

www.securing.biz

PENETRATION TESTS OF

MORPHODAO FRONTEND

FOR MORPHODAO

REPORT

document version: 1.0

document ID: SCRNG-1645

author: Dawid Pastuszak

test time period: 2022-03-28 – 2022-04-01

report date: 2022-04-04

 Penetration tests of MorphoDAO FrontEnd

- 1 -

TABLE OF CONTENTS

1. Executive summary ... 2

1.1. Testing overview .. 2

1.2. Summary of test results .. 2

2. Summary of identified vulnerabilities .. 3

2.1. Risk classification ... 3

2.2. Identified vulnerabilities ... 4

3. Project description .. 5

3.1. Basic information ... 5

3.2. Target in scope ... 5

3.3. Threat analysis .. 5

3.4. Methodology .. 5

3.5. Scope .. 6

4. List of performed tests ... 7

4.1. Web application security testing .. 7

5. Vulnerabilities ... 8

F1. Hardcoded API KEY in source code ... 8

6. Recommendations ... 9

R1. Implement HTTP Secure Headers .. 9

R2. Missing Clickjacking attack protection ... 10

R3. Implement the Content Security Policy security header .. 10

R4. Do not load external resources .. 11

7. Terminology ... 12

8. Contact ... 13

 Penetration tests of MorphoDAO FrontEnd

- 2 -

1. EXECUTIVE SUMMARY

1.1. Testing overview

The security tests of MorphoDAO FrontEnd were meant to verify whether the proper

security mechanisms were in place to prevent unauthorized users from accessing the

client’s data and infrastructure and to detect the vulnerabilities which could cause financial

losses to the client or their customers.

Security tests were performed using the following methods:

• Penetration testing – simulated attacks on MorphoDAO FrontEnd from the

perspective of a standard user.

1.2. Summary of test results

• During the penetration testing, no vulnerabilities with critical risk impact were found.

• 1 vulnerability with low risk impact was identified:

­ Infura API key takeover (F1).

• Additionally, 4 recommendations have been proposed that do not have any direct risk

impact. However, it is suggested to implement them due to good security practices.

 Penetration tests of MorphoDAO FrontEnd

- 3 -

2. SUMMARY OF IDENTIFIED VULNERABILITIES

2.1. Risk classification

Vulnerabilities

Risk impact Description

Critical

Vulnerabilities that affect the security of the entire system or
all users.

It is recommended to take immediate mitigating actions or
limit the possibility of vulnerability exploitation.

High

Vulnerabilities that can lead to a significant financial loss
including a confidential data leak, escalation of privileges, or a
denial of service.

It is recommended to take mitigating actions as soon as
possible.

Medium

Vulnerabilities that affect the security of more than one user.
They might require user interaction (e.g. as a result of an
effective social-engineering attack), specific privileges, or
custom prerequisites (e.g. access to client’s internal network).

The mitigating actions should be taken after eliminating the
vulnerabilities with critical and high risk impact.

Low

Vulnerabilities that affect the security of individual users.
They require custom prerequisites (e.g. user interaction or
specific privileges).

The mitigating actions should be taken after eliminating the
vulnerabilities with critical, high, and medium risk impact.

Recommendations

Methods of increasing the security of the system by implementing good security
practices or eliminating weaknesses. No direct risk impact has been identified.

The decision whether to take mitigating actions should be made by the client.

 Penetration tests of MorphoDAO FrontEnd

- 4 -

2.2. Identified vulnerabilities

Vulnerability Risk impact

SCRNG-1645-F1 Hardcoded API KEY in source code Low

Recommendations

SCRNG-1645-R1 Implement HTTP Secure Headers

SCRNG-1645-R2 Missing Clickjacking attack protection

SCRNG-1645-R3 Implement the Content Security Policy security header

SCRNG-1645-R4 Do not load external resources

 Penetration tests of MorphoDAO FrontEnd

- 5 -

3. PROJECT DESCRIPTION

3.1. Basic information

Testing team

Dawid Pastuszak

Mateusz Olejarka

Kamil Migdał

Testing time period 2022-03-28 – 2022-04-01

Report date 2022-04-01 – 2022-04-04

Document ID SCRNG-1645

Document version 1.0

3.2. Target in scope

The object being analysed was MorphoDAO FrontEnd accessible from the URL address

listed below:

• http://aave.morpho-labs.com.s3-website.eu-west-

3.amazonaws.com/?network=mumbai

• https://develop-aave.herokuapp.com/

• https://aave.morpho-labs.com/?network=mumbai

The tests were performed in the test environment.

3.3. Threat analysis

The key threats were identified as follows:

• Modification of application source code

• Unauthorized access to other users' data

• Unauthorized modification of other users' data or traffic

3.4. Methodology

The testing team applied the methodology of white-box penetration tests. A penetration

test is a controlled attempt to break through security controls applied in a particular

application/system. In a white-box test, the testing team has access not only to the set of

information as a typical user of the tested system, but also to the source code of the

application. The tests were aimed at identification of vulnerabilities occurring in the

http://aave.morpho-labs.com.s3-website.eu-west-3.amazonaws.com/?network=mumbai
http://aave.morpho-labs.com.s3-website.eu-west-3.amazonaws.com/?network=mumbai
https://develop-aave.herokuapp.com/
https://aave.morpho-labs.com/?network=mumbai

 Penetration tests of MorphoDAO FrontEnd

- 6 -

application and defining possible attack scenarios conducted with techniques typical for

attacks on web applications.

The report utilizes OWASP Application Security Verification Standard (ASVS) 4.0 and

Common Vulnerability Scoring System (CVSS) 3.1.

3.5. Scope

Following the specification, the tests covered:

• A full range of security tests without any initial privileges,

• Tests performed as a member of standard user groups – to identify vulnerabilities

resulting in key threats,

• Compliance with the OWASP Application Security Verification Standard (ASVS) 4.0,

level 2.

 Penetration tests of MorphoDAO FrontEnd

- 7 -

4. LIST OF PERFORMED TESTS

4.1. Web application security testing

1. Security assessment of authentication process:

­ Reconnaissance and attempts to bypass or abuse the authentication

mechanism,

2. Attempts to perform a Request Smuggling attack.

3. Verification of secure HTTP headers presence (Strict-Transport-Security, X-Content-

Type-Options, Referrer-Policy, X-Frame-Options, Content-Security-Policy).

4. Verification of cache headers configuration.

5. Attempts to perform a Cross-Site Request Forgery attack.

6. Security analysis of SSL/TLS configuration.

7. Searching for sensitive or excessive information (in HTML comments, error messages,

HTTP headers).

8. Performing a directory brute-force attack in order to find sensitive or excessive files

and directories.

9. Verification if the libraries used by the application have any known vulnerabilities.

10. Checking for presence of typical web applications vulnerabilities (attempts to perform

attacks like SQL Injection, Cross-Site Scripting, XML External Entity, Open Redirect

Remote Code Execution, etc.).

11. Verification of the possibility to perform a DoS attack without any initial privileges.

 Penetration tests of MorphoDAO FrontEnd

- 8 -

5. VULNERABILITIES

F1. Hardcoded API KEY in source code

Risk impact Low CVSS 2.7 ASVS V8

Exploitation conditions Access to source code repository.

Exploitation results Infura API key takeover.

References How to: Use Data Protection
https://docs.microsoft.com/en-
us/dotnet/standard/security/how-to-use-data-protection

Spring.IO: Managing secrets with Vault
https://spring.io/blog/2016/06/24/managing-secrets-with-
vault

Remediation When storing encrypted secrets inside configuration files,
encryption keys should be stored as environmental variables.

 Vulnerability description:

API KEY were found in configuration files during code review. Key can be obtained by

anyone with access to the source code and can be used to use Infura API.

 Test case:

The following secret was found during code review:

• INFURA_KEY found in morpho-dashboard/config/index.ts file

Additionally test private key was sent in zip to SecuRing together with .env file.

• PRIVATE_KEY found in morpho-js/.env file.

https://docs.microsoft.com/en-us/dotnet/standard/security/how-to-use-data-protection
https://docs.microsoft.com/en-us/dotnet/standard/security/how-to-use-data-protection
https://spring.io/blog/2016/06/24/managing-secrets-with-vault
https://spring.io/blog/2016/06/24/managing-secrets-with-vault

 Penetration tests of MorphoDAO FrontEnd

- 9 -

6. RECOMMENDATIONS

R1. Implement HTTP Secure Headers

 Description:

It is recommended to implement the following HTTP headers:

• HTTP Strict Transport Security (HSTS) – defines the timeframe in which the

browser can connect to the webserver only through the HTTPS protocol. The lack

of the HSTS header may expose the application to protocol downgrade attack and

cookie hijacking.

• Referrer-Policy – controls what information should be sent in Referrer header in

HTTP requests.

• X-Content-Type-Options: nosniff – prevents browsers from trying to determine

the correct MIME type of the response.

 How to implement:

Implement the security headers.

 HTTP Strict Transport Security (HSTS)

A Strict-Transport-Security HTTP header should be sent with each HTTPS response. The

syntax is as follows:

Strict-Transport-Security: max-age=<seconds>[; includeSubDomains]

The parameter max-age gives the time frame in seconds for requirement of HTTPS and

should be chosen quite high, e.g. several months. The flag includeSubDomains defines that

the policy also applies to subdomains.

 Referrer-Policy

The Referrer-Policy header with the appropriate directive should be added to each HTTP

response, e.g.:

• no-referrer – the browser will not send any referrer information,

• same-origin – the browser will send referrer information only for same-site origins.

 X-Content-Type-Options: nosniff

The following HTTP header should be set at least in all responses which contain user input:

X-Content-Type-Options: nosniff

 References:

OWASP Secure Headers Project

https://owasp.org/www-project-secure-headers/

https://owasp.org/www-project-secure-headers/

 Penetration tests of MorphoDAO FrontEnd

- 10 -

WEB.DEV Security Headers Quick Reference

https://web.dev/security-headers/

R2. Missing Clickjacking attack protection

 Description:

Application is not protected against Clickjacking attacks, which occur when an attacker

places the vulnerable site inside an iframe. If a victim logged into the application opens an

attacker-controlled site, it is possible to perform actions on the target website.

Every action must be additionally confirmed inside MetaMask browser’s extension,

therefore there is no practical usage of vulnerability, but it is a good practice to implement

Clickjacking protections.

 How to implement:

Prevent the browser from loading the page in a frame by using Content Security Policy

with frame-ancestors directive or X-Frame-Options HTTP headers.

 References:

CAPEC-103: Clickjacking

https://capec.mitre.org/data/definitions/103.html

OWASP Clickjacking

https://owasp.org/www-community/attacks/Clickjacking

OWASP Clickjacking Defense Cheat Sheet

https://cheatsheetseries.owasp.org/cheatsheets/Clickjacking_Defense_Cheat_Sheet.ht

ml

Content Security Policy

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-

Policy

OWASP Content Security Policy Cheat

Sheethttps://cheatsheetseries.owasp.org/cheatsheets/Content_Security_Policy_Cheat_

Sheet.html

R3. Implement the Content Security Policy security header

 Description:

Content Security Policy (CSP) is a browser security mechanism that helps to detect and

mitigate certain types of attacks, including Cross Site Scripting (XSS). The mechanism

instructs the browser - using a standardized set of directives - what resources are allowed

to load for a page. The application does not use the mechanism.

https://web.dev/security-headers/
https://capec.mitre.org/data/definitions/103.html
https://owasp.org/www-community/attacks/Clickjacking
https://cheatsheetseries.owasp.org/cheatsheets/Clickjacking_Defense_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Clickjacking_Defense_Cheat_Sheet.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy
https://cheatsheetseries.owasp.org/cheatsheets/Content_Security_Policy_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Content_Security_Policy_Cheat_Sheet.html

 Penetration tests of MorphoDAO FrontEnd

- 11 -

 How to implement:

It is recommended to implement Content Security Policy which introduces another layer

of protection against the classical reflected and stored XSS.

 References:

Securing – Why should you care about Content Security Policy?

https://www.securing.pl/en/why-should-you-care-about-content-security-policy/

Content Security Policy

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-

Policy

OWASP Content Security Policy Cheat Sheet

https://cheatsheetseries.owasp.org/cheatsheets/Content_Security_Policy_Cheat_Sheet.

html

Adopting CSP

https://csp.withgoogle.com/docs/adopting-csp.html

CSP Evaluator

https://csp-evaluator.withgoogle.com/

WEB.DEV Security Headers Quick Reference

https://web.dev/security-headers/

R4. Do not load external resources

 Description

Loading external resources such as img or svg, may be concerning from user privacy

perspective and open possibilities for other vulnerabilities like XSS.

 How to implement:

Store all necessary files on MorphoDAO servers.

 References:

Allowing images from external sources opens doors to serious security exploits and

privacy risks:

https://meta.stackexchange.com/questions/55665/allowing-images-from-external-

sources-opens-doors-to-serious-security-exploits-a/279664

https://www.securing.pl/en/why-should-you-care-about-content-security-policy/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy
https://cheatsheetseries.owasp.org/cheatsheets/Content_Security_Policy_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Content_Security_Policy_Cheat_Sheet.html
https://csp.withgoogle.com/docs/adopting-csp.html
https://csp-evaluator.withgoogle.com/
https://web.dev/security-headers/
https://meta.stackexchange.com/questions/55665/allowing-images-from-external-sources-opens-doors-to-serious-security-exploits-a/279664
https://meta.stackexchange.com/questions/55665/allowing-images-from-external-sources-opens-doors-to-serious-security-exploits-a/279664

 Penetration tests of MorphoDAO FrontEnd

- 12 -

7. TERMINOLOGY

This section explains the terms that are related to the methodology used in this report.

 Risk = Threat + Vulnerability

 Threat

Any circumstance or event with the potential to adversely impact organizational

operations (including mission, functions, image, or reputation), organizational assets,

or individuals through an information system via unauthorized access, destruction,

disclosure, modification of information, and/or denial of service.1

 Vulnerability

Weakness in an information system, system security procedures, internal controls,

or implementation that could be exploited or triggered by a threat source.1

 Risk

The level of impact on organizational operations (including mission, functions, image,

or reputation), organizational assets, or individuals resulting from the operation

of an information system given the potential impact of a threat and the likelihood of that

threat occurring.1

The risk impact can be estimated based on the complexity of exploitation conditions

(representing the likelihood) and the severity of exploitation results.

,5

 Complexity of exploitation conditions

Simple Moderate Complex

Severity of
exploitation

results

Major Critical High Medium

Moderate High Medium Low

Minor Medium Low Low

1 NIST FIPS PUB 200: Minimum Security Requirements for Federal Information and Information Systems.
Gaithersburg, MD: Computer Security Division, Information Technology Laboratory, National Institute of Standards
and Technology.

 Penetration tests of MorphoDAO FrontEnd

- 13 -

8. CONTACT

Person responsible for providing explanations:

Dawid Pastuszak

e-mail: dawid.pastuszak@securing.pl

tel.: +48 12 425 25 75

mob.: +48 502 745 328

http://www.securing.pl

e-mail: info@securing.pl

Kalwaryjska 65/6

30-504 Kraków

tel./fax.: +48 (12) 425 25

75

