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Introduction

How close are we to 1.5°C?
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Reference: IPCC, 2018. Chapter 1: Global Warming of 1.5°C Reference: ERA5, C3S/ECMWF 2



Introduction

Annual GHG emissions and
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Motivation and Objectives

e The U.S. has committed to achieving net-zero GHG emissions Total U.S. G:EeenhOU§e sGaSt Emissions by
. conomic sector
by 2050 to combat climate change

Agriculture
10%

e The U.S. may need to rely on CDR to offset emissions from
difficult-to-decarbonize sectors

e CDR can be delivered using many approaches with different —
requirements for: L.
13%
Land, water, energy, geologic carbon storage capacity,

and other resources



Research Questions

1-  How do regional resources and technology availability influence the deployment

and effectiveness of CDR approaches across different U.S. states to reach net-zero

emissions by mid-century?

2-  What are the implications of the U.S. net-zero emissions goal and large-scale CDR

deployment, particularly in terms of regional impacts on energy, water, and land?



Global Change Analysis Model

GCAM-USA Model Coverage
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GCAM-USA Capability

Bioenergy with Carbon
Capture and Storage

Afforestation

Direct Air Capture with
Carbon Storage

Enhanced Rock
Weathering

Biochar

Direct Ocean Capture

Biomass paired with geologic carbon storage for electricity, liquid fuels refining,
hydrogen production, and industrial energy use

Storage of atmospheric carbon by restoring deforested lands or planting new
forests where none existed previously

Solvent and sorbent-based processes using a combination of electricity and natural
gas to separate and geologically store CO, from the atmosphere

Crushed basalt application to croplands

Slow pyrolysis of second-generation biomass

Electrochemical stripping of CO, from seawater paired with geologic storage




Bioenergy with CO, Capture and Storage
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Biochar for Soil Enhancement
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Enhanced Rock Weathering
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Global Change Analysis Model

Scenario
assumptions

Economic
growth

Resource
availability

Technology
development

Behavior and
preferences

Policies

GCAM

Energy Agriculture

Simulates the co-evolution of these systems through time

GCAM documentation: http://jgcri.github.io/gcam-doc/

Outputs
Energy

Technology penetrations

Economic

Land and food prices

Environmental

Air pollutant emissions

Water use

Health impacts
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U.S. Net-Zero 2050

Emissions GtCO,/yr

CO, emissions by sector in USA region
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U.S. Net-Zero 2050

Full Portfolio Scenario

State-level positive and negative CO, emissions
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U.S. Net-Zero 2050

Full Portfolio
Scenario

State-level positive and negative CO, emissions
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Sensitivity Analysis

Sensitivity of CDR deployment in the Full Portfolio Scenario in 2050
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Sensitivity Analysis

Sensitivity of CDR deployment in the Full Portfolio Scenario in 2050
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Sensitivity Analysis

Sensitivity of CDR deployment in the Full Portfolio Scenario in 2050
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Fraction of Final Energy Consumed by CDR in 2050 (%)
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Fraction of Biomass Croplands in 2050 (%)
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Fraction of Biochar Croplands in 2050 (%)
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Forestland Growth, 2015 to 2050 (%)
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CO2 Abatement Cost in 2050

CO2 Abatement Cost by CDR Technology and State in 2050 - Full Portfolio Scenario
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Cost of Policy
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Conclusion

e 1-1.9 GtCO /yr removal is required to meet U.S. national net-zero goal by mid-century

e ERW may provide up to 683 MtCO, removal by 2050 at a lower cost without relying on geological

storage

e Relying only on technology-intensive CDRs results in higher final energy consumption

e The disparity in regional concentration of CDR approaches highlights the need for policies that
consider regional advantages and constraints, ensuring that decarbonization efforts are both

effective and economically viable
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Thank You!
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Cost of Policy
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