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ABSTRACT
Control-Flow Integrity (CFI) is considered a promising solution
in thwarting advanced code-reuse attacks. While the problem of
backward-edge protection in CFI is nearly closed, effective forward-
edge protection is still a major challenge. The keystone of protect-
ing the forward edge is to resolve indirect call targets, which al-
though can be done quite accurately using type-based solutions
given the program source code, it faces difficulties when carried
out at the binary level. Since the actual type information is un-
available in COTS binaries, type-based indirect call target match-
ing typically resorts to approximate function signatures inferred
using the arity and argument width of indirect callsites and call-
targets. Doing so with static analysis, therefore, forces the existing
solutions to assume the arity/width boundaries in a too-permissive
way to defeat sophisticated attacks.

In this paper, we propose a novel hybrid approach to recover
fine-grained function signatures at the binary level, called Type-
SeezeR. By observing program behaviors dynamically, Type-
SeezeR combines the static analysis results on indirect callsites
and calltargets together, so that both the lower and the upper bounds
of their arity/width can be computed according to a philosophy
similar to the squeeze theorem. Moreover, the introduction of dy-
namic analysis also enables TypeSeezeR to approximate the ac-
tual type of function arguments instead of only representing them
using their widths. These together allow TypeSeezeR to signifi-
cantly refine the capability of indirect call target resolving, and gen-
erate the approximate CFGs with better accuracy. We have evalu-
ated TypeSeezeR on the SPEC CPU2006 benchmarks as well as
several real-world applications. The experimental results suggest
that TypeSeezeR achieves higher type-matching precision com-
pared to existing binary-level type-based solutions. Moreover, we
also discuss the intrinsic limitations of static analysis and show
that it is not enough in defeating certain type of practical attacks;
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while on the other hand, the same attacks can be successfully thwarted
with the hybrid analysis result of our approach.

CCS CONCEPTS
• Security and privacy→ Software reverse engineering; Op-
erating systems security.

KEYWORDS
Control-flow integrity; Type inference; Binary executables

ACM Reference Format:
Ziyi Lin, Jinku Li, Bowen Li, Haoyu Ma, Debin Gao, and Jianfeng Ma. 2023.
TypeSeezeR: When Static Recovery of Function Signatures for Binary
ExecutablesMeets DynamicAnalysis. In Proceedings of the 2023 ACMSIGSAC
Conference on Computer and Communications Security (CCS ’23), November
26–30, 2023, Copenhagen, Denmark. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3576915.3623214

1 INTRODUCTION

With advanced code-reuse attacks [4, 5, 9, 12, 18, 34, 35, 40]
being a major threat to today’s software systems, control-flow in-
tegrity (CFI) [6] had become one of the most promising counter-
measures. While an ideal CFI should be able to enforce the exact
control-flow graph (CFG) of a program so that each control trans-
fer is only allowed to target its intended destination(s) [1], it is
hard to achieve such an ideal security goal without source code
because extracting the CFG to such degree of accuracy is an un-
decidable problem. The alternative (and more practical) strategy
is to enforce an approximation of the program’s CFG, but should
this approximation be established too loosely, the resulting CFI
defense may be bypassed by carefully orchestrated attacks, e.g.,
Counterfeit Object-Oriented Programming (COOP) [12, 34], Con-
trol JuJutsu [13], Control-Flow Bending (CFB) [8], etc. Therefore,
how to generate precise CFGs for programs is a key question for
binary-level CFI schemes.

Existing binary-level CFI solutionsmainly guard against forward-
edge violations by enforcing certain CFI policies on indirect call-
sites (e.g., virtual calls, indirect calls, etc., henceforth we refer these
as icalls for short), so that they are only allowed to target a limited
set of possible destinations. This begins with bin-CFI [46], which
scans the subject binary to find all address-taken functions (i.e.,
functions that have their addresses assigned to function pointers,
henceforth AT functions for short) and restricts icalls from target-
ing any functions other than them. However, a CFI policy of this
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granularity is not enough to defend against aforementioned ad-
vanced code-reuse attacks [8, 12, 13, 34]. Therefore, subsequent so-
lutions adopt a variety of strategies to refine their capabilities of
CFG inference. For instance, vfGuard [32] and VTint [44] enforce
the integrity of icalls derived from C++ virtual calls by restricting
their virtual table accesses, but such approaches cannot be applied
to all icalls in general. BPA [20] uses a block-based points-to anal-
ysis that scales to large 32-bit binary executables to resolve targets
of icalls, but it suffers from significant overhead which makes it
difficult to extend to 64-bit binaries.

Enforcing type-based matching for CFI is a popular (and prob-
ably the most generalized) way of inferring correlations between
icalls and AT functions. Representative works like TypeArmor [37]
and 𝜏CFI [28] leverage static analysis to infer type-related features
of icalls and AT functions, such as the number of parameters (i.e.,
the arity) and the width of arguments, and accordingly they allow
icalls to target only the compatible AT functions. Lin et al. [23] fur-
ther study how compiler optimization mechanisms affect TypeAr-
mor and 𝜏CFI, and propose their countermeasure. Fundamentally,
both TypeArmor and 𝜏CFI are established on top of static binary
analysis. Unfortunately, unlike the case with program source code,
COTS (Commercial Off-The-Shelf ) binaries provide almost no sup-
portive information for conducting type-based matching. Specifi-
cally, two major challenges can be identified:

• First, for any icall or AT function, static analysis can only
assume a possible range of its arity. Worse still, by evaluat-
ing loading/storing operations on a specific set of registers
used for parameter passing, static analysis can only assume
the upper bound of the arity of an icall. While given an AT
function, it can only infer the lower bound of its arity.
• Second, it is an undecidable task to recover the precise type

information from binary executables, and it is too permis-
sive to infer parameter types with the width of arguments
because distinguishing between values and address references
is not always feasible just by looking at the argument widths.

As a result, current binary-level CFI schemes leveraging type-
based matching are in fact less effective than expected. To give
an example, assuming an icall which prepares 6 arguments (Sys-
tem V ABI [27] uses at most 6 registers to pass integer arguments),
TypeArmor can only conclude that this icall prepares at most 6 ar-
guments and would therefore allow it to target any AT functions.
This is because any AT function consumes 0 to 6 arguments from
registers, and is therefore considered as compatible. Further, in the
case that all the 6 arguments of the mentioned icall are address ref-
erences (i.e., 64-bit long in the case of x86_64), then even 𝜏CFI or
Lin et al.’s work [23] would allow it to target any AT functions be-
cause a 64-bit argumentwould be considered as compatiblewith an
argument in arbitrary width at the calltarget. Even worse, address
reference is the most common type of arguments in real-world pro-
grams (see §4.1.3 for a detailed evaluation). Though static analy-
sis may also distinguish between variables and address references,
e.g., by investigating the instructions that process the correspond-
ing arguments, it usually requires sophisticated binary-level alias
analysis to do so, which is therefore of high complexity and over-
head. For the same reason, it is also difficult to statically determine
the exact structure of an object pointed by an address reference.

Noticing that binary-level CFI is currently encumbered by intrin-
sic limitations of static program analysis, this paper proposes a novel
hybrid style binary analysis approach, called TypeSeezeR, to
provide fine-grained function signature recovery that serves as the
basis for binary-level CFI (and to improve their effectiveness). We
take one more step to explore the potential (and perhaps the limit)
of type-based matching applied on binary executables while fur-
ther raising the bar for code-reuse attacks. On top of the strategies
adopted by existing schemes, TypeSeezeR further enriches the
inferred prototype signature of icalls and AT functions by carrying
out a tailor-made combination of static/dynamic analysis, which
inspects the actual destination of direct/indirect calls as well as
runtime register andmemory states related to the observed invoca-
tions. Specifically, TypeSeezeR makes progress mainly in three
aspects compared to existing binary-level type-based solutions:

• First, according to how icalls and AT functions are paired
at runtime, TypeSeezeR works with a philosophy similar
to the squeeze theorem (hence the name we give it) and is
able to determine both the lower and upper bound of their
possible arities and argument widths.
• Second, by statically searching for AT functions that are also

invoked by direct calls, TypeSeezeR is able to integrate as-
sumed prototype signatures of direct calls into the inference
of icalls and/or AT functions and further polish the results.
• Third, by dynamically inspecting content within registers

when an icall or AT function is reached, TypeSeezeR can
tell whether a potential parameter of the subject is a value
or an address reference without involving complicated alias
analysis. By further looking into the memory locations ref-
erenced by registers, TypeSeezeR can even distinguish be-
tween address references that index values and addresses.

These together allow TypeSeezeR to generate more accurate sig-
natures for both icalls and AT functions in subject binaries. Conse-
quently, it is able to enforce indirect control flows with rules that
fit more closely with the supposed CFG.

To validate our approach, we implement a proof-of-concept pro-
totype of TypeSeezeR on top of Intel Pin [26] and Dyninst [3], a
pair of binary instrumentation frameworks that enable customized
static and dynamic analysis of COTS executables. We evaluate the
prototypewith both SPECCPU2006 and several real-world applica-
tions. The experimental results suggest that TypeSeezeR signif-
icantly reduces the average indirect call targets (AICT) compared
to TypeArmor [37], 𝜏CFI [28], and the scheme of Lin et al.’s [23].
Furthermore, with TypeSeezeR’s analysis result, a binary-level
CFI would be able to prevent certain targeted attacks that may by-
pass the aforementioned solutions. To engage the community, we
release the source code of our proof-of-concept implementation at
https://github.com/XDU-SysSec/TypeSqueezer. In summary, this
paper makes the following contributions:

• Wepropose the first retrofitted type-basedmatching approach
using hybrid static/dynamic binary analysis for forward-edge
CFI, which leverages clustering of dependent callers/callees
and nested investigation of in-register arguments to make
more precise arity and type inferences compared to the state-
of-the-art solutions [23, 28, 37].
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Figure 1: The Overall Workflow of TypeSeezeR

• We implement a proof-of-concept prototype that carries out
the proposed type-based matching, namely TypeSeezeR.
The experimental results demonstrate that TypeSeezeR
outperforms existing solutions built on top of static type-
based matching in enforcing forward-edge invariants.
• We show that our improved type-based matching strategy

is able to mitigate carefully crafted forward-edge attacks
against binary-level CFIs. For example, TypeSeezeR can
detect and prohibit a variant of Control JuJutsu attack [13]
which cannot be guarded against by prior solutions.

2 SYSTEM DESIGN
In this section, we first present a high-level overview of the pro-
posed TypeSeezeR system, and then introduce design details of
the key techniques of our approach. We assume that programs to
be analyzed and protected have been built into x86_64 binaries
via a compiler that adheres to System V ABI with regards to call-
ing convention, and our approach only pays attention to function
parameters passed via registers. In addition, obfuscated or hand-
crafted binaries are considered out-of-scope, and so are floating-
point arguments that are passed using xmm registers. These as-
sumptions put ourwork on the same starting linewith state-of-the-
art systems [23, 28, 37] so that the effectiveness of our approach
can be evaluated without introducing unfair advantages.

2.1 System Overview
As mentioned in §1, the accuracy of inferring the arity of both
icalls and AT functions using static analysis is intrinsically limited
by the missing type-related information which is only available at
the source level. Static analysis resorts to reaching-definition anal-
ysis on icalls and liveness analysis on AT functions to assume their
arities. However, it is difficult to distinguish an actual argument
preparation from the storing of a temporary value (both of which
can exist in the form of write to argument registers). In addition, it
is also impractical to assert that an argument register is not used to
pass a parameter just because it is not read in the entire function.
As a result, the static analysis would inevitably overestimate the ar-
ity of icalls and underestimate the arity of AT functions. This issue,
together with the incapability of statically distinguishing between
full-width variables and address references, are the main causes of
the inaccuracy of binary CFI schemes using type-based matching.

A key takeaway from the above observations is that static anal-
ysis happens to be over/underestimating the arity of icalls and AT

functions, respectively.This suggests that if those icalls andAT func-
tions can be explicitly paired, the incomplete assumptions on their
arities could then compensate for each other and end up improv-
ing the overall accuracy of the generated CFG. Such an idea is
very close to the philosophy of the squeeze theorem in mathemat-
ics, which determines the limit of a function with the known lim-
its of two other functions between which the subject function is
trapped1. Real execution traces obtained using dynamic analysis
could provide the exact kind of evidence regarding the dependen-
cies between icalls and AT functions. Moreover, dynamic analysis
could also leverage the runtime context to achieve a more com-
prehensive investigation of the possible type of identified function
arguments (rather than just looking at their widths). Considering
these advantages, we build TypeSeezeR into a hybrid framework
that combines the capabilities of static and dynamic binary analy-
sis to provide more accurate type-based matching for CFI.

Figure 1 illustrates the overall workflow of TypeSeezeR. On
top of the existing arity/width analysis adopted by state-of-the-art
(Lin et al. [23] in specific), our approach statically analyzes direct
callsites within the subject binary to obtain explicit dependencies
between them and AT functions. We also run a dynamic simula-
tion to observe actual indirect control transfers.This information is
then used to cluster icalls and AT functions into groups according
to their dependencies, so that the arity and argument width of each
group can be refined to have both an upper and a lower bound (see
§2.2). Furthermore, TypeSeezeR performs a nested investigation
of the value of assumed arguments for both icalls and AT functions
to observe if any valid address within the runtime context may be
referenced, resulting in detailed inferencing on the possible type
of arguments (see §2.3). The aforementioned analyses together al-
low TypeSeezeR to generate much richer profiles for the icalls
and AT functions when resolving indirect control transfer targets,
to further reduce the allowed targets, and consequently recover a
more accurate CFG.

2.2 Hybrid Arity/Width Analysis
As described earlier, a key insight regarding indirect control flow
in type-based solutions is that during benign program execution,
icalls will always invoke AT functions that have the same function
signatures. Therefore, given a subject binary on which a static ar-
ity/width analysis has been performed, TypeSeezeR dynamically

1The actual squeeze theorem requires the known limits to be equal, which is not
needed in this paper.
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Algorithm 1 Clustering
Input: 𝐼𝐶𝐺 : The indirect call graph,𝑉𝑎𝑟𝑖𝑎𝑑𝑖𝑐𝑠 : The set of variadic

functions
Output: 𝐶𝐿𝑇𝑠: The set of clusters
1: 𝐶𝐿𝑇𝑠 ← ∅
2: function ClusteR(𝐼𝐶𝐺 ,𝑉𝑎𝑟𝑖𝑎𝑑𝑖𝑐𝑠)
3: for each < 𝑐𝑠, 𝑐𝑡 >∈ 𝐼𝐶𝐺 ∧ 𝑐𝑡 ∉ 𝑉𝑎𝑟𝑖𝑎𝑑𝑖𝑐𝑠 do
4: if 𝑐𝑠 and 𝑐𝑡 do not belong to any cluster then
5: Add a new cluster{𝑐𝑠 ,𝑐𝑡 } to 𝐶𝐿𝑇𝑠
6: else
7: Unify 𝑐𝑠’s cluster and 𝑐𝑡 ’s cluster
8: end if
9: end for

10: end function

observes the control flow between icalls and AT functions to gain
the knowledge on which AT functions are actually targeted by spe-
cific icalls, and therefrom groups them into a cluster. Once the clus-
tering is complete, the static arity/width inferences on the mem-
bers of the same cluster become a set of flawed assumptions on
the same function prototype. Since the inferences on icalls and
AT functions flaw in different ways (as mentioned in §2.1, they
are respectively over/underestimated), together they help Type-
SeezeR to compute a unanimous (and closer to the optimized)
assumption of the arity/width for the cluster.

2.2.1 Dependency-BasedClustering of Icalls and AT Functions. Our
approach clusters icalls and AT functions by monitoring its dy-
namic control flows. When the monitored program executes an in-
direct call, TypeSeezeR records the addresses of the indirect call
and the target function in a <cs(callsite), ct(calltarget)>
pair, where cs represents an icall and ct indicats an AT function.
We refer to the recorded execution traces as the indirect call graph
(ICG). As illustrated byAlgorithm 1, for each <cs, ct> pair, if both
the callsite and calltarget have not yet been included in an existing
cluster, TypeSeezeR creates a new one (lines 4-5); Otherwise, if
one item of the <cs, ct> pair is already included in a cluster, or
if the two items belong to different clusters, TypeSeezeR unifies
these clusters since their members all share the same signature
(lines 6-7). In this way, TypeSeezeR progressively reduces the
number of remaining clusters so that it achieves the best possible
overall accuracy for subsequent arity/width inferencing.

2.2.2 Refined Arity Analysis. According to the clustering and the
static analysis results, TypeSeezeR continues to refine the arity
in each cluster. Note that within the same cluster, the prototype of
all icalls and the signature of all AT functions should be the same.
Therefore, the static analysis results for all members in the same
cluster can be collectively consumed to arrive at a more accurate
and stringent upper- and lower-bounds. Algorithm 2 outlines the
workflow of our refined arity analysis, which is to iterate over the
clusters in 𝐶𝐿𝑇𝑠 returned by Algorithm 1, and for each cluster, to
intersect the static analysis result of its individual members into a
set of shared arity boundaries. This is done by iteratively selecting
the minimum upper bound of arity over all icall members (lines
4-7) while selecting the maximum lower bound of arity among AT

Algorithm 2 Refined arity analysis
Input: 𝐶𝐿𝑇𝑠 : The clustering result, 𝐷𝐶𝐺 : The direct call graph,

𝐴𝑟𝑖𝑡𝑦: Arity information obtained from static analysis
Output: Refined arity information
1: function Refined ARity Analysis(𝐶𝐿𝑇𝑠 , 𝐴𝑟𝑖𝑡𝑦)
2: for each callsite 𝑐𝑙𝑡 ∈ 𝐶𝐿𝑇𝑠 do
3: 𝑢𝑏 ← 6, 𝑙𝑏 ← 0, 𝑟𝑒𝑡 ← −1 ⊲ -1 indicates the presence

of a return value is unknown
4: for each 𝑐𝑠 ∈ 𝑐𝑙𝑡 do
5: if 𝑐𝑠.𝑢𝑏 < 𝑢𝑏 then
6: 𝑢𝑏 ← 𝑐𝑠.𝑢𝑏
7: end if
8: if 𝑐𝑠.𝑟𝑒𝑡 = 1 then
9: 𝑟𝑒𝑡 ← 1

10: end if
11: end for
12: for each calltarget 𝑐𝑡 ∈ 𝑐𝑙𝑡 do
13: if 𝑐𝑡 .𝑙𝑏 > 𝑙𝑏 then
14: 𝑙𝑏 ← 𝑐𝑡 .𝑙𝑏
15: end if
16: if 𝑐𝑡 .𝑟𝑒𝑡 = 0 then
17: 𝑟𝑒𝑡 ← 0
18: end if
19: end for
20: for each 𝑖𝑡𝑒𝑚 ∈ 𝑐𝑙𝑡 do
21: 𝑖𝑡𝑒𝑚.𝑢𝑏 ← 𝑢𝑏, 𝑖𝑡𝑒𝑚.𝑙𝑏 ← 𝑙𝑏, 𝑖𝑡𝑒𝑚.𝑟𝑒𝑡 ← 𝑟𝑒𝑡
22: end for
23: end for
24: end function
25: function DiRect Call Analysis(𝐷𝐶𝐺 ,𝐴𝑟𝑖𝑡𝑦,𝑉𝑎𝑟𝑖𝑎𝑑𝑖𝑐𝑠)
26: for each < 𝑐𝑠, 𝑐𝑡 >∈ 𝐷𝐶𝐺 ∧ 𝑐𝑡 ∉ 𝑉𝑎𝑟𝑖𝑎𝑑𝑖𝑐𝑠 do
27: if 𝑐𝑠.𝑢𝑏 < 𝑐𝑡 .𝑢𝑏 then
28: 𝑐𝑡 .𝑢𝑏 ← 𝑐𝑠.𝑢𝑏
29: end if
30: if 𝑐𝑠.𝑟𝑒𝑡 = 1 then
31: 𝑐𝑡 .𝑟𝑒𝑡 ← 1
32: end if
33: end for
34: end function

functions (lines 12-14). Once the shared arity boundary is deter-
mined, it is assigned to each member of the cluster (lines 20-22).
Similarly, if the static analysis phase of TypeSeezeR is able to
assert on any member of a cluster that a return value must be ex-
pected (lines 8-10) or is guaranteed to not be prepared (lines 16-18),
all members of the cluster are assigned with the same conclusion.

Figure 2 shows an example from SPEC CPU2006’s 445.gobmk
benchmarkwhere an icall given in Figure 2a can be dynamically ob-
served to target two AT functions, autohelperbarrierspat66()
and autohelperbarrierspat171() (which are shown respectively
in Figure 2b and Figure 2c). The icall here has argument registers
edi, esi, edx, and ecx set, with static analysis concluding that the
indirect call prepares at most 4 arguments. Meanwhile, we stati-
cally observe that autohelperbarrierspat171() conducts regis-
ter reading on all four argument registers mentioned above, while
the other AT function, autohelperbarrierspat66(), reads edi,
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1 41dbab: jmpq 41d8a0
2 41dbb0: xor %ecx,%ecx ; set the 4th argument
3 41dbb2: mov %r9d,%edx ; set the 3rd argument
4 41dbb5: mov %r9d,0x8(%rsp)
5 41dbba: mov %ebp,%esi ; set the 2nd argument
6 41dbbc: mov %r15d,%edi ; set the 1st argument
7 41dbbf: callq *0xa8(%rbx)

(a) Indirect call which prepares at most 4 arguments
1 0000000000487700 <autohelperbarrierspat66>:
2 487700: movslq %edi,%rax ; read the 1st argument
3 487703: mov %edx,%r10d ; read the 3rd argument
4 487706: mov $0x2,%edx
5 48770b: mov 0xb96e20(,%rax,4),%r8d
6 487713: mov 0xb96980(,%rax,4),%ecx
7 48771a: mov %r10d,%edi
8 48771d: xor %eax,%eax
9 48771f: add %esi,%r8d ; read the 2nd argument

10 487722: add %esi,%ecx
11 487724: mov $0x1,%esi
12 487729: mov %r8d,%r9d
13 48772c: jmpq 44d390
14 487731: nopl 0x0(%rax,%rax,1)
15 487736: nopw %cs:0x0(%rax,%rax,1)

(b) Function autohelperbarrierspat66() which consumes at
least 3 arguments

1 0000000000489c40 <autohelperbarrierspat171>:
2 489c40: movslq %edi,%rax ; read the 1st argument
3 489c43: test %ecx,%ecx ; read the 4th argument
4 489c45: mov 0xb96e60(,%rax,4),%r8d
5 489c4d: mov 0xb97300(,%rax,4),%edi
6 489c54: je 489c78
7 489c56: mov $0x3,%eax
8 489c5b: sub $0x8,%rsp
9 489c5f: add %esi,%edi ; read the 2nd argument

10 489c61: sub %edx,%eax ; read the 3rd argument
11 489c63: mov %eax,%esi
12 489c65: callq 41e2a0
13 489c6a: xor %eax,%eax
14 489c6c: add $0x8,%rsp
15 489c70: retq
16 489c71: nopl 0x0(%rax)
17 489c78: lea (%r8,%rsi,1),%edi
18 489c7c: mov %edx,%esi
19 489c7e: jmpq 445240

(c) Function autohelperbarrierspat171() which consumes at
least 4 arguments

Figure 2: An example that shows how dynamic profiling can
help refine arity information

esi and edx only.Thismeans that the two functions are assumed to
consume at least 3 and 4 arguments, respectively. Since the control
flows between the icall and the two AT functions are dynamically
captured, TypeSeezeR puts them into the same cluster and de-
duces that all memberswithin this cluster share the upper bound of
4 (obtained from the icall) and the lower bound of 4 (obtained from
autohelperbarrierspat171()). In contrast, existing work with
static analysis onlywould have the arity boundary of the aforemen-
tioned icall and AT functions be [0,4], [3,6], and [4,6], respectively
— a much looser bound than what we achieve with TypeSeezeR.

The return value is a special case in arity analysis, i.e., while
it can be seen as an extra argument, inferences of it made by the
static analysis are flawed in different ways for icalls and AT func-
tions. Specifically, static analysis can only tell if an icall expects
a return value, or, if an AT function prepares no return value. In
the case where an icall never reads the return value prepared by
its callee, static analysis would determine the lower bound of the
icall’s return value number as 0 (which is in fact incorrect). To deal
with return values in the arity analysis, TypeSeezeR is designed
to intersect the following rules to all members of a cluster:

• members in a cluster must have a return value if any icall
within the cluster is statically determined to be expecting a
return value; and
• members in a cluster must have no return value if any AT

function within the cluster is guaranteed to prepare no re-
turn value at the static phase.

On top of the above mechanisms, TypeSeezeR further im-
proves the accuracy of the recovered CFG by exploiting the ob-
servation that AT functions can be targeted by both indirect and
direct control transfers. For example, in C++, static polymorphism
(or compile-time polymorphism) will use a direct call instruction
to implement a virtual call if the object type can be determined
by the compiler. Therefore, by intersecting the static inferences re-
garding arguments and return values of such direct calls to those
of the directly targeted AT functions, TypeSeezeR introduces
one additional source of information for further refining its arity
analysis. Specifically, TypeSeezeR traverses all direct calls in the
binary. If a direct call targets an AT function, TypeSeezeR per-
forms reaching-definition analysis (similar to the callsite analysis
of TypeArmor) to compute the upper bound of arity as well as the
lower bound of return value number for the direct call, and uses the
result to constrain the corresponding inferences on the AT func-
tion (lines 26-33 of Algorithm 2).

2.2.3 ArgumentWidth Analysis. Our refined argumentwidth anal-
ysis leverages similar approaches as in the arity analysis, i.e., we
seek to compute the lower bound of width for the argument of
icalls and the upper bound of width for AT functions. Again, in
each cluster, the static width analysis results on different mem-
bers are intersected to reach a unanimous set of upper and lower
bounds. Specifically, given the refined arity and return value in-
ferencing result of a cluster, TypeSeezeR traverses each cluster
member and finds the maximum lower bound and minimum up-
per bound for the width of each argument. The results are then
applied to all members in the cluster, so that a CFI scheme based
on TypeSeezeR’s analysis result can enforce a stricter forward-
edge policy. Note that width analysis for return values is also in
contrast with that for arguments, in which the upper bound of the
return value width is determined at the calltarget, while the lower
bound is determined at the callsite. Other than this, the boundary
intersection of return value widths follows the same general pro-
cedure as that for argument widths.

To demonstrate that ourwidth analysis helps refine the assumed
width of arguments, consider the example given in Figure 3 in
which a function pointer in splay_tree_splay_helper() that pre-
pares two parameters (see line 18 of Figure 3a) is found to be target-
ing the AT function splay_tree_compare_ints(), with the latter
consumes the two arguments after converting them to type int
rather than their original type unsigned long (lines 6 and 8 in
Figure 3c). From the assembly of the caller and callee functions, we
can see that the icall corresponding to the given function pointer
indeed prepares its arguments in full 64-bit width (lines 2-3 of Fig-
ure 3b), so the statically assumed argument width should be of the
range [0, 64]. However, after being paired with the AT function,
TypeSeezeR finds that the latter only reads from two 32-bit regis-
ters (line 3 of Figure 3d).Therefore, by analyzing the given icall and
AT function (that are guaranteed to be dynamically clustered due
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1 static splay_tree_node
2 splay_tree_splay_helper (sp, key, node, parent, grandparent)
3 splay_tree sp;
4 splay_tree_key key; // typedef unsigned long splay_tree_key
5 splay_tree_node *node;
6 splay_tree_node *parent;
7 splay_tree_node *grandparent;
8 {
9 splay_tree_node *next;

10 splay_tree_node n;
11 int comparison;
12
13 n = *node;
14
15 if (!n)
16 return *parent;
17
18 comparison = (*sp->comp) (key, n->key);
19 ...
20 }

(a) Source of an icall in function splay_tree_splay_helper()

1 ...
2 638419: mov (%rbx),%rsi ; set 2nd argument
3 63841c: mov %r15,%rdi ; set 1st argument
4 63841f: callq *0x8(%r12)

(b) Assembly of the corresponding icall
1 int
2 splay_tree_compare_ints (k1, k2)
3 splay_tree_key k1; //typedef unsigned long splay_tree_key
4 splay_tree_key k2;
5 {
6 if ((int) k1 < (int) k2) // unsigned long is cast to int
7 return -1;
8 else if ((int) k1 > (int) k2)
9 return 1;

10 else
11 return 0;
12 }

(c) Source of the callee AT function splay_tree_compare_ints()

1 0000000000638a70 <splay_tree_compare_ints>:
2 638a70: xor %eax,%eax
3 638a72: cmp %esi,%edi ; read 1st and 2nd argument
4 638a74: mov $0xffffffff,%edx
5 638a79: setg %al
6 638a7c: cmovl %edx,%eax
7 638a7f: retq

(d) Assembly of the corresponding AT function

Figure 3: An example from 403.gcc in which the argument
width analysis of TypeSeezeR has impact.

Figure 4: Different scenarios considered by the value-based
type inference of TypeSeezeR.

to their dependency) together rather than inspecting each of them
individually, TypeSeezeR could more accurately determine that
the range of their argument width be [32, 64].

2.3 Dynamic Value-Based Type Inference
Pointers are a fundamental concept of C/C++ programming lan-
guage and are widely used to support memory manipulation, effi-
cient data access, and other program behaviors. In x86_64, pointers

are translated to address references whose widths are 64-bit at the
binary level. Therefore, even an ideal width analysis that is able to
reconstruct the precise width of arguments cannot tell the differ-
ence between two pointer arguments at binary level. Worse still,
existing static width analysis is conservative and approximates ar-
gument widths with their possible ranges. To give an example,
when an argument of an icall is a pointer (which would hence be
assumed to be at most 64 bits long), it would be considered com-
patible with any arguments that are of an arbitrary type because
the maximum width of an argument register is 64-bit in x86_64.

With the capability of conducting dynamic analysis on the sub-
ject binaries, TypeSeezeR is able to produce signatures of icalls
and AT functions with richer type-related profiles. This is done by
inspecting registers and memory locations involved in argument
passing at runtime. In particular, at each indirect callsite, Type-
SeezeR inspects the content stored in the argument registers to
infer their types. As illustrated in Figure 4, if an argument register
points to the living address space of the process, TypeSeezeR
concludes that it is an address reference; otherwise, it is consid-
ered a value. Furthermore, when an argument is recognized as an
address reference, TypeSeezeR examines the memory location
where it points, and differentiates an address reference of another
address from an address reference of a value2. The above strategy
enables TypeSeezeR to distinguish between integers, pointers,
and pointers to pointers, such as uint64_t, char *, and char **,
as different types. Similar to §2.2, TypeSeezeR determines the
type of arguments via the aggregation of inferences on all individ-
ual members of the same cluster. In addition, by observing runtime
context at the location of return instructions, TypeSeezeR also
recovers the type of return values for icalls and AT functions.

Although TypeSeezeR is powerful in recognizing the param-
eter types at a fine-grained level, we also recognize three complex-
ities in its type inference, which we briefly explain below.

Intended Type Polymorphism. Note that during the execu-
tion of a program, a function might be executed several times with
arguments assigned with different values, or even with different
types in some special scenarios. For example, a union is a com-
posite data type that allows different data types to share the same
memory location, thus it may cause the same argument to be as-
signed with different types at runtime, which affects the inference
made by our approach.We call this issue the intended type polymor-
phism. For correctness concerns, when a potential type polymor-
phism is detected during dynamic analysis, TypeSeezeR is de-
signed to act prudently and identify the corresponding argument
as a value rather than an address reference. In particular,
• if an argument is observed to be both a value and an address

reference, it is considered a value; and
• if an argument is observed to be both a reference of address

and a reference of value, it is considered an address refer-
ence indexing a value.

TypeSeezeR adopts the above policy based on the following rea-
sons. First, an argument holding a value may coincidentally fall
into the living address space of the process. Second, it ensures that

2Note that for arguments observed to be pointing to an executable memory region,
TypeSeezeR only considers those whose values align with the legal instruction
boundaries of that region as address references.
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1 /* RTL expression ("rtx"). */
2 struct rtx_def
3 {
4 ENUM_BITFIELD(rtx_code) code: 16;
5 ENUM_BITFIELD(machine_mode) mode : 8;
6 unsigned int jump : 1;
7 unsigned int call : 1;
8 unsigned int unchanging : 1;
9 unsigned int volatil : 1;

10 unsigned int in_struct : 1;
11 unsigned int used : 1;
12 unsigned integrated : 1;
13 unsigned frame_related : 1;
14 rtunion fld[1];
15 };

Figure 5: Definition of struct rtx_def.

when TypeSeezeR determines the unanimous function signa-
ture of a specific cluster with the presence of type polymorphism
among the cluster’s members, it does so conservatively such that
the resulting CFI protection would not reject legal control flows.

Leveraging ASLR. In some special cases, an argument of value
type might accidentally point to a valid address. To give an exam-
ple, Figure 5 shows the declaration of struct rtx_def used by the
403.gcc benchmark from SPEC CPU2006, which is by all means
a bit string encoding a configuration list. Such a variable would
unlikely have its value changed across multiple executions of the
program. We observed that a function named c_safe_from_p()
consumed a parameter of this type, which was always of the same
value yet pointing to the program’s heap region. To handle this is-
sue, we leverage the fact that real address references are affected by
ASLR (Address Space Layout Randomization) and would have their
values changed for each individual execution of the program. Specif-
ically, when a particular argument is observed to be pointing to an
address within a position-independent memory region (e.g., stack,
heap, or any section of a shared library), TypeSeezeR would run
the subject program multiple times with the same input, and see
if the value changes — if not, then the argument will be conserva-
tively inferred as a value.

Arguments of Zero Value. A special case that TypeSeezeR
needs to deal with is that arguments might hold zero value at run-
time, leading to an ambiguity of pointers and integers. Therefore,
when TypeSeezeR dynamically detects that the value of an ar-
gument (or the memory entry indexed by the argument) is zero, it
considers the argument as an unknown type (or an addr2unknown
type). To maintain robustness, TypeSeezeR considers the un-
known type to be always compatible with any other type, and
the addr2unknown type to be compatible with any address refer-
ence (including addr2val and addr2addr types). As such, given that
TypeSeezeR leverages dependency-based clustering to finalize
the assumed type for each argument, it can be expected that the
aforementioned handling of zero values does not affect the overall
accuracy of TypeSeezeR in argument type inferencing.

3 IMPLEMENTATION
We have implemented a proof-of-concept prototype of our Type-
SeezeR approach on top of Dyninst [3] (v9.3.1) and Intel Pin [26]
(v3.27). Currently, our prototype only supports x86_64 executables
in the ELF format that comply with the System V ABI [27] calling
convention.

3.1 Static Analysis
The static analysis phase of our prototype mainly carries out two
tasks, namely to perform static arity/width analysis on subject bi-
naries as in existingwork [23, 28, 37], and to run direct call analysis
of which the result assists our refined arity analysis (see the last
paragraph of §2.2.2).

Static Arity/Width Analysis. In order to avoid the complica-
tions brought by compiler optimization, our prototype leverages
the improved static type-based matching technique proposed by
Lin et al. [23] to perform static arity/width analysis, given that this
more recent solution has fixed a number of complier-optimization-
related shortcomings of previous schemes. We omit more details
regarding the mechanism of such static analysis since they are not
the contribution of this work.

Direct Call Analysis. The purpose of direct call analysis is to
discover AT functions that are directly invoked, such that more
constraints can be applied in the arity/width analysis of Type-
SeezeR. This begins by consulting the disassembly code of the
subject binary to retrieve all direct call instructions and the cor-
responding call targets. Upon identifying any callsite that targets
an AT function, a reaching-definition analysis is performed to de-
termine the upper bound of arity as well as argument widths for
its prototype. For the return value, TypeSeezeR performs live-
ness analysis to determine its existence and, if it exists, the lower
bound of its width. The two analyses here adopt the same algo-
rithm in TypeArmor and 𝜏CFI, except that TypeSeezeR directly
uses the API provided by Dyninst to decode instructions, inspect
each instruction’s read/write effect on certain registers, and obtain
the width information of those registers.

3.2 Dynamic Analysis
Note that the main goal of TypeSeezeR’s dynamic analysis is
to capture dependencies between icalls and AT functions during
actual executions of the subject binary, while also inspecting the
runtime context at the location of each icall. To fulfill these re-
quirements, we use Intel Pin, a well-known dynamic instrumen-
tation framework as the basis of our prototype because it provides
the desired execution interception and instrumentation capabili-
ties while being sufficiently flexible, scalable, and customizable.
Specifically, we write a customized Pin tool to instrument icalls
and return instructions of the subject binary, so that during its ex-
ecution, key execution traces as well as the read operations of the
runtime snapshots of both CPU registers and the process’s mem-
ory space, can be collected.

Input Generation. As the functionality of TypeSeezeR re-
lies on dynamic analysis, we note that code coverage would defi-
nitely impact the effectiveness of our approach. However, improv-
ing code coverage for dynamic binary analysis is out of the scope of
this paper.Thus, the PoC implementation of TypeSeezeR simply
leverages an open-source coverage-guided fuzzer, AFL++ [15], to
generate test cases for subject binaries. Specifically, we use hand-
written test suites provided by developers as corpora to feed the
fuzzer and use the fuzzer’s output to run the binaries.

Collecting Execution Traces. To understand how icalls and
AT functions are paired during execution, TypeSeezeR records
the runtime control flows with an instrumentation that adds an
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analysis routine before each icall at the instruction granularity. An
icall is attached with the analysis routine only when it executes for
the first time. After the instrumentation, the address of the hooked
icall can be retrieved by passing an IARG_INST_PTR argument to
the analysis routine, whereas the target address can be retrieved by
passing an IARG_BRANCH_TARGET_ADDR argument. The above two
arguments together then form the execution traces for an icall in
the form of a <cs, ct> pair. It is worth pointing that a particular
<cs, ct> pair could occur millions of times throughout the execu-
tion of a subject binary. To avoid recording duplicate traces and to
reduce performance overhead, TypeSeezeR uses a map to filter
out previously recorded traces.

Reading Registers And Memories. The value-based type in-
ference of TypeSeezeR requires both in-register and in-memory
values. The consulting of a register value is done by passing an
IARG_REG_VALUE argument and an additional REG argument (to
specify the target register) to the analysis routine. The consulting
of a memory location is fulfilled using the Pin_SafeCopy() API.
Note that when Pin_SafeCopy() returns, a zero return value in-
dicates that the accessed memory location is invalid (i.e., not in
the living address space of the process). We leverage this feature
to determine whether an argument is an address reference or not,
and to distinguish address references that index values and other
addresses.

Instrumenting Multi-Threaded Applications. When Pin is
stitched to a multi-threaded program, the instrumented code re-
siding in multiple threads might write the output stream simul-
taneously, resulting in asynchronous or even invalid information
captured. We leverage the locking primitives that Pin provides to
lock the output stream when an analysis routine is writing to it.

3.3 Resolving Type-Based Indirect Call Targets
Given the results of hybrid arity/width analysis (§2.2) and value-
based type inference (§2.3), TypeSeezeR leverages type-based
matching to resolve indirect call targets. In addition to the poli-
cies regarding arity and argument width that are adopted by exist-
ing solutions [23, 28, 37], TypeSeezeR further examines whether
each argument type is compatible. In particular, an unknown type
is always compatible with any type, and an addr2unknown type
is compatible with any address reference (including addr2val and
addr2addr types), while an address reference type is not compati-
blewith a value type. Once all the checks are passed, TypeSeezeR
considers the AT function a potential target for the indirect call.

3.4 CFI Hardening
Our current prototype of TypeSeezeR is able to fortify COTS bi-
naries with label-based CFI enhancement, which is done in a way
akin to the Tary and Bary table implementation in MCFI [29]. In
particular, TypeSeezeR embeds two maps into the subject bi-
nary, which are associated respectively with icalls and AT func-
tions. Each entry of the maps is a key-value pair where the key is
the address of an icall or AT function and the label being the cor-
responding function signature recovered via our hybrid analysis.
TypeSeezeR leverages Dyninst [3] as the foundation for static bi-
nary rewriting, incorporating integrity checks before icalls within
the subject binary to retrieve and compare the labels of the callsite
and calltarget before executing an indirect control-flow transfer. A

control transfer is allowed when the two labels provide compatible
signatures, hence achieving CFI enforcement.

A CFI scheme must maintain the correctness of fortified pro-
grams. However, due to the limitation of dynamic analysis w.r.t.
completeness of the test cases, value-based type inference might,
to be admitted, not be entirely foolproof in some unforeseen sce-
narios. We address this concern by embedding a runtime review
component as part of its fortification, which double checks forward-
edges that violate CFI only due to inferred argument types. Specifi-
cally, wemaintain two versions of CFG inferences, with CFG𝑎 built
using its full capability while CFG𝑏 produced based on the hybrid
arity/width analysis. An indirect flow complying with CFG𝑏 but
not with CFG𝑎 is reviewed on-the-fly by checking if the call target
is potentially abused as a forward-edge gadget.

To the best of our knowledge, there could be three types of
control-flow hijacking attacks that divert the execution of an icall:
JOP [4], COOP [12, 34], and Control Jujutsu [13]. Specifically, JOP
and COOP rely on a dispatcher gadget to chain other gadgets, lead-
ing to repeated violations of indirect control-flow integrity. The Con-
trol Jujutsu attack corrupts the in-memory function pointer as well
as argument of the Argument Corruptible Indirect Call Site to di-
vert the control flow to a function close to a powerful system call,
and achieves remote code execution via a malicious system call.

As such, TypeSeezeR simply checks: 1) if the currently re-
viewed callsite belongs to a previously reviewed call target (JOP),
2) if the same callsite is repeatedly reviewed (COOP), and 3) if the
first sensitive system call within the currently reviewed call target
(if any) is to be abused should the program run with the current
execution context. Suspected control flows are deemed safe and
allowed once these checks pass, and the correctness of fortified
programs is ensured.

4 EVALUATION
To evaluate our approach, we applied TypeSeezeR on the SPEC
CPU2006 benchmarks and a number of popular real-world applica-
tions for a thorough analysis. We mainly evaluated TypeSeezeR
in the following aspects.

• Effectiveness. The main goal of TypeSeezeR is to im-
prove the precision of forward-edge CFG recovered, i.e., to
refine indirect call target resolving for binary executables.
Thus, we used the AICT (average indirect call targets) vec-
tor for evaluation. Compared to type-based CFG generation
techniques built on pure static analysis, the evaluation re-
sults show the extent to which dynamic analysis helps in
refining indirect call targets.
• Soundness. CFI policy must be sound and free of correct-

ness concerns.We assessed the soundness of TypeSeezeR
by comparing CFGs it generates against those collected us-
ing dynamic profiling. To evaluate the impact of potential
value collisions, we further conducted a dedicated analysis
on the dynamic value-based type inference of our approach.
• Case Studies. We discussed some insightful cases we dis-

covered when evaluating TypeSeezeR. Specifically, we
showed how TypeSeezeR thwarts a practical attack, and
provided an example to demonstrate the inherent limita-
tions of static analysis.
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Table 1: Fuzzing duration for each SPEC CPU2006 benchmark program.
Benchmark 401.bzip2 458.sjeng 433.milc 482.sphinx3 456.hmmer 464.h264ref 445.gobmk 400.perlbench
Time (hours) 96 117 41 135 139 126 88 189
Benchmark 403.gcc 483.xalancbmk 471.omnetpp 447.dealII 473.astar 450.soplex 453.povray 444.namd
Time (hours) 130 186 14 35 22 72 95 113

Table 2:TheAICT comparison results of TypeSeezeRwith representative binary-level approaches on SPECCPU2006 bench-
marks and real-world applications.

Benchmark icalls funcs
Coverage AICT

icall AT AT
[46]

TypeArmor
[37]

𝜏CFI
[37]

Lin et al.
[23] TypeSeezeR TypeSeezeR*

401.bzip2 20 73 60% 66.67% 3 2.05 2.05 1.80 1.65 1.50
458.sjeng 1 138 100% 66.67% 9 9 8 9 8 8
433.milc 4 234 75% 66.67% 3 3 3 3 3 3

482.sphinx3 7 323 0% 0% 7 2 2 2 2 -
456.hmmer 10 487 100% 8.70% 23 23 20 20 19.90 19.90
464.h264ref 352 515 16.48% 50% 42 41.01 16.74 19.35 16.21 10.62
445.gobmk 43 2507 86.05% 76.31% 1790 1645.30 1607.3 1635.63 658.07 519.35

400.perlbench 114 1697 62.28% 44.54% 723 652.10 618.33 624.47 429.97 349.35
403.gcc 460 4559 54.35% 35.62% 1269 885.87 676.42 693.64 505.35 386.52

483.xalancbmk 11958 13465 13.56% 9.93% 8030 6643.15 6232.26 6139.43 5999.81 5248.25
471.omnetpp 873 2013 45.02% 28.32% 1243 1021.21 987.54 968.96 880.84 739.87
447.dealII 1777 7200 5.63% 4.42% 2510 2116.39 1989.55 1990.83 1986.09 1986.80
473.astar 1 89 100% 25% 4 4 4 4 2 2
450.soplex 583 917 28.99% 33.95% 436 314.75 290.46 286.44 267.85 240.07
453.povray 149 1605 27.52% 12.84% 522 402.24 365.68 350.80 334.24 320.81
444.namd 14 96 85.71% 24.49% 49 48.43 48.43 48.43 48.43 48.50
Nginx 396 1869 74% 81.33% 884 653.08 513.05 530.56 202.11 148.18

ProFTPD 142 1986 44.37% 82.78% 389 324.78 316.67 309.08 227.64 133.65
lighttpd 91 1222 63.74% 87.34% 79 32.35 29.25 29.52 16.88 10.10

Memcached 107 431 91.59% 67.68% 99 93.73 72.36 70.06 43.34 41.60
Redis 389 928 37.53% 23.71% 928 672.92 579.38 483.59 351.44 232.05

geomean 83.26 822.44 47.67% 34.23% 145.17 111.26 100.51 100.04 76.82 65.02

Table 3: The AICT comparison results of TypeSeezeR with representative binary-level approaches on covered icalls.

Approach AT[46] TypeArmor[37] 𝜏CFI[37] Lin et al.[23] TypeSeezeR

geomean 145.17 112.87 102.98 100.76 65.02

• Performance. Finally, we tested the overhead introduced
by applying TypeSeezeR, and verified the compatibility
of our approach.

4.1 Effectiveness
4.1.1 AICT comparison. Our evaluation dataset includes C/C++
benchmarks of the SPECCPU2006 suite and a number of real-world
applications, namely two web servers (Nginx v1.20.2 and lighttpd
v1.4.68), an FTP server (ProFTPD v1.3.6), an in-memory data store
(Redis v5.0.14), and a general-purpose distributed memory caching
system (Memcached v1.6.19). We evaluated TypeSeezeR on bi-
naries compiled in standard compiling options with -O2 optimiza-
tion level. Note that benchmark programs that do not contain in-
direct callsites, i.e., 429.mcf, 470.lbm, and 462.libquantum, were ex-
cluded from our evaluation. When calculating AICT, we also ex-
cluded compiler-generated icalls and AT functions which are used

to set up the runtime environment. The test cases of the SPEC
benchmark programs were generated via coverage-guided fuzzing
(see §3.2) running on a server powered by a 32-core Intel E5-2630
CPU. The duration of fuzzing for each SPEC benchmark program
was given in Table 1, with the average, maximum, and minimum
duration being 100 hours, 189 hours (on 400.perlbench), and 14
hours (on 471.omnetpp), respectively. The selected real-world ap-
plications all come with comprehensive hand-written test suites,
which were directly employed as inputs for the dynamic analysis
of TypeSeezeR.

We compared TypeSeezeR with representative binary-level
indirect call target resolving approaches on SPEC CPU2006 bench-
marks and real-world applications, and the results are shown in Ta-
ble 2. Note that we mainly compare TypeSeezeR with state-of-
the-art type-based techniques, including TypeArmor [37], 𝜏CFI [28],
and Lin et al. [23]. We excluded BPA [20] from the comparison for
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Table 4: Breakdowns on the contribution of TypeSeezeR’s functional components to the achieved AICT reduction.
Component Static Arity +Static Width +Hybrid Arity/Width +Direct Call +Value-Based Type Inference
geomean 111.39 100.04 83.89 79.64 76.82

the following reasons: (1) it only targets x86_32 binaries, (2) it is
a points-to analysis rather than a type-based approach, and (3) its
source code is not publicly available.

The second (icalls) and third columns (funcs) of Table 2 indicate
the number of indirect callsites and the number of functions in
each benchmark or application, respectively. In the columns of
Coverage, we gave the coverage ratios of indirect call (icall) and
AT function (AT ) covered by our dynamic analysis to reflect the
impact of code coverage on the AICT results. Note that we lever-
aged the coverage of indirect call and AT function to represent
code coverage instead of the coverage of line/branch which is com-
monly used in software testing, as the coverage of executed indi-
rect calls and AT functions is more relavant to TypeSeezeR. In
addition, in the columns of AICT, AT gives the AICT results for ap-
proaches that only allow an icall to target all AT functions (e.g., bin-
CFI [46]), whereas TypeArmor, 𝜏CFI, Lin et al.[23], TypeSqueezeR
and TypeSqueezeR* give the AICT results for the three represen-
tative binary-level approaches as well as ours. Note that we show
two levels of AICT results for our approach, namely, the overall
result (column TypeSqueezeR) and that for dynamically covered
icalls in specific (column TypeSqueezeR*). We also presented in Ta-
ble 3 the geometric mean of AICT results regarding the collection
of icalls covered by our dynamic analysis. To give a fair compari-
son, the AICT for TypeSeezeR and several representative type-
based solutions on this specific collection of icalls were all listed.

As shown in Table 2, compared to TypeArmor, 𝜏CFI, and Lin
et al. [23], TypeSeezeR reduces the geometric mean of AICT
by 30.95% (111.26 vs 76.82), 23.57% (100.51 vs 76.82), and 23.21%
(100.04 vs 76.82), respectively. Moreover, as shown in Table 3, for
those icalls covered by the dynamic analysis, TypeSeezeR fur-
ther reduces the geometric mean of AICT by 55.21% (145.17 vs
65.02), 42.39% (112.87 vs 65.02), 36.86% (102.98 vs 65.02), and 35.47%
(100.76 vs 65.02), respectively.These suggest that TypeSeezeR in-
troduces a significant reduction of overall AICT and outperforms
state-of-the-art techniques in refining indirect calltargets.

Among the results presented in Table 2, we found that the AICT
reductions are highly correlatedwith the coverage ratio of dynamic
analysis. Specifically, on programs with high coverage of icalls and
AT functions like 445.gobmk and Nginx, TypeSeezeR generates
impressive results. For example, compared to Lin et al. [23], Type-
SeezeR reduces the AICT of Nginx by 61.91% (530.56 vs 202.11);
while in contrast, as our dynamic analysis cannot reach any in-
direct calls in 482.sphinx3, the AICT remains the same as Lin et
al. [23], which highlight the importance of high code coverage of
dynamic analysis in TypeSeezeR. It is worth pointing out that
high and balanced coverage of both icall and AT function is im-
portant in TypeSeezeR. For instance, although the coverage of
AT function for ProFTPD is extremely high (i.e., 82.78%), the rela-
tively low coverage of icall (i.e., 44.37%) limits TypeSeezeR’s abil-
ity in reducing AICT. We believe the reason is that while most AT
functions’ signatures were indeed refined, TypeSeezeR does not
bring extra confinement to the signatures of half of the icalls; as a

result, although the AICT for dynamically covered icalls decreases
dramatically (133.65 on average for this particular benchmark), the
same effect was unfortunately not extended to the overall CFG.

Particularly, in small benchmark programs that have only a few
or tens of icalls, e.g., 401.bzip2, 458.sjeng, and 433.milc, TypeSeezeR
may not perform much better than other approaches, even if the
code coverage of dynamic analysis is high. A typical example is
458.sjeng, which only contains one icall where most AT functions
are its actual targets. In such situations, type-basedmatching nearly
reaches its extreme limit. Fortunately, in such programs, the AICT
is small enough to provide good security guarantees.

It is interesting to see that for 444.namd and 456.hmmer, Type-
SeezeR’s AICT almost remains the same as in Lin et al [23].
With manual inspection, we found that in 444.namd, the icalls cov-
ered by dynamic analysis all share the same function signature,
i.e., void (*)(nonbonded*). While in 456.hmmer, only one icall has
a different function signature from others. As a result, the AICT
computed by TypeSeezeR only decreases a little compared to
existing type-based approaches (i.e., Lin et al. [23]). Moreover, in
444.namd and 447.dealII, the results for TypeSqueezeR and Type-
SqueezeR* are counterintuitive, as the AICT for icalls that are cov-
ered by TypeSeezeR’s dynamic analysis is coincidentally larger
than the AICT for all icalls computed by TypeSeezeR. We be-
lieved that this is due to the non-uniform distribution of AICT.

Interestingly, in 473.astar, it turns out that TypeSeezeR’s di-
rect call analysis confines the upper bound of arities for two untrig-
gered AT functions. As a result, these two functions are excluded
from the icall’s target set as their arities mismatch that of the icall.
This example partially demonstrates the effectiveness of the direct
call analysis in TypeSeezeR.
4.1.2 AICT reduction breakdowns. To further analyze the individ-
ual contribution of TypeSeezeR’s components towards reducing
AICT, we conducted separate evaluations on the evaluation dataset
(including the SPEC CPU2006 benchmarks and real-world applica-
tions in Table 2) and presented the geometric mean of AICT results
in Table 4. In the Table, “Static Arity” stands for static arity analysis,
“+StaticWidth” further introduces static width analysis when com-
puting AICT, “+Hybrid Arity/Width” adds TypeSeezeR’s hybrid
arity/width analysis but excludes the direct call analysis, “+Direct
Call” supplements the direct call analysis. Finally, “+Value-Based
Type Inference” corresponds to the AICT when introducing all
components of TypeSeezeR.

As shown in Table 4, the most significant contribution to AICT
reduction is the hybrid arity/width analysis, while direct call analy-
sis and value-based type inference further reduce AICT by 4.25 and
2.82, respectively. In summary, each component of TypeSeezeR
demonstrated positive effects regarding AICT reduction.

4.1.3 Prevalence of address references. We observed that the most
common type of argument is the pointer. To understand the preva-
lence of this type, we conducted a study on SPEC CPU2006, and
found that about 72.81% arguments among all functions are in the
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pointer type. The only exception goes to 445.gobmk, in which 32-
bit integers are heavily used. A large number of pointers among
arguments suggest that the effectiveness of width-based indirect
call targets resolving techniques (e.g., 𝜏CFI) may not be as effec-
tive as expected.The reason is that a 64-bit argument at the callsite
is compatible with any argument type at the calltarget. This is an
important indicator that motivates TypeSeezeR, which makes a
further step to distinguish between values and address references.

4.1.4 Thwarting advanced code-reuse attacks. To see TypeSeezeR
in action of a CFI implementation to mitigate code-reuse attacks,
we analyzed the feasibility of advanced code-reuse attacks when
the CFG recovered by TypeSeezeR is enforced on target binaries.
Results are presented in Table 5, where “3” indicates successful
defense for an exploit and vice versa for “7”. According to the re-
sults, by enforcing the AT policy [45] and the arity policy [37], all
function-reuse attacks were thwarted except the improved Apache
exploit (denoted as Apache*) from Control Jujutsu [13] that by-
passes all previous binary-level type-based CFI solutions, includ-
ing TypeArmor [37], 𝜏CFI [28], and Lin et al. [23]. In contrast, such
an attack is defeated by TypeSeezeR. Further details about how
TypeSeezeR thwarts such an attack are discussed in §4.3.1.

4.2 Soundness
4.2.1 Collecting ground truth. To collect the source-level function
signatures for icalls and AT functions, we implemented an LLVM
pass that operates at the IR level. Note that at the beginning we
only had the function prototypes at the IR level. To propagate them
to the binary level, we compiled the benchmark programs with de-
bug information (i.e., with -g compiling options). By inspecting the
line number to binary address mapping from the debug section in
ELF files, the ground truth for a given binary address can be ob-
tained. Note that multiple indirect calls residing at the same line
are not supported in our current implementation, nor do they ap-
pear in our dataset.

4.2.2 Soundness verification. We leverage a methodology similar
to previous CFI solutions [20, 45] to compare the CFG recovered
by TypeSeezeR with that recorded by dynamically profiling the
binary (again, we use Intel Pin here). As our approach relies on
hybrid analysis, the input used for CFG inference cannot be identi-
cal to that used for dynamic-profiling-based verification.We hence
performed this particular evaluation using SPEC CPU2006 bench-
marks only — all SPEC benchmark programs have three input sets
(i.e., train, test, and reference), which directly satisfies the require-
ment of this evaluation. Specifically, for benchmark programs with
multiple reference inputs (the most complex ones), we used a ran-
dom one of them for verification and the others as inputs to Type-
SeezeR for CFG generation. For benchmark programs that come
with only one reference input, we used the reference input for
TypeSeezeR and the test/train inputs for verification. Detailed
per-benchmark statistics regarding the number of arguments cov-
ered by value-based type inference, the number of collected dy-
namic samples, as well as the proportion of inferred types, are
given in Table 6. Overall, our experiments investigated a total of

4825 arguments. On average, each argument has 13840607.47 sam-
ples collected, with 20.15 distinct values among those collected val-
ues. The distribution of inferred types is as follows: Addr2Addr ac-
counts for 44.39%, Addr2Val for 17.76%, Addr2Unknown for 2.46%,
Value for 25.75%, and Unknown for 9.64%.

In this experiment, TypeSeezeR achieved a recall rate of 100%,
i.e., no valid edges were found rejected when comparing the CFG
inferred by TypeSeezeR to the CFG collected from dynamic pro-
filing. By further comparing the recovered function signatureswith
those collected from LLVM IR, we found no violation of Type-
SeezeR’s hybrid arity/width analysis, strengthening the sound-
ness of this component.

4.2.3 Manual review of potential value collision. As suggested by
prior research [38, 39], value collisions (where a value coinciden-
tally resides within an accessible memory region) may potentially
lead to incorrect result of our dynamic value-based type inference,
consequently compromising the soundness of the generated CFG.
To ascertain the proper handling of value-collision scenarios by
our approach, we conducted a thorough manual review on argu-
ments of the evaluated benchmark programs, specifically on cases
where the inferred type given by TypeSeezeR is different from
their source-level ground truths. The goal of the manual review
is to check whether the causes of such identified type inaccura-
cies are indeed value collisions. We encountered discrepancies in
54 arguments’ recovered signatures compared to those obtained
from LLVM IR. Our manual scrutiny revealed that the majority of
these discrepancies were attributed to unreliable debug informa-
tion (e.g., line numbers), a well-known issue in highly optimized
binaries [43]. Upon closer examination, we determined that only 4
of the 54 instances diverged from their actual source-level types.

We found that all the wrongly inferred arguments were in fact due
to explicit type casting. For instance, function case_compare() of
the 403.gcc benchmark declares two arguments of type unsigned
long, but then manipulates them as pointers. In other words, these
“incorrect” cases caused by TypeSeezeR were capturing the ac-
tual runtime semantics of analyzed programs. We further discuss
this potential limitation of our approach in § 5.

4.3 Case Studies
4.3.1 Thwarting the improved Apache exploit. To further demon-
strate the refined CFI policy that TypeSeezeR constructs and
its superior capability in defending against control-flow hijacking
attacks, we leverage the improved Apache exploit introduced in
Control Jujutsu [13] as a case study. In the original Apache ex-
ploit, control flow is hijacked from the icall residing in function
ap_run_dirwalk_stat(), which then redirects to a non-AT func-
tion piped_log_spawn(). It can be prevented by enforcing the
address-taken policy proposed by bin-CFI [46].The authors of Con-
trol Jujutsu argue that the target function can be replaced by an
alternative, e.g., function ap_open_piped_log_ex() which even-
tually invokes the target function by two direct calls.

After manually checking the source code of the icall and the
alternative function, we confirm that TypeArmor, 𝜏CFI, and Lin
et al.[23] cannot prevent the improved attack from happening. In
particular, the new function and the callsite both have 3 arguments
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Table 5: Thwarting advanced code-reuse attacks.

Exploit Target Defense
TypeArmor[37] 𝜏CFI[28] Lin et al.[23] TypeSeezeR

COOP ML-G [34]
IE-64bit 3 3 3 3

IE-64bit(2) 3 3 3 3

Firefox 3 3 3 3

COOP REC-G [12] Chromium 3 3 3 3

Control Jujutsu [13]
Apache 3 3 3 3

Apache* 7 7 7 3

Nginx 3 3 3 3

Table 6: Per-benchmark statistics of value-based type inference.

Benchmark
Argument
Count

Samples (Per Argument) Proportion of Inferred Types
Total Amount Distinct Values Addr2Addr Addr2Val Addr2Unknown Value Unknown

401.bzip2 30 3 1.47 6.67% 13.33% 0 40% 40%
458.sjeng 2 5069955451 64 0 0 0 72.33% 27.67%
433.milc 18 76800.55 12.39 0 16.67% 0 47.50% 35.83%

482.shpinx3 0 0 0 0 0 0 0 0
456.hmmer 16 108494.50 43.81 87.50% 12.50% 0 0 0
464.h264ref 192 100657293.72 20.28 21.88% 8.27% 0 68.16% 1.69%
445.gobmk 118 4758750.46 79.59 3.39% 12.07% 6.90% 63.53% 14.10%

400.perlbench 169 11866985.90 27.97 52.87% 22.94% 9.89% 6.76% 7.54%
403.gcc 333 267524.87 57.28 22.07% 42.35% 11.44% 19.18% 4.95%

483.xalancbmk 3285 3782172.86 13.56 67.94% 9.95% 1.91% 15.79% 4.41%
471.omnetpp 210 5834602.99 43.72 78.09% 4.78% 0.93% 13.31% 2.89%
447.dealII 175 1420575.10 17.22 68.44% 11.27% 3.15% 15.15% 1.99%
473.astar 3 2780359179 87 33.33% 66.67% 0 0 0
450.soplex 185 215149.43 3.06 68.23% 16.90% 1.07% 12.18% 1.63%
453.povray 77 160727052.95 19.25 55.52% 28.64% 1.53% 12.31% 2.00%
444.namd 12 32832.14 1 100% 0 0 0 0
overall 4825 13840607.47 20.15 44.39% 17.76% 2.46% 25.75% 9.64%

and return values, which by passes TypeArmor. The first two argu-
ments of the callsite and the AT function both being 64-bit point-
ers. The third argument of the callsite is of type uint32_t while
the third argument in the AT function is an enum which would
be translated to a 32-bit value in assembly. Thus, the width of all
three arguments of the callsite and the AT function are the same.
While for the return value, the callsite expects an integer (32-bit),
and the calltarget sets a pointer (64-bit). However, since 𝜏CFI al-
ways overestimates the width at the calltarget and underestimates
it at the callsite, it concludes that the width of the return value
is at least 32-bit at the callsite and at most 64-bit at the calltarget.
Consequently, it also fails to filter out the illegal control flow by
checking the width of the return value. For the similar reason, Lin
et al. [23] also cannot defend against this attack.

In contrast, with its runtime review mechanism, TypeSeezeR
is capable of thwarting the aforementioned exploit variation. We
ran this alternative attack against an Apache server fortified by
TypeSeezeR. Specifically, a well known test suite, Apache HTTP
Test Project3, was used as test cases for the hybrid inference of
Apache’s CFG. In the attack simulation, TypeSeezeR concluded
that the second argument of the icall is of type address reference
that indexes another address and the expected return value is of

3https://httpd.apache.org/test/

1 static int
2 autohelperbarrierspat66(int trans, int move, int color, int action)
3 {
4 int a, b;
5 UNUSED(color);
6 UNUSED(action);
7
8 a = AFFINE_TRANSFORM(682, trans, move); // uses trans, move
9 b = AFFINE_TRANSFORM(719, trans, move); // uses trans, move

10
11 return play_attack_defend_n(color, 1, 2, a, b, b); // uses color
12 }

Figure 6: Source code of autohelperbarrierspat66() from
445.gobmk in SPEC CPU2006.

type value, while the second argument of the target function is
of type address reference that indexes value and its actual return
value is of type address reference. Consequently, the compromised
control flow failed to pass TypeSeezeR’s runtime review (i.e.,
signature mismatch due to value-based type inference only, see
§3.4), at which point our approach could effectively notice that the
attack intended to abuse the system call exec().

4.3.2 Limitations of static analysis. Figure 6 shows the C source
code of function autohelperbarrierspat66() in 445.gobmk of
SPEC CPU2006, whose assembly code is earlier shown in Figure 2b.
Although the source function defines four arguments in total, only
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Table 7: Normalized runtime overhead for SPEC CPU2006 benchmarks.
Benchmark 401.bzip2 458.sjeng 433.milc 482.shpinx3 456.hmmer 464.h264ref 445.gobmk 400.perlbench
Overhead (%) 5.99 5.56 8.20 0.89 6.08 3.30 3.84 0.70
Benchmark 403.gcc 483.xalancbmk 471.omnetpp 447.dealII 473.astar 450.soplex 453.povray 444.namd
Overhead (%) 8.80 4.23 5.96 4.72 4.21 9.02 1.85 5.06

the first three arguments are used. Bymanually analyzing the source
code of 445.gobmk, we found that such behavior is intended. In par-
ticular, the function pointer of the indirect callsite that invokes this
function would also invoke another function which indeed con-
sumes four arguments. To support flexible programming, i.e., to
allow the function pointer to invoke both functions, this function
is intentinoally defined to have the same signature as the other.
Under such an intended design, static analysis of assembly code
can only figure out that the first three arguments are consumed by
the function. However, for the remaining arguments, static analy-
sis cannot ensure their usage and it has to conservatively assume
that the function has at least three arguments. Consequently, static
analysis cannot recover the original function prototype exactly
without additional information.

On the other hand, TypeSeezeR is able to address this prob-
lem. As described in §2.2, by sharing the static analysis result with
other calltargets and callsites that have the same function signa-
ture (identified by dynamic analysis), TypeSeezeR is able to re-
construct its source-level arity collectively.

4.4 Performance overhead
To assess potential runtime overhead while testing the compatibil-
ity of TypeSeezeR, we used our approach to fortify the SPEC
CPU2006 benchmarks used in the effectiveness evaluation, and
tested their hardened versions using all available inputs (test, train,
and reference). The normalized runtime overhead for each tested
benchmark (compared to vanilla binary) is presented in Table 7.
The results show that the hardened binary introduces an average
runtime overhead of approximately 4.90%. All the fortified bench-
mark programs finished execution successfully, indicating that the
CFI instrumentation of TypeSeezeR upholds compatibility.

Note that static binary rewriting may suffer from a performance
trade-off due to the requirement of maintaining original program
semantics (e.g., Dyninst utilizes trampolines to insert code snip-
pets). Further performance optimization of our approach could be
achieved by adopting reassembly-based instrumentation technique
(like Uroboros [39] and Ramblr [38]) which allows direct insertion
of CFI checks. Also note that the runtime review mechanism of
TypeSeezeR is supposed to be rarely (if not never) triggered dur-
ing normal executions, thus the overhead caused by that compo-
nent is negligible.

5 DISCUSSION
First, it is worth pointing out that TypeSeezeR is not intended
to defend against all types of low-level attacks. To the best of our
knowledge, even the finest-grained source-level CFI systems can-
not promise to stop all potential attacks. For example, Farkhani
et al. [14] demonstrate the feasibility of bypassing type-based CFI
solutions in a large code base. Further, data-only attacks [10, 17]
are covered under TypeSeezeR since such attacks will not divert

a program’s control flow. Nevertheless, by effectively refining in-
direct call targets, TypeSeezeR significantly raises the bar for
adversaries to launch control-flow hijacking attacks for binary ex-
ecutables.

Second, as a hybrid analysis approach, TypeSeezeR’s effec-
tiveness relies on the completeness of test cases. Intuitively, and
as also demonstrated in our evaluation, higher binary code cover-
age allows its dynamic analysis to include more signatures into the
clusters, and consequently leads to better CFG accuracy. However,
note that TypeSeezeR is orthogonal to approaches aiming to im-
prove code coverage of software analysis. Therefore, techniques
such as symbolic execution [7, 21], fuzzing [15, 33, 42], and hybrid
fuzzing [19, 41] that can enhance code coverage may further aug-
ment the effectiveness of TypeSeezeR.

Third, to be conservative, TypeSeezeR only examines the first
8 bytes starting from thememory location pointed to by an address
reference because locations farther away may belong to different
data structures. Also, TypeSeezeRmay not be able to distinguish
different pointer-to-pointer types (e.g., int ** and char **), as recon-
structing source-level types from binary-level information is unde-
cidable. Nevertheless, we stress that the key motivation of Type-
SeezeR is to distinguish function signatures to the best extent
possible given the limitations of the binary-level analysis.

Fourth, as discussed in §4.2.3, TypeSeezeR could potentially
make type inferences that are inconsistent with the correspond-
ing source-level declarations but in fact captures correct runtime
semantics regarding the arguments’ usage. We argue that CFI en-
forcement is in fact dynamic in nature; therefore, when there’s a
discrepancy between static and dynamic signatures (both being
correct from their own perspectives), it makes more sense to adopt
the dynamic version to avoid false positives/negatives in detection.

Last but not least, unlike BPA [20], TypeSeezeR does not con-
sider unreachable icalls in its analysis. Excluding the unreachable
icalls may provide stronger guarantees against control-flow hijack-
ing attacks. For example, some programs like the 401.bzip2 bench-
mark of SPEC intentionally modify their code to use only a portion
of their functionality for performance measurement purposes. As
a result, certain code snippets in these programs may be unreach-
able. BPA’s points-to analysis identifies dead code if it is unreach-
able from the program entry point, and the dead icall targets are
assigned empty sets. TypeSeezeR could potentially adopt similar
techniques, such as identifying dead code after computing the tar-
gets of each indirect call. Subsequently, the indirect calls residing
there can be marked as unreachable and their targets will be set to
empty, which further refines the precision of the CFG. It remains
an open question to efficiently and effectively identify unreachable
icalls for programs with non-trivial amounts of dead code, and we
leave it as our future work.
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6 RELATEDWORK
CFGGeneration from Source Code. Intuitively, source-level so-
lutions construct CFGs with the best possible accuracy due to the
rich supportive information available in the program source code.
Existing approaches of this flavor [22, 25, 29, 36] typically work by
matching prototypes of icalls with those of AT functions, so that
any icall would only be allowed to transfer control to AT functions
that have the same prototype signature. Specifically, IFCC [36] and
MCFI [29] resolve icall targets by source-level arity-matching and
signature-matching separately. On top of this, advanced source-
level CFI solutions [22, 25] also attempt to refine the generated
CFGs by further enriching the function prototype signatures, which
is achieved by retrieving multi-layer types of icalls and AT func-
tions.

Although type-based matching at the source level can provide
the theoretically best results for indirect CFG inference, the appli-
cability of such approaches is severely limited since they cannot
process COTS binaries. Compared to source-level solutions, Type-
SeezeR recovers fine-grained function signatures for binary ex-
ecutables and still yields comparable accuracy in CFGs recovered.
CFGGeneration fromBinary Executables. On the other hand,
binary-level solutions construct CFGs from executables.While this
is hard in practice due to the information loss during the compil-
ing (e.g., type information), it is still crucial for protecting COTS
and legacy binaries whose source code is unavailable. Specifically,
the coarse-grained solutions [45, 46] allow icalls to target any AT
functions. However, they leave too much wiggle room for attack-
ers and thus are vulnerable [16]. Fine-grained approaches [20, 23,
28, 37] enforce stricter policies. Among them, TypeArmor [37] and
𝜏CFI [28] try to approximate coarse-grained function signatures
and then compute icall targets via type-based matching at differ-
ent gratitude. In particular, TypeArmor determines the upper or
lower bound of arity for a given icall/AT function. 𝜏CFI uses a sim-
ilar strategy to approximate argument widths to represent the ac-
tual argument type. Further, Lin et al. [23] present detailed discus-
sions on the impact of compiler optimizations for binary-level func-
tion signature recovery techniques and propose countermeasures
to deal with them. From another perspective, on top of VSA [2],
which is a binary-level points-to analysis framework, BPA [20] as-
sumes a novel block-memory model that extends the scalability of
VSA, which enables it to analyze large and complex 32-bit binaries.
Lockdown [31] restricts control flows between different code mod-
els (e.g., executables and shared objects), and a cross-module indi-
rect call is only allowed to target functions that are present in im-
ported symbols, which can be found in the dynamic symbol table
of the corresponding model. Zeng et al. [43] propose to infer func-
tion signatures based on debug information for binary executables.
In contrast to all of the above approaches that rely on static analy-
sis, TypeSeezeR leverages hybrid analysis to compensate for the
inherent imprecision of static analysis while embracing the incom-
pleteness of dynamic analysis.

In addition, several binary-level approaches [30, 32, 44] are pro-
posed to protect icalls that are derived fromC++ virtual calls. Specif-
ically, VTint [44] enforces virtual table integrity to defeat virtual
table injection attacks. vfGuard [32] only allows virtual icalls to in-
voke virtual functions that have the same offset. Besides, Marx [30]

reconstructs C++ class hierarchy frombinaries and enforces stricter
protection for virtual calls by considering class hierarchy. How-
ever, only protecting virtual calls is incomplete for binary executa-
bles. In contrast, TypeSeezeR can be used for a complete CFI
protection for all indirect callsites. Moreover, the advancement in
the CFG construction of C++ virtual calls can be integrated into
TypeSeezeR.

Machine learning techniques have also been applied in the field
of binary analysis. For example, EKLAVYA [11] employs recur-
rent neural networks (RNNs) to deduce function signatures au-
tonomously, without any prerequisite information. On top of it, Re-
SIL [24] integrates compiler-optimization-specific domain knowl-
edge to enhance function signature recovery. Callee [47] further
leverages deep neural networks (DNNs) to reconstruct call graphs
within a given binary. Notably, it utilizes contrastive learning to
address queries about callsite and calltarget pairs and facilitate in-
direct call target resolving. It further leverages transfer learning to
draw training data from direct calls. Nonetheless, owing to the on-
going challenge of interpreting neural networks, the applicability
of the aforementioned approaches is constrained. Specifically, they
may not be suited for scenarios such as CFI and binary rewriting,
where an unsound CFG could jeopardize program functionality.

7 CONCLUSION
In this paper, we present TypeSeezeR, a retrofitted binary-level
indirect call target resolving technique that leverages a hybrid style
type-based matching. By introducing dynamic analysis to compen-
sate for static analysis, TypeSeezeR overcomes the inherent lim-
itation of static type-based matching approaches and reconstructs
fine-grained function signatures for binary executables. We eval-
uate TypeSeezeR with the SPEC CPU2006 benchmarks and a
number of real-world applications. The results demonstrate that
TypeSeezeR produces the most accurate CFG that supersedes
the state-of-the-art type-based CFG construction techniques at the
binary level.
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