is the location of the Kubelet config file.

Run the following command:

stat -c %U:%G /etc/kubernetes/azure.json

The output of the above command is the Kubelet config file's ownership. Verify that the
ownership is set to root:root

Method 2
Create and Run a Privileged Pod.
You will need to run a pod that is privileged enough to access the host's file system.
This can be achieved by deploying a pod that uses the hostPath volume to mount the
node's file system into the pod.
Here's an example of a simple pod definition that mounts the root of the host to /host
within the pod:

apiVersion: v1

kind: Pod

metadata:

 name: file-check

spec:

 volumes:

 - name: host-root

 hostPath:

 path: /

 type: Directory

 containers:

 - name: nsenter

 image: busybox

 command: ["sleep", "3600"]

 volumeMounts:

 - name: host-root

 mountPath: /host

 securityContext:

 privileged: true

Save this to a file (e.g., file-check-pod.yaml) and create the pod:

kubectl apply -f file-check-pod.yaml

Once the pod is running, you can exec into it to check file ownership on the node:

kubectl exec -it file-check -- sh

Now you are in a shell inside the pod, but you can access the node's file system through
the /host directory and check the ownership of the file:

Page 29

ls -l /etc/kubernetes/azure.json

The output of the above command gives you the azure.json file's ownership. Verify that
the ownership is set to root:root.

Remediation:

Run the following command (using the config file location identified in the Audit step)

chown root:root /etc/kubernetes/azure.json

Default Value:

See the Azure AKS documentation for the default value.

References:

1. https://kubernetes.io/docs/admin/kube-proxy/
2. https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-

posture-vulnerability-management#pv-3-establish-secure-configurations-for-
compute-resources

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

3.3 Configure Data Access Control Lists
 Configure data access control lists based on a user’s need to know. Apply data
access control lists, also known as access permissions, to local and remote file

systems, databases, and applications.

● ● ●

v7

5.2 Maintain Secure Images
 Maintain secure images or templates for all systems in the enterprise based on
the organization's approved configuration standards. Any new system deployment
or existing system that becomes compromised should be imaged using one of
those images or templates.

 ● ●

https://kubernetes.io/docs/admin/kube-proxy/
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-posture-vulnerability-management#pv-3-establish-secure-configurations-for-compute-resources
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-posture-vulnerability-management#pv-3-establish-secure-configurations-for-compute-resources
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-posture-vulnerability-management#pv-3-establish-secure-configurations-for-compute-resources

Page 30

3.2 Kubelet

This section contains recommendations for kubelet configuration.

Kubelet settings may be configured using arguments on the running kubelet executable,
or they may be taken from a Kubelet config file. If both are specified, the executable
argument takes precedence.

To find the Kubelet config file, run the following command:

ps -ef | grep kubelet | grep config

If the --config argument is present, this gives the location of the Kubelet config file.

This config file could be in JSON or YAML format depending on your distribution.

Page 31

3.2.1 Ensure that the --anonymous-auth argument is set to false

(Automated)

Profile Applicability:

• Level 1

Description:

Disable anonymous requests to the Kubelet server.

Rationale:

When enabled, requests that are not rejected by other configured authentication
methods are treated as anonymous requests. These requests are then served by the
Kubelet server. You should rely on authentication to authorize access and disallow
anonymous requests.

Impact:

Anonymous requests will be rejected.

Audit:

Audit Method 1:
If using a Kubelet configuration file, check that there is an entry for authentication:

anonymous: enabled set to false.

First, SSH to the relevant node:
Run the following command on each node to find the appropriate Kubelet config file:

ps -ef | grep kubelet

The output of the above command should return something similar to --config

/etc/kubernetes/kubelet/kubelet-config.json which is the location of the Kubelet

config file.
Open the Kubelet config file:

sudo more /etc/kubernetes/kubelet/kubelet-config.json

Verify that the "authentication": { "anonymous": { "enabled": false } argument is

set to false.

Audit Method 2:
If using the api configz endpoint consider searching for the status of authentication...

"anonymous":{"enabled":false} by extracting the live configuration from the nodes

running kubelet.
Set the local proxy port and the following variables and provide proxy port number and
node name;
HOSTNAME_PORT="localhost-and-port-number"
NODE_NAME="The-Name-Of-Node-To-Extract-Configuration" from the output of

"kubectl get nodes"

Page 32

kubectl proxy --port=8001 &

export HOSTNAME_PORT=localhost:8001 (example host and port number)

export NODE_NAME=ip-192.168.31.226.aks.internal (example node name from

"kubectl get nodes")

curl -sSL "http://${HOSTNAME_PORT}/api/v1/nodes/${NODE_NAME}/proxy/configz"

Remediation:

Remediation Method 1:
If modifying the Kubelet config file, edit the kubelet-config.json file
/etc/kubernetes/kubelet/kubelet-config.json and set the below parameter to false

"anonymous": "enabled": false

Remediation Method 2:
If using executable arguments, edit the kubelet service file
/etc/systemd/system/kubelet.service.d/10-kubelet-args.conf on each worker node

and add the below parameter at the end of the KUBELET_ARGS variable string.

--anonymous-auth=false

Remediation Method 3:
If using the api configz endpoint consider searching for the status of
"authentication.*anonymous":{"enabled":false}" by extracting the live configuration

from the nodes running kubelet.
**See detailed step-by-step configmap procedures in Reconfigure a Node's Kubelet in a
Live Cluster, and then rerun the curl statement from audit process to check for kubelet
configuration changes

kubectl proxy --port=8001 &

export HOSTNAME_PORT=localhost:8001 (example host and port number)

export NODE_NAME=ip-192.168.31.226.aks.internal (example node name from

"kubectl get nodes")

curl -sSL "http://${HOSTNAME_PORT}/api/v1/nodes/${NODE_NAME}/proxy/configz"

For all three remediations:
Based on your system, restart the kubelet service and check status

systemctl daemon-reload

systemctl restart kubelet.service

systemctl status kubelet -l

Default Value:

See the Azure AKS documentation for the default value.

References:

1. https://kubernetes.io/docs/admin/kubelet/

https://kubernetes.io/docs/tasks/administer-cluster/reconfigure-kubelet/
https://kubernetes.io/docs/tasks/administer-cluster/reconfigure-kubelet/
https://kubernetes.io/docs/admin/kubelet/

Page 33

2. https://kubernetes.io/docs/admin/kubelet-authentication-authorization/#kubelet-
authentication

3. https://kubernetes.io/docs/tasks/administer-cluster/reconfigure-kubelet/
4. https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-

governance-strategy#gs-6-define-identity-and-privileged-access-strategy

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

6 Access Control Management
 Use processes and tools to create, assign, manage, and revoke access
credentials and privileges for user, administrator, and service accounts for
enterprise assets and software.

v7 14 Controlled Access Based on the Need to Know
 Controlled Access Based on the Need to Know

https://kubernetes.io/docs/admin/kubelet-authentication-authorization/#kubelet-authentication
https://kubernetes.io/docs/admin/kubelet-authentication-authorization/#kubelet-authentication
https://kubernetes.io/docs/tasks/administer-cluster/reconfigure-kubelet/
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-governance-strategy#gs-6-define-identity-and-privileged-access-strategy
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-governance-strategy#gs-6-define-identity-and-privileged-access-strategy

Page 34

3.2.2 Ensure that the --authorization-mode argument is not set to

AlwaysAllow (Automated)

Profile Applicability:

• Level 1

Description:

Do not allow all requests. Enable explicit authorization.

Rationale:

Kubelets, by default, allow all authenticated requests (even anonymous ones) without
needing explicit authorization checks from the apiserver. You should restrict this
behavior and only allow explicitly authorized requests.

Impact:

Unauthorized requests will be denied.

Audit:

Audit Method 1:
If using a Kubelet configuration file, check that there is an entry for "authentication":

"webhook": "enabled" set to true.

First, SSH to the relevant node:
Run the following command on each node to find the appropriate Kubelet config file:

ps -ef | grep kubelet

The output of the above command should return something similar to --config

/etc/kubernetes/kubelet/kubelet-config.json which is the location of the Kubelet

config file.
Open the Kubelet config file:

Page 35

sudo more /etc/kubernetes/kubelet/kubelet-config.json

Verify that the "authentication": {"webhook": { "enabled": is set to true.

If the "authentication": {"mode": { argument is present check that it is not set to

AlwaysAllow. If it is not present check that there is a Kubelet config file specified by --

config, and that file sets "authentication": {"mode": { to something other than

AlwaysAllow.

Audit Method 2:
If using the api configz endpoint consider searching for the status of authentication...

"webhook":{"enabled":true} by extracting the live configuration from the nodes running

kubelet.
Set the local proxy port and the following variables and provide proxy port number and
node name;
HOSTNAME_PORT="localhost-and-port-number"
NODE_NAME="The-Name-Of-Node-To-Extract-Configuration" from the output of

"kubectl get nodes"

kubectl proxy --port=8001 &

export HOSTNAME_PORT=localhost:8001 (example host and port number)

export NODE_NAME=ip-192.168.31.226.aks.internal (example node name from

"kubectl get nodes")

curl -sSL "http://${HOSTNAME_PORT}/api/v1/nodes/${NODE_NAME}/proxy/configz"

Remediation:

Remediation Method 1:
If modifying the Kubelet config file, edit the kubelet-config.json file
/etc/kubernetes/kubelet/kubelet-config.json and set the below parameter to false

"authentication"... "webhook":{"enabled":true

Remediation Method 2:
If using executable arguments, edit the kubelet service file
/etc/systemd/system/kubelet.service.d/10-kubelet-args.conf on each worker node

and add the below parameter at the end of the KUBELET_ARGS variable string.

--authorization-mode=Webhook

Remediation Method 3:
If using the api configz endpoint consider searching for the status of
"authentication.*webhook":{"enabled":true" by extracting the live configuration from

the nodes running kubelet.
**See detailed step-by-step configmap procedures in Reconfigure a Node's Kubelet in a
Live Cluster, and then rerun the curl statement from audit process to check for kubelet
configuration changes

https://kubernetes.io/docs/tasks/administer-cluster/reconfigure-kubelet/
https://kubernetes.io/docs/tasks/administer-cluster/reconfigure-kubelet/

Page 36

kubectl proxy --port=8001 &

export HOSTNAME_PORT=localhost:8001 (example host and port number)

export NODE_NAME=ip-192.168.31.226.aks.internal (example node name from

"kubectl get nodes")

curl -sSL "http://${HOSTNAME_PORT}/api/v1/nodes/${NODE_NAME}/proxy/configz"

For all three remediations:
Based on your system, restart the kubelet service and check status

systemctl daemon-reload

systemctl restart kubelet.service

systemctl status kubelet -l

Default Value:

See the Azure AKS documentation for the default value.

References:

1. https://kubernetes.io/docs/admin/kubelet/
2. https://kubernetes.io/docs/admin/kubelet-authentication-authorization/#kubelet-

authentication
3. https://kubernetes.io/docs/tasks/administer-cluster/reconfigure-kubelet/
4. https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-

governance-strategy#gs-6-define-identity-and-privileged-access-strategy

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

6 Access Control Management
 Use processes and tools to create, assign, manage, and revoke access
credentials and privileges for user, administrator, and service accounts for
enterprise assets and software.

v7 14 Controlled Access Based on the Need to Know
 Controlled Access Based on the Need to Know

https://kubernetes.io/docs/admin/kubelet/
https://kubernetes.io/docs/admin/kubelet-authentication-authorization/#kubelet-authentication
https://kubernetes.io/docs/admin/kubelet-authentication-authorization/#kubelet-authentication
https://kubernetes.io/docs/tasks/administer-cluster/reconfigure-kubelet/
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-governance-strategy#gs-6-define-identity-and-privileged-access-strategy
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-governance-strategy#gs-6-define-identity-and-privileged-access-strategy

Page 37

3.2.3 Ensure that the --client-ca-file argument is set as

appropriate (Automated)

Profile Applicability:

• Level 1

Description:

Enable Kubelet authentication using certificates.

Rationale:

The connections from the apiserver to the kubelet are used for fetching logs for pods,
attaching (through kubectl) to running pods, and using the kubelet’s port-forwarding
functionality. These connections terminate at the kubelet’s HTTPS endpoint. By default,
the apiserver does not verify the kubelet’s serving certificate, which makes the
connection subject to man-in-the-middle attacks, and unsafe to run over untrusted
and/or public networks. Enabling Kubelet certificate authentication ensures that the
apiserver could authenticate the Kubelet before submitting any requests.

Impact:

You require TLS to be configured on apiserver as well as kubelets.

Audit:

Audit Method 1:
If using a Kubelet configuration file, check that there is an entry for "x509":

{"clientCAFile:" set to the location of the client certificate authority file.

First, SSH to the relevant node:
Run the following command on each node to find the appropriate Kubelet config file:

ps -ef | grep kubelet

The output of the above command should return something similar to --config

/etc/kubernetes/kubelet/kubelet-config.json which is the location of the Kubelet

config file.
Open the Kubelet config file:

Page 38

sudo more /etc/kubernetes/kubelet/kubelet-config.json

Verify that the "x509": {"clientCAFile:" argument exists and is set to the location of

the client certificate authority file.
If the "x509": {"clientCAFile:" argument is not present, check that there is a Kubelet

config file specified by --config, and that the file sets "authentication": { "x509":

{"clientCAFile:" to the location of the client certificate authority file.

Audit Method 2:
If using the api configz endpoint consider searching for the status of authentication..

x509":("clientCAFile":"/etc/kubernetes/pki/ca.crt by extracting the live

configuration from the nodes running kubelet.
Set the local proxy port and the following variables and provide proxy port number and
node name;
HOSTNAME_PORT="localhost-and-port-number"
NODE_NAME="The-Name-Of-Node-To-Extract-Configuration" from the output of

"kubectl get nodes"

kubectl proxy --port=8001 &

export HOSTNAME_PORT=localhost:8001 (example host and port number)

export NODE_NAME=ip-192.168.31.226.aks.internal (example node name from

"kubectl get nodes")

curl -sSL "http://${HOSTNAME_PORT}/api/v1/nodes/${NODE_NAME}/proxy/configz"

Remediation:

Remediation Method 1:
If modifying the Kubelet config file, edit the kubelet-config.json file
/etc/kubernetes/kubelet/kubelet-config.json and set the below parameter to false

"authentication": { "x509": {"clientCAFile:" to the location of the client CA

file.

Remediation Method 2:
If using executable arguments, edit the kubelet service file
/etc/systemd/system/kubelet.service.d/10-kubelet-args.conf on each worker node

and add the below parameter at the end of the KUBELET_ARGS variable string.

--client-ca-file=<path/to/client-ca-file>

Remediation Method 3:
If using the api configz endpoint consider searching for the status of
"authentication.*x509":("clientCAFile":"/etc/kubernetes/pki/ca.crt" by

extracting the live configuration from the nodes running kubelet.
**See detailed step-by-step configmap procedures in Reconfigure a Node's Kubelet in a
Live Cluster, and then rerun the curl statement from audit process to check for kubelet
configuration changes

https://kubernetes.io/docs/tasks/administer-cluster/reconfigure-kubelet/
https://kubernetes.io/docs/tasks/administer-cluster/reconfigure-kubelet/

Page 39

kubectl proxy --port=8001 &

export HOSTNAME_PORT=localhost:8001 (example host and port number)

export NODE_NAME=ip-192.168.31.226.aks.internal (example node name from

"kubectl get nodes")

curl -sSL "http://${HOSTNAME_PORT}/api/v1/nodes/${NODE_NAME}/proxy/configz"

For all three remediations:
Based on your system, restart the kubelet service and check status

systemctl daemon-reload

systemctl restart kubelet.service

systemctl status kubelet -l

Default Value:

See the Azure AKS documentation for the default value.

References:

1. https://kubernetes.io/docs/admin/kubelet/
2. https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet-

authentication-authorization/
3. https://kubernetes.io/docs/tasks/administer-cluster/reconfigure-kubelet/
4. https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-data-

protection#dp-4-encrypt-sensitive-information-in-transit

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

6 Access Control Management
 Use processes and tools to create, assign, manage, and revoke access
credentials and privileges for user, administrator, and service accounts for
enterprise assets and software.

v7 14.4 Encrypt All Sensitive Information in Transit
 Encrypt all sensitive information in transit.

 ● ●

https://kubernetes.io/docs/admin/kubelet/
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet-authentication-authorization/
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet-authentication-authorization/
https://kubernetes.io/docs/tasks/administer-cluster/reconfigure-kubelet/
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-data-protection#dp-4-encrypt-sensitive-information-in-transit
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-data-protection#dp-4-encrypt-sensitive-information-in-transit

Page 40

3.2.4 Ensure that the --read-only-port is secured (Automated)

Profile Applicability:

• Level 1

Description:

Disable the read-only port.

Rationale:

The Kubelet process provides a read-only API in addition to the main Kubelet API.
Unauthenticated access is provided to this read-only API which could possibly retrieve
potentially sensitive information about the cluster.

Impact:

Removal of the read-only port will require that any service which made use of it will
need to be re-configured to use the main Kubelet API.

Audit:

If using a Kubelet configuration file, check that there is an entry for authentication:

anonymous: enabled set to 0.

First, SSH to the relevant node:
Run the following command on each node to find the appropriate Kubelet config file:

ps -ef | grep kubelet

The output of the above command should return something similar to --config

/etc/kubernetes/kubelet/kubelet-config.json which is the location of the Kubelet

config file.
Open the Kubelet config file:

cat /etc/kubernetes/kubelet/kubelet-config.json

Verify that the --read-only-port argument exists and is set to 0.

If the --read-only-port argument is not present, check that there is a Kubelet config file

specified by --config. Check that if there is a readOnlyPort entry in the file, it is set to 0.

Remediation:

If modifying the Kubelet config file, edit the kubelet-config.json file
/etc/kubernetes/kubelet/kubelet-config.json and set the below parameter to false

readOnlyPort to 0

If using executable arguments, edit the kubelet service file
/etc/systemd/system/kubelet.service.d/10-kubelet-args.conf on each worker node

and add the below parameter at the end of the KUBELET_ARGS variable string.

Page 41

--read-only-port=0

For all remediations:
Based on your system, restart the kubelet service and check status

systemctl daemon-reload

systemctl restart kubelet.service

systemctl status kubelet -l

Default Value:

See the Azure AKS documentation for the default value.

References:

1. https://kubernetes.io/docs/admin/kubelet/
2. https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-

posture-vulnerability-management#pv-3-establish-secure-configurations-for-
compute-resources

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

4.1 Establish and Maintain a Secure Configuration Process
 Establish and maintain a secure configuration process for enterprise assets
(end-user devices, including portable and mobile, non-computing/IoT devices, and
servers) and software (operating systems and applications). Review and update
documentation annually, or when significant enterprise changes occur that could
impact this Safeguard.

● ● ●

v7

9.2 Ensure Only Approved Ports, Protocols and Services
Are Running
 Ensure that only network ports, protocols, and services listening on a system
with validated business needs, are running on each system.

 ● ●

https://kubernetes.io/docs/admin/kubelet/
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-posture-vulnerability-management#pv-3-establish-secure-configurations-for-compute-resources
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-posture-vulnerability-management#pv-3-establish-secure-configurations-for-compute-resources
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-posture-vulnerability-management#pv-3-establish-secure-configurations-for-compute-resources

Page 42

3.2.5 Ensure that the --streaming-connection-idle-timeout

argument is not set to 0 (Automated)

Profile Applicability:

• Level 1

Description:

Do not disable timeouts on streaming connections.

Rationale:

Setting idle timeouts ensures that you are protected against Denial-of-Service attacks,
inactive connections and running out of ephemeral ports.

Note: By default, --streaming-connection-idle-timeout is set to 4 hours which might

be too high for your environment. Setting this as appropriate would additionally ensure
that such streaming connections are timed out after serving legitimate use cases.

Impact:

Long-lived connections could be interrupted.

Audit:

Audit Method 1:
First, SSH to the relevant node:
Run the following command on each node to find the running kubelet process:

ps -ef | grep kubelet

If the command line for the process includes the argument streaming-connection-

idle-timeout verify that it is not set to 0.

If the streaming-connection-idle-timeout argument is not present in the output of the

above command, refer instead to the config argument that specifies the location of the

Kubelet config file e.g. --config /etc/kubernetes/kubelet/kubelet-config.json.

Open the Kubelet config file:

cat /etc/kubernetes/kubelet/kubelet-config.json

Verify that the streamingConnectionIdleTimeout argument is not set to 0.

Audit Method 2:
If using the api configz endpoint consider searching for the status of
"streamingConnectionIdleTimeout":"4h0m0s" by extracting the live configuration from

the nodes running kubelet.
Set the local proxy port and the following variables and provide proxy port number and
node name;
HOSTNAME_PORT="localhost-and-port-number"
NODE_NAME="The-Name-Of-Node-To-Extract-Configuration" from the output of

"kubectl get nodes"

Page 43

kubectl proxy --port=8001 &

export HOSTNAME_PORT=localhost:8001 (example host and port number)

export NODE_NAME=ip-192.168.31.226.aks.internal (example node name from

"kubectl get nodes")

curl -sSL "http://${HOSTNAME_PORT}/api/v1/nodes/${NODE_NAME}/proxy/configz"

Remediation:

Remediation Method 1:
If modifying the Kubelet config file, edit the kubelet-config.json file
/etc/kubernetes/kubelet/kubelet-config.json and set the below parameter to a non-

zero value in the format of #h#m#s

"streamingConnectionIdleTimeout": "4h0m0s"

You should ensure that the kubelet service file
/etc/systemd/system/kubelet.service.d/10-kubelet-args.conf does not specify a --

streaming-connection-idle-timeout argument because it would override the Kubelet

config file.
Remediation Method 2:
If using executable arguments, edit the kubelet service file
/etc/systemd/system/kubelet.service.d/10-kubelet-args.conf on each worker node

and add the below parameter at the end of the KUBELET_ARGS variable string.

--streaming-connection-idle-timeout=4h0m0s

Remediation Method 3:
If using the api configz endpoint consider searching for the status of
"streamingConnectionIdleTimeout": by extracting the live configuration from the nodes

running kubelet.
**See detailed step-by-step configmap procedures in Reconfigure a Node's Kubelet in a
Live Cluster, and then rerun the curl statement from audit process to check for kubelet
configuration changes

kubectl proxy --port=8001 &

export HOSTNAME_PORT=localhost:8001 (example host and port number)

export NODE_NAME=ip-192.168.31.226.aks.internal (example node name from

"kubectl get nodes")

curl -sSL "http://${HOSTNAME_PORT}/api/v1/nodes/${NODE_NAME}/proxy/configz"

For all three remediations:
Based on your system, restart the kubelet service and check status

https://kubernetes.io/docs/tasks/administer-cluster/reconfigure-kubelet/
https://kubernetes.io/docs/tasks/administer-cluster/reconfigure-kubelet/

Page 44

systemctl daemon-reload

systemctl restart kubelet.service

systemctl status kubelet -l

Default Value:

See the Azure AKS documentation for the default value.

References:

1. https://kubernetes.io/docs/admin/kubelet/
2. https://github.com/kubernetes/kubernetes/pull/18552
3. https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-

posture-vulnerability-management#pv-3-establish-secure-configurations-for-
compute-resources

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

4.1 Establish and Maintain a Secure Configuration Process
 Establish and maintain a secure configuration process for enterprise assets
(end-user devices, including portable and mobile, non-computing/IoT devices, and
servers) and software (operating systems and applications). Review and update

documentation annually, or when significant enterprise changes occur that could
impact this Safeguard.

● ● ●

v7
9 Limitation and Control of Network Ports, Protocols, and
Services
 Limitation and Control of Network Ports, Protocols, and Services

https://kubernetes.io/docs/admin/kubelet/
https://github.com/kubernetes/kubernetes/pull/18552
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-posture-vulnerability-management#pv-3-establish-secure-configurations-for-compute-resources
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-posture-vulnerability-management#pv-3-establish-secure-configurations-for-compute-resources
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-posture-vulnerability-management#pv-3-establish-secure-configurations-for-compute-resources

Page 45

3.2.6 Ensure that the --make-iptables-util-chains argument is set

to true (Automated)

Profile Applicability:

• Level 1

Description:

Allow Kubelet to manage iptables.

Rationale:

Kubelets can automatically manage the required changes to iptables based on how you
choose your networking options for the pods. It is recommended to let kubelets manage
the changes to iptables. This ensures that the iptables configuration remains in sync
with pods networking configuration. Manually configuring iptables with dynamic pod
network configuration changes might hamper the communication between
pods/containers and to the outside world. You might have iptables rules too restrictive
or too open.

Impact:

Kubelet would manage the iptables on the system and keep it in sync. If you are using
any other iptables management solution, then there might be some conflicts.

Audit:

Audit Method 1:
If using a Kubelet configuration file, check that there is an entry for
makeIPTablesUtilChains set to true.

First, SSH to the relevant node:
Run the following command on each node to find the appropriate Kubelet config file:

ps -ef | grep kubelet

The output of the above command should return something similar to --config

/etc/kubernetes/kubelet/kubelet-config.json which is the location of the Kubelet

config file.
Open the Kubelet config file:

Page 46

cat /etc/kubernetes/kubelet/kubelet-config.json

Verify that if the makeIPTablesUtilChains argument exists then it is set to true.

If the --make-iptables-util-chains argument does not exist, and there is a Kubelet

config file specified by --config, verify that the file does not set

makeIPTablesUtilChains to false.

Audit Method 2:
If using the api configz endpoint consider searching for the status of authentication...

"makeIPTablesUtilChains":true by extracting the live configuration from the nodes

running kubelet.
Set the local proxy port and the following variables and provide proxy port number and
node name;
HOSTNAME_PORT="localhost-and-port-number"
NODE_NAME="The-Name-Of-Node-To-Extract-Configuration" from the output of

"kubectl get nodes"

kubectl proxy --port=8001 &

export HOSTNAME_PORT=localhost:8001 (example host and port number)

export NODE_NAME=ip-192.168.31.226.aks.internal (example node name from

"kubectl get nodes")

curl -sSL "http://${HOSTNAME_PORT}/api/v1/nodes/${NODE_NAME}/proxy/configz"

Remediation:

Remediation Method 1:
If modifying the Kubelet config file, edit the kubelet-config.json file
/etc/kubernetes/kubelet/kubelet-config.json and set the below parameter to false

"makeIPTablesUtilChains": true

Remediation Method 2:
If using executable arguments, edit the kubelet service file
/etc/systemd/system/kubelet.service.d/10-kubelet-args.conf on each worker node

and add the below parameter at the end of the KUBELET_ARGS variable string.

--make-iptables-util-chains:true

Remediation Method 3:
If using the api configz endpoint consider searching for the status of
"makeIPTablesUtilChains": true by extracting the live configuration from the nodes

running kubelet.
**See detailed step-by-step configmap procedures in Reconfigure a Node's Kubelet in a
Live Cluster, and then rerun the curl statement from audit process to check for kubelet
configuration changes

https://kubernetes.io/docs/tasks/administer-cluster/reconfigure-kubelet/
https://kubernetes.io/docs/tasks/administer-cluster/reconfigure-kubelet/

Page 47

kubectl proxy --port=8001 &

export HOSTNAME_PORT=localhost:8001 (example host and port number)

export NODE_NAME=ip-192.168.31.226.aks.internal (example node name from

"kubectl get nodes")

curl -sSL "http://${HOSTNAME_PORT}/api/v1/nodes/${NODE_NAME}/proxy/configz"

For all three remediations:
Based on your system, restart the kubelet service and check status

systemctl daemon-reload

systemctl restart kubelet.service

systemctl status kubelet -l

Default Value:

See the Azure AKS documentation for the default value.

References:

1. https://kubernetes.io/docs/admin/kubelet/
2. https://kubernetes.io/docs/tasks/administer-cluster/reconfigure-kubelet/
3. https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-

network-security#ns-1-implement-security-for-internal-traffic

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

4.1 Establish and Maintain a Secure Configuration Process
 Establish and maintain a secure configuration process for enterprise assets
(end-user devices, including portable and mobile, non-computing/IoT devices, and
servers) and software (operating systems and applications). Review and update
documentation annually, or when significant enterprise changes occur that could
impact this Safeguard.

● ● ●

v7
9 Limitation and Control of Network Ports, Protocols, and
Services
 Limitation and Control of Network Ports, Protocols, and Services

https://kubernetes.io/docs/admin/kubelet/
https://kubernetes.io/docs/tasks/administer-cluster/reconfigure-kubelet/
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-network-security#ns-1-implement-security-for-internal-traffic
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-network-security#ns-1-implement-security-for-internal-traffic

Page 48

3.2.7 Ensure that the --eventRecordQPS argument is set to 0 or a

level which ensures appropriate event capture (Automated)

Profile Applicability:

• Level 2

Description:

Security relevant information should be captured. The --eventRecordQPS flag on the

Kubelet can be used to limit the rate at which events are gathered. Setting this too low
could result in relevant events not being logged, however the unlimited setting of 0 could

result in a denial of service on the kubelet.

Rationale:

It is important to capture all events and not restrict event creation. Events are an
important source of security information and analytics that ensure that your environment
is consistently monitored using the event data.

Impact:

Setting this parameter to 0 could result in a denial of service condition due to excessive

events being created. The cluster's event processing and storage systems should be
scaled to handle expected event loads.

Audit:

Audit Method 1:
First, SSH to each node.
Run the following command on each node to find the Kubelet process:

ps -ef | grep kubelet

In the output of the above command review the value set for the --eventRecordQPS

argument and determine whether this has been set to an appropriate level for the
cluster. The value of 0 can be used to ensure that all events are captured.

If the --eventRecordQPS argument does not exist, check that there is a Kubelet config

file specified by --config and review the value in this location.

The output of the above command should return something similar to --config

/etc/kubernetes/kubelet/kubelet-config.json which is the location of the Kubelet

config file.
Open the Kubelet config file:

Page 49

cat /etc/kubernetes/kubelet/kubelet-config.json

If there is an entry for eventRecordQPS check that it is set to 0 or an appropriate level for

the cluster.
Audit Method 2:
If using the api configz endpoint consider searching for the status of eventRecordQPS by

extracting the live configuration from the nodes running kubelet.
Set the local proxy port and the following variables and provide proxy port number and
node name;
HOSTNAME_PORT="localhost-and-port-number"
NODE_NAME="The-Name-Of-Node-To-Extract-Configuration" from the output of

"kubectl get nodes"

kubectl proxy --port=8001 &

export HOSTNAME_PORT=localhost:8001 (example host and port number)

export NODE_NAME=ip-192.168.31.226.aks.internal (example node name from

"kubectl get nodes")

curl -sSL "http://${HOSTNAME_PORT}/api/v1/nodes/${NODE_NAME}/proxy/configz"

Remediation:

Remediation Method 1:
If modifying the Kubelet config file, edit the kubelet-config.json file
/etc/kubernetes/kubelet/kubelet-config.json and set the below parameter to 5 or a

value greater or equal to 0

"eventRecordQPS": 5

Check that /etc/systemd/system/kubelet.service.d/10-kubelet-args.conf does not

define an executable argument for eventRecordQPS because this would override your

Kubelet config.
Remediation Method 2:
If using executable arguments, edit the kubelet service file
/etc/systemd/system/kubelet.service.d/10-kubelet-args.conf on each worker node

and add the below parameter at the end of the KUBELET_ARGS variable string.

--eventRecordQPS=5

Remediation Method 3:
If using the api configz endpoint consider searching for the status of "eventRecordQPS"

by extracting the live configuration from the nodes running kubelet.
**See detailed step-by-step configmap procedures in Reconfigure a Node's Kubelet in a
Live Cluster, and then rerun the curl statement from audit process to check for kubelet
configuration changes

https://kubernetes.io/docs/tasks/administer-cluster/reconfigure-kubelet/
https://kubernetes.io/docs/tasks/administer-cluster/reconfigure-kubelet/

Page 50

kubectl proxy --port=8001 &

export HOSTNAME_PORT=localhost:8001 (example host and port number)

export NODE_NAME=ip-192.168.31.226.aks.internal (example node name from

"kubectl get nodes")

curl -sSL "http://${HOSTNAME_PORT}/api/v1/nodes/${NODE_NAME}/proxy/configz"

For all three remediations:
Based on your system, restart the kubelet service and check status

systemctl daemon-reload

systemctl restart kubelet.service

systemctl status kubelet -l

Default Value:

See the AKS documentation for the default value.

References:

1. https://kubernetes.io/docs/admin/kubelet/
2. https://github.com/kubernetes/kubernetes/blob/master/pkg/kubelet/apis/kubeletco

nfig/v1beta1/types.go
3. https://kubernetes.io/docs/tasks/administer-cluster/reconfigure-kubelet/
4. https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-

logging-threat-detection

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8
8.2 Collect Audit Logs
 Collect audit logs. Ensure that logging, per the enterprise’s audit log
management process, has been enabled across enterprise assets.

● ● ●

v8

8.5 Collect Detailed Audit Logs
 Configure detailed audit logging for enterprise assets containing sensitive data.
Include event source, date, username, timestamp, source addresses, destination
addresses, and other useful elements that could assist in a forensic investigation.

 ● ●

v7 6 Maintenance, Monitoring and Analysis of Audit Logs
 Maintenance, Monitoring and Analysis of Audit Logs

https://kubernetes.io/docs/admin/kubelet/
https://github.com/kubernetes/kubernetes/blob/master/pkg/kubelet/apis/kubeletconfig/v1beta1/types.go
https://github.com/kubernetes/kubernetes/blob/master/pkg/kubelet/apis/kubeletconfig/v1beta1/types.go
https://kubernetes.io/docs/tasks/administer-cluster/reconfigure-kubelet/
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-logging-threat-detection
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-logging-threat-detection

Page 51

3.2.8 Ensure that the --rotate-certificates argument is not set to

false (Automated)

Profile Applicability:

• Level 2

Description:

Enable kubelet client certificate rotation.

Rationale:

The --rotate-certificates setting causes the kubelet to rotate its client certificates by

creating new CSRs as its existing credentials expire. This automated periodic rotation
ensures that the there is no downtime due to expired certificates and thus addressing
availability in the CIA (Confidentiality, Integrity, and Availability) security triad.

Note: This recommendation only applies if you let kubelets get their certificates from the
API server. In case your kubelet certificates come from an outside authority/tool (e.g.
Vault) then you need to implement rotation yourself.

Note: This feature also requires the RotateKubeletClientCertificate feature gate to

be enabled.

Impact:

None

Audit:

Audit Method 1:
SSH to each node and run the following command to find the Kubelet process:

ps -ef | grep kubelet

If the output of the command above includes the --RotateCertificate executable

argument, verify that it is set to true.
If the output of the command above does not include the --RotateCertificate

executable argument then check the Kubelet config file. The output of the above
command should return something similar to --config

/etc/kubernetes/kubelet/kubelet-config.json which is the location of the Kubelet

config file.
Open the Kubelet config file:

cat /etc/kubernetes/kubelet/kubelet-config.json

Verify that the RotateCertificate argument is not present, or is set to true.

Page 52

Remediation:

Remediation Method 1:
If modifying the Kubelet config file, edit the kubelet-config.json file
/etc/kubernetes/kubelet/kubelet-config.json and set the below parameter to true

"RotateCertificate":true

Additionally, ensure that the kubelet service file
/etc/systemd/system/kubelet.service.d/10-kubelet-args.conf does not set the --
RotateCertificate executable argument to false because this would override the Kubelet
config file.
Remediation Method 2:
If using executable arguments, edit the kubelet service file
/etc/systemd/system/kubelet.service.d/10-kubelet-args.conf on each worker node

and add the below parameter at the end of the KUBELET_ARGS variable string.

--RotateCertificate=true

Default Value:

See the AKS documentation for the default value.

References:

1. https://github.com/kubernetes/kubernetes/pull/41912
2. https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet-tls-

bootstrapping/#kubelet-configuration
3. https://kubernetes.io/docs/imported/release/notes/
4. https://kubernetes.io/docs/reference/command-line-tools-reference/feature-gates/
5. https://kubernetes.io/docs/tasks/administer-cluster/reconfigure-kubelet/
6. https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-data-

protection#dp-4-encrypt-sensitive-information-in-transit

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8
3.10 Encrypt Sensitive Data in Transit
 Encrypt sensitive data in transit. Example implementations can include:

Transport Layer Security (TLS) and Open Secure Shell (OpenSSH).
 ● ●

v7 14.4 Encrypt All Sensitive Information in Transit
 Encrypt all sensitive information in transit.

 ● ●

https://github.com/kubernetes/kubernetes/pull/41912
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet-tls-bootstrapping/#kubelet-configuration
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet-tls-bootstrapping/#kubelet-configuration
https://kubernetes.io/docs/imported/release/notes/
https://kubernetes.io/docs/reference/command-line-tools-reference/feature-gates/
https://kubernetes.io/docs/tasks/administer-cluster/reconfigure-kubelet/
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-data-protection#dp-4-encrypt-sensitive-information-in-transit
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-data-protection#dp-4-encrypt-sensitive-information-in-transit

Page 53

3.2.9 Ensure that the RotateKubeletServerCertificate argument is

set to true (Automated)

Profile Applicability:

• Level 1

Description:

Enable kubelet server certificate rotation.

Rationale:

RotateKubeletServerCertificate causes the kubelet to both request a serving

certificate after bootstrapping its client credentials and rotate the certificate as its
existing credentials expire. This automated periodic rotation ensures that the there are
no downtimes due to expired certificates and thus addressing availability in the CIA
security triad.

Note: This recommendation only applies if you let kubelets get their certificates from the
API server. In case your kubelet certificates come from an outside authority/tool (e.g.
Vault) then you need to take care of rotation yourself.

Impact:

None

Audit:

Audit Method 1:
If using a Kubelet configuration file, check that there is an entry for
RotateKubeletServerCertificate is set to true.

First, SSH to the relevant node:
Run the following command on each node to find the appropriate Kubelet config file:

ps -ef | grep kubelet

The output of the above command should return something similar to --config

/etc/kubernetes/kubelet/kubelet-config.json which is the location of the Kubelet

config file.
Open the Kubelet config file:

Page 54

cat /etc/kubernetes/kubelet/kubelet-config.json

Verify that RotateKubeletServerCertificate argument exists and is set to true.

Audit Method 2:
If using the api configz endpoint consider searching for the status of
"RotateKubeletServerCertificate":true by extracting the live configuration from the

nodes running kubelet.
Set the local proxy port and the following variables and provide proxy port number and
node name;
HOSTNAME_PORT="localhost-and-port-number"
NODE_NAME="The-Name-Of-Node-To-Extract-Configuration" from the output of

"kubectl get nodes"

kubectl proxy --port=8001 &

export HOSTNAME_PORT=localhost:8001 (example host and port number)

export NODE_NAME=ip-192.168.31.226.aks.internal (example node name from

"kubectl get nodes")

curl -sSL "http://${HOSTNAME_PORT}/api/v1/nodes/${NODE_NAME}/proxy/configz"

Remediation:

Remediation Method 1:
If modifying the Kubelet config file, edit the kubelet-config.json file
/etc/kubernetes/kubelet/kubelet-config.json and set the below parameter to true

"RotateKubeletServerCertificate":true

Remediation Method 2:
If using a Kubelet config file, edit the file to set RotateKubeletServerCertificate to

true.

If using executable arguments, edit the kubelet service file
/etc/systemd/system/kubelet.service.d/10-kubelet-args.conf on each worker node

and add the below parameter at the end of the KUBELET_ARGS variable string.

--rotate-kubelet-server-certificate=true

Remediation Method 3:
If using the api configz endpoint consider searching for the status of
"RotateKubeletServerCertificate": by extracting the live configuration from the nodes

running kubelet.
**See detailed step-by-step configmap procedures in Reconfigure a Node's Kubelet in a
Live Cluster, and then rerun the curl statement from audit process to check for kubelet
configuration changes

https://kubernetes.io/docs/tasks/administer-cluster/reconfigure-kubelet/
https://kubernetes.io/docs/tasks/administer-cluster/reconfigure-kubelet/

Page 55

kubectl proxy --port=8001 &

export HOSTNAME_PORT=localhost:8001 (example host and port number)

export NODE_NAME=ip-192.168.31.226.aks.internal (example node name from

"kubectl get nodes")

curl -sSL "http://${HOSTNAME_PORT}/api/v1/nodes/${NODE_NAME}/proxy/configz"

For all three remediations:
Based on your system, restart the kubelet service and check status

systemctl daemon-reload

systemctl restart kubelet.service

systemctl status kubelet -l

Default Value:

See the AKS documentation for the default value.

References:

1. https://github.com/kubernetes/kubernetes/pull/45059
2. https://kubernetes.io/docs/admin/kubelet-tls-bootstrapping/#kubelet-configuration

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8
3.10 Encrypt Sensitive Data in Transit
 Encrypt sensitive data in transit. Example implementations can include:
Transport Layer Security (TLS) and Open Secure Shell (OpenSSH).

 ● ●

v7 14.4 Encrypt All Sensitive Information in Transit
 Encrypt all sensitive information in transit.

 ● ●

4 Policies

This section contains recommendations for various Kubernetes policies which are
important to the security of Azure AKS customer environment.

https://github.com/kubernetes/kubernetes/pull/45059
https://kubernetes.io/docs/admin/kubelet-tls-bootstrapping/#kubelet-configuration

Page 56

4.1 RBAC and Service Accounts

Page 57

4.1.1 Ensure that the cluster-admin role is only used where

required (Automated)

Profile Applicability:

• Level 1

Description:

The RBAC role cluster-admin provides wide-ranging powers over the environment and

should be used only where and when needed.

Rationale:

Kubernetes provides a set of default roles where RBAC is used. Some of these roles
such as cluster-admin provide wide-ranging privileges which should only be applied

where absolutely necessary. Roles such as cluster-admin allow super-user access to

perform any action on any resource. When used in a ClusterRoleBinding, it gives full

control over every resource in the cluster and in all namespaces. When used in a
RoleBinding, it gives full control over every resource in the rolebinding's namespace,

including the namespace itself.

Impact:

Care should be taken before removing any clusterrolebindings from the environment

to ensure they were not required for operation of the cluster. Specifically, modifications
should not be made to clusterrolebindings with the system: prefix as they are

required for the operation of system components.

Audit:

Obtain a list of the principals who have access to the cluster-admin role by reviewing

the clusterrolebinding output for each role binding that has access to the cluster-

admin role.

kubectl get clusterrolebindings -o=custom-
columns=NAME:.metadata.name,ROLE:.roleRef.name,SUBJECT:.subjects[*].name
Review each principal listed and ensure that cluster-admin privilege is required for it.

Remediation:

Identify all clusterrolebindings to the cluster-admin role. Check if they are used and if
they need this role or if they could use a role with fewer privileges.
Where possible, first bind users to a lower privileged role and then remove the
clusterrolebinding to the cluster-admin role :

Page 58

kubectl delete clusterrolebinding [name]

Default Value:

By default a single clusterrolebinding called cluster-admin is provided with the

system:masters group as its principal.

References:

1. https://kubernetes.io/docs/admin/authorization/rbac/#user-facing-roles
2. https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-

privileged-access#pa-7-follow-just-enough-administration-least-privilege-principle

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

4.1 Establish and Maintain a Secure Configuration Process
 Establish and maintain a secure configuration process for enterprise assets
(end-user devices, including portable and mobile, non-computing/IoT devices, and
servers) and software (operating systems and applications). Review and update
documentation annually, or when significant enterprise changes occur that could

impact this Safeguard.

● ● ●

v7
5.1 Establish Secure Configurations
 Maintain documented, standard security configuration standards for all
authorized operating systems and software.

● ● ●

https://kubernetes.io/docs/admin/authorization/rbac/#user-facing-roles
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-privileged-access#pa-7-follow-just-enough-administration-least-privilege-principle
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-privileged-access#pa-7-follow-just-enough-administration-least-privilege-principle

Page 59

4.1.2 Minimize access to secrets (Automated)

Profile Applicability:

• Level 1

Description:

The Kubernetes API stores secrets, which may be service account tokens for the
Kubernetes API or credentials used by workloads in the cluster. Access to these secrets
should be restricted to the smallest possible group of users to reduce the risk of
privilege escalation.

Rationale:

Inappropriate access to secrets stored within the Kubernetes cluster can allow for an
attacker to gain additional access to the Kubernetes cluster or external resources
whose credentials are stored as secrets.

Impact:

Care should be taken not to remove access to secrets to system components which
require this for their operation

Audit:

Review the users who have get, list or watch access to secrets objects in the

Kubernetes API.

Remediation:

Where possible, remove get, list and watch access to secret objects in the cluster.

Default Value:

By default, the following list of principals have get privileges on secret objects

Page 60

CLUSTERROLEBINDING SUBJECT

TYPE SA-NAMESPACE

cluster-admin system:masters

Group

system:controller:clusterrole-aggregation-controller clusterrole-

aggregation-controller ServiceAccount kube-system

system:controller:expand-controller expand-controller

ServiceAccount kube-system

system:controller:generic-garbage-collector generic-garbage-

collector ServiceAccount kube-system

system:controller:namespace-controller namespace-controller

ServiceAccount kube-system

system:controller:persistent-volume-binder persistent-volume-

binder ServiceAccount kube-system

system:kube-controller-manager system:kube-controller-

manager User

References:

1. https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-
identity-management#im-7-eliminate-unintended-credential-exposure

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

4.1 Establish and Maintain a Secure Configuration Process
 Establish and maintain a secure configuration process for enterprise assets
(end-user devices, including portable and mobile, non-computing/IoT devices, and

servers) and software (operating systems and applications). Review and update
documentation annually, or when significant enterprise changes occur that could
impact this Safeguard.

● ● ●

v7

5.2 Maintain Secure Images
 Maintain secure images or templates for all systems in the enterprise based on
the organization's approved configuration standards. Any new system deployment
or existing system that becomes compromised should be imaged using one of
those images or templates.

 ● ●

https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-identity-management#im-7-eliminate-unintended-credential-exposure
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-identity-management#im-7-eliminate-unintended-credential-exposure

Page 61

4.1.3 Minimize wildcard use in Roles and ClusterRoles

(Automated)

Profile Applicability:

• Level 1

Description:

Kubernetes Roles and ClusterRoles provide access to resources based on sets of
objects and actions that can be taken on those objects. It is possible to set either of
these to be the wildcard "*" which matches all items.

Use of wildcards is not optimal from a security perspective as it may allow for
inadvertent access to be granted when new resources are added to the Kubernetes API
either as CRDs or in later versions of the product.

Rationale:

The principle of least privilege recommends that users are provided only the access
required for their role and nothing more. The use of wildcard rights grants is likely to
provide excessive rights to the Kubernetes API.

Audit:

Retrieve the roles defined across each namespaces in the cluster and review for
wildcards

kubectl get roles --all-namespaces -o yaml

Retrieve the cluster roles defined in the cluster and review for wildcards

kubectl get clusterroles -o yaml

Remediation:

Where possible replace any use of wildcards in clusterroles and roles with specific
objects or actions.

References:

1. https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-
privileged-access#pa-7-follow-just-enough-administration-least-privilege-principle

https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-privileged-access#pa-7-follow-just-enough-administration-least-privilege-principle
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-privileged-access#pa-7-follow-just-enough-administration-least-privilege-principle

Page 62

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

4.1 Establish and Maintain a Secure Configuration Process
 Establish and maintain a secure configuration process for enterprise assets
(end-user devices, including portable and mobile, non-computing/IoT devices, and
servers) and software (operating systems and applications). Review and update
documentation annually, or when significant enterprise changes occur that could
impact this Safeguard.

● ● ●

v7
5.1 Establish Secure Configurations
 Maintain documented, standard security configuration standards for all

authorized operating systems and software.
● ● ●

Page 63

4.1.4 Minimize access to create pods (Automated)

Profile Applicability:

• Level 1

Description:

The ability to create pods in a namespace can provide a number of opportunities for
privilege escalation, such as assigning privileged service accounts to these pods or
mounting hostPaths with access to sensitive data (unless Pod Security Policies are
implemented to restrict this access)

As such, access to create new pods should be restricted to the smallest possible group
of users.

Rationale:

The ability to create pods in a cluster opens up possibilities for privilege escalation and
should be restricted, where possible.

Impact:

Care should be taken not to remove access to pods to system components which
require this for their operation

Audit:

Review the users who have create access to pod objects in the Kubernetes API.

Remediation:

Where possible, remove create access to pod objects in the cluster.

Default Value:

By default, the following list of principals have create privileges on pod objects

Page 64

CLUSTERROLEBINDING SUBJECT

TYPE SA-NAMESPACE

cluster-admin system:masters

Group

system:controller:clusterrole-aggregation-controller clusterrole-

aggregation-controller ServiceAccount kube-system

system:controller:daemon-set-controller daemon-set-controller

ServiceAccount kube-system

system:controller:job-controller job-controller

ServiceAccount kube-system

system:controller:persistent-volume-binder persistent-volume-

binder ServiceAccount kube-system

system:controller:replicaset-controller replicaset-controller

ServiceAccount kube-system

system:controller:replication-controller replication-controller

ServiceAccount kube-system

system:controller:statefulset-controller statefulset-controller

ServiceAccount kube-system

References:

1. https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-
privileged-access#pa-7-follow-just-enough-administration-least-privilege-principle

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

4.1 Establish and Maintain a Secure Configuration Process
 Establish and maintain a secure configuration process for enterprise assets
(end-user devices, including portable and mobile, non-computing/IoT devices, and
servers) and software (operating systems and applications). Review and update
documentation annually, or when significant enterprise changes occur that could
impact this Safeguard.

● ● ●

v7

5.2 Maintain Secure Images
 Maintain secure images or templates for all systems in the enterprise based on
the organization's approved configuration standards. Any new system deployment
or existing system that becomes compromised should be imaged using one of
those images or templates.

 ● ●

https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-privileged-access#pa-7-follow-just-enough-administration-least-privilege-principle
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-privileged-access#pa-7-follow-just-enough-administration-least-privilege-principle

Page 65

4.1.5 Ensure that default service accounts are not actively used

(Automated)

Profile Applicability:

• Level 1

Description:

The default service account should not be used to ensure that rights granted to

applications can be more easily audited and reviewed.

Rationale:

Kubernetes provides a default service account which is used by cluster workloads

where no specific service account is assigned to the pod.

Where access to the Kubernetes API from a pod is required, a specific service account
should be created for that pod, and rights granted to that service account.

The default service account should be configured such that it does not provide a service
account token and does not have any explicit rights assignments.

Impact:

All workloads which require access to the Kubernetes API will require an explicit service
account to be created.

Audit:

For each namespace in the cluster, review the rights assigned to the default service
account and ensure that it has no roles or cluster roles bound to it apart from the
defaults.
Additionally ensure that the automountServiceAccountToken: false setting is in place

for each default service account.

Remediation:

Create explicit service accounts wherever a Kubernetes workload requires specific
access to the Kubernetes API server.
Modify the configuration of each default service account to include this value

automountServiceAccountToken: false

Automatic remediation for the default account:
kubectl patch serviceaccount default -p $'automountServiceAccountToken:

false'

Page 66

Default Value:

By default the default service account allows for its service account token to be

mounted in pods in its namespace.

References:

1. https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-
account/

2. https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-
identity-management#im-2-manage-application-identities-securely-and-
automatically

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

4.7 Manage Default Accounts on Enterprise Assets and
Software
 Manage default accounts on enterprise assets and software, such as root,
administrator, and other pre-configured vendor accounts. Example
implementations can include: disabling default accounts or making them unusable.

● ● ●

v7

4.3 Ensure the Use of Dedicated Administrative Accounts
 Ensure that all users with administrative account access use a dedicated or
secondary account for elevated activities. This account should only be used for
administrative activities and not internet browsing, email, or similar activities.

● ● ●

v7

5.2 Maintain Secure Images
 Maintain secure images or templates for all systems in the enterprise based on
the organization's approved configuration standards. Any new system deployment
or existing system that becomes compromised should be imaged using one of
those images or templates.

 ● ●

https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-identity-management#im-2-manage-application-identities-securely-and-automatically
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-identity-management#im-2-manage-application-identities-securely-and-automatically
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-identity-management#im-2-manage-application-identities-securely-and-automatically

Page 67

4.1.6 Ensure that Service Account Tokens are only mounted

where necessary (Automated)

Profile Applicability:

• Level 1

Description:

Service accounts tokens should not be mounted in pods except where the workload
running in the pod explicitly needs to communicate with the API server

Rationale:

Mounting service account tokens inside pods can provide an avenue for privilege
escalation attacks where an attacker is able to compromise a single pod in the cluster.

Avoiding mounting these tokens removes this attack avenue.

Impact:

Pods mounted without service account tokens will not be able to communicate with the
API server, except where the resource is available to unauthenticated principals.

Audit:

Review pod and service account objects in the cluster and ensure that the option below
is set, unless the resource explicitly requires this access.
Set SERVICE_ACCOUNT and POD variables to appropriate values

automountServiceAccountToken: false

Remediation:

Modify the definition of pods and service accounts which do not need to mount service
account tokens to disable it.

Default Value:

By default, all pods get a service account token mounted in them.

References:

1. https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-
account/

2. https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-
identity-management#im-2-manage-application-identities-securely-and-
automatically

https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-identity-management#im-2-manage-application-identities-securely-and-automatically
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-identity-management#im-2-manage-application-identities-securely-and-automatically
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-identity-management#im-2-manage-application-identities-securely-and-automatically

Page 68

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

4.1 Establish and Maintain a Secure Configuration Process
 Establish and maintain a secure configuration process for enterprise assets
(end-user devices, including portable and mobile, non-computing/IoT devices, and
servers) and software (operating systems and applications). Review and update
documentation annually, or when significant enterprise changes occur that could
impact this Safeguard.

● ● ●

v7

5.2 Maintain Secure Images
 Maintain secure images or templates for all systems in the enterprise based on

the organization's approved configuration standards. Any new system deployment
or existing system that becomes compromised should be imaged using one of
those images or templates.

 ● ●

Page 69

4.2 Pod Security Standards

Pod Security Standards (PSS) are recommendations for securing deployed workloads
to reduce the risks of container breakout. There are a number of ways if implementing
PSS, including the built-in Pod Security Admission controller, or external policy control
systems which integrate with Kubernetes via validating and mutating webhooks.

The previous feature described in this document, pod security policy (preview), was
deprecated with version 1.21, and removed as of version 1.25. After pod security policy
(preview) is deprecated, you must disable the feature on any existing clusters using the
deprecated feature to perform future cluster upgrades and stay within Azure support.

Page 70

4.2.1 Minimize the admission of privileged containers (Automated)

Profile Applicability:

• Level 1

Description:

Do not generally permit containers to be run with the securityContext.privileged flag

set to true.

Rationale:

Privileged containers have access to all Linux Kernel capabilities and devices. A
container running with full privileges can do almost everything that the host can do. This
flag exists to allow special use-cases, like manipulating the network stack and
accessing devices.

There should be at least one admission control policy defined which does not permit
privileged containers.

If you need to run privileged containers, this should be defined in a separate policy and
you should carefully check to ensure that only limited service accounts and users are
given permission to use that policy.

Impact:

Pods defined with spec.containers[].securityContext.privileged: true,

spec.initContainers[].securityContext.privileged: true and

spec.ephemeralContainers[].securityContext.privileged: true will not be permitted.

Page 71

Audit:

List the policies in use for each namespace in the cluster, ensure that each policy
disallows the admission of privileged containers.
Since manually searching through each pod's configuration might be tedious, especially
in environments with many pods, you can use a more automated approach with grep or
other command-line tools.
Here's an example of how you might approach this with a combination of kubectl, grep,
and shell scripting for a more automated solution:
kubectl get pods --all-namespaces -o json | jq -r '.items[] |

select(.spec.containers[].securityContext.privileged == true) |

.metadata.name'

OR
kubectl get pods --all-namespaces -o json | jq -r '.items[] |

select(.spec.containers[].securityContext.privileged == true) |

select(.metadata.namespace != "kube-system" and .metadata.namespace !=

"gatekeeper-system" and .metadata.namespace != "azure-arc" and

.metadata.namespace != "azure-extensions-usage-system") | "\(.metadata.name)

\(.metadata.namespace)"'

When creating a Pod Security Policy, ["kube-system", "gatekeeper-system", "azure-arc",
"azure-extensions-usage-system"] namespaces are excluded by default.
This command uses jq, a command-line JSON processor, to parse the JSON output
from kubectl get pods and filter out pods where any container has the
securityContext.privileged flag set to true. Please note that you might need to adjust the
command depending on your specific requirements and the structure of your pod
specifications.

Remediation:

Add policies to each namespace in the cluster which has user workloads to restrict the
admission of privileged containers.
To enable PSA for a namespace in your cluster, set the pod-
security.kubernetes.io/enforce label with the policy value you want to enforce.
kubectl label --overwrite ns NAMESPACE pod-

security.kubernetes.io/enforce=restricted

The above command enforces the restricted policy for the NAMESPACE namespace.
You can also enable Pod Security Admission for all your namespaces. For example:
kubectl label --overwrite ns --all pod-security.kubernetes.io/warn=baseline

Pod Security Policies and Assignments can be found by searching for Policies in the
Azure Portal. A detailed step-by-step guide can be found here:
https://learn.microsoft.com/en-us/azure/governance/policy/concepts/policy-for-
kubernetes

Default Value:

By default, there are no restrictions on the creation of privileged containers.

https://learn.microsoft.com/en-us/azure/governance/policy/concepts/policy-for-kubernetes
https://learn.microsoft.com/en-us/azure/governance/policy/concepts/policy-for-kubernetes

Page 72

References:

1. https://learn.microsoft.com/en-us/azure/governance/policy/concepts/policy-for-
kubernetes

2. https://learn.microsoft.com/en-us/azure/aks/use-azure-policy
3. https://kubernetes.io/docs/concepts/security/pod-security-admission/

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

4.1 Establish and Maintain a Secure Configuration Process
 Establish and maintain a secure configuration process for enterprise assets
(end-user devices, including portable and mobile, non-computing/IoT devices, and
servers) and software (operating systems and applications). Review and update
documentation annually, or when significant enterprise changes occur that could
impact this Safeguard.

● ● ●

v7

5.2 Maintain Secure Images
 Maintain secure images or templates for all systems in the enterprise based on

the organization's approved configuration standards. Any new system deployment
or existing system that becomes compromised should be imaged using one of
those images or templates.

 ● ●

https://learn.microsoft.com/en-us/azure/governance/policy/concepts/policy-for-kubernetes
https://learn.microsoft.com/en-us/azure/governance/policy/concepts/policy-for-kubernetes
https://learn.microsoft.com/en-us/azure/aks/use-azure-policy
https://kubernetes.io/docs/concepts/security/pod-security-admission/

Page 73

4.2.2 Minimize the admission of containers wishing to share the

host process ID namespace (Automated)

Profile Applicability:

• Level 1

Description:

Do not generally permit containers to be run with the hostPID flag set to true.

Rationale:

A container running in the host's PID namespace can inspect processes running outside
the container. If the container also has access to ptrace capabilities this can be used to
escalate privileges outside of the container.

There should be at least one admission control policy defined which does not permit
containers to share the host PID namespace.

If you need to run containers which require hostPID, this should be defined in a
separate policy and you should carefully check to ensure that only limited service
accounts and users are given permission to use that policy.

Impact:

Pods defined with spec.hostPID: true will not be permitted unless they are run under a

specific policy.

Audit:

List the policies in use for each namespace in the cluster, ensure that each policy
disallows the admission of hostPID containers

Search for the hostPID Flag: In the YAML output, look for the hostPID setting under the

spec section to check if it is set to true.
kubectl get pods --all-namespaces -o json | jq -r '.items[] |

select(.spec.hostPID == true) | "\(.metadata.namespace)/\(.metadata.name)"'

OR
kubectl get pods --all-namespaces -o json | jq -r '.items[] |

select(.spec.hostPID == true) | select(.metadata.namespace != "kube-system"

and .metadata.namespace != "gatekeeper-system" and .metadata.namespace !=

"azure-arc" and .metadata.namespace != "azure-extensions-usage-system") |

"\(.metadata.name) \(.metadata.namespace)"'

When creating a Pod Security Policy, ["kube-system", "gatekeeper-system", "azure-arc",
"azure-extensions-usage-system"] namespaces are excluded by default.
This command retrieves all pods across all namespaces in JSON format, then uses jq
to filter out those with the hostPID flag set to true, and finally formats the output to show

the namespace and name of each matching pod.

Page 74

Remediation:

Add policies to each namespace in the cluster which has user workloads to restrict the
admission of hostPID containers.

Pod Security Policies and Assignments can be found by searching for Policies in the
Azure Portal. A detailed step-by-step guide can be found here:
https://learn.microsoft.com/en-us/azure/governance/policy/concepts/policy-for-
kubernetes

Default Value:

By default, there are no restrictions on the creation of hostPID containers.

References:

1. https://learn.microsoft.com/en-us/azure/governance/policy/concepts/policy-for-
kubernetes

2. https://kubernetes.io/docs/concepts/security/pod-security-admission/

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

4.1 Establish and Maintain a Secure Configuration Process
 Establish and maintain a secure configuration process for enterprise assets
(end-user devices, including portable and mobile, non-computing/IoT devices, and
servers) and software (operating systems and applications). Review and update
documentation annually, or when significant enterprise changes occur that could
impact this Safeguard.

● ● ●

v7

5.2 Maintain Secure Images
 Maintain secure images or templates for all systems in the enterprise based on
the organization's approved configuration standards. Any new system deployment
or existing system that becomes compromised should be imaged using one of
those images or templates.

 ● ●

https://learn.microsoft.com/en-us/azure/governance/policy/concepts/policy-for-kubernetes
https://learn.microsoft.com/en-us/azure/governance/policy/concepts/policy-for-kubernetes
https://learn.microsoft.com/en-us/azure/governance/policy/concepts/policy-for-kubernetes
https://learn.microsoft.com/en-us/azure/governance/policy/concepts/policy-for-kubernetes
https://kubernetes.io/docs/concepts/security/pod-security-admission/

Page 75

4.2.3 Minimize the admission of containers wishing to share the

host IPC namespace (Automated)

Profile Applicability:

• Level 1

Description:

Do not generally permit containers to be run with the hostIPC flag set to true.

Rationale:

A container running in the host's IPC namespace can use IPC to interact with processes
outside the container.

There should be at least one admission control policy defined which does not permit
containers to share the host IPC namespace.

If you need to run containers which require hostIPC, this should be defined in a
separate policy and you should carefully check to ensure that only limited service
accounts and users are given permission to use that policy.

Impact:

Pods defined with spec.hostIPC: true will not be permitted unless they are run under a

specific policy.

Audit:

List the policies in use for each namespace in the cluster, ensure that each policy
disallows the admission of hostIPC containers

Search for the hostIPC Flag: In the YAML output, look for the hostIPC setting under the

spec section to check if it is set to true.
kubectl get pods --all-namespaces -o json | jq -r '.items[] |

select(.spec.hostIPC == true) | "\(.metadata.namespace)/\(.metadata.name)"'

OR
kubectl get pods --all-namespaces -o json | jq -r '.items[] |

select(.spec.hostIPC == true) | select(.metadata.namespace != "kube-system"

and .metadata.namespace != "gatekeeper-system" and .metadata.namespace !=

"azure-arc" and .metadata.namespace != "azure-extensions-usage-system") |

"\(.metadata.name) \(.metadata.namespace)"'

When creating a Pod Security Policy, ["kube-system", "gatekeeper-system", "azure-arc",
"azure-extensions-usage-system"] namespaces are excluded by default.
This command retrieves all pods across all namespaces in JSON format, then uses jq
to filter out those with the hostIPC flag set to true, and finally formats the output to show

the namespace and name of each matching pod.

Page 76

Remediation:

Add policies to each namespace in the cluster which has user workloads to restrict the
admission of hostIPC containers.

Pod Security Policies and Assignments can be found by searching for Policies in the
Azure Portal. A detailed step-by-step guide can be found here:
https://learn.microsoft.com/en-us/azure/governance/policy/concepts/policy-for-
kubernetes

Default Value:

By default, there are no restrictions on the creation of hostIPC containers.

References:

1. https://learn.microsoft.com/en-us/azure/governance/policy/concepts/policy-for-
kubernetes

2. https://kubernetes.io/docs/concepts/security/pod-security-admission/
3. https://learn.microsoft.com/en-us/azure/aks/use-psa

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

4.1 Establish and Maintain a Secure Configuration Process
 Establish and maintain a secure configuration process for enterprise assets
(end-user devices, including portable and mobile, non-computing/IoT devices, and
servers) and software (operating systems and applications). Review and update
documentation annually, or when significant enterprise changes occur that could

impact this Safeguard.

● ● ●

v7

5.2 Maintain Secure Images
 Maintain secure images or templates for all systems in the enterprise based on
the organization's approved configuration standards. Any new system deployment
or existing system that becomes compromised should be imaged using one of
those images or templates.

 ● ●

https://learn.microsoft.com/en-us/azure/governance/policy/concepts/policy-for-kubernetes
https://learn.microsoft.com/en-us/azure/governance/policy/concepts/policy-for-kubernetes
https://learn.microsoft.com/en-us/azure/governance/policy/concepts/policy-for-kubernetes
https://learn.microsoft.com/en-us/azure/governance/policy/concepts/policy-for-kubernetes
https://kubernetes.io/docs/concepts/security/pod-security-admission/
https://learn.microsoft.com/en-us/azure/aks/use-psa

Page 77

4.2.4 Minimize the admission of containers wishing to share the

host network namespace (Automated)

Profile Applicability:

• Level 1

Description:

Do not generally permit containers to be run with the hostNetwork flag set to true.

Rationale:

A container running in the host's network namespace could access the local loopback
device, and could access network traffic to and from other pods.

There should be at least one admission control policy defined which does not permit
containers to share the host network namespace.

If you need to run containers which require access to the host's network namespaces,
this should be defined in a separate policy and you should carefully check to ensure that
only limited service accounts and users are given permission to use that policy.

Impact:

Pods defined with spec.hostNetwork: true will not be permitted unless they are run

under a specific policy.

Audit:

List the policies in use for each namespace in the cluster, ensure that each policy
disallows the admission of hostNetwork containers

Given that manually checking each pod can be time-consuming, especially in large
environments, you can use a more automated approach to filter out pods where
hostNetwork is set to true. Here’s a command using kubectl and jq:
kubectl get pods --all-namespaces -o json | jq -r '.items[] |

select(.spec.hostNetwork == true) |

"\(.metadata.namespace)/\(.metadata.name)"'

OR
kubectl get pods --all-namespaces -o json | jq -r '.items[] |

select(.spec.hostNetwork == true) | select(.metadata.namespace != "kube-

system" and .metadata.namespace != "gatekeeper-system" and

.metadata.namespace != "azure-arc" and .metadata.namespace != "azure-

extensions-usage-system") | "\(.metadata.name) \(.metadata.namespace)"'

When creating a Pod Security Policy, ["kube-system", "gatekeeper-system", "azure-arc",
"azure-extensions-usage-system"] namespaces are excluded by default.
This command retrieves all pods across all namespaces in JSON format, then uses jq
to filter out those with the hostNetwork flag set to true, and finally formats the output to

show the namespace and name of each matching pod.

Page 78

Remediation:

Add policies to each namespace in the cluster which has user workloads to restrict the
admission of hostNetwork containers.

Pod Security Policies and Assignments can be found by searching for Policies in the
Azure Portal. A detailed step-by-step guide can be found here:
https://learn.microsoft.com/en-us/azure/governance/policy/concepts/policy-for-
kubernetes

Default Value:

By default, there are no restrictions on the creation of hostNetwork containers.

References:

1. https://learn.microsoft.com/en-us/azure/governance/policy/concepts/policy-for-
kubernetes

2. https://learn.microsoft.com/en-us/azure/aks/use-azure-policy
3. https://learn.microsoft.com/en-us/azure/aks/use-psa

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

4.1 Establish and Maintain a Secure Configuration Process
 Establish and maintain a secure configuration process for enterprise assets
(end-user devices, including portable and mobile, non-computing/IoT devices, and
servers) and software (operating systems and applications). Review and update
documentation annually, or when significant enterprise changes occur that could

impact this Safeguard.

● ● ●

v7

5.2 Maintain Secure Images
 Maintain secure images or templates for all systems in the enterprise based on
the organization's approved configuration standards. Any new system deployment
or existing system that becomes compromised should be imaged using one of
those images or templates.

 ● ●

https://learn.microsoft.com/en-us/azure/governance/policy/concepts/policy-for-kubernetes
https://learn.microsoft.com/en-us/azure/governance/policy/concepts/policy-for-kubernetes
https://learn.microsoft.com/en-us/azure/governance/policy/concepts/policy-for-kubernetes
https://learn.microsoft.com/en-us/azure/governance/policy/concepts/policy-for-kubernetes
https://learn.microsoft.com/en-us/azure/aks/use-azure-policy
https://learn.microsoft.com/en-us/azure/aks/use-psa

Page 79

4.2.5 Minimize the admission of containers with

allowPrivilegeEscalation (Automated)

Profile Applicability:

• Level 1

Description:

Do not generally permit containers to be run with the allowPrivilegeEscalation flag set

to true. Allowing this right can lead to a process running a container getting more rights

than it started with.

It's important to note that these rights are still constrained by the overall container
sandbox, and this setting does not relate to the use of privileged containers.

Rationale:

A container running with the allowPrivilegeEscalation flag set to true may have

processes that can gain more privileges than their parent.

There should be at least one admission control policy defined which does not permit
containers to allow privilege escalation. The option exists (and is defaulted to true) to
permit setuid binaries to run.

If you have need to run containers which use setuid binaries or require privilege
escalation, this should be defined in a separate policy and you should carefully check to
ensure that only limited service accounts and users are given permission to use that
policy.

Impact:

Pods defined with spec.allowPrivilegeEscalation: true will not be permitted unless

they are run under a specific policy.

Page 80

Audit:

List the policies in use for each namespace in the cluster, ensure that each policy
disallows the admission of containers which allow privilege escalation.
This command gets all pods across all namespaces, outputs their details in JSON
format, and uses jq to parse and filter the output for containers with
allowPrivilegeEscalation set to true.
kubectl get pods --all-namespaces -o json | jq -r '.items[] |

select(any(.spec.containers[]; .securityContext.allowPrivilegeEscalation ==

true)) | "\(.metadata.namespace)/\(.metadata.name)"'

OR
kubectl get pods --all-namespaces -o json | jq -r '.items[] |

select(any(.spec.containers[]; .securityContext.allowPrivilegeEscalation ==

true)) | select(.metadata.namespace != "kube-system" and .metadata.namespace

!= "gatekeeper-system" and .metadata.namespace != "azure-arc" and

.metadata.namespace != "azure-extensions-usage-system") | "\(.metadata.name)

\(.metadata.namespace)"'

When creating a Pod Security Policy, ["kube-system", "gatekeeper-system", "azure-arc",
"azure-extensions-usage-system"] namespaces are excluded by default.
This command uses jq, a command-line JSON processor, to parse the JSON output
from kubectl get pods and filter out pods where any container has the
securityContext.privileged flag set to true. Please note that you might need to adjust the
command depending on your specific requirements and the structure of your pod
specifications.

Remediation:

Add policies to each namespace in the cluster which has user workloads to restrict the
admission of containers with .spec.allowPrivilegeEscalation set to true.

Pod Security Policies and Assignments can be found by searching for Policies in the
Azure Portal. A detailed step-by-step guide can be found here:
https://learn.microsoft.com/en-us/azure/governance/policy/concepts/policy-for-
kubernetes

Default Value:

By default, there are no restrictions on contained process ability to escalate privileges,
within the context of the container.

References:

1. https://learn.microsoft.com/en-us/azure/governance/policy/concepts/policy-for-
kubernetes

2. https://learn.microsoft.com/en-us/azure/aks/use-azure-policy
3. https://learn.microsoft.com/en-us/azure/aks/use-psa

https://learn.microsoft.com/en-us/azure/governance/policy/concepts/policy-for-kubernetes
https://learn.microsoft.com/en-us/azure/governance/policy/concepts/policy-for-kubernetes
https://learn.microsoft.com/en-us/azure/governance/policy/concepts/policy-for-kubernetes
https://learn.microsoft.com/en-us/azure/governance/policy/concepts/policy-for-kubernetes
https://learn.microsoft.com/en-us/azure/aks/use-azure-policy
https://learn.microsoft.com/en-us/azure/aks/use-psa

Page 81

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

4.1 Establish and Maintain a Secure Configuration Process
 Establish and maintain a secure configuration process for enterprise assets
(end-user devices, including portable and mobile, non-computing/IoT devices, and
servers) and software (operating systems and applications). Review and update
documentation annually, or when significant enterprise changes occur that could
impact this Safeguard.

● ● ●

v7

5.2 Maintain Secure Images
 Maintain secure images or templates for all systems in the enterprise based on

the organization's approved configuration standards. Any new system deployment
or existing system that becomes compromised should be imaged using one of
those images or templates.

 ● ●

4.3 Azure Policy / OPA

A more modern alternative to the PSP is the Open Policy Agent (OPA) and OPA
Gatekeeper. OPA is an admission controller which is integrated with the OPA Constraint
Framework to enforce Custom Resource Definition (CRD) based policies and allow
declaratively configured policies to be reliably shareable. The Kubernetes projects is
shifting focus from PSPs to OPAs.

Finally, third party agents such Aqua, Twistlock (Prisma), and Sysdig can offer similar
capabilities or manage PSP's themselves.

Azure Policy extends Gatekeeper v3, an admission controller webhook for Open Policy
Agent (OPA), to apply at-scale enforcements and safeguards on your clusters in a
centralized, consistent manner. Azure Policy makes it possible to manage and report on
the compliance state of your Kubernetes clusters from one place. The add-on enacts
the following functions:

• Checks with Azure Policy service for policy assignments to the cluster.
• Deploys policy definitions into the cluster as constraint template and constraint

custom resources.
• Reports auditing and compliance details back to Azure Policy service.

Azure Policy for Kubernetes supports the following cluster environments:

• Azure Kubernetes Service (AKS)
• Azure Arc enabled Kubernetes
• AKS Engine

Page 82

4.4 CNI Plugin

Page 83

4.4.1 Ensure latest CNI version is used (Automated)

Profile Applicability:

• Level 1

Description:

There are a variety of CNI plugins available for Kubernetes. If the CNI in use does not
support Network Policies it may not be possible to effectively restrict traffic in the
cluster.

Rationale:

Kubernetes network policies are enforced by the CNI plugin in use. As such it is
important to ensure that the CNI plugin supports both Ingress and Egress network
policies.

Impact:

None.

Audit:

Ensure CNI plugin supports network policies.
Set Environment Variables to run
export RESOURCE_GROUP=Resource Group Name
export CLUSTER_NAME=Cluster Name

Azure command to check for CNI plugin:
az aks show --resource-group ${RESOURCE_GROUP} --name ${CLUSTER_NAME} --query

"networkProfile"

Remediation:

As with RBAC policies, network policies should adhere to the policy of least privileged
access. Start by creating a deny all policy that restricts all inbound and outbound traffic
from a namespace or create a global policy using Calico.

Default Value:

This will depend on the CNI plugin in use.

References:

1. https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-
net/network-plugins/

2. https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-
network-security#ns-1-implement-security-for-internal-traffic

https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/network-plugins/
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/network-plugins/
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-network-security#ns-1-implement-security-for-internal-traffic
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-network-security#ns-1-implement-security-for-internal-traffic

Page 84

Additional Information:

One example here is Flannel (https://github.com/coreos/flannel) which does not support
Network policy unless Calico is also in use.

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

16.5 Use Up-to-Date and Trusted Third-Party Software
Components
 Use up-to-date and trusted third-party software components. When possible,
choose established and proven frameworks and libraries that provide adequate
security. Acquire these components from trusted sources or evaluate the software
for vulnerabilities before use.

 ● ●

v7

18.4 Only Use Up-to-date And Trusted Third-Party
Components
 Only use up-to-date and trusted third-party components for the software
developed by the organization.

 ● ●

https://github.com/coreos/flannel

Page 85

4.4.2 Ensure that all Namespaces have Network Policies defined

(Automated)

Profile Applicability:

• Level 2

Description:

Use network policies to isolate traffic in your cluster network.

Rationale:

Running different applications on the same Kubernetes cluster creates a risk of one
compromised application attacking a neighboring application. Network segmentation is
important to ensure that containers can communicate only with those they are supposed
to. A network policy is a specification of how selections of pods are allowed to
communicate with each other and other network endpoints.

Once there is any Network Policy in a namespace selecting a particular pod, that pod
will reject any connections that are not allowed by any Network Policy. Other pods in the
namespace that are not selected by any Network Policy will continue to accept all
traffic"

Impact:

Once there is any Network Policy in a namespace selecting a particular pod, that pod
will reject any connections that are not allowed by any Network Policy. Other pods in the
namespace that are not selected by any Network Policy will continue to accept all
traffic"

Audit:

Run the below command and review the NetworkPolicy objects created in the cluster.

kubectl get networkpolicy --all-namespaces

Ensure that each namespace defined in the cluster has at least one Network Policy.

Remediation:

Follow the documentation and create NetworkPolicy objects as you need them.

Default Value:

By default, network policies are not created.

References:

1. https://kubernetes.io/docs/concepts/services-networking/networkpolicies/
2. https://octetz.com/posts/k8s-network-policy-apis

https://kubernetes.io/docs/concepts/services-networking/networkpolicies/
https://octetz.com/posts/k8s-network-policy-apis

Page 86

3. https://kubernetes.io/docs/tasks/configure-pod-container/declare-network-policy/
4. https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-

network-security#ns-1-implement-security-for-internal-traffic

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8
13.4 Perform Traffic Filtering Between Network
Segments
 Perform traffic filtering between network segments, where appropriate.

 ● ●

v7

14.1 Segment the Network Based on Sensitivity
 Segment the network based on the label or classification level of the
information stored on the servers, locate all sensitive information on separated
Virtual Local Area Networks (VLANs).

 ● ●

v7

14.2 Enable Firewall Filtering Between VLANs
 Enable firewall filtering between VLANs to ensure that only authorized
systems are able to communicate with other systems necessary to fulfill their

specific responsibilities.

 ● ●

https://kubernetes.io/docs/tasks/configure-pod-container/declare-network-policy/
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-network-security#ns-1-implement-security-for-internal-traffic
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-network-security#ns-1-implement-security-for-internal-traffic

Page 87

4.5 Secrets Management

Page 88

4.5.1 Prefer using secrets as files over secrets as environment

variables (Automated)

Profile Applicability:

• Level 2

Description:

Kubernetes supports mounting secrets as data volumes or as environment variables.
Minimize the use of environment variable secrets.

Rationale:

It is reasonably common for application code to log out its environment (particularly in
the event of an error). This will include any secret values passed in as environment
variables, so secrets can easily be exposed to any user or entity who has access to the
logs.

Impact:

Application code which expects to read secrets in the form of environment variables
would need modification

Audit:

Run the following command to find references to objects which use environment
variables defined from secrets.

kubectl get all -o jsonpath='{range .items[?(@..secretKeyRef)]} {.kind}

{.metadata.name} {"\n"}{end}' -A

Remediation:

If possible, rewrite application code to read secrets from mounted secret files, rather
than from environment variables.

Default Value:

By default, secrets are not defined

References:

1. https://kubernetes.io/docs/concepts/configuration/secret/#using-secrets
2. https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-

identity-management#im-7-eliminate-unintended-credential-exposure

https://kubernetes.io/docs/concepts/configuration/secret/#using-secrets
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-identity-management#im-7-eliminate-unintended-credential-exposure
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-identity-management#im-7-eliminate-unintended-credential-exposure

Page 89

Additional Information:

Mounting secrets as volumes has the additional benefit that secret values can be
updated without restarting the pod

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

6 Access Control Management
 Use processes and tools to create, assign, manage, and revoke access
credentials and privileges for user, administrator, and service accounts for

enterprise assets and software.

v7 14.4 Encrypt All Sensitive Information in Transit
 Encrypt all sensitive information in transit.

 ● ●

v7

14.8 Encrypt Sensitive Information at Rest
 Encrypt all sensitive information at rest using a tool that requires a secondary
authentication mechanism not integrated into the operating system, in order to
access the information.

 ●

Page 90

4.5.2 Consider external secret storage (Manual)

Profile Applicability:

• Level 2

Description:

Consider the use of an external secrets storage and management system, instead of
using Kubernetes Secrets directly, if you have more complex secret management
needs. Ensure the solution requires authentication to access secrets, has auditing of
access to and use of secrets, and encrypts secrets. Some solutions also make it easier
to rotate secrets.

Rationale:

Kubernetes supports secrets as first-class objects, but care needs to be taken to ensure
that access to secrets is carefully limited. Using an external secrets provider can ease
the management of access to secrets, especially where secrests are used across both
Kubernetes and non-Kubernetes environments.

Impact:

None

Audit:

Review your secrets management implementation.

Remediation:

Refer to the secrets management options offered by your cloud provider or a third-party
secrets management solution.

Default Value:

By default, no external secret management is configured.

References:

1. https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-
identity-management#im-7-eliminate-unintended-credential-exposure

https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-identity-management#im-7-eliminate-unintended-credential-exposure
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-identity-management#im-7-eliminate-unintended-credential-exposure

Page 91

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

6 Access Control Management
 Use processes and tools to create, assign, manage, and revoke access
credentials and privileges for user, administrator, and service accounts for
enterprise assets and software.

v7

14.8 Encrypt Sensitive Information at Rest
 Encrypt all sensitive information at rest using a tool that requires a secondary
authentication mechanism not integrated into the operating system, in order to
access the information.

 ●

Page 92

4.6 General Policies

These policies relate to general cluster management topics, like namespace best
practices and policies applied to pod objects in the cluster.

Page 93

4.6.1 Create administrative boundaries between resources using

namespaces (Manual)

Profile Applicability:

• Level 1

Description:

Use namespaces to isolate your Kubernetes objects.

Rationale:

Limiting the scope of user permissions can reduce the impact of mistakes or malicious
activities. A Kubernetes namespace allows you to partition created resources into
logically named groups. Resources created in one namespace can be hidden from
other namespaces. By default, each resource created by a user in an Azure AKS cluster
runs in a default namespace, called default. You can create additional namespaces

and attach resources and users to them. You can use Kubernetes Authorization plugins
to create policies that segregate access to namespace resources between different
users.

Impact:

You need to switch between namespaces for administration.

Audit:

Run the below command and review the namespaces created in the cluster.

kubectl get namespaces

Ensure that these namespaces are the ones you need and are adequately administered
as per your requirements.

Remediation:

Follow the documentation and create namespaces for objects in your deployment as
you need them.

Default Value:

When you create an AKS cluster, the following namespaces are available:

Page 94

NAMESPACES Namespace Description default Where pods and deployments are
created by default when none is provided. In smaller environments, you can deploy
applications directly into the default namespace without creating additional logical
separations. When you interact with the Kubernetes API, such as with kubectl get pods,
the default namespace is used when none is specified. kube-system Where core
resources exist, such as network features like DNS and proxy, or the Kubernetes
dashboard. You typically don't deploy your own applications into this namespace. kube-
public Typically not used, but can be used for resources to be visible across the whole
cluster, and can be viewed by any user.

References:

1. https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
2. http://blog.kubernetes.io/2016/08/security-best-practices-kubernetes-

deployment.html
3. https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-

governance-strategy#gs-1-define-asset-management-and-data-protection-
strategy

4. https://docs.microsoft.com/en-us/azure/aks/concepts-clusters-
workloads#:~:text=Kubernetes%20resources%2C%20such%20as%20pods,or%
20manage%20access%20to%20resources.&text=When%20you%20interact%20
with%20the,used%20when%20none%20is%20specified.

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

4.6 Securely Manage Enterprise Assets and Software
 Securely manage enterprise assets and software. Example implementations
include managing configuration through version-controlled-infrastructure-as-code
and accessing administrative interfaces over secure network protocols, such as
Secure Shell (SSH) and Hypertext Transfer Protocol Secure (HTTPS). Do not use
insecure management protocols, such as Telnet (Teletype Network) and HTTP,
unless operationally essential.

● ● ●

v7 14 Controlled Access Based on the Need to Know
 Controlled Access Based on the Need to Know

https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
http://blog.kubernetes.io/2016/08/security-best-practices-kubernetes-deployment.html
http://blog.kubernetes.io/2016/08/security-best-practices-kubernetes-deployment.html
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-governance-strategy#gs-1-define-asset-management-and-data-protection-strategy
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-governance-strategy#gs-1-define-asset-management-and-data-protection-strategy
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-governance-strategy#gs-1-define-asset-management-and-data-protection-strategy
https://docs.microsoft.com/en-us/azure/aks/concepts-clusters-workloads#:~:text=Kubernetes%20resources%2C%20such%20as%20pods,or%20manage%20access%20to%20resources.&text=When%20you%20interact%20with%20the,used%20when%20none%20is%20specified.
https://docs.microsoft.com/en-us/azure/aks/concepts-clusters-workloads#:~:text=Kubernetes%20resources%2C%20such%20as%20pods,or%20manage%20access%20to%20resources.&text=When%20you%20interact%20with%20the,used%20when%20none%20is%20specified.
https://docs.microsoft.com/en-us/azure/aks/concepts-clusters-workloads#:~:text=Kubernetes%20resources%2C%20such%20as%20pods,or%20manage%20access%20to%20resources.&text=When%20you%20interact%20with%20the,used%20when%20none%20is%20specified.
https://docs.microsoft.com/en-us/azure/aks/concepts-clusters-workloads#:~:text=Kubernetes%20resources%2C%20such%20as%20pods,or%20manage%20access%20to%20resources.&text=When%20you%20interact%20with%20the,used%20when%20none%20is%20specified.

Page 95

4.6.2 Apply Security Context to Your Pods and Containers

(Manual)

Profile Applicability:

• Level 2

Description:

Apply Security Context to Your Pods and Containers

Rationale:

A security context defines the operating system security settings (uid, gid, capabilities,
SELinux role, etc..) applied to a container. When designing your containers and pods,
make sure that you configure the security context for your pods, containers, and
volumes. A security context is a property defined in the deployment yaml. It controls the
security parameters that will be assigned to the pod/container/volume. There are two
levels of security context: pod level security context, and container level security
context.

Impact:

If you incorrectly apply security contexts, you may have trouble running the pods.

Audit:

Review the pod definitions in your cluster and verify that you have security contexts
defined as appropriate.

Remediation:

As a best practice we recommend that you scope the binding for privileged pods to
service accounts within a particular namespace, e.g. kube-system, and limiting access
to that namespace. For all other serviceaccounts/namespaces, we recommend
implementing a more restrictive policy such as this:

Page 96

apiVersion: policy/v1beta1

kind: PodSecurityPolicy

metadata:

 name: restricted

 annotations:

 seccomp.security.alpha.kubernetes.io/allowedProfileNames:

'docker/default,runtime/default'

 apparmor.security.beta.kubernetes.io/allowedProfileNames:

'runtime/default'

 seccomp.security.alpha.kubernetes.io/defaultProfileName:

'runtime/default'

 apparmor.security.beta.kubernetes.io/defaultProfileName:

'runtime/default'

spec:

 privileged: false

 # Required to prevent escalations to root.

 allowPrivilegeEscalation: false

 # This is redundant with non-root + disallow privilege escalation,

 # but we can provide it for defense in depth.

 requiredDropCapabilities:

 - ALL

 # Allow core volume types.

 volumes:

 - 'configMap'

 - 'emptyDir'

 - 'projected'

 - 'secret'

 - 'downwardAPI'

 # Assume that persistentVolumes set up by the cluster admin are safe to

use.

 - 'persistentVolumeClaim'

 hostNetwork: false

 hostIPC: false

 hostPID: false

 runAsUser:

 # Require the container to run without root privileges.

 rule: 'MustRunAsNonRoot'

 seLinux:

 # This policy assumes the nodes are using AppArmor rather than SELinux.

 rule: 'RunAsAny'

 supplementalGroups:

 rule: 'MustRunAs'

 ranges:

 # Forbid adding the root group.

 - min: 1

 max: 65535

 fsGroup:

 rule: 'MustRunAs'

 ranges:

 # Forbid adding the root group.

 - min: 1

 max: 65535

 readOnlyRootFilesystem: false

Page 97

This policy prevents pods from running as privileged or escalating privileges. It also
restricts the types of volumes that can be mounted and the root supplemental groups
that can be added.
Another, albeit similar, approach is to start with policy that locks everything down and
incrementally add exceptions for applications that need looser restrictions such as
logging agents which need the ability to mount a host path.

Default Value:

By default, no security contexts are automatically applied to pods.

References:

1. https://kubernetes.io/docs/concepts/policy/security-context/
2. https://learn.cisecurity.org/benchmarks
3. https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-

posture-vulnerability-management#pv-3-establish-secure-configurations-for-
compute-resources

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

4.6 Securely Manage Enterprise Assets and Software
 Securely manage enterprise assets and software. Example implementations
include managing configuration through version-controlled-infrastructure-as-code
and accessing administrative interfaces over secure network protocols, such as
Secure Shell (SSH) and Hypertext Transfer Protocol Secure (HTTPS). Do not use
insecure management protocols, such as Telnet (Teletype Network) and HTTP,
unless operationally essential.

● ● ●

v7

5 Secure Configuration for Hardware and Software on
Mobile Devices, Laptops, Workstations and Servers
 Secure Configuration for Hardware and Software on Mobile Devices, Laptops,

Workstations and Servers

https://kubernetes.io/docs/concepts/policy/security-context/
https://learn.cisecurity.org/benchmarks
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-posture-vulnerability-management#pv-3-establish-secure-configurations-for-compute-resources
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-posture-vulnerability-management#pv-3-establish-secure-configurations-for-compute-resources
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-posture-vulnerability-management#pv-3-establish-secure-configurations-for-compute-resources

Page 98

4.6.3 The default namespace should not be used (Automated)

Profile Applicability:

• Level 2

Description:

Kubernetes provides a default namespace, where objects are placed if no namespace
is specified for them. Placing objects in this namespace makes application of RBAC and
other controls more difficult.

Rationale:

Resources in a Kubernetes cluster should be segregated by namespace, to allow for
security controls to be applied at that level and to make it easier to manage resources.

Impact:

None

Audit:

Run this command to list objects in default namespace

kubectl get all -n default

The only entries there should be system managed resources such as the kubernetes

service

Remediation:

Ensure that namespaces are created to allow for appropriate segregation of Kubernetes
resources and that all new resources are created in a specific namespace.

Default Value:

Unless a namespace is specific on object creation, the default namespace will be used

References:

1. https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-
posture-vulnerability-management#pv-3-establish-secure-configurations-for-
compute-resources

https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-posture-vulnerability-management#pv-3-establish-secure-configurations-for-compute-resources
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-posture-vulnerability-management#pv-3-establish-secure-configurations-for-compute-resources
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-posture-vulnerability-management#pv-3-establish-secure-configurations-for-compute-resources

Page 99

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

4.6 Securely Manage Enterprise Assets and Software
 Securely manage enterprise assets and software. Example implementations
include managing configuration through version-controlled-infrastructure-as-code
and accessing administrative interfaces over secure network protocols, such as
Secure Shell (SSH) and Hypertext Transfer Protocol Secure (HTTPS). Do not use
insecure management protocols, such as Telnet (Teletype Network) and HTTP,
unless operationally essential.

● ● ●

v7
5.1 Establish Secure Configurations
 Maintain documented, standard security configuration standards for all
authorized operating systems and software.

● ● ●

5 Managed services

This section consists of security recommendations for the Azure AKS. These
recommendations are applicable for configurations that Azure AKS customers own and
manage.

Page 100

5.1 Image Registry and Image Scanning

This section contains recommendations relating to container image registries and
securing images in those registries, such as the Azure Container Registry.

Page 101

5.1.1 Ensure Image Vulnerability Scanning using Azure Defender

image scanning or a third party provider (Automated)

Profile Applicability:

• Level 1

Description:

Scan images being deployed to Azure (AKS) for vulnerabilities.

Vulnerability scanning for images stored in Azure Container Registry is generally
available in Azure Security Center. This capability is powered by Qualys, a leading
provider of information security.

When you push an image to Container Registry, Security Center automatically scans it,
then checks for known vulnerabilities in packages or dependencies defined in the file.

When the scan completes (after about 10 minutes), Security Center provides details
and a security classification for each vulnerability detected, along with guidance on how
to remediate issues and protect vulnerable attack surfaces.

Rationale:

Vulnerabilities in software packages can be exploited by hackers or malicious users to
obtain unauthorized access to local cloud resources. Azure Defender and other third
party products allow images to be scanned for known vulnerabilities.

Impact:

When using an Azure container registry, you might occasionally encounter problems.
For example, you might not be able to pull a container image because of an issue with
Docker in your local environment. Or, a network issue might prevent you from
connecting to the registry.

Audit:

Check Azure Defender Plan for Container Registries: This command shows whether
Azure Defender for container registries (part of Azure Security Center/Defender for
Cloud) is enabled, which includes the image scanning feature.
az security pricing show --name ContainerRegistry

The output will indicate whether the plan is enabled. Look for the "pricingTier" property
in the output; if it's set to "Standard", then Azure Defender for container registries is
enabled. If it's set to "Free", then it's not enabled.

Page 102

Remediation:

Enable Azure Defender for Container Registries: If you find that Azure Defender for
container registries is not enabled and you wish to enable it, you can do so using the
following command:
az security pricing create --name ContainerRegistry --tier Standard

Please note, enabling Azure Defender for container registries incurs additional costs, so
be sure to review the pricing details on the official Azure documentation before enabling
it.

Default Value:

Images are not scanned by Default.

References:

1. https://docs.microsoft.com/en-us/azure/security-center/defender-for-container-
registries-usage

2. https://docs.microsoft.com/en-us/azure/container-registry/container-registry-
check-health

3. https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-
posture-vulnerability-management#pv-6-perform-software-vulnerability-
assessments

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

7.6 Perform Automated Vulnerability Scans of Externally-
Exposed Enterprise Assets
 Perform automated vulnerability scans of externally-exposed enterprise assets
using a SCAP-compliant vulnerability scanning tool. Perform scans on a monthly,
or more frequent, basis.

 ● ●

v7 3 Continuous Vulnerability Management
 Continuous Vulnerability Management

v7

3.1 Run Automated Vulnerability Scanning Tools
 Utilize an up-to-date SCAP-compliant vulnerability scanning tool to
automatically scan all systems on the network on a weekly or more frequent basis

to identify all potential vulnerabilities on the organization's systems.

 ● ●

v7

3.2 Perform Authenticated Vulnerability Scanning
 Perform authenticated vulnerability scanning with agents running locally on
each system or with remote scanners that are configured with elevated rights on
the system being tested.

 ● ●

https://docs.microsoft.com/en-us/azure/security-center/defender-for-container-registries-usage
https://docs.microsoft.com/en-us/azure/security-center/defender-for-container-registries-usage
https://docs.microsoft.com/en-us/azure/container-registry/container-registry-check-health
https://docs.microsoft.com/en-us/azure/container-registry/container-registry-check-health
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-posture-vulnerability-management#pv-6-perform-software-vulnerability-assessments
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-posture-vulnerability-management#pv-6-perform-software-vulnerability-assessments
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-posture-vulnerability-management#pv-6-perform-software-vulnerability-assessments

Page 103

5.1.2 Minimize user access to Azure Container Registry (ACR)

(Manual)

Profile Applicability:

• Level 1

Description:

Restrict user access to Azure Container Registry (ACR), limiting interaction with build
images to only authorized personnel and service accounts.

Rationale:

Weak access control to Azure Container Registry (ACR) may allow malicious users to
replace built images with vulnerable containers.

Impact:

Care should be taken not to remove access to Azure ACR for accounts that require this
for their operation.

Audit:

Remediation:

Azure Container Registry
If you use Azure Container Registry (ACR) as your container image store, you need to
grant permissions to the service principal for your AKS cluster to read and pull images.
Currently, the recommended configuration is to use the az aks create or az aks update
command to integrate with a registry and assign the appropriate role for the service
principal. For detailed steps, see Authenticate with Azure Container Registry from Azure
Kubernetes Service.
To avoid needing an Owner or Azure account administrator role, you can configure a
service principal manually or use an existing service principal to authenticate ACR from
AKS. For more information, see ACR authentication with service principals or
Authenticate from Kubernetes with a pull secret.

References:

1. https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-
privileged-access#pa-7-follow-just-enough-administration-least-privilege-principle

https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-privileged-access#pa-7-follow-just-enough-administration-least-privilege-principle
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-privileged-access#pa-7-follow-just-enough-administration-least-privilege-principle

Page 104

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

3.3 Configure Data Access Control Lists
 Configure data access control lists based on a user’s need to know. Apply data
access control lists, also known as access permissions, to local and remote file
systems, databases, and applications.

● ● ●

v7

14.6 Protect Information through Access Control Lists
 Protect all information stored on systems with file system, network share,
claims, application, or database specific access control lists. These controls will
enforce the principle that only authorized individuals should have access to the

information based on their need to access the information as a part of their
responsibilities.

● ● ●

Page 105

5.1.3 Minimize cluster access to read-only for Azure Container

Registry (ACR) (Manual)

Profile Applicability:

• Level 1

Description:

Configure the Cluster Service Account with Storage Object Viewer Role to only allow
read-only access to Azure Container Registry (ACR)

Rationale:

The Cluster Service Account does not require administrative access to Azure ACR, only
requiring pull access to containers to deploy onto Azure AKS. Restricting permissions
follows the principles of least privilege and prevents credentials from being abused
beyond the required role.

Impact:

A separate dedicated service account may be required for use by build servers and
other robot users pushing or managing container images.

Audit:

Remediation:

References:

1. https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-data-
protection#dp-2-protect-sensitive-data

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

3.3 Configure Data Access Control Lists
 Configure data access control lists based on a user’s need to know. Apply
data access control lists, also known as access permissions, to local and remote
file systems, databases, and applications.

● ● ●

v7

3.2 Perform Authenticated Vulnerability Scanning
 Perform authenticated vulnerability scanning with agents running locally on
each system or with remote scanners that are configured with elevated rights on
the system being tested.

 ● ●

https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-data-protection#dp-2-protect-sensitive-data
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-data-protection#dp-2-protect-sensitive-data

Page 106

5.1.4 Minimize Container Registries to only those approved

(Manual)

Profile Applicability:

• Level 2

Description:

Use approved container registries.

Rationale:

Allowing unrestricted access to external container registries provides the opportunity for
malicious or unapproved containers to be deployed into the cluster. Allowlisting only
approved container registries reduces this risk.

Impact:

All container images to be deployed to the cluster must be hosted within an approved
container image registry.

Audit:

Remediation:

If you are using Azure Container Registry you have this option:
https://docs.microsoft.com/en-us/azure/container-registry/container-registry-firewall-
access-rules
For other non-AKS repos using admission controllers or Azure Policy will also work.
Limiting or locking down egress traffic is also recommended:
https://docs.microsoft.com/en-us/azure/aks/limit-egress-traffic

References:

1. https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-asset-
management#am-6-use-only-approved-applications-in-compute-resources

2. https://docs.microsoft.com/en-us/azure/aks/limit-egress-traffic
3. https://docs.microsoft.com/en-us/azure/container-registry/container-registry-

firewall-access-rules

https://docs.microsoft.com/en-us/azure/container-registry/container-registry-firewall-access-rules
https://docs.microsoft.com/en-us/azure/container-registry/container-registry-firewall-access-rules
https://docs.microsoft.com/en-us/azure/aks/limit-egress-traffic
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-asset-management#am-6-use-only-approved-applications-in-compute-resources
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-asset-management#am-6-use-only-approved-applications-in-compute-resources
https://docs.microsoft.com/en-us/azure/aks/limit-egress-traffic
https://docs.microsoft.com/en-us/azure/container-registry/container-registry-firewall-access-rules
https://docs.microsoft.com/en-us/azure/container-registry/container-registry-firewall-access-rules

Page 107

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

2.5 Allowlist Authorized Software
 Use technical controls, such as application allowlisting, to ensure that only
authorized software can execute or be accessed. Reassess bi-annually, or more
frequently.

 ● ●

v7

5.2 Maintain Secure Images
 Maintain secure images or templates for all systems in the enterprise based on
the organization's approved configuration standards. Any new system deployment
or existing system that becomes compromised should be imaged using one of

those images or templates.

 ● ●

v7

5.3 Securely Store Master Images
 Store the master images and templates on securely configured servers,
validated with integrity monitoring tools, to ensure that only authorized changes to
the images are possible.

 ● ●

Page 108

5.2 Access and identity options for Azure Kubernetes Service (AKS)

This section contains recommendations relating to access and identity options for Azure
(AKS).

Page 109

5.2.1 Prefer using dedicated AKS Service Accounts (Manual)

Profile Applicability:

• Level 1

Description:

Kubernetes workloads should not use cluster node service accounts to authenticate to
Azure AKS APIs. Each Kubernetes workload that needs to authenticate to other Azure
Web Services using IAM should be provisioned with a dedicated Service account.

Rationale:

Manual approaches for authenticating Kubernetes workloads running on Azure AKS
against Azure APIs are: storing service account keys as a Kubernetes secret (which
introduces manual key rotation and potential for key compromise); or use of the
underlying nodes' IAM Service account, which violates the principle of least privilege on
a multi-tenanted node, when one pod needs to have access to a service, but every
other pod on the node that uses the Service account does not.

Audit:

For each namespace in the cluster, review the rights assigned to the default service
account and ensure that it has no roles or cluster roles bound to it apart from the
defaults.

Page 110

Remediation:

Azure Active Directory integration
The security of AKS clusters can be enhanced with the integration of Azure Active
Directory (AD). Built on decades of enterprise identity management, Azure AD is a
multi-tenant, cloud-based directory, and identity management service that combines
core directory services, application access management, and identity protection. With
Azure AD, you can integrate on-premises identities into AKS clusters to provide a single
source for account management and security.
Azure Active Directory integration with AKS clusters
With Azure AD-integrated AKS clusters, you can grant users or groups access to
Kubernetes resources within a namespace or across the cluster. To obtain a kubectl
configuration context, a user can run the az aks get-credentials command. When a user
then interacts with the AKS cluster with kubectl, they're prompted to sign in with their
Azure AD credentials. This approach provides a single source for user account
management and password credentials. The user can only access the resources as
defined by the cluster administrator.
Azure AD authentication is provided to AKS clusters with OpenID Connect. OpenID
Connect is an identity layer built on top of the OAuth 2.0 protocol. For more information
on OpenID Connect, see the Open ID connect documentation. From inside of the
Kubernetes cluster, Webhook Token Authentication is used to verify authentication
tokens. Webhook token authentication is configured and managed as part of the AKS
cluster.

References:

1. https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-
identity-management#im-2-manage-application-identities-securely-and-
automatically

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

5 Account Management
 Use processes and tools to assign and manage authorization to credentials for
user accounts, including administrator accounts, as well as service accounts, to
enterprise assets and software.

v7

4.3 Ensure the Use of Dedicated Administrative Accounts
 Ensure that all users with administrative account access use a dedicated or
secondary account for elevated activities. This account should only be used for

administrative activities and not internet browsing, email, or similar activities.

● ● ●

https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-identity-management#im-2-manage-application-identities-securely-and-automatically
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-identity-management#im-2-manage-application-identities-securely-and-automatically
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-identity-management#im-2-manage-application-identities-securely-and-automatically

Page 111

5.3 Key Management Service (KMS)

Page 112

5.3.1 Ensure Kubernetes Secrets are encrypted (Manual)

Profile Applicability:

• Level 1

Description:

Encryption at Rest is a common security requirement. In Azure, organizations can
encrypt data at rest without the risk or cost of a custom key management solution.
Organizations have the option of letting Azure completely manage Encryption at Rest.
Additionally, organizations have various options to closely manage encryption or
encryption keys.

Rationale:

Audit:

Remediation:

References:

1. https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-data-
protection#dp-5-encrypt-sensitive-data-at-rest

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

3.11 Encrypt Sensitive Data at Rest
 Encrypt sensitive data at rest on servers, applications, and databases containing
sensitive data. Storage-layer encryption, also known as server-side encryption,
meets the minimum requirement of this Safeguard. Additional encryption methods
may include application-layer encryption, also known as client-side encryption,
where access to the data storage device(s) does not permit access to the plain-text
data.

 ● ●

v7

14.8 Encrypt Sensitive Information at Rest
 Encrypt all sensitive information at rest using a tool that requires a secondary
authentication mechanism not integrated into the operating system, in order to
access the information.

 ●

https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-data-protection#dp-5-encrypt-sensitive-data-at-rest
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-data-protection#dp-5-encrypt-sensitive-data-at-rest

Page 113

5.4 Cluster Networking

This section contains recommendations relating to network security configurations in
Azure (AKS).

Page 114

5.4.1 Restrict Access to the Control Plane Endpoint (Automated)

Profile Applicability:

• Level 1

Description:

Enable Endpoint Private Access to restrict access to the cluster's control plane to only
an allowlist of authorized IPs.

Rationale:

Authorized networks are a way of specifying a restricted range of IP addresses that are
permitted to access your cluster's control plane. Kubernetes Engine uses both
Transport Layer Security (TLS) and authentication to provide secure access to your
cluster's control plane from the public internet. This provides you the flexibility to
administer your cluster from anywhere; however, you might want to further restrict
access to a set of IP addresses that you control. You can set this restriction by
specifying an authorized network.

Restricting access to an authorized network can provide additional security benefits for
your container cluster, including:

• Better protection from outsider attacks: Authorized networks provide an
additional layer of security by limiting external access to a specific set of
addresses you designate, such as those that originate from your premises. This
helps protect access to your cluster in the case of a vulnerability in the cluster's
authentication or authorization mechanism.

• Better protection from insider attacks: Authorized networks help protect your
cluster from accidental leaks of master certificates from your company's
premises. Leaked certificates used from outside Azure virtual machines and
outside the authorized IP ranges (for example, from addresses outside your
company) are still denied access.

Impact:

When implementing Endpoint Private Access, be careful to ensure all desired networks
are on the allowlist (whitelist) to prevent inadvertently blocking external access to your
cluster's control plane.

Limitations IP authorized ranges can't be applied to the private api server endpoint, they
only apply to the public API server Availability Zones are currently supported for certain
regions. Azure Private Link service limitations apply to private clusters. No support for
Azure DevOps Microsoft-hosted Agents with private clusters. Consider to use Self-
hosted Agents. For customers that need to enable Azure Container Registry to work
with private AKS, the Container Registry virtual network must be peered with the agent
cluster virtual network.

Page 115

Audit:

Check for the following to be 'enabled: true'

export CLUSTER_NAME=<your cluster name>

export RESOURCE_GROUP=<your resource group name>

az aks show --name ${CLUSTER_NAME} --resource-group ${RESOURCE_GROUP} --query

"apiServerAccessProfile.enablePublicFqdn"

This command queries for the enablePublicFqdn property within the
apiServerAccessProfile of your AKS cluster. The output will be true if
endpointPublicAccess is enabled, allowing access to the AKS cluster API server from
the internet. If it's false, endpointPublicAccess is disabled, meaning the API server is not
accessible over the internet, which is a common configuration for private clusters.

az aks show --name ${CLUSTER_NAME} --resource-group ${RESOURCE_GROUP} --query

"apiServerAccessProfile.enablePrivateCluster"

This command queries the enablePrivateCluster property within the
apiServerAccessProfile of your AKS cluster. If the output is true, it indicates that
endpointPrivateAccess is enabled, and the AKS cluster API server is configured to be
accessible only via a private endpoint. If the output is false, the cluster is not configured
for private access only, and the API server might be accessible over the internet
depending on other settings.
Check for the following is not null:

az aks show --name ${CLUSTER_NAME} --resource-group ${RESOURCE_GROUP} --query

"apiServerAccessProfile.authorizedIpRanges"

This command queries for the authorizedIpRanges property within the
apiServerAccessProfile of your AKS cluster. The output will list the IP ranges that are
authorized to access the AKS cluster's API server over the internet. If the list is empty, it
means there are no restrictions, and any IP can access the AKS cluster's API server,
assuming other network and security configurations allow it.

Remediation:

By enabling private endpoint access to the Kubernetes API server, all communication
between your nodes and the API server stays within your VPC. You can also limit the IP
addresses that can access your API server from the internet, or completely disable
internet access to the API server.
With this in mind, you can update your cluster accordingly using the AKS CLI to ensure
that Private Endpoint Access is enabled.
If you choose to also enable Public Endpoint Access then you should also configure a
list of allowable CIDR blocks, resulting in restricted access from the internet. If you
specify no CIDR blocks, then the public API server endpoint is able to receive and
process requests from all IP addresses by defaulting to ['0.0.0.0/0'].
For example, the following command would enable private access to the Kubernetes
API as well as limited public access over the internet from a single IP address (noting
the /32 CIDR suffix):

Page 116

Default Value:

By default, Endpoint Private Access is disabled.

References:

1. https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-
network-security#ns-1-implement-security-for-internal-traffic

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

3.3 Configure Data Access Control Lists
 Configure data access control lists based on a user’s need to know. Apply data
access control lists, also known as access permissions, to local and remote file
systems, databases, and applications.

● ● ●

v7

14.6 Protect Information through Access Control Lists
 Protect all information stored on systems with file system, network share,
claims, application, or database specific access control lists. These controls will
enforce the principle that only authorized individuals should have access to the

information based on their need to access the information as a part of their
responsibilities.

● ● ●

https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-network-security#ns-1-implement-security-for-internal-traffic
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-network-security#ns-1-implement-security-for-internal-traffic

Page 117

5.4.2 Ensure clusters are Private Cluster enabled and Public

Access Disabled

Profile Applicability:

• Level 2

Description:

Disable access to the Kubernetes API from outside the node network if it is not required.

Rationale:

In a private cluster, the master node has two endpoints, a private and public endpoint.
The private endpoint is the internal IP address of the master, behind an internal load
balancer in the master's wirtual network. Nodes communicate with the master using the
private endpoint. The public endpoint enables the Kubernetes API to be accessed from
outside the master's virtual network.

Although Kubernetes API requires an authorized token to perform sensitive actions, a
vulnerability could potentially expose the Kubernetes publically with unrestricted access.
Additionally, an attacker may be able to identify the current cluster and Kubernetes API
version and determine whether it is vulnerable to an attack. Unless required, disabling
public endpoint will help prevent such threats, and require the attacker to be on the
master's virtual network to perform any attack on the Kubernetes API.

Audit:

Check for the following to be 'enabled: false'

export CLUSTER_NAME=<your cluster name>

export RESOURCE_GROUP=<your resource group name>

az aks show --name ${CLUSTER_NAME} --resource-group ${RESOURCE_GROUP} --query

"apiServerAccessProfile.enablePublicFqdn"

This command queries for the enablePublicFqdn property within the
apiServerAccessProfile of your AKS cluster. The output will be true if
endpointPublicAccess is enabled, allowing access to the AKS cluster API server from
the internet. If it's false, endpointPublicAccess is disabled, meaning the API server is not
accessible over the internet, which is a common configuration for private clusters.
Check for the following to be 'enabled: true'

Page 118

az aks show --name ${CLUSTER_NAME} --resource-group ${RESOURCE_GROUP} --query

"apiServerAccessProfile.enablePrivateCluster"

This command queries the enablePrivateCluster property within the
apiServerAccessProfile of your AKS cluster. If the output is true, it indicates that
endpointPrivateAccess is enabled, and the AKS cluster API server is configured to be
accessible only via a private endpoint. If the output is false, the cluster is not configured
for private access only, and the API server might be accessible over the internet
depending on other settings.

Remediation:

To use a private endpoint, create a new private endpoint in your virtual network then
create a link between your virtual network and a new private DNS zone

References:

1. https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-
network-security#ns-2-connect-private-networks-together

2. https://learn.microsoft.com/en-us/azure/aks/private-clusters

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

4.4 Implement and Manage a Firewall on Servers
 Implement and manage a firewall on servers, where supported. Example
implementations include a virtual firewall, operating system firewall, or a third-
party firewall agent.

● ● ●

v7 12 Boundary Defense
 Boundary Defense

https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-network-security#ns-2-connect-private-networks-together
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-network-security#ns-2-connect-private-networks-together
https://learn.microsoft.com/en-us/azure/aks/private-clusters

Page 119

5.4.3 Ensure clusters are created with Private Nodes (Automated)

Profile Applicability:

• Level 1

Description:

Disable public IP addresses for cluster nodes, so that they only have private IP
addresses. Private Nodes are nodes with no public IP addresses.

Rationale:

Disabling public IP addresses on cluster nodes restricts access to only internal
networks, forcing attackers to obtain local network access before attempting to
compromise the underlying Kubernetes hosts.

Impact:

To enable Private Nodes, the cluster has to also be configured with a private master IP
range and IP Aliasing enabled.

Private Nodes do not have outbound access to the public internet. If you want to provide
outbound Internet access for your private nodes, you can use Cloud NAT or you can
manage your own NAT gateway.

Audit:

Check for the following to be 'enabled: true'

export CLUSTER_NAME=<your cluster name>

export RESOURCE_GROUP=<your resource group name>

az aks show --name ${CLUSTER_NAME} --resource-group ${RESOURCE_GROUP} --query

"apiServerAccessProfile.enablePrivateCluster"

Check for the following is not null:

Page 120

az aks show --name ${CLUSTER_NAME} --resource-group ${RESOURCE_GROUP} --query

"apiServerAccessProfile.authorizedIpRanges"

Remediation:

az aks create \

--resource-group <private-cluster-resource-group> \

--name <private-cluster-name> \

--load-balancer-sku standard \

--enable-private-cluster \

--network-plugin azure \

--vnet-subnet-id <subnet-id> \

--docker-bridge-address \

--dns-service-ip \

--service-cidr

Where --enable-private-cluster is a mandatory flag for a private cluster.

References:

1. https://learn.microsoft.com/en-us/azure/aks/private-clusters

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

4.4 Implement and Manage a Firewall on Servers
 Implement and manage a firewall on servers, where supported. Example
implementations include a virtual firewall, operating system firewall, or a third-
party firewall agent.

● ● ●

v7 12 Boundary Defense
 Boundary Defense

https://learn.microsoft.com/en-us/azure/aks/private-clusters

Page 121

5.4.4 Ensure Network Policy is Enabled and set as appropriate

(Automated)

Profile Applicability:

• Level 1

Description:

When you run modern, microservices-based applications in Kubernetes, you often want
to control which components can communicate with each other. The principle of least
privilege should be applied to how traffic can flow between pods in an Azure Kubernetes
Service (AKS) cluster. Let's say you likely want to block traffic directly to back-end
applications. The Network Policy feature in Kubernetes lets you define rules for ingress
and egress traffic between pods in a cluster.

Rationale:

All pods in an AKS cluster can send and receive traffic without limitations, by default. To
improve security, you can define rules that control the flow of traffic. Back-end
applications are often only exposed to required front-end services, for example. Or,
database components are only accessible to the application tiers that connect to them.

Network Policy is a Kubernetes specification that defines access policies for
communication between Pods. Using Network Policies, you define an ordered set of
rules to send and receive traffic and apply them to a collection of pods that match one
or more label selectors.

These network policy rules are defined as YAML manifests. Network policies can be
included as part of a wider manifest that also creates a deployment or service.

Impact:

Network Policy requires the Network Policy add-on. This add-on is included
automatically when a cluster with Network Policy is created, but for an existing cluster,
needs to be added prior to enabling Network Policy.

Enabling/Disabling Network Policy causes a rolling update of all cluster nodes, similar to
performing a cluster upgrade. This operation is long-running and will block other
operations on the cluster (including delete) until it has run to completion.

If Network Policy is used, a cluster must have at least 2 nodes of type n1-standard-1 or

higher. The recommended minimum size cluster to run Network Policy enforcement is 3
n1-standard-1 instances.

Enabling Network Policy enforcement consumes additional resources in nodes.
Specifically, it increases the memory footprint of the kube-system process by

approximately 128MB, and requires approximately 300 millicores of CPU.

Page 122

Audit:

Check for the following is not null and set with appropriate group id:

export CLUSTER_NAME=<your cluster name>

az aks show --name ${CLUSTER_NAME} --resource-group ${RESOURCE_GROUP} --query

"networkProfile.networkPolicy"

Remediation:

Utilize Calico or other network policy engine to segment and isolate your traffic.

Default Value:

By default, Network Policy is disabled.

References:

1. https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-
network-security#ns-2-connect-private-networks-together

2. https://docs.microsoft.com/en-us/azure/aks/use-network-policies

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

4.4 Implement and Manage a Firewall on Servers
 Implement and manage a firewall on servers, where supported. Example
implementations include a virtual firewall, operating system firewall, or a third-
party firewall agent.

● ● ●

v7

9.2 Ensure Only Approved Ports, Protocols and Services
Are Running
 Ensure that only network ports, protocols, and services listening on a system
with validated business needs, are running on each system.

 ● ●

v7

9.4 Apply Host-based Firewalls or Port Filtering
 Apply host-based firewalls or port filtering tools on end systems, with a
default-deny rule that drops all traffic except those services and ports that are
explicitly allowed.

● ● ●

https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-network-security#ns-2-connect-private-networks-together
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-network-security#ns-2-connect-private-networks-together
https://docs.microsoft.com/en-us/azure/aks/use-network-policies

Page 123

5.4.5 Encrypt traffic to HTTPS load balancers with TLS

certificates (Manual)

Profile Applicability:

• Level 2

Description:

Encrypt traffic to HTTPS load balancers using TLS certificates.

Rationale:

Encrypting traffic between users and your Kubernetes workload is fundamental to
protecting data sent over the web.

Audit:

Remediation:

References:

1. https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-data-
protection#dp-4-encrypt-sensitive-information-in-transit

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8
3.10 Encrypt Sensitive Data in Transit
 Encrypt sensitive data in transit. Example implementations can include:
Transport Layer Security (TLS) and Open Secure Shell (OpenSSH).

 ● ●

v7 14.4 Encrypt All Sensitive Information in Transit
 Encrypt all sensitive information in transit.

 ● ●

https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-data-protection#dp-4-encrypt-sensitive-information-in-transit
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-data-protection#dp-4-encrypt-sensitive-information-in-transit

Page 124

5.5 Authentication and Authorization

This section contains recommendations relating to authentication and authorization in
Azure (AKS).

Page 125

5.5.1 Manage Kubernetes RBAC users with Azure AD (Manual)

Profile Applicability:

• Level 2

Description:

Azure Kubernetes Service (AKS) can be configured to use Azure Active Directory (AD)
for user authentication. In this configuration, you sign in to an AKS cluster using an
Azure AD authentication token. You can also configure Kubernetes role-based access
control (Kubernetes RBAC) to limit access to cluster resources based a user's identity
or group membership.

Rationale:

Kubernetes RBAC and AKS help you secure your cluster access and provide only the
minimum required permissions to developers and operators.

Audit:

Remediation:

References:

1. https://docs.microsoft.com/en-us/azure/aks/azure-ad-rbac
2. https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-

privileged-access#pa-7-follow-just-enough-administration-least-privilege-principle

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

6.8 Define and Maintain Role-Based Access Control
 Define and maintain role-based access control, through determining and
documenting the access rights necessary for each role within the enterprise to

successfully carry out its assigned duties. Perform access control reviews of
enterprise assets to validate that all privileges are authorized, on a recurring
schedule at a minimum annually, or more frequently.

 ●

v7
16.2 Configure Centralized Point of Authentication
 Configure access for all accounts through as few centralized points of
authentication as possible, including network, security, and cloud systems.

 ● ●

https://docs.microsoft.com/en-us/azure/aks/azure-ad-rbac
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-privileged-access#pa-7-follow-just-enough-administration-least-privilege-principle
https://docs.microsoft.com/security/benchmark/azure/security-controls-v2-privileged-access#pa-7-follow-just-enough-administration-least-privilege-principle

Page 126

5.5.2 Use Azure RBAC for Kubernetes Authorization (Manual)

Profile Applicability:

• Level 2

Description:

The ability to manage RBAC for Kubernetes resources from Azure gives you the choice
to manage RBAC for the cluster resources either using Azure or native Kubernetes
mechanisms. When enabled, Azure AD principals will be validated exclusively by Azure
RBAC while regular Kubernetes users and service accounts are exclusively validated by
Kubernetes RBAC.

Azure role-based access control (RBAC) is an authorization system built on Azure
Resource Manager that provides fine-grained access management of Azure resources.

With Azure RBAC, you create a role definition that outlines the permissions to be
applied. You then assign a user or group this role definition via a role assignment for a
particular scope. The scope can be an individual resource, a resource group, or across
the subscription.

Rationale:

Today you can already leverage integrated authentication between Azure Active
Directory (Azure AD) and AKS. When enabled, this integration allows customers to use
Azure AD users, groups, or service principals as subjects in Kubernetes RBAC. This
feature frees you from having to separately manage user identities and credentials for
Kubernetes. However, you still have to set up and manage Azure RBAC and
Kubernetes RBAC separately. Azure RBAC for Kubernetes Authorization is an
approach that allows for the unified management and access control across Azure
Resources, AKS, and Kubernetes resources.

Audit:

Remediation:

References:

1. https://docs.microsoft.com/en-us/azure/aks/manage-azure-rbac

https://docs.microsoft.com/en-us/azure/aks/manage-azure-rbac

Page 127

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

6.8 Define and Maintain Role-Based Access Control
 Define and maintain role-based access control, through determining and
documenting the access rights necessary for each role within the enterprise to
successfully carry out its assigned duties. Perform access control reviews of
enterprise assets to validate that all privileges are authorized, on a recurring
schedule at a minimum annually, or more frequently.

 ●

v7
5.1 Establish Secure Configurations
 Maintain documented, standard security configuration standards for all

authorized operating systems and software.
● ● ●

Page 128

Appendix: Summary Table

CIS Benchmark Recommendation Set
Correctly

Yes No

1 Master (Control Plane) Components

2 Master (Control Plane) Configuration

2.1 Logging

2.1.1 Enable audit Logs (Manual)  

3 Worker Nodes

3.1 Worker Node Configuration Files

3.1.1 Ensure that the kubeconfig file permissions are set to
644 or more restrictive (Automated)

 

3.1.2 Ensure that the kubelet kubeconfig file ownership is set
to root:root (Automated)

 

3.1.3 Ensure that the azure.json file has permissions set to
644 or more restrictive (Automated)

 

3.1.4 Ensure that the azure.json file ownership is set to
root:root (Automated)

 

3.2 Kubelet

3.2.1 Ensure that the --anonymous-auth argument is set to
false (Automated)

 

3.2.2 Ensure that the --authorization-mode argument is not set
to AlwaysAllow (Automated)

 

3.2.3 Ensure that the --client-ca-file argument is set as
appropriate (Automated)

 

3.2.4 Ensure that the --read-only-port is secured (Automated)  

3.2.5 Ensure that the --streaming-connection-idle-timeout
argument is not set to 0 (Automated)

 

Page 129

CIS Benchmark Recommendation Set
Correctly

Yes No

3.2.6 Ensure that the --make-iptables-util-chains argument is
set to true (Automated)

 

3.2.7 Ensure that the --eventRecordQPS argument is set to 0
or a level which ensures appropriate event capture
(Automated)

 

3.2.8 Ensure that the --rotate-certificates argument is not set
to false (Automated)

 

3.2.9 Ensure that the RotateKubeletServerCertificate
argument is set to true (Automated)

 

4 Policies

4.1 RBAC and Service Accounts

4.1.1 Ensure that the cluster-admin role is only used where
required (Automated)

 

4.1.2 Minimize access to secrets (Automated)  

4.1.3 Minimize wildcard use in Roles and ClusterRoles
(Automated)

 

4.1.4 Minimize access to create pods (Automated)  

4.1.5 Ensure that default service accounts are not actively
used (Automated)

 

4.1.6 Ensure that Service Account Tokens are only mounted
where necessary (Automated)

 

4.2 Pod Security Standards

4.2.1 Minimize the admission of privileged containers
(Automated)

 

4.2.2 Minimize the admission of containers wishing to share
the host process ID namespace (Automated)

 

Page 130

CIS Benchmark Recommendation Set
Correctly

Yes No

4.2.3 Minimize the admission of containers wishing to share
the host IPC namespace (Automated)

 

4.2.4 Minimize the admission of containers wishing to share
the host network namespace (Automated)

 

4.2.5 Minimize the admission of containers with
allowPrivilegeEscalation (Automated)

 

4.3 Azure Policy / OPA

4.4 CNI Plugin

4.4.1 Ensure latest CNI version is used (Automated)  

4.4.2 Ensure that all Namespaces have Network Policies
defined (Automated)

 

4.5 Secrets Management

4.5.1 Prefer using secrets as files over secrets as environment
variables (Automated)

 

4.5.2 Consider external secret storage (Manual)  

4.6 General Policies

4.6.1 Create administrative boundaries between resources
using namespaces (Manual)

 

4.6.2 Apply Security Context to Your Pods and Containers
(Manual)

 

4.6.3 The default namespace should not be used (Automated)  

5 Managed services

5.1 Image Registry and Image Scanning

5.1.1 Ensure Image Vulnerability Scanning using Azure
Defender image scanning or a third party provider
(Automated)

 

Page 131

CIS Benchmark Recommendation Set
Correctly

Yes No

5.1.2 Minimize user access to Azure Container Registry (ACR)
(Manual)

 

5.1.3 Minimize cluster access to read-only for Azure Container
Registry (ACR) (Manual)

 

5.1.4 Minimize Container Registries to only those approved
(Manual)

 

5.2 Access and identity options for Azure Kubernetes Service (AKS)

5.2.1 Prefer using dedicated AKS Service Accounts (Manual)  

5.3 Key Management Service (KMS)

5.3.1 Ensure Kubernetes Secrets are encrypted (Manual)  

5.4 Cluster Networking

5.4.1 Restrict Access to the Control Plane Endpoint
(Automated)

 

5.4.2 Ensure clusters are created with Private Endpoint
Enabled and Public Access Disabled (Automated)

 

5.4.3 Ensure clusters are created with Private Nodes
(Automated)

 

5.4.4 Ensure Network Policy is Enabled and set as appropriate
(Automated)

 

5.4.5 Encrypt traffic to HTTPS load balancers with TLS
certificates (Manual)

 

5.5 Authentication and Authorization

5.5.1 Manage Kubernetes RBAC users with Azure AD
(Manual)

 

5.5.2 Use Azure RBAC for Kubernetes Authorization (Manual)  

Page 132

Page 133

Appendix: CIS Controls v7 IG 1 Mapped

Recommendations

Recommendation Set
Correctly

Yes No

4.1.1 Ensure that the cluster-admin role is only used where
required

 

4.1.3 Minimize wildcard use in Roles and ClusterRoles  

4.1.5 Ensure that default service accounts are not actively
used

 

4.6.3 The default namespace should not be used  

5.1.2 Minimize user access to Azure Container Registry (ACR)  

5.2.1 Prefer using dedicated AKS Service Accounts  

5.4.1 Restrict Access to the Control Plane Endpoint  

5.4.4 Ensure Network Policy is Enabled and set as appropriate  

5.5.2 Use Azure RBAC for Kubernetes Authorization  

Page 134

Appendix: CIS Controls v7 IG 2 Mapped

Recommendations

Recommendation Set
Correctly

Yes No

3.1.1 Ensure that the kubeconfig file permissions are set to
644 or more restrictive

 

3.1.2 Ensure that the kubelet kubeconfig file ownership is set
to root:root

 

3.1.3 Ensure that the azure.json file has permissions set to 644
or more restrictive

 

3.1.4 Ensure that the azure.json file ownership is set to
root:root

 

3.2.3 Ensure that the --client-ca-file argument is set as
appropriate

 

3.2.4 Ensure that the --read-only-port is secured  

3.2.8 Ensure that the --rotate-certificates argument is not set to
false

 

3.2.9 Ensure that the RotateKubeletServerCertificate argument
is set to true

 

4.1.1 Ensure that the cluster-admin role is only used where
required

 

4.1.2 Minimize access to secrets  

4.1.3 Minimize wildcard use in Roles and ClusterRoles  

4.1.4 Minimize access to create pods  

4.1.5 Ensure that default service accounts are not actively
used

 

4.1.6 Ensure that Service Account Tokens are only mounted
where necessary

 

4.2.1 Minimize the admission of privileged containers  

4.2.2 Minimize the admission of containers wishing to share
the host process ID namespace

 

4.2.3 Minimize the admission of containers wishing to share
the host IPC namespace

 

Page 135

Recommendation Set
Correctly

Yes No

4.2.4 Minimize the admission of containers wishing to share
the host network namespace

 

4.2.5 Minimize the admission of containers with
allowPrivilegeEscalation

 

4.4.1 Ensure latest CNI version is used  

4.4.2 Ensure that all Namespaces have Network Policies
defined

 

4.5.1 Prefer using secrets as files over secrets as environment
variables

 

4.6.3 The default namespace should not be used  

5.1.1 Ensure Image Vulnerability Scanning using Azure
Defender image scanning or a third party provider

 

5.1.2 Minimize user access to Azure Container Registry (ACR)  

5.1.3 Minimize cluster access to read-only for Azure Container
Registry (ACR)

 

5.1.4 Minimize Container Registries to only those approved  

5.2.1 Prefer using dedicated AKS Service Accounts  

5.4.1 Restrict Access to the Control Plane Endpoint  

5.4.4 Ensure Network Policy is Enabled and set as appropriate  

5.4.5 Encrypt traffic to HTTPS load balancers with TLS
certificates

 

5.5.1 Manage Kubernetes RBAC users with Azure AD  

5.5.2 Use Azure RBAC for Kubernetes Authorization  

Page 136

Appendix: CIS Controls v7 IG 3 Mapped

Recommendations

Recommendation Set
Correctly

Yes No

3.1.1 Ensure that the kubeconfig file permissions are set to
644 or more restrictive

 

3.1.2 Ensure that the kubelet kubeconfig file ownership is set
to root:root

 

3.1.3 Ensure that the azure.json file has permissions set to 644
or more restrictive

 

3.1.4 Ensure that the azure.json file ownership is set to
root:root

 

3.2.3 Ensure that the --client-ca-file argument is set as
appropriate

 

3.2.4 Ensure that the --read-only-port is secured  

3.2.8 Ensure that the --rotate-certificates argument is not set to
false

 

3.2.9 Ensure that the RotateKubeletServerCertificate argument
is set to true

 

4.1.1 Ensure that the cluster-admin role is only used where
required

 

4.1.2 Minimize access to secrets  

4.1.3 Minimize wildcard use in Roles and ClusterRoles  

4.1.4 Minimize access to create pods  

4.1.5 Ensure that default service accounts are not actively
used

 

4.1.6 Ensure that Service Account Tokens are only mounted
where necessary

 

4.2.1 Minimize the admission of privileged containers  

4.2.2 Minimize the admission of containers wishing to share
the host process ID namespace

 

4.2.3 Minimize the admission of containers wishing to share
the host IPC namespace

 

Page 137

Recommendation Set
Correctly

Yes No

4.2.4 Minimize the admission of containers wishing to share
the host network namespace

 

4.2.5 Minimize the admission of containers with
allowPrivilegeEscalation

 

4.4.1 Ensure latest CNI version is used  

4.4.2 Ensure that all Namespaces have Network Policies
defined

 

4.5.1 Prefer using secrets as files over secrets as environment
variables

 

4.5.2 Consider external secret storage  

4.6.3 The default namespace should not be used  

5.1.1 Ensure Image Vulnerability Scanning using Azure
Defender image scanning or a third party provider

 

5.1.2 Minimize user access to Azure Container Registry (ACR)  

5.1.3 Minimize cluster access to read-only for Azure Container
Registry (ACR)

 

5.1.4 Minimize Container Registries to only those approved  

5.2.1 Prefer using dedicated AKS Service Accounts  

5.3.1 Ensure Kubernetes Secrets are encrypted  

5.4.1 Restrict Access to the Control Plane Endpoint  

5.4.4 Ensure Network Policy is Enabled and set as appropriate  

5.4.5 Encrypt traffic to HTTPS load balancers with TLS
certificates

 

5.5.1 Manage Kubernetes RBAC users with Azure AD  

5.5.2 Use Azure RBAC for Kubernetes Authorization  

Page 138

Appendix: CIS Controls v7 Unmapped

Recommendations

Recommendation Set
Correctly

Yes No

 No unmapped recommendations to CIS Controls v7.0  

Page 139

Appendix: CIS Controls v8 IG 1 Mapped

Recommendations

Recommendation Set
Correctly

Yes No

2.1.1 Enable audit Logs  

3.1.1 Ensure that the kubeconfig file permissions are set to
644 or more restrictive

 

3.1.2 Ensure that the kubelet kubeconfig file ownership is set
to root:root

 

3.1.3 Ensure that the azure.json file has permissions set to 644
or more restrictive

 

3.1.4 Ensure that the azure.json file ownership is set to
root:root

 

3.2.4 Ensure that the --read-only-port is secured  

3.2.5 Ensure that the --streaming-connection-idle-timeout
argument is not set to 0

 

3.2.6 Ensure that the --make-iptables-util-chains argument is
set to true

 

3.2.7 Ensure that the --eventRecordQPS argument is set to 0
or a level which ensures appropriate event capture

 

4.1.1 Ensure that the cluster-admin role is only used where
required

 

4.1.2 Minimize access to secrets  

4.1.3 Minimize wildcard use in Roles and ClusterRoles  

4.1.4 Minimize access to create pods  

4.1.5 Ensure that default service accounts are not actively
used

 

4.1.6 Ensure that Service Account Tokens are only mounted
where necessary

 

4.2.1 Minimize the admission of privileged containers  

4.2.2 Minimize the admission of containers wishing to share
the host process ID namespace

 

4.2.3 Minimize the admission of containers wishing to share
the host IPC namespace

 

Page 140

Recommendation Set
Correctly

Yes No

4.2.4 Minimize the admission of containers wishing to share
the host network namespace

 

4.2.5 Minimize the admission of containers with
allowPrivilegeEscalation

 

4.6.1 Create administrative boundaries between resources
using namespaces

 

4.6.2 Apply Security Context to Your Pods and Containers  

4.6.3 The default namespace should not be used  

5.1.2 Minimize user access to Azure Container Registry (ACR)  

5.1.3 Minimize cluster access to read-only for Azure Container
Registry (ACR)

 

5.4.1 Restrict Access to the Control Plane Endpoint  

5.4.2 Ensure clusters are created with Private Endpoint
Enabled and Public Access Disabled

 

5.4.3 Ensure clusters are created with Private Nodes  

5.4.4 Ensure Network Policy is Enabled and set as appropriate  

Page 141

Appendix: CIS Controls v8 IG 2 Mapped

Recommendations

Recommendation Set
Correctly

Yes No

2.1.1 Enable audit Logs  

3.1.1 Ensure that the kubeconfig file permissions are set to
644 or more restrictive

 

3.1.2 Ensure that the kubelet kubeconfig file ownership is set
to root:root

 

3.1.3 Ensure that the azure.json file has permissions set to 644
or more restrictive

 

3.1.4 Ensure that the azure.json file ownership is set to
root:root

 

3.2.4 Ensure that the --read-only-port is secured  

3.2.5 Ensure that the --streaming-connection-idle-timeout
argument is not set to 0

 

3.2.6 Ensure that the --make-iptables-util-chains argument is
set to true

 

3.2.7 Ensure that the --eventRecordQPS argument is set to 0
or a level which ensures appropriate event capture

 

3.2.8 Ensure that the --rotate-certificates argument is not set to
false

 

3.2.9 Ensure that the RotateKubeletServerCertificate argument
is set to true

 

4.1.1 Ensure that the cluster-admin role is only used where
required

 

4.1.2 Minimize access to secrets  

4.1.3 Minimize wildcard use in Roles and ClusterRoles  

4.1.4 Minimize access to create pods  

4.1.5 Ensure that default service accounts are not actively
used

 

4.1.6 Ensure that Service Account Tokens are only mounted
where necessary

 

4.2.1 Minimize the admission of privileged containers  

Page 142

Recommendation Set
Correctly

Yes No

4.2.2 Minimize the admission of containers wishing to share
the host process ID namespace

 

4.2.3 Minimize the admission of containers wishing to share
the host IPC namespace

 

4.2.4 Minimize the admission of containers wishing to share
the host network namespace

 

4.2.5 Minimize the admission of containers with
allowPrivilegeEscalation

 

4.4.1 Ensure latest CNI version is used  

4.4.2 Ensure that all Namespaces have Network Policies
defined

 

4.6.1 Create administrative boundaries between resources
using namespaces

 

4.6.2 Apply Security Context to Your Pods and Containers  

4.6.3 The default namespace should not be used  

5.1.1 Ensure Image Vulnerability Scanning using Azure
Defender image scanning or a third party provider

 

5.1.2 Minimize user access to Azure Container Registry (ACR)  

5.1.3 Minimize cluster access to read-only for Azure Container
Registry (ACR)

 

5.1.4 Minimize Container Registries to only those approved  

5.3.1 Ensure Kubernetes Secrets are encrypted  

5.4.1 Restrict Access to the Control Plane Endpoint  

5.4.2 Ensure clusters are created with Private Endpoint
Enabled and Public Access Disabled

 

5.4.3 Ensure clusters are created with Private Nodes  

5.4.4 Ensure Network Policy is Enabled and set as appropriate  

5.4.5 Encrypt traffic to HTTPS load balancers with TLS
certificates

 

Page 143

Appendix: CIS Controls v8 IG 3 Mapped

Recommendations

Recommendation Set
Correctly

Yes No

2.1.1 Enable audit Logs  

3.1.1 Ensure that the kubeconfig file permissions are set to
644 or more restrictive

 

3.1.2 Ensure that the kubelet kubeconfig file ownership is set
to root:root

 

3.1.3 Ensure that the azure.json file has permissions set to 644
or more restrictive

 

3.1.4 Ensure that the azure.json file ownership is set to
root:root

 

3.2.4 Ensure that the --read-only-port is secured  

3.2.5 Ensure that the --streaming-connection-idle-timeout
argument is not set to 0

 

3.2.6 Ensure that the --make-iptables-util-chains argument is
set to true

 

3.2.7 Ensure that the --eventRecordQPS argument is set to 0
or a level which ensures appropriate event capture

 

3.2.8 Ensure that the --rotate-certificates argument is not set to
false

 

3.2.9 Ensure that the RotateKubeletServerCertificate argument
is set to true

 

4.1.1 Ensure that the cluster-admin role is only used where
required

 

4.1.2 Minimize access to secrets  

4.1.3 Minimize wildcard use in Roles and ClusterRoles  

4.1.4 Minimize access to create pods  

4.1.5 Ensure that default service accounts are not actively
used

 

4.1.6 Ensure that Service Account Tokens are only mounted
where necessary

 

4.2.1 Minimize the admission of privileged containers  

Page 144

Recommendation Set
Correctly

Yes No

4.2.2 Minimize the admission of containers wishing to share
the host process ID namespace

 

4.2.3 Minimize the admission of containers wishing to share
the host IPC namespace

 

4.2.4 Minimize the admission of containers wishing to share
the host network namespace

 

4.2.5 Minimize the admission of containers with
allowPrivilegeEscalation

 

4.4.1 Ensure latest CNI version is used  

4.4.2 Ensure that all Namespaces have Network Policies
defined

 

4.6.1 Create administrative boundaries between resources
using namespaces

 

4.6.2 Apply Security Context to Your Pods and Containers  

4.6.3 The default namespace should not be used  

5.1.1 Ensure Image Vulnerability Scanning using Azure
Defender image scanning or a third party provider

 

5.1.2 Minimize user access to Azure Container Registry (ACR)  

5.1.3 Minimize cluster access to read-only for Azure Container
Registry (ACR)

 

5.1.4 Minimize Container Registries to only those approved  

5.3.1 Ensure Kubernetes Secrets are encrypted  

5.4.1 Restrict Access to the Control Plane Endpoint  

5.4.2 Ensure clusters are created with Private Endpoint
Enabled and Public Access Disabled

 

5.4.3 Ensure clusters are created with Private Nodes  

5.4.4 Ensure Network Policy is Enabled and set as appropriate  

5.4.5 Encrypt traffic to HTTPS load balancers with TLS
certificates

 

5.5.1 Manage Kubernetes RBAC users with Azure AD  

5.5.2 Use Azure RBAC for Kubernetes Authorization  

Page 145

Appendix: CIS Controls v8 Unmapped

Recommendations

Recommendation Set
Correctly

Yes No

 No unmapped recommendations to CIS Controls v8.0  

Page 146

Page 147

Appendix: Change History

Date Version Changes for this version

March 19, 2024 1.5.0 Support for Kubernetes
Clusters created on 1.29,
1.28, 1.27

March 10, 2024 1.5.0 Automated Section 4.2 –
Pod Security Standards
recommendations to use
CIS-CAT

March 1, 2024 1.5.0 Automated Section 4.1 -
RBAC and Service
Accounts recommendations
to use CIS-CAT

February 29, 2024 1.5.0 Automated Section 5.4 –
Cluster Networking
recommendations to use
CIS-CAT

February 21, 2024 1.5.0 Automated Section 3.1 –
Worker node Configuration
File recommendations to
use CIS-CAT

Sept 29, 2023 1.4.0 Support for Kubernetes
Clusters created on v1.27,
1.26 or 1.25

Sept 27, 2023 1.4.0 Ticket # 19278
Addressing –
eventRecordQPS flag and
title

Sept 27, 2023 1.4.0 Ticket # 19279
Validated recommendation
3.2.10 and the methods that
can be utilized to audit the
setting.

Page 148

Date Version Changes for this version

Sept 15, 2023 1.4.0 Ticket #19350
Validated recommendation
for -streaming-connection-
idle-timeout

Apr 9, 2023 1.3.0 Ticket # 17664
The current state of check
AKS 3.2.9 is at best
undefined: "set to 0 or a
level which ensures
appropriate event capture".

Apr 9, 2023 1.3.0 Ticket #16491

Edited recommendation
5.2.10

Apr 3, 2023 1.3.0 Ticket # 16624

Updated Recommendation
5.3.2 moved flags in audit
process to end of the
command line

Apr 3, 2023 1.3.0 Ticket # 16625Updated
Recommendation 5.7.1
default value statement.

Apr 3, 2023 1.3.0 Ticket #18522
Set Pod Security Policy
Recommendations to
Manual in preparation for
PSP removal in v1.25 and
beyond.

Mar 22, 2023 1.3.0 Ticket #17029
Recommendation 4.2.1
Minimize the admission of
privileged containers is
deprricated.

Page 149

Date Version Changes for this version

Mar 13, 2023 1.3.0 Ticket #16686
Updated recommendation
4.2.4 to resolve conflict with
4.2.8

Mar 13, 2023 1.3.0 Ticket # 15917
edited –event-qps option
with eventRecordQPS

	Terms of Use
	Table of Contents
	Overview
	Intended Audience
	Consensus Guidance
	Typographical Conventions

	Recommendation Definitions
	Title
	Assessment Status
	Automated
	Manual

	Profile
	Description
	Rationale Statement
	Impact Statement
	Audit Procedure
	Remediation Procedure
	Default Value
	References
	CIS Critical Security Controls® (CIS Controls®)
	Additional Information
	Profile Definitions
	Acknowledgements

	Recommendations
	1 Master (Control Plane) Components
	2 Master (Control Plane) Configuration
	2.1 Logging
	2.1.1 Enable audit Logs (Manual)

	3 Worker Nodes
	3.1 Worker Node Configuration Files
	3.1.1 Ensure that the kubeconfig file permissions are set to 644 or more restrictive (Automated)
	3.1.2 Ensure that the kubelet kubeconfig file ownership is set to root:root (Automated)
	3.1.3 Ensure that the azure.json file has permissions set to 644 or more restrictive (Automated)
	3.1.4 Ensure that the azure.json file ownership is set to root:root (Automated)

	3.2 Kubelet
	3.2.1 Ensure that the --anonymous-auth argument is set to false (Automated)
	3.2.2 Ensure that the --authorization-mode argument is not set to AlwaysAllow (Automated)
	3.2.3 Ensure that the --client-ca-file argument is set as appropriate (Automated)
	3.2.4 Ensure that the --read-only-port is secured (Automated)
	3.2.5 Ensure that the --streaming-connection-idle-timeout argument is not set to 0 (Automated)
	3.2.6 Ensure that the --make-iptables-util-chains argument is set to true (Automated)
	3.2.7 Ensure that the --eventRecordQPS argument is set to 0 or a level which ensures appropriate event capture (Automated)
	3.2.8 Ensure that the --rotate-certificates argument is not set to false (Automated)
	3.2.9 Ensure that the RotateKubeletServerCertificate argument is set to true (Automated)

	4 Policies
	4.1 RBAC and Service Accounts
	4.1.1 Ensure that the cluster-admin role is only used where required (Automated)
	4.1.2 Minimize access to secrets (Automated)
	4.1.3 Minimize wildcard use in Roles and ClusterRoles (Automated)
	4.1.4 Minimize access to create pods (Automated)
	4.1.5 Ensure that default service accounts are not actively used (Automated)
	4.1.6 Ensure that Service Account Tokens are only mounted where necessary (Automated)

	4.2 Pod Security Standards
	4.2.1 Minimize the admission of privileged containers (Automated)
	4.2.2 Minimize the admission of containers wishing to share the host process ID namespace (Automated)
	4.2.3 Minimize the admission of containers wishing to share the host IPC namespace (Automated)
	4.2.4 Minimize the admission of containers wishing to share the host network namespace (Automated)
	4.2.5 Minimize the admission of containers with allowPrivilegeEscalation (Automated)

	4.3 Azure Policy / OPA
	4.4 CNI Plugin
	4.4.1 Ensure latest CNI version is used (Automated)
	4.4.2 Ensure that all Namespaces have Network Policies defined (Automated)

	4.5 Secrets Management
	4.5.1 Prefer using secrets as files over secrets as environment variables (Automated)
	4.5.2 Consider external secret storage (Manual)

	4.6 General Policies
	4.6.1 Create administrative boundaries between resources using namespaces (Manual)
	4.6.2 Apply Security Context to Your Pods and Containers (Manual)
	4.6.3 The default namespace should not be used (Automated)

	5 Managed services
	5.1 Image Registry and Image Scanning
	5.1.1 Ensure Image Vulnerability Scanning using Azure Defender image scanning or a third party provider (Automated)
	5.1.2 Minimize user access to Azure Container Registry (ACR) (Manual)
	5.1.3 Minimize cluster access to read-only for Azure Container Registry (ACR) (Manual)
	5.1.4 Minimize Container Registries to only those approved (Manual)

	5.2 Access and identity options for Azure Kubernetes Service (AKS)
	5.2.1 Prefer using dedicated AKS Service Accounts (Manual)

	5.3 Key Management Service (KMS)
	5.3.1 Ensure Kubernetes Secrets are encrypted (Manual)

	5.4 Cluster Networking
	5.4.1 Restrict Access to the Control Plane Endpoint (Automated)
	5.4.2 Ensure clusters are Private Cluster enabled and Public Access Disabled
	5.4.3 Ensure clusters are created with Private Nodes (Automated)
	5.4.4 Ensure Network Policy is Enabled and set as appropriate (Automated)
	5.4.5 Encrypt traffic to HTTPS load balancers with TLS certificates (Manual)

	5.5 Authentication and Authorization
	5.5.1 Manage Kubernetes RBAC users with Azure AD (Manual)
	5.5.2 Use Azure RBAC for Kubernetes Authorization (Manual)

	Appendix: Summary Table
	Appendix: CIS Controls v7 IG 1 Mapped Recommendations
	Appendix: CIS Controls v7 IG 2 Mapped Recommendations
	Appendix: CIS Controls v7 IG 3 Mapped Recommendations
	Appendix: CIS Controls v7 Unmapped Recommendations
	Appendix: CIS Controls v8 IG 1 Mapped Recommendations
	Appendix: CIS Controls v8 IG 2 Mapped Recommendations
	Appendix: CIS Controls v8 IG 3 Mapped Recommendations
	Appendix: CIS Controls v8 Unmapped Recommendations
	Appendix: Change History

