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01 What is Datadog?

02 Why are we Interested in Datafusion?

03 What is Datafusion?

04 How are we using Datafusion?



All of your 
monitoring and 
security tools in 
a single, unified 

platform

Visit datadoghq.com
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Datadog Through The Years



Our Current 
Tech Stack
Challenge
We have multiple non-relational 
engines from years of growth, 
acquisitions, and optimizations.

Goal
Enable more complex queries 
from multiple data sources

Events
JSON-like

Metrics
Timeseries

Resources
Tabular

Events 
Queries

Elasticsearch
-like

Timeseries 
Queries SQL 

Queries

Not relational

Not very tabular

Fairly new, 
small

Engines

Storage Systems



DDSQL
Editor

Composable 
Data Systems 

Goal

Single access point

SQL style syntax

Joins across data stores

Apache Arrow minimizes 
conversion + marshaling costs

Datafusion’s extensibility let it 
match user’s expected behavior

Substrait can be used across our 
downstream data sources



Single-Node 
Engine

Cross Product Queries

Today, we use the distributed SQL engine 
Apache Trino;  a tool designed to efficiently 
query vast amounts of data.

Trino was not designed for high throughput, 
real-time queries on small datasets

For these queries, we have our own execution 
engine. But building out complete functionality 
has had ups and downs.

Distributed Engine
Trino

Distributed Engine
Trino

Distributed 
Engine

SQL Queries



98% 
Of our cross product queries 
could be executed in single 
node.



We're looking to Datafusion for 
high throughput, low-cost 

queries.



What is
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DataFusion is an extensible query engine 
written in Rust that uses Apache Arrow as 
its in-memory format. DataFusion’s target 
users are developers building fast and 
feature rich database and analytic 
systems, customized to particular 
workloads.

“
“

datafusion.apache.org
The website is pretty good, you 

should take a look!



Apache Arrow
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● Language-independent
● columnar memory format
● Efficient over the wire 

communication (Flight)
● Built for efficient analytic 

operations on modern 
hardware (SimD)

Libraries are available for C, C++, 
C#, Go, Java, JavaScript, Julia, 
MATLAB, Python, R, Ruby, and Rust



Building fast and feature rich database and analytic 
systems:
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LLVM

C/C++ Frontend Rust Frontend Julia Frontend Swift Frontend  . . . 

Analytic Application

Domain 
Specific 
Language

Specialized Database

Application LogicCatalog

Analysis Engine

Multiple SQL 
Dialects

Data Flow 
AnalysisCustom 

Operators File System Interface

…



Query Engine Extensibility

SQL Operations

DataFrame Operations

Multiple API’s

Parsing

Query-planning

UDF’s

Relational Composable

Columnar

Vectorized

Multi Threaded

Performant

Table Providers

Streaming

No Garbage Collector



Customized to Particular Workloads
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● Time series databases (e.g. 
InfluxDB 3.0 and Coralogix )

● Streaming SQL platforms (e.g. 
Synnada and Arroyo). 

Domain-Specific Database Systems Run-times for specialized query front-ends

SQL analysis tools Table formats

● Comet for Apache Spark
● Seafowl for PostgreSQL
● Vega
● InfluxQL

● Dask-sql
● SDF

Rust implementations of…
● Delta Lake
● Apache Iceberg
● Lance



Segmented 
Query Stack

Today

Composable 
Data Systems 

Goal

Proprietary memory layouts 
increase conversion overhead

Different execution engines lead 
to inconsistent user experiences

Multiple query representations 
limits interoperability

Apache Arrow minimizes 
conversion + marshaling costs

Datafusion’s extensibility let it 
match user’s expected behavior

Substrait can be used across our 
downstream data sources



Event Queries
Aggregation, sort, limit

SQL Queries
JOINs, subqueries, CTEs

Event Reads
Filter and project on read

How we are using 
Datafusion 
at Datadog

Events
JSON-like

Metrics
Timeseries

Resources
Tabular

Event 
Queries

Elasticsearch
-like

Timeseries 
Queries

SQL 
Queries

Engines

Storage Systems

Proof of Concept Now

Up next



Events Queries

Events Storage
Blob Store

Event 
Queries

Elasticsearch
-like

Reducer

Reader Reader Reader

Queries from 
users

Aggregations:
Group-by, Top-N

Reading: Projection, 
Filter, Partial Aggregation

Data
Semi-structured JSON 

documents
Parquet-like format

Reducer (Java)

Reader
(Go)

Reader
(Go)

Reader
(Go)

Timeseries 
Queries

SQL 
Queries

Different
languages?!



Datafusion as a shared common 
engine across services

● Out of the box industry-supported 
“framework”

● Consolidate contracts and behaviors
○ Single IR, single engine, single format

● Free time to focus on higher level problems
○ Text search, interactive queries, approximate 

operators, shuffling, etc

Goal

Storage

Events 
Queries

Elasticsearch
-like

Reducer

Reader Reader Reader

Maybe here tooDatafusion 
here



Events Queries and Datafusion
How is it going?

Challenge: Matching Behaviors
● Requires flexibility: extensions to match existing 

functionality
○ Custom coercions, approximations, exotic operators

● Efficient integration with our various storage formats
○ e.g. late materialization / Arrow translation: not all our 

encodings are cheaply translatable

Status

● Currently shadowing queries on readers

● Seeing performance improvements and 
discovering bugs in our existing engines

● Contributing back to community: Decoupling 
logical/physical types

Storage

Events 
Queries

Elasticsearch
-like

Reducer

Reader Reader Reader

Up next

POC



Distributed 
Engine

Trino

Distributed 
Engine

Trino

Planner
Apache 
Calcite

Distributed 
Engine

Trino

SQL Queries

SQL 
Queries

Single-Node 
Engine (Go)

Parser
Evaluator

Events
JSON-like

Metrics
Timeseries

Resources
Tabular

Datafusion?

Pushdown Planning

Single Node Engine
For high-throughput,
Low-cost queries

Distributed Engine
For large operations



Distributed 
Engine

Trino

Distributed 
Engine

Trino Substrait with 
pushdowns

SQL Queries and Datafusion
How is it going?

Challenges

● Our own SQL dialect
○ ⇒ Separate parser

● Extension types
○ String sets (for tags), timeseries

● Efficiency requires pushdown operations
○ ⇒ Separate planner

● Different downstreams to integrate with
○ ⇒ Substrait (Contributions)

Status
● Proof of concept

○ Embedded library in Go service
○ Planner integration via substrait

● Basic SQL operations functional

● Events and Resources as sources (no Metrics)

Planner
Apache 
Calcite

Distributed 
Engine

Trino

SQL 
Queries

Single-Node Engine

Events
JSON-like

Metrics
Timeseries

Resources
Tabular

Pushdown Planning

Logical 
SubstraitParser

Evaluator

Datafusion 
POC



Planner Integration
Calcite plans ≠ Datafusion plans

Ongoing Work

Integrating and Extending via Substrait
Using Substrait requires many extensions

Bridging Rust to Go
Embedding eases the transition, but FFI work is finicky

Consolidation
Standardizing across our different engines:
Substrait extensions, connectors, function behavior, …



Simplify Contracts
Substrait for plans

Arrow for data

Specialized Engines
with converging functionality

TODAY

Convergence
of implementation and behavior

VISION

Duplication of effort 
(Reimplementation)

Custom IR / Formats
Different protobufs for each source

Behavior discrepancies
Re-inventing commodity operations

Library Reuse
Datafusion for same functions, 

different places

Adaptability
Add or replace components, sources



Thank you!


