
Differentiable abstractions for
integrating data with finite element

models

Reuben William Nixon-Hill

Department of Mathematics
Imperial College London

Submitted for the degree of
Doctor of Philosophy of Imperial College London

and the Diploma of Imperial College

Other than where explicitly stated or referenced, the contents of this work is entirely the
author’s own. This work re-uses and reproduces, without further attribution, ideas and text
that the author first presented in the Research Plan Confirmation submitted in December 2019,
the Early Stage Review submitted in summer 2020 and the Late Stage Review submitted in
late 2022 as required PhD milestones.

The copyright of this thesis rests with the author. Unless otherwise indicated, its contents
are licensed under a Creative Commons Attribution 4.0 International Licence (CC BY). Under
this licence, you may copy and redistribute the material in any medium or format for both
commercial and non-commercial purposes. You may also create and distribute modified versions
of the work. This on the condition that you credit the author. When reusing or sharing this
work, ensure you make the licence terms clear to others by naming the licence and linking to
the licence text. Where a work has been adapted, you should indicate that the work has been
changed and describe those changes. Please seek permission from the copyright holder for uses
of this work that are not included in this licence or permitted under UK Copyright Law.

2

Abstract

Mathematical models are a foundational part of how mathematicians, scientists and engi-
neers describe and study the behaviour of systems. These models typically include and interact
with data: Experimental measurements are necessary inputs to a modelled physical system to
produce predictive data outputs. Within a model, data in one part of the modelled system may
have a relationship with another part of the modelled system. One may even wish to combine
models to study a larger system: these typically interact by producing and consuming each
other’s data.

Finite Element Methods (FEMs) are a popular method of computing mathematical models
which involve systems of equations defined on some domain. In this work, new abstractions are
introduced for (a) representing arbitrary point data as finite element functions on disconnected
meshes of vertices, and for (b) interacting with that data via interpolation operations which
represent point evaluations. These abstractions are consistent with the finite element method
paradigm of finite element functions on meshes. The interpolation operations are differentiable,
allowing inverse problems to be solved involving point data.

The abstractions are sufficiently general that they allow one to reason about more generic
data, both within and external to a given finite element model. The differentiable point evalu-
ation operation allows differentiable interpolation operations between finite element functions
on arbitrary coincident meshes.

Whilst these abstractions are generally applicable across many finite element method soft-
ware packages, they are demonstrated here with an implementation in Firedrake. Firedrake is
an MPI-parallelised code generation system which solves variational problems using the finite
element method. The implementation is parallel safe and maintains the high level of abstraction
described. Demonstrated applications include point-data assimilation, point forcing, model di-
agnostics gathering, and model coupling. Improvements to the abstractions Firedrake uses for
specifying variational problems and reasoning about finite elements are also implemented.

Acknowledgements

This work is the culmination of many years of effort, and I would like to thank the many
people who have helped me along the way. Firstly my primary supervisor, Professor David
Ham, for his guidance and support throughout my PhD. Thank you for enthusiatically em-
bracing me into the world of scientific computing, for providing help when I needed it, and for
supporting me through illness. I would also like to thank my secondary supervisor, Professor
Colin Cotter, for his friendly help and advice. Thank you for always finding time to discuss
whatever mathematical or general-life queries I had, and for your encouragement and support.
Many thanks are owed to various current and former members of the Firedrake team, including
but not limited to: Lawrence Mitchell, Jack Betteridge, Koki Sagiyama, Connor Ward and Dan
Shapero. Thank you for your code reviews, for your help with debugging, for your patience
with my questions, your support and your advice.

I had the misfortune of being diagnosed with a chronic illness during my PhD, and I would
like to thank the many people who have supported me through this.

Thank you to my friends and family, in particular my wife, Miranda, for your love and
support. Thank you for your patience and understanding, and for your encouragement to have
another go at doing a PhD! Thank you, Samuel, my son, for your joy and your simple love.
And lastly thank you to God, for your saving, self-giving love, your mercy, your grace, your
guidance, and your peace.

Contents

1 Introduction 8
1.1 Introduction . 9

1.1.1 Abstraction . 9
1.2 Fields as finite element functions . 11
1.3 Firedrake, UFL and Domain Specific Languages 12

1.3.1 UFL and Domain Specific Languages . 13
1.3.2 Firedrake . 15
1.3.3 Other Finite Element Method DSLs and Libraries 19

1.4 Hilbert Spaces, Dual Spaces, the Riesz Representation Theorem and Multilinear
Forms . 19
1.4.1 Hilbert Spaces . 19
1.4.2 Dual Spaces . 20
1.4.3 The Riesz Representation Theorem . 21
1.4.4 Using Multilinear Forms to Find the Riesz Representer 22

2 Dual Spaces in UFL 27
2.1 Motivation and Existing Work . 28
2.2 Summary of Contributions . 29
2.3 Representing Covectors as Cofunctions . 29

2.3.1 UFL Symbolic Equivalents . 30
2.3.2 Firedrake Data Carrying Equivalents . 31

2.4 UFL Forms and Assembly . 32
2.4.1 Multilinear Forms in UFL . 32
2.4.2 Assembly . 34

3 Getting Data into Finite Element Functions: FInAT Dual Evaluation Inter-
polation 39
3.1 Motivation . 40
3.2 Dual Evaluation Interpolation . 40

3.2.1 Local Interpolation . 40
3.2.2 Global Interpolation . 42
3.2.3 An example of Local Dual Evaluation . 43

3.3 Galerkin Projection . 45
3.4 Existing Dual Basis and Interpolation Implementations 45

3.4.1 Firedrake Dual Evaluation . 46
3.4.2 FInAT . 48

3.5 A primer on tensors in UFL and GEM . 48
3.6 Summary of Contributions . 50

2

3.7 Existing FIAT Dual evaluation . 51

3.8 FInAT Dual Evaluation . 53

3.8.1 Tensor Finite Elements and Delta Elimination 55

3.8.2 Tensor Product Finite Elements . 58

3.8.3 Future Improvements . 62

4 A New Abstraction for Point Evaluation: Interpolation onto Vertex-Only
Meshes 64

4.1 Motivation . 65

4.2 Existing Work . 66

4.3 Point data as finite element functions . 66

4.4 Point evaluation as dual evaluation interpolation 68

4.5 Firedrake implementation . 72

4.5.1 Vertex-only mesh . 72

4.5.2 Making a finite element function space on a vertex-only mesh 74

4.5.3 Point evaluation operation . 74

4.6 Demonstration . 76

4.6.1 Solving a Point Forced PDE . 78

4.7 Future Work . 81

4.8 Summary of Contributions . 81

5 Applying Automatic Differentiation to Interpolation 83

5.1 Introduction . 84

5.2 Gateaux Derivatives . 85

5.2.1 Chain Rule . 87

5.3 Automatic Differentiation . 89

5.3.1 Tangent Linear Approach . 94

5.3.2 Adjoint Approach . 97

5.3.3 Higher Derivatives . 106

5.4 Dolfin-Adjoint and Pyadjoint . 109

5.4.1 Discretisation and the Impact on Covectors and Adjoints 111

5.4.2 Tangent Linear Model and Adjoint Action 112

5.4.3 Hessian Action . 113

5.5 Differentiating Dual Evaluation: Interpolate Block Annotation 115

5.5.1 Tangent Linear and Adjoint Action . 116

5.5.2 Hessian Action . 119

5.6 Summary of Contributions . 122

6 Consistent Point Data Assimilation 124

6.1 Introduction . 125

6.1.1 Review of Data Assimilation Approaches 126

6.2 Unknown conductivity Experiment . 127

6.2.1 Posterior consistency . 131

6.3 Data Assimilation in Ice Shelf and Ice Sheet Literature 133

6.4 Future Work . 137

6.5 Concluding Remarks . 138

6.6 Summary of Contributions . 139

3

7 Parallel Safe, Unlosable Point Data 140
7.1 Introduction . 141
7.2 Motivation . 141
7.3 Existing Capability outside Firedrake . 142
7.4 Cell Location Algorithm: Avoiding Point Loss 143
7.5 Redistributing Point Coordinates: the ‘Voting Algorithm’ 147
7.6 Redistributing Point Data . 151

7.6.1 The Input-Ordering Vertex-Only Mesh 151
7.6.2 Redistribution as Interpolation . 152
7.6.3 Implementation . 154

7.7 Other Parallel Considerations . 156
7.7.1 Constructing Halos . 156

7.8 Future Work . 157
7.9 Summary of Contributions . 159

8 Arbitrary, Parallel Safe, Differentiable, Mesh to Mesh Interpolation 160
8.1 Motivation . 161
8.2 Existing Capability Outside Firedrake . 164
8.3 Mathematics and Firedrake Implementation . 165
8.4 Discussion and Demonstrations . 170

8.4.1 Model Coupling . 174
8.4.2 Generic External Field Point-Evaluation Data Input 175
8.4.3 Line, Plane and Volume Sources and Sinks 179

8.5 Future Work . 184
8.6 Summary of Contributions . 186

9 Symbolic Interpolation 188
9.1 Motivation . 189
9.2 Existing Capability Outside Firedrake . 191
9.3 Multilinear Forms as Linear Operations Between Hilbert Spaces 192

9.3.1 Dual Evaluation Interpolation as a Form 197
9.4 Using the interp Form in UFL and Firedrake . 200

9.4.1 Demonstration Code . 202
9.5 Future Work . 203
9.6 Summary of Contributions . 204

10 Conclusion 206
10.1 Conclusion . 207
10.2 Future work . 208

10.2.1 More Applications . 208
10.2.2 Moving Points . 209
10.2.3 Moving Mesh to Mesh Interpolation . 211
10.2.4 Alternative Implementation . 211
10.2.5 Querying Geoscientific Model Outputs 211

Bibliography 215

Appendices 233

4

A Chapter Appendices 233
A.1 Appendix to Chapter 4 . 234

A.1.1 Analysis of Point Clouds . 234
A.1.2 Details of the DMSwarm vertex-only mesh implementation 243
A.1.3 PyOP2 Details for Interpolating onto a Vertex-Only Mesh 243
A.1.4 Runtime Tabulation with a FInAT QuadratureElement 244

A.2 Appendix to Chapter 5 . 246
A.2.1 Finite Dimensional Gateaux Deriviative Example 246
A.2.2 Gateaux Derivative Chain Rule Example 247
A.2.3 The Adjoint Approach with the Alternative Adjoint Definition 249
A.2.4 Discretisations of TLM and Adjoint Action 252
A.2.5 Adjoint Mode Subtlety . 253

A.3 Appendix to Chapter 7 . 259
A.3.1 Calculating L1 distances from Barycentric Coordinates 259
A.3.2 Summary of DMSwarm ‘Fields’ at Time of Writing 262

A.4 Appendix to Chapter 8 . 263

5

Nomenclature

∀ For All

∈ In

C Complex Numbers

R Real Numbers

ϕ or ψ Global or Local Basis Function (context dependant)

ϕ̃ or ψ̃ Local Basis Function (in one special instance, ϕ̂)

x̃ Local Coordinates (in one special instance, x̂)

→ Maps To

f(u3, •;u1, u0) A function f with a slot in which to place an argument: it is not necessarily
linear in this argument.

f(u3, u2;u1, •) A function f with a slot in which to place an argument: it is linear in this
argument.

f(u3, u2;u1, u0) A function f which is linear in u1 and u0 but not necessarily linear in u3 and
u2.

x Global or Local Coordinates (context dependant)

AD Automatic Differentiation or Algorithmic Differentiation

DSL Domain Specific Language

FEM Finite Element Method

FIAT FInite element Automatic Tabulator

Field Scalar, vector or tensor valued fields over some domain (unless explicitly stated other-
wise).

FInAT FInAT Is not A Tabulator (a finite element library)

HPC High Performance Computing

MPI Message Parsing Interface

P0DG Polynomial degree 0 Discontinuous Galerkin function space

6

PDE Partial Differential Equation

TSFC Two Stage Form Compiler

UFL Unified Form Language

7

Chapter 1

Introduction

8

1.1 Introduction

Mathematical models are a foundational part of how mathematicians, scientists and engineers

describe and study the behaviour of systems. These include everything from physical systems,

such as the weather and the propagation of electromagnetic waves, abstract systems such as the

behaviour of financial markets, and mathematical systems such as the behaviour of particular

differential equations. This work is concerned with mathematical models which can be solved

with numerical methods, in particular Finite Element Methods (FEMs).

Finite element methods, often referred to as simply ‘the finite element method’, are relevant

when one has a domain of interest and some scalar, vector, or tensor valued fields1 on that

domain which are related by a system of equations. Typical examples are physical systems:

the behaviour of electromagnetic waves, continua such as fluids and solids and atomic parti-

cles. In particular, most of these systems can be described by differential equations, typically

Partial Differential Equations (PDEs). Electromagnetic wave behaviour can be modelled by

the Maxwell equations, continua by the equations of continuum mechanics (for fluids those

might be the Navier-Stokes equations and their various simplifications, for solids the equations

of elasticity and plasticity) and atomic particles by the various quantum mechanics equations

such as the Schrödinger equation.

Such systems can also be solved with other numerical methods such as the Finite Difference

Method (FDM), the Finite Volume Method (FVM), and spectral methods. These all have

their own advantages and disadvantages, but we will not discuss them further here other than

to mention that finite difference methods produce solutions that are defined at grid points,

which are usually regularly spaced. A reasonable understanding of the finite element method

is assumed throughout this text. For a good introduction, see Ham and Cotters’ taught course

[1] which is freely available online.

1.1.1 Abstraction

The word abstraction can be considered as both a process and a concept. As a process it is

“separating a quality common to a number of objects/situations from other qualities” [2, p.

13]. For example, consider two situations: (a) joining the numbers 2 and 8 together to get 10

and (b) joining 6 and 3 together to get 9. If we apply abstraction to these we see that there is a

common action of ‘joining’. As a concept ‘abstraction’ is the name we give to our generalisation

or abstract concept : in this case ‘addition’. Abstractions are a foundation of mathematics: it

is through the process of turning particular cases, such as the sizes of triangular areas of grass,

that we reach generalisations, such as trigonometry.

There is also the related computer science concept of levels of abstraction where one looks

at a particular operation and considers how it is performed with different levels of specificity.

So returning to the addition of 2 and 8: at the highest level of abstraction we have the abstract

1here just referred to a fields unless stated otherwise

9

mathematics 2 + 8 or 8 + 2. At a lower level of abstraction we consider how those numbers

are added, we might assign type information such as ‘2 and 8 are integers’ and ‘+ is an integer

addition operation’. Lower again we may introduce explicit instructions such as ‘retrieve 64

bits stored at hexadecimal address A (the number 8) and place it into process register x, next,

retrieve 64 bits stored at hexadecimal address B (the number 2) and place it into process register

y, now perform an addition operation using process registers x and y and place the result (the

number 10) in hexadecimal address C’. Each of these has a different level of specificity and,

typically, might be described in a different computer language. The process of moving between

such languages is the job of a compiler or an interpreter.

Levels of abstraction also apply to extracting abstract concepts from particular cases. In

our two examples, one could come up with the high-level concept of ‘addition’ or the slightly

lower level concept of ‘addition of integers’. Which of these is appropriate depends on context:

If one wants to know what operation is being performed symbolically, one can identify the

+ operator. If one is attempting to implement addition in a computer program, it is useful

to know that there are different kinds of number (integers, floating point numbers, complex

numbers) and to recognise that the rules one uses to add them are different.

Returning to finite element models of systems: these involve data. The data may be external

to the system but necessary to have the model produce useful outputs, such as experimental

measurements. The data may be some fields or samples from other simulations to integrate with

the model at hand. Or the data may be fields within the system that have some relationship with

another part of the system we are modelling. This work is concerned with generalising two key

aspects of these specific examples to an appropriately high level of mathematical abstraction:

1. How to represent these data in the context of the finite element method.

2. How to describe interactions between such data and the approximations of fields used in

finite element methods.

The first of these is already partly solved: field data are approximated as finite element func-

tions, as is described in Sect. 1.2. Once we have finite element functions, the second is also

solved in the form of mathematical interpolation and projection operations between these func-

tions as is described in chapter 3. These operations are differentiable, allowing key insights to

be gained into the interactions of data with models as will be described in chapters 5 and 6.

The problem is that the existing abstraction only considers finite element functions as

approximations of fields, such as the solution to some PDE, typically generated within the

context of a particular finite element method code base. This is unnecessarily restrictive;

this work will demonstrate, in chapter 4, that we can also represent arbitrary point data as

finite element functions. This will allows one to integrate such data with the pre-existing

mathematical operators. This work will go on to demonstrate, in chapters 6, 7 and 8, how

these can be used to directly interact with data which are defined outside the particular model

we are considering.

10

Having identified the abstractions it is important to represent them at an appropriately

high level. Domain specific languages, the Unified Form Language (UFL) and the Firedrake

project, introduced in Sect. 1.3, are all concerned with doing exactly this, and it is within UFL

and the Firedrake project that these abstractions will be implemented.

1.2 Fields as finite element functions

This section adapts and reuses, without further attribution, text and diagrams from Nixon-Hill

et al. [3] which were created by the author.

What are here referred to as finite element methods are any method (typically Galerkin

methods) which use finite element functions, which are described here.

Typically these are used to solve linear or nonlinear variational problems. A linear varia-

tional problem is of the form ‘find u in U such that

a(;u, v) = L(; v) ∀ v ∈ V.’ (1.2.1)

Note that both arguments are after a semicolon; we use this to denote linearity in those argu-

ments.2 The argument which we solve for all V , here v, is called a test function3.

A nonlinear variational problem is ‘find u in U such that

F (u; v) = 0 ∀ v ∈ V.’ (1.2.2)

Note that u, the term for which we seek a solution, is now before the semicolon, i.e. F is

not-necessarily linear in u. F is always linear in the test function v. Concrete examples of

these are considered in Sect. 1.3. The process of solving these problems themselves is not our

object of study and so will not be discussed in detail.

In finite element methods the domain of interest is approximated by a set of discrete cells

known as a mesh Ω. The field solution of a PDE u is then approximated as the sum of a

discrete number of functions on the mesh. Each function is conveniently defined to be a basis

or shape function ϕ, multiplied by some weight coefficient w. For N weight coefficients and

basis functions our approximate solution

u(x) =
N−1∑
i=0

wiϕi(x) (1.2.3)

is called a finite element function or, within the context of finite element methods, simply a

function.4. Given a set of basis functions {ϕi(x)} on a particular mesh Ω, the weights {wi} are
allowed to vary to form a u(x): these weights are referred to as Degrees of Freedom (DoFs).

2The term ‘linear’ is properly defined in Sect. 1.4.1.
3This is standard nomenclature in the finite element method.
4The terms finite element field or simply field are also used in the literature

11

The set of all possible weight coefficients applied to the basis functions on our mesh is called

a finite element Function Space FS(Ω). Within the context of finite element methods, this often

just called a function space and is often referred to with a single capital letter such as U or V .

Our finite element function is therefore a member of our finite element function space

u ∈ FS(Ω). (1.2.4)

Finite element function spaces are grouped by their definitions on particular mesh cell shapes

with precisely defined basis functions in each case. A popular choice are piecewise polynomials,

such as the second order continuous Lagrange polynomials

u ∈ P2CG(Ω) (1.2.5)

where P2CG stands for Polynomial degree 2 Continuous Galerkin and ‘continuous’ refers to

continuity of the function between mesh cells. For a simple line domain [0, 2] discretised into

2 cells [0, 1] and [1, 2] we have a total of N = 5 basis functions and weight coefficients (DoFs).

The basis functions are shown in Fig. 1.1. Our finite element function u is given by Eq. 1.2.3:

u(x) = x2 has weights w0 = 0, w1 = 0.25, w2 = 1, w3 = 2.25 and w4 = 4.5

The consistency of the functions across each cell is clear in this example. We have 3 weight

coefficients and 3 basis functions which are nonzero in each cell in a repeating pattern. This is

useful for performing calculations with finite element functions on meshed domains with many

cells. Calculations can be done cell-by-cell as long as the weights of nonzero basis functions

which are found in multiple cells (here only ϕ2) are shared appropriately.

There are two key points here. Firstly, all finite element functions are members of finite

element function spaces defined on a mesh. Secondly, our solution field is approximated with

a finite element function (Eq. 1.2.3). As long as this function is continuous we know its values

unambiguously. We can therefore evaluate the solution at any location so long as that location

is on the mesh, a point we will return to in chapter 4, Sect. 4.3. In chapter 4, we will also return

to finite element function spaces with discontinuities (usually found when using discontinuous

Galerkin methods) in the context of point evaluations.

1.3 Firedrake, UFL and Domain Specific Languages

Firedrake [4, 5] is an automated system for solving PDEs, expressed as variational problems,

using the finite element method. Firedrake is primarily written in Python, but produces highly

optimised, parallelised C code which is compiled, cached and run whenever a Python script is

executed. Firedrake achieves automation by representing the equations to solve at a high level

of abstraction via the Unified Form Language (UFL) [6]. UFL is a Domain Specific Language

5All polynomials of 2nd order below are members of this finite element function space.

12

0 1 2
x

0

1
i(x

)

0

1

2

3

4

Figure 1.1: Second order Lagrange basis polynomials on an interval [0, 2] meshed into two cells,
[0, 1] and [1, 2]. Only ϕ2 is nonzero in both cells.

(DSL) for expressing symbolic mathematics in the context of finite element methods.

1.3.1 UFL and Domain Specific Languages

A DSL is a computer language which is specialised for some particular purpose; these exist

in contrast to General Purpose Languages (GPLs) such as C, Python and FORTRAN. GPLs

are designed, as the name implies, to be applicable in a range of different contexts. These

operate with different levels of abstraction: C and FORTRAN, for example are much lower

level languages than Python. The more levels of abstraction one needs to descend, the more

one relies on the compiler (or, in the case of Python the interpreter) to produce efficient code.

This has advantages and disadvantages: if a compiler is well written it may be better able

to perform optimisations than a typical human would attempt, but tends to also require that

code be written in particular styles (Python loops are famously slow compared to using other

in-built language tools). Lower level languages give the programmer more fine grained control

but often at the expense of understandability, complexity and verbosity.

Since a DSL is intended for a particular purpose, it has a more restricted set of operations

one can perform but allows those operations to be expressed at a high level of abstraction

making them easier to use [7]. In principal, if one presents fewer ways to express things, well

written compilers should be able to produce high performance code.6 Some examples of DSLs

are TEX for typesetting, HTML for web pages, SQL for database queries and Make for software

building [7].

6See for example the Two-Stage Form Compiler (TSFC) [8] which compiles UFL, expressed in Python, into
high performance C code. This makes use of multiple DSLs which steadily decrease the level of abstraction, as
detailed in chapter 3.

13

UFL is a DSL embedded within the Python GPL, and can make use of many of Python’s

features, but is its own, self contained language. UFL allows the symbolic mathematics of

variational problems to be expressed at a very high level of abstraction. As an example,

consider Poisson’s equation

−∇2u = f. (1.3.1)

This is the strong formulation of Poisson’s equation. To solve this for u on some domain Ω we

can express this in the weak form as the solution to the linear variational problem ‘find u in V

such that ∫
Ω

∇u · ∇v −
∫
dΩ

∇u · nv ds =
∫
Ω

fv dx ∀ v ∈ V.’ (1.3.2)

The UFL expression of this is shown in Listing 1.

1 from ufl import *

2 omega = Mesh(triangle)

3 V = FunctionSpace(omega, FiniteElement("CG", triangle, 2))

4 u = TrialFunction(V)

5 v = TestFunction(V)

6 f = Coefficient(V)

7 n = FacetNormal(omega)

8 a = inner(grad(u), grad(v)) * dx - inner(grad(u), n) * v * ds

9 L = f * v * dx

10 # Now solve for u with a == L for all v in U

Listing 1: A UFL expression for the Poisson equation as a linear variational problem (Eq.
1.3.2).

On line 2 we symbolically define our domain Ω and its meshed equivalent7 as a Mesh ob-

ject, in this case with triangular cells. At this point we have specified no information about

the structure or density of the mesh itself. On line 3 we define our function space V as a

FunctionSpace object, in this case the space of second order continuous Lagrange polynomials

we encountered in Sect. 1.2, though in this case on 2D triangular cells. On line 4 we define the

solution u as a trial function, another standard term in finite element methods for the function

that the linear variational problem is solved for, in the function space V . On line 5 we define

the test function v, also in V .8 On line 6 we define the forcing function f as a Coefficient

object in V : this is the UFL name for a finite element function which has known basis function

weight coefficients. On line 7 we create an outward facing normal vector n to the boundary of

Ω as a FacetNormal object. On line 8 we define the left hand side of our problem, the 2-linear

(bilinear) form a(;u, v). 9 On line 9 we define the right hand side of our problem, the 1-linear

7The meshed equivalent is often referred to as Ωh. In this work Ω is used to refer to domain or its mesh,
depending on the context.

8A note on Galerkin methods: by specify both u and v to be in the same function space, this is a Ritz-Galerkin
method. If they were in different spaces we would be using a Petrov-Galerkin method.

9The terms ‘2-linear form’ and ‘bilinear form’ are properly defined in Sect. 1.4.4.

14

(linear) form L(; v).

This is entirely symbolic, we have not specified an actual domain or mesh (Ω), other than

to imply that it must be solved in 2D by specifying triangular cells. Similarly, we do not give

values to our forcing function f . We therefore cannot use UFL for solving the problem; we need

to implement some system which will attach data to these symbolic expressions and then solve

them. Nevertheless, this is a flexible way of expressing the mathematics of our problem which

is the intended level of abstraction. UFL has operators such as grad and inner which can be

symbolically differentiated using a derivative operator10, as well as domain specific features

such as meshes and function spaces.

1.3.2 Firedrake

Domain(s)

Variational	
Problem(s)

Input	Data

Mesh(es)

Discretised	
Variational
Problem(s)

Finite	Element	
Functions

Firedrake
Mesh(es)

UFL	Expressions	
with	Firedrake	
Functions	and	
Cofunctions

Firedrake	
Functions	and	
Cofunctions

Model Finite	Element	Method
Discretised Model Firedrake Implementation

Figure 1.2: The relationship between models on domains, finite element method discretisations,
and their Firedrake implementation. Variational problems that one can solve with finite element
methods exist on some domain, with some data supplied to inform them. The finite element
method discretisation has these data as finite element functions on some mesh, which introduces
an extra dependency. Note the similarity between Firedrake’s implemented abstractions and
the finite element method discretisation. Firedrake Cofunctions are introduced in chapter 2.

Firedrake adds concrete data to symbolic UFL expressions by introducing Python subclasses

of the symbolic UFL objects. These have the same behaviour as their symbolic equivalents so

can be used in place of them. Firedrake therefore maintains the high level of abstraction of

UFL but allows variational problems to be solved and systems to be modelled.

10this performs the Gateaux derivative, introduced in chapter 5

15

1 from firedrake import *

2 omega = UnitSquareMesh(20, 20)

3 V = FunctionSpace(omega, family="CG", degree=2)

4 u = TrialFunction(V)

5 v = TestFunction(V)

6 f = RandomGenerator(PCG64(seed=0)).beta(V, 1.0, 2.0)

7 n = FacetNormal(omega)

8 a = inner(grad(u), grad(v)) * dx - inner(grad(u), n) * v * ds

9 L = f * v * dx

10

11 bc = DirichletBC(V, 0, "on_boundary")

12 u_sol = Function(V) # solution will be stored here

13 solve(a == L, u_sol, bc)

14

15 # Equivalent nonlinear variational problem

16 u = Function(V)

17 F = (inner(grad(u), grad(v)) - f * v) * dx - inner(grad(u), n) * v * ds

18 solve(F == 0, u, bc) # solution will now be in u

19 u_sol = u

Listing 2: Solving Poisson’s equation (Eq. 1.3.2) with Firedrake using a randomly generated
forcing function on a unit square mesh with 20 × 20 × 2 = 800 triangular cells. The forcing
function f and solution u are shown in Figure 1.3.

As an example, see Listing 2, which solves Poisson’s equation with Firedrake. We now have

a concrete Ω, a mesh of the unit square with vertices (x, y) at (0, 0), (0, 1), (1, 0) and (1, 1)

made up 20× 20× 2 triangles. The finite element function space we solve on is, as before, the

space of second order continuous Lagrange polynomials. The forcing function is a randomly

generated function f(x, y) in V with values between 1.0 and 2.0.11

We can now specify a boundary condition, which we set as u = 0 on the boundary of Ω. 12

This gives us everything we need to solve the problem, which we do on line 13. The solution is

deposited into a Function object: this is the data carrying subclass of the UFL Coefficient

object in Firedrake (f is also a Function).13 Plots of the resultant f and u are shown in Fig.

1.3. A summary of the relationship of Firedrake to the finite element method and variational

problems on domains is shown in Fig. 1.2.

Firedrake can also be used to solve nonlinear variational problems of the form ‘find u in U

such that

F (u; v) = 0 ∀ v ∈ V.’ (1.3.3)

This is done iteratively using a Newton-type method which has one repeatedly solving a linear

11Note that the forcing function shown will not be mesh independent - i.e. a true solution will not be
approached as the mesh is refined. This is fine for this illustrative example, but it still worth noting.

12This is a Dirichlet boundary condition, also known as a ‘strong’ boundary condition. Since we specify a
value on the boundary the

∫
dΩ
∇u · n ds term goes to zero, but it is kept here for clarity.

13Data carrying Firedrake equivalents to UFL types are discussed further in chapter 2.

16

0.0
0.2

0.4
0.6

0.8
1.0

x 0.0

0.2

0.4

0.6

0.8

1.0

y

0.2

0.4

0.6

0.8

f(x, y)

0.0
0.2

0.4
0.6

0.8
1.0

x 0.0

0.2

0.4

0.6

0.8

1.0

y

0.000

0.005

0.010

0.015

0.020

u(x, y)

Figure 1.3: The forcing function f (left) and solution u (right) to Poisson’s equation (Eq. 1.3.2),
generated with the code in Listing 2.

system based on F and its first derivative14, until F is sufficiently close to 0. For more, see

chapter 9. Whilst Poisson’s equation is a linear PDE, we can express it in the form of a

nonlinear variational problem ‘find u ∈ V such that∫
Ω

∇u · ∇v − fv dx−
∫
dΩ

v∇u · n ds = 0 ∀ v ∈ V (1.3.4)

which will converge in a single Newton iteration. This is done on lines 15 to 19 of Listing 2.

Firedrake maintains a close relationship with the Portable, Extensible Toolkit for Scientific

Computation (PETSc) [9, 10]. PETSc solvers are used to solve both linear and nonlinear

PDEs15, whilst mesh topology information is stored on PETSc data structures. This will be

discussed more in chapter 4.

Firedrake programs can be run in parallel using the Message Parsing Interface (MPI) [11].16

A script that runs in serial can also be run on thousands of MPI processes with no changes

to the code.17 Parallelism occurs at various stages: meshes and function spaces on them are

‘parallel decomposed’, function manipulations require parallel communications, and variational

problem solves make use PETSc’s MPI parallelism. Much of this is discussed further in chapter

7.

Relevant parts of Firedrake’s execution model are discussed more in chapter 3 and sum-

14taken using a Gateaux derivative, introduced in chapter 5
15Firedrake’s solver functions are more flexible than this simple example suggests. For example, PETSc solver

options can be passed from Firedrake to PETSc. See the PETSc manual [10] and Firedrake project website
https://www.firedrakeproject.org/ for more information

16For more on MPI Gropp’s ‘Using MPI’ [12] is a lucid introduction.
17It is a requirement that any features added to Firedrake must work seamlessly in serial and parallel.

17

https://www.firedrakeproject.org/

marised in Fig. 1.4. In brief, one finds oneself with UFL expressions, which contain Firedrake

data carrying types, that need to be executed on a meshed domain. The UFL expressions

are compiled into small executables, known as ‘kernels’ to execute on a given mesh cell: this

is the responsibility of the Two Stage Form Compiler (TSFC) [8]. Within TSFC, symbolic

UFL elements are converted into concrete implementations via the Finite Element Automatic

Tabulator (FIAT) [13] and FInAT18 [14] libraries. Execution of the kernels on every cell of the

mesh is handled by the PyOP2 library [15] which produces fast C code for doing this which it

compiles and runs. Where one is solving a linear variational problem19, one now has a globally

defined linear system Ax = b to solve, which is the responsibility of PETSc. Time varying

problems are solved by setting up an iterative time-stepping regime when writing the Firedrake

code itself.

The process of going from UFL expression with data attached, such as an expression of a

linear variational problem a(;u, v) = L(; v), to a concrete set of numbers, such as system of

equations to solve Ax = b, is known as assembly and will be discussed further in chapter 2.

UFL	
Expressions	

with	
Firedrake	

Functions	and	
Cofunctions

TSFC	
Compilation

FInAT Element	
Conversion

FIAT	Element	
Conversion

Kernel
PyOP2	

Execution	
Control

Loop	
Over	
Mesh	
Entites
Code

Firedrake	
Functions,	
Cofunctions	
or	Matrices

PETSc Solvers

Solution

Element	
Implementation

Symbolic	
UFL	

Element

Compilation	&
Execution

Assembly

Solving
Global	Mesh	Cells	and	Data

ProcessKey: OutputInput

Automated
Production

Figure 1.4: Firedrake’s primary execution model, from UFL expressions with Firedrake data-
carrying Functions and Cofunctions (see chapter 2) to assembled Firedrake objects which can
be passed to linear solvers giving some solution.

18A recursive acronym ‘FInAT Is not A Tabulator’
19by this stage, a nonlinear variational problem has been linearised by Firedrake in the Newton solver so it

will look like a linear problem

18

1.3.3 Other Finite Element Method DSLs and Libraries

As well as Firedrake, the finite element libraries FEniCS [16, 17]20, it’s recent rewrite FEniCSx,

and DUNE-Fem [18] use UFL for the purpose of specifying variational problems to solve.

As with Firedrake, legacy FEniCS and FEniCSx each take the approach of creating Python

subclasses of the symbolic UFL objects to attach data and allow their manipulation, and

implement a form compiler to generate kernels.

UFL is not the only domain specific language found in scientific computing for producing

models. For example, the Devito DSL [19] provides a similar level of mathematical abstraction

as UFL, but within the context of finite-difference methods.

Within the world of finite elements, the recently developed Finch DSL [20], embedded in

the Julia programming language, is very similar to UFL and, within the language, contains

additional specialised operations needed for finite volume methods. FREEFEM [21] is a C++

library which also contains a similar DSL. These projects both include a solver, so do not have

as firm a separation of symbolics from data as found in UFL and the libraries, such as Firedrake,

that use it.

Other finite element method libraries, which will be introduced as necessary in the text,

do not advertise themselves as DSLs but do provide a high level of abstraction. In particular,

NGSolve [22] has a Python API which bears a strong resemblance to UFL, though perhaps

with more finite element method specific nomenclature.

Other open source libraries such as Elmer-FEM [23] and GOMA [24] operate at a higher

level of abstraction than UFL, with finite element models of specific, predefined systems of

PDEs performed. The Multiphysics Object-Oriented Simulation Environment (MOOSE) [25]

allows users to define their own PDEs, but operates at a much lower level of abstraction than

UFL: one must specify the kernels to use on each mesh cell from the weak form of the PDE.

There are many finite element method libraries which are application specific of which many

are closed source. Examples include Abaqus FEA [26], COMSOL Multiphysics [27] and various

software packages developed by ANSYS [28]. These find wide use in engineering but, due to

their closed source and application specific nature, cannot be easily compared with the work in

this thesis.

1.4 Hilbert Spaces, Dual Spaces, the Riesz Representa-

tion Theorem and Multilinear Forms

1.4.1 Hilbert Spaces

Hilbert spaces, named after 19th and 20th century mathematician David Hilbert, generalise

Euclidean vectors (u ∈ Rn or c ∈ Cn) and their associated spaces (Rn and Cn) to include

20now known a ‘legacy’ FEniCS

19

infinite dimensions and vectors which are functions. When discussing Hilbert spaces we adopt

similar notation to that found in Schwedes et al. [29]. The requirements of a Hilbert space H

are that it has some inner product ⟨•, •⟩H (which induces a norm on its members) and that it

is complete. The notation ‘•’ is used to indicate where operands are placed.

All finite element function spaces, such as piecewise polynomials, are Hilbert spaces, as are

Euclidean vector spaces: the difference is which inner product is taken. For vectors u and v

which are piecewise polynomial functions it is typically a Sobolev inner product, the simplest

of which is the L2 inner product over the meshed domain Ω

⟨u, v⟩L2 =

∫
Ω

u(x)v(x)dx (1.4.1)

whilst for n dimensional Euclidean vectors it is the l2 inner product

⟨u, v⟩l2 =
n−1∑
i=0

uivi. (1.4.2)

A Hilbert space’s inner product induces a norm (a real number which gives a notion of how

‘big’ a member of the space is) given, for some u in the Hilbert space, by

∥u∥ =
√
⟨u, u⟩. (1.4.3)

The requirement that a Hilbert H space is ‘complete’ means that any Cauchy sequence of

points within the space, i.e. a sequence where the points get arbitrarily close to one another

(i.e. close to some point) as the sequence continues, is, as the sequence tends to having infinite

members, within the space. This, crucially, means that one can take limits in the space, for

example when defining calculus operations. Hilbert spaces are a subset of both Banach spaces,

which are complete and have a norm (but not necessarily an inner product) and inner product

spaces which have an inner product but are not necessarily complete.

1.4.2 Dual Spaces

The topological dual space or continuous dual space, here simply referred to as the dual space,

H∗ to a so-called primal vector space H is the space of linear continuous functions (also known

as linear continuous forms) that map from H to the scalar members K that make up each

vector:

H∗ = H → K. (1.4.4)

Such functions are known as functionals. If H is a real vector space (such as Rn) then the

scalar members are real numbers and K = R; if it is a complex vector space (such as Cn) then

20

K = C. We will limit ourselves to the real case, i.e.

H∗ = H → R. (1.4.5)

The terms ‘linear’ and ‘continuous’ require explanation. Consider some specific functional

u∗ ∈ H∗. We say that it is linear if it can be expressed as

u∗(;αv) = αu∗(; v) ∀ v ∈ H,α ∈ R. (1.4.6)

This linearity in αv is denoted by a semicolon before the argument. Furthermore we say that

u∗ is continuous if, for our purposes, there are no discontinuities in the value of u∗(v), where

v ∈ H, as we vary v (i.e. u∗ ∈ C0 and H∗ ⊂ C0)21.22 Functional continuity is only relevant

for infinite dimensional functionals; since this work focusses on the finite dimensional case, this

will not be remarked upon again.

1.4.3 The Riesz Representation Theorem

For Hilbert spaces, the Riesz representation theorem links given vectors in primal Hilbert spaces

to unique continuous linear functionals in the dual space. Such is the link that, for each vector,

the corresponding member of the dual space is generally referred to as a covector.

Consider a Hilbert space with inner product ⟨•, •⟩H . The theorem states that, for the dual

space of linear continuous functionals H∗ with a given member u∗ ∈ H∗ there is a unique u ∈ H
such that

u∗(; v) = ⟨u, v⟩H ∈ R ∀ v ∈ H.23 (1.4.7)

The inner product in the primal space gives an inner product to use in the dual space and thus

an induced norm. These are equivalent:

∥u∥H = ∥u∗∥H∗ . (1.4.8)

Put another way, (a) for every covector there is a vector where (b) the covector functional

is given by the inner product of the vector in the primal space and (c) each pair have identical

magnitude. The theorem also states that the inverse is true, i.e. that for every vector there

is a covector. We care about the Riesz representation theorem because it gives us a definition

21There are various formal definitions of continuity, see for example equation 1.87 in Schwedes et al. [29].
22The dual space of all linear functionals is known as the ‘algebraic dual space’; we are merely concerned with

the subspace of continuous linear functionals, the ‘topological’ or ‘continuous’ dual space.
23Note that, in mathematics, the second argument in an inner product is antilinear, meaning, for a scalar

α, ⟨u, αv⟩H = ⟨u, v⟩H ᾱ where ᾱ is the complex conjugate of α. Since we are limiting ourselves to real-valued
spaces antilinearity is linearity. In the complex case this would define the anti-dual space H̄∗, indeed UFL, and
hence Firedrake, treat all functionals (i.e. forms) when running in complex mode as antilinear. This means
that a form employing a test function v, which in real mode we are linear in, is treated as being antilinear in
complex mode. I.e. ⟨•, v⟩ = v̄T · •. Dealing with the complex case is beyond the scope of this work.

21

for vector adjoints : the covector associated with a vector is known as its adjoint whilst the

operation which finds it is called taking the adjoint. More on the Riesz representation theorem

using similar notation, including a proof, can be found in section 1.2.1 of Schwedes et al. [29].

The Riesz map takes each u∗ from H∗ → H

RH : H∗ → H (1.4.9)

for a given choice of inner product. The Riesz map calculated for a given covector and inner

product

RH(u
∗) ∈ H for given u∗ ∈ H∗ (1.4.10)

is known as the Riesz representer.

1.4.4 Using Multilinear Forms to Find the Riesz Representer

Multilinear forms are maps which are linear in all their arguments and map to a scalarK, which

is usually either R or C. 24 As before, we will limit ourselves to the real case, i.e. K = R. For
k linear arguments in function spaces {Vi}k−1

0 this is

Vk−1 × ...× V0 → R (1.4.11)

which we refer to as a k-linear form, often referred to as simply a k-form. Since it maps to R,
a multilinear form is an example of a functional. Here are some examples:

1. A 2-linear form (also known as a bilinear form or 2-form) contains two arguments, for

example ∫
Ω

u(x)v(x)dx ∈ R ∀u ∈ U, v ∈ V. (1.4.12)

2. a 1-linear form (also known as a linear form or 1-form) contains one argument, for example∫
Ω

u(x)dx ∈ R ∀u ∈ U. (1.4.13)

3. a 0-linear form (also known as a number25 or a 0-form) contains no arguments, for example∫
Ω

10dx ∈ R. (1.4.14)

Confusingly there is another kind of “form” which crops up when talking about finite ele-

ments, a differential form. This is a generalised approach for the expression of integrands for

24The general name for K in mathematics is a “field”. This ought not to be confused with “field” as used
here which can be considered to be synonymous with “function”.

25more properly a particular member of the “field” K, in this case R

22

integrals over any number of dimensions: line, surface, volume and higher dimension manifolds.

These are used in Finite Element Exterior Calculus (FEEC) which is a complicated area and

not the topic of this thesis. Unless stated otherwise, the word “form” here exclusively refers to

multilinear forms.

Riesz representers can be expressed by considering our inner product as a 2-linear (bilinear)

form M operating on two spaces U1 and U0

M : U1 × U0 → R i.e. M(;u1, u0) ∈ R. (1.4.15)

Note we now have two arguments after the semicolon, we are linear in both of them. For the

L2 inner product this is

ML2

(;u1, u0) =

∫
Ω

u1(x)u0(x)dx. (1.4.16)

The argument ordering is deliberately in reverse order to match the ordering found in UFL;

this is discussed in more detail in Sect. 2.4.1. We can Curry this form by expressing it as a

function of U1 which linearly maps to another function, this time of U0, which then maps to R

M(;u1, u0) =M1(;u1)︸ ︷︷ ︸
M0

(;u0) =M0(;u0) = ⟨u1, u0⟩H ∈ R. (1.4.17)

In more detail

M1 : U1 → (U0 → R︸ ︷︷ ︸
U∗
0

) (1.4.18)

only evaluates u1, leaving u0 as a free argument such that

M1(;u1)(; •) = ⟨u1, •⟩H ∈ U∗
0 ∀u1 ∈ U1. (1.4.19)

The symbol ‘•’ indicates an empty slot to place the operand u0. Lastly,

M0 : U0 → R (1.4.20)

already includes the evaluation of u1 such that

M0(;u0) = ⟨u1, u0⟩H ∈ R ∀u0 ∈ U0. (1.4.21)

If U0 = U1 = U with members u then we have

M1 : U → U∗ s.t. M1(;u)(; •) = ⟨u, •⟩H ∈ U∗ (1.4.22)

i.e. M1 is the inverse of our Riesz map. We can then express the inverse of the Riesz representer

as

M1(;u)(; •) = ⟨u, •⟩H = u∗(; •). (1.4.23)

23

The Riesz representer itself is the solution to this equation where we solve for u. Since

M1(;u)(; •) = M0(; •) = u∗(; •), M0 is the covector u∗ to u. Note that M1(;u) = M0 is a

1-linear form: covectors are 1-linear forms.26

For ML2
on some domain Ω we have

ML2

1 (;u1)(; •) =
∫
Ω

u1(x) · • dx ∈ U∗
0 (1.4.24)

ML2

0 (;u0) =

∫
Ω

u1(x)u0(x)dx ∈ R. (1.4.25)

Taking U0 = U1 = U with members u shows us that ML2

1 is our inverse Riesz map for Hilbert

spaces on a domain Ω, where the inner product is L2. The inverse of the Riesz representer is

given by

ML2

1 (;u)(; •) =ML2

(;u, •) = ⟨u, •⟩L2 =

∫
Ω

u(x) · • dx = u∗(; •). (1.4.26)

In general it is much easier to express how one gets the covector from the vector than the

other way around! Fortunately this is usually the operation that we want. The process of

Currying and un-Currying and its relationship to the development of dual spaces in UFL (the

topic of chapter 2) is discussed further in Ham [30].

The Hilbert space of Euclidean vectors Rn is a simple example. A typically used inner

product here is l2 so for u∗ ∈ (Rn)∗ we have

u∗(; v) = ⟨u, v⟩l2 =
n−1∑
i=0

uivi ∈ R ∀ v ∈ Rn. (1.4.27)

This sum is the same for a row-vector/vector product

u∗(; v) = u∗︸︷︷︸
∈1×Rn

v︸︷︷︸
∈Rn

=
(
u0 . . . un−1

)
v0
...

vn−1

 =
n−1∑
i=0

uivi = ⟨u, v⟩l2 (1.4.28)

so we can say that

(Rn)∗ = 1× Rn. (1.4.29)

The requirement that the norms be the same

∥u∗∥ =
√
u∗(;u) =

√
u∗︸︷︷︸

∈1×Rn

u︸︷︷︸
∈Rn

=
√
⟨ u︸︷︷︸
∈Rn

, u︸︷︷︸
∈Rn

⟩l2 = ∥u∥ (1.4.30)

tells us that the unique covector u∗ ∈ (Rn)∗ is in fact the transpose of u

u∗ = uT (1.4.31)

26This is obvious when we recall that a covector in U∗ is a linear map of U → R.

24

and so the Riesz map is ‘take the transpose’.

The 2-linear (bilinear) form for the inner product here is M l2

M l2
1 (;u1)(; •) = ⟨u1, •⟩l2 =

n−1∑
i=0

u1i[•]i ∈ U∗
0 (1.4.32)

M l2
0 (;u0) =

n−1∑
i=0

u1iu0i ∈ R. (1.4.33)

Taking U0 = U1 = U with members u gives M l2
1 as our inverse Riesz map for Rn whilst our

inverse Riesz representer is

M l2
1 (;u)(; •) =M l2(;u, •) = ⟨u, •⟩l2 =

n−1∑
i=0

ui[•]i = u∗(; •). (1.4.34)

The sum here once again tells us that covectors can be represented as row vectors.

Since we have finite computational resources, we cannot perform calculations on infinite

dimensional vector spaces. The inner products we perform on finite element function spaces,

such as the L2 inner product on piecewise polynomials can always be expressed as a row-

vector/matrix/vector product or equivalent tensor contraction. This is because we represent

our functions as coefficients of a finite number of basis functions: for a finite dimensional

function space U on some meshed domain Ω where we take the L2 inner product we have

⟨u, v⟩L2
U
=

∫
Ω

u(x) · v(x)dx =

dim(U)∑
i,j

∫
Ω

uiϕi(x) · vjϕj(x)dx =

dim(U)∑
i,j

u1iM
U
ij vj, (1.4.35)

u, v ∈ U, (1.4.36)

MU
ij =

∫
Ω

ϕi(x) · ϕj(x)dx. (1.4.37)

This form, where we have a matrix, here MU , between the coefficients of the basis functions is

common to all inner products. MU is necessarily square since u and v are taken from the same

discretised space. The matrix defines the exact inner product we do but its elements depend on

the specific discretisation we use, which in turn depends on how our domain has been meshed

and which function spaces we choose. For given functions in a particular function space on

a particular mesh, however, the matrix is always the same. We deliberately chose to call the

forms we used earlier M for this very reason. For the L2 inner product the matrix is used so

often that it is known as the mass matrix. For other inner products this matrix generally goes

unnamed. For an H1 inner product it could be called a discretisation of the Helmholtz operator

or a ‘Helmholtz matrix’ (the mass matrix minus the discretisation of the Laplacian operator)27

27There are multiple equivalent, though not equal, ways of expressing an H1 inner product: one can, for
example, multiply the discretisation of the Laplacian operator by a scaling factor and still have an H1 inner

25

whilst for the l2 inner product it is an identity matrix.

A point that will become important in our discussion of automatic differentiation (Chapter

5), is that if we change any of the mesh, the function space, or the choice of inner product, we

get a different covector for each vector in the function space which depends on the particular

inner product matrix. An important consequence of this for mesh refinement is discussed in

Sect. 5.3. For example the inverse Riesz representer that goes with equation 1.4.35 is

M
L2
U

1 (;u)(; •) = ⟨u, •⟩L2
U
=

dim(U)∑
ij

u1iM
U
ij · [•]j = u∗(; •) (1.4.38)

i.e. u∗ is the transpose of the coefficients of the basis functions of the primal function u

multiplied by the particular mass matrix MU

u∗1j =

dim(U)∑
i

u1iM
U
ij . (1.4.39)

This is the same for any Hilbert space where its members are represented by finite members of

orthogonal basis functions: one merely needs to update the inner product matrix to reflect the

inner product used. Note that since MU
ij is square, for every u1i we have a u∗1j, i.e. the finite

dimensional space of covectors U∗ has the same number of dimensions as the primal space U

dim(U) = dim(U∗). (1.4.40)

product.

26

Chapter 2

Dual Spaces in UFL

27

This chapter as a whole draws on ideas from [30].

2.1 Motivation and Existing Work

All software libraries present a layer of abstraction on top of some underlying set of routines in

order to achieve a particular task, via an Application Programming Interface (API). A Domain

Specific Language (DSL) takes the idea of an API and allows the user to be more expressive,

using the software library in more ways than a developer could program within an API. To

achieve this, DSLs need to implement a set of types and operations that can be applied to

those types: for example in UFL there are Coefficient types which can be added together

to produce a UFL Expr object (specifically an instance of Sum which is a subclass of Expr).

This result can then be further manipulated within UFL. As long as operations on objects

within the language yield objects which are also within the language, various rules can then be

implemented in an attempt to avoid the valid expression of things which are uncomputable or

mathematically nonsensical.

UFL is a powerful language for specifying k-linear forms which are integrals. However,

prior to the start of this PhD it had no concept of dual spaces or the covector members of

them despite them often appearing in the language, as is detailed in this chapter. Adding these

concepts makes the language safer, since one can type check for a primal function versus a dual

space covector, and, as will be detailed in chapter 9, allows new kinds of k-linear form to be

represented.

Adding covectors also gives types to use with adjoint operators: Consider a linear operator

on Hilbert spaces A : U → V , with corresponding dual spaces U∗ and V ∗. The adjoint to A is

the linear operator

A∗ : V ∗ → U∗ (2.1.1)

which satisfies

v∗(;A(;u)) = A∗(; v∗)(;u) ∀ v∗ ∈ V ∗, u ∈ U. (2.1.2)

In words: for specific u and v∗, A∗(v∗) ∈ U∗ is the covector that operates on u to give the same

answer as v∗ operating on A(;u) ∈ V . Adjoint operators are fundamental to operations between

Hilbert spaces and therefore appear regularly in finite element methods. Their construction is

considered in chapter 5, Sect. 5.4.1.

As stated before, UFL is used by Firedrake, legacy FEniCS [16, 17] its recent rewrite

‘FEniCSx’ and DUNE-Fem [18] for the purpose of specifying weak formulations of PDEs, so

making this change has a significant potential impact.

Some finite element libraries that maintain a significant enough level of abstraction to recog-

nise that finite element functions are vectors in Hilbert spaces already contain this information.

MFEM [31, 32] explicitly has types which maintain a clear distinction, as detailed on their

28

website1, whilst FREEFEM [21] discusses ‘dual vectors’ but does not have an explicit type for

them. Other libraries which are considered in this work, such as deal.II [33], NGSolve [22] and

Finch [20] do not usually explicitly refer to dual spaces and covectors in their documentation,

other than when referring to dual evaluation2 (the topic of chapter 3). This is not surpris-

ing: for the distinction to be of significant consequence, the method of representing k-linear

forms needs to be sufficiently abstracted and composable for this to matter. For finite element

methods, only UFL operates at a high enough level of abstraction.

2.2 Summary of Contributions

I have been closely involved in the effort to add dual spaces to UFL, aiding both design and

implementation, throughout my PhD. This work was completed by Nacime Bouziani3 who

went on the integrate the UFL changes with Firedrake. I am listed as an author on a, currently

work-in-progress, paper detailing this work.

Whilst this is not my main body of work, much of the description here is needed to under-

stand later chapters, in particular chapter 9.

2.3 Representing Covectors as Cofunctions

Recall that finite element functions are weighted sums of basis functions (Sect. 1.2)

u(x) =

dim(U)∑
i

uiϕi(x) ∈ U. (2.3.1)

Ciarlet’s finite element formulation [34]) has us build the basis functions from members of the

dual space ϕ∗
i ∈ U∗ which are defined such that

ϕ∗
i (;ϕj) = δij (2.3.2)

where δij is the Kronecker delta. This is known as a biorthogonality relationship.

Thanks to this formulation, we can also represent the functional members of U∗ as weighted

sums, this time of the dual basis functionals

u∗ =

dim(U)∑
j

u∗jϕ
∗
j ∈ U∗. (2.3.3)

The coefficients u∗j of the dual basis functionals can be calculated from ui by considering the

1https://mfem.org/pri-dual-vec/
2Finch does not mention dual evaluation
3Department of Mathematics, Imperial College London

29

https://mfem.org/pri-dual-vec/

jth entry of the row vector in Eq. 1.4.39

u∗j =

dim(U)∑
i

uiM
U
ij (2.3.4)

where MU
ij is the inner product matrix we have chosen for U to get U∗4. We usually call these

covector functionals cofunctions.

The action of some u∗ ∈ U∗ on some v ∈ U yields the usual inner product thanks to the

biorthogonality relationship

u∗(; v) =

dim(U)∑
i,j

u∗iϕ
∗
i (; vjϕj) (2.3.5)

=

dim(U)∑
i,j

u∗i vj ϕ
∗
i (;ϕj)︸ ︷︷ ︸
δij

(2.3.6)

=

dim(U)∑
i

u∗i vi (2.3.7)

= ⟨u, v⟩U . (2.3.8)

Note that here u∗ is not represented as a row vector (as was done in Sect. 1.4.4), instead

the necessary tensor contraction naturally falls out of the biorthogonality relationship. The

sum is still equivalent to a row-vector/column-vector product and both tensor contraction and

row-vector/column-vector product representations are used throughout this work.

2.3.1 UFL Symbolic Equivalents

UFL’s type system contains two types for specifying finite element functions

u(x) =
∑dim(U)

i uiϕi(x) ∈ U

(i) Coefficient for when we know and can specify the exact list of coefficients for the primal

bases and

(ii) Argument for when we don’t know the list of coefficients and, typically, want to find them

out by solving some problem.

These types, particularly Arguments, have been designed to go in multilinear forms (they are,

in each case, subclassed from a FormArgument type).

We have added two new equivalent types for finite element cofunctions u∗ =
∑dim(U)

j u∗jϕ
∗
j ∈

U∗

4i.e. u and u∗ are linked by the particular Riesz map that this specific inner product matrix yields

30

(i) Cofunction for when we know and can specify the exact list of coefficients to dual basis

functionals and

(ii) Coargument for when we don’t know the list of coefficients.

Finite element functions Coefficients and Arguments in UFL are created from a finite ele-

ment function space U , in UFL represented by a FunctionSpace class which requires a symbolic

meshed domain and symbolic finite element. Cofunctions and Coarguments are created from

a new DualSpace class representing U∗. This can be accessed via a FunctionSpace.dual()

method. An is_dual helper function helps to identify whether finite element spaces and their

members are primal or dual. Note that if we create a Coefficient with a DualSpace we return

a Cofunction.

It is planned that a Cofunction should be able to operate on a Coefficient or Argument

and produce the symbolic equivalent of the action of that cofunction on the primal function.

The changes are summarised in Listing 3.

1 from ufl import *

2 from ufl.duals import is_dual

3

4 omega = Mesh(triangle)

5 U = FunctionSpace(omega, FiniteElement("CG", triangle, 1))

6 u = Coefficient(U)

7 v = Argument(U, 0) # Argument 0 implies a test function

8 # Everything below is new

9 U_star = U.dual()

10 u_star = Cofunction(U_star)

11 u_star = Coefficient(U_star) # this also gives a Cofunction

12 assert is_dual(u_star)

13 v_star = Coargument(U_star, 0)

14 v_star = Argument(U_star, 0) # this also gives a Coargument

15 assert is_dual(u_star)

Listing 3: A summary of the new dual space and cofunction capabilities in UFL.

2.3.2 Firedrake Data Carrying Equivalents

In Firedrake we add data-carrying ability to the Coefficient type by subclassing it to create

a firedrake.Function class - at this point we also add a basis function ordering.

firedrake.Functions are created from a firedrake.FunctionSpace class, which requires a

meshed domain, and a finite element. The firedrake.FunctionSpace class then creates

the global Degrees of Freedom (DoFs) over the mesh. The firedrake.Argument

class, a subclass of ufl.Argument, includes the DoF ordering information from the

firedrake.FunctionSpace.

31

firedrake.Cofunction is similarly subclassed from ufl.Cofunction and carries

data and a dual basis functional ordering. firedrake.Cofunction requires

a firedrake.FiredrakeDualSpace class to instantiate. Note that if we create a

firedrake.Function with a firedrake.FiredrakeDualSpace we return a

firedrake.Cofunction.

Both firedrake.Function and firedrake.Cofunction have a riesz_representation

method which returns the corresponding firedrake.Cofunction or firedrake.Function, re-

spectively, for a chosen Riesz map. The changes are summarised in Listing 4.

1 from firedrake import *

2 from ufl.duals import is_dual

3

4 omega = UnitSquareMesh(20, 20)

5 U = FunctionSpace(omega, FiniteElement("CG", triangle, 1))

6 u = Function(U)

7 v = Argument(U, 0) # Argument 0 implies a test function

8 # Everything below is new

9 U_star = U.dual()

10 u_star = Cofunction(U_star)

11 u_star = Function(U_star) # this also gives a Cofunction

12 assert is_dual(u_star)

13 u_star = u.riesz_representation(riesz_map="L2")

14 assert is_dual(u_star)

15 u = u_star.riesz_representation(riesz_map="L2")

16 assert not (is_dual(u))

17 v_star = Coargument(U_star, 0)

18 v_star = Argument(U_star, 0) # this also gives a Coargument

19 assert is_dual(v_star)

Listing 4: A summary of the data carrying dual space and cofunction capabilities in Firedrake,
using types inherited from UFL.

2.4 UFL Forms and Assembly

2.4.1 Multilinear Forms in UFL

As the name of the language implies, the Unified Form Language (UFL) allows the expression

of forms. These are important since they appear when expressing variational problems. Recall

that a linear variational problem is of the form ‘find u ∈ U such that

a(;u, v) = L(; v) ∀ v ∈ V (2.4.1)

32

(Eq. 1.2.1). The left hand side is a 2-linear form and the right hand side is a 1-linear form. Of

course we also need to solve nonlinear variational problems, but since these are always linearised

in an iterative solver, we find ourselves solving linear variational problems in practice.

Prior to this work, UFL multilinear forms were limited to the expression of definite integrals,

such as the L2 inner product in Eq. 1.4.16 with k in Eq. 1.4.11 being at most 2 (see chapter 9

for the new extension).

Coefficients and Arguments, have been designed to go in multilinear forms (they are, in

each case, subclassed from a FormArgument type). The same UFL expression for a form

term_1 * term_0 * dx

can be a 2- 1- or 0-linear form depending on the types of term_1 and term_0. Here are the

three possibilities:

1. a 2-linear form

V1 × V0 → R (2.4.2)

such as ∫
Ω

u(x)v(x)dx ∈ R ∀u ∈ U, v ∈ V (2.4.3)

has u and v each as an instance of an Argument, where we instantiate u as being argument

number 1 (u ∈ V1) and v as being argument number 0 (v ∈ V0). To match the naming

used in the finite element method where we multiply our PDEs by a test function and

integrate the expression

(i) a TrialFunction (the variable we solve for) is an Argument instantiated as position

1 (here u) and

(ii) a TestFunction (the variable we multiply by) is an Argument instantiated as argu-

ment 0 (here v).

In UFL we write this as

u = TrialFunction(U)

v = TestFunction(V)

bilinear_form = u * v * dx

for some appropriately defined finite element function spaces U and V.

2. A 1-linear form

V0 → R (2.4.4)

such as ∫
Ω

h(x)v(x)dx ∈ R for specified h ∈ H and ∀ v ∈ V (2.4.5)

33

has h as a Coefficient, since it’s a specific function of x, whilst v is an Argument

instantiated as argument number 0 (v ∈ V0 so it’s a TestFunction). These often turn

up as forcing terms in PDEs where you know a specified forcing function but still have

to multiply by a test function and integrate. In UFL we write this as

h = Coefficient(H)

v = TestFunction(V)

one_form = h * v * dx

3. A 0-linear form (which is a number)

K (2.4.6)

such as ∫
Ω

h(x)f(x)dx ∈ R for specified h ∈ H, f ∈ F (2.4.7)

has both h and f as Coefficients. In UFL we write this as

h = Coefficient(H)

g = Coefficient(G)

zero_form = h * g * dx

2.4.2 Assembly

The integrals in equations 2.4.3, 2.4.5 and 2.4.7 look very similar but they mean very different

things thanks to their UFL type information.

We realise that meaning when we assemble our UFL forms into a concrete output: that

means giving data to the Coefficients which match a specific discretised function space or

constant value and creating finite dimensional operators corresponding to our 2-linear and 1-

linear forms. This happens whenever we come to solve a PDE, for example by calling solve

in Firedrake: before we use our chosen solver, we need to turn our linear variational problem

‘find u ∈ U such that

a(;u, v) = L(; v) ∀ v ∈ V ’ (2.4.8)

(Eq. 1.2.1) into a system of equations

Ax = b (2.4.9)

to solve for x, giving the basis coefficients of u. Assembly in Firedrake can be done outside of

solve via an assemble function.

It is at this point that our changes to UFL and Firedrake become important. Whilst all

libraries which use UFL have an assembly operation, UFL was not equipped to provide the

outputs of assembly with a type. This made it difficult to, for example, compose operations

which used the output of assembling a 1-linear form. In each case assembling now does the

following:

34

1. the assembled 2-linear form for equation 2.4.3 where

u =

dim(U)−1∑
i=0

uiϕi ∈ U (2.4.10)

v =

dim(V)−1∑
j=0

vjψj ∈ V (2.4.11)

is written in Firedrake as

u = TrialFunction(U)

v = TestFunction(V)

bilinear_form = u * v * dx

assembled_bilinear_form = assemble(bilinear_form)

This can be thought of mathematically as leaving the coefficients ui and vj of each space

out of the equation. So∫
Ω

u(x)v(x)dx becomes

∫
Ω

ϕi(x)ψj(x)dx =Mij. (2.4.12)

This is a dim(U)× dim(V) matrix which is stored in assembled_bilinear_form: i.e. it

can be an operator that takes a vector vj that corresponds to vjψj to produces a vector ui

that corresponds to uiϕi. If U = V then then assembling the 2-linear form (the integral)

performs an L2 inner product ⟨•1, •0⟩L2 and the matrix Mij is the mass matrix for the

finite element function space. All such matrices that result from forming an inner product

on a finite element function space are assembled 2-linear forms, irrespective of whether

they have been assembled by Firedrake or not.

In a linear variational problem, the matrix Mij is the matrix Aij that is inverted to solve

for xi in Eq. 2.4.9.

Whilst bilinear_form is symbolically a 2-linear operator, assembly concretely

computes its expansion into a particular matrix given a particular basis.

assembled_bilinear_form is now a firedrake.Matrix type, which inherits from a

new ufl.Matrix class. Prior to this work, firedrake.Matrix was not a subclass of a

UFL type.

2. The assembled 1-linear form for equation 2.4.5 where

h =

dim(H)−1∑
i=0

hiϕi ∈ H (2.4.13)

v =

dim(V)−1∑
j=0

vjψj ∈ V (2.4.14)

35

is written in Firedrake as

h = Function(H)

v = TestFunction(V)

one_form = h * v * dx

assembled_one_form = assemble(one_form)

By default the Function constructor sets all basis function coefficients to zero. Introduc-

ing data to the Function is the topic of chapter 3. Here, assembly computes an expansion

of the 1-linear form in the dual basis given by the choice of inner product (in effect, one

leaves the coefficients vj out of the equation)

∫
Ω

h(x)v(x)dx becomes

dim(H)−1∑
i=0

∫
Ω

hiϕi(x)ψj(x)dx. (2.4.15)

This can be thought of as a 1× dim(V) row vector which operates on a column vector of

basis function coefficients vj (one for each ψj) and produces a number. The row vector is

v∗0j =

dim(H)−1∑
i=0

h0iMij (2.4.16)

where the ordering of hi again corresponds to hiϕi.
5 We call the output v∗ since it must

be a covector in V ∗ : V → R. If we treat it as a cofunction, as in Eq. 2.3.3, we take the

jth entry of the row vector as the basis cofunction coefficients

v∗ =

dim(V)∑
j

v∗jψ
∗
j (2.4.17)

=

dim(V)∑
j

dim(H)∑
i

hiMijψ
∗
j ∈ V ∗. (2.4.18)

If H = V then this is an L2 inner product again ⟨h, •0⟩L2 : M is again referred to as

the mass matrix and the 1-form is the inverse Riesz representer for H which gives the

h∗ ∈ H∗ that corresponds to h ∈ H. For more see section 1.4.

In a linear variational problem, the jth entry in the row vector v∗0j is the j
th entry of the

right hand side vector bj Eq. 2.4.9.

Here one_form is symbolically equivalent to a cofunction in V ∗, assembly once again

makes it concretely so. assembled_one_form is now a firedrake.Cofunction which

inherits from ufl.Cofunction. Prior to this work, assembled_one_form was a

firedrake.Function in a function space V . That worked because, as previously stated,

covectors to functions in finite element function spaces have the same number of

36

dimensions. Nevertheless this was incorrect and open to mathematical mistakes.

3. Lastly the assembled 0-linear form for equation 2.4.7 where

h =

dim(H)−1∑
i=0

hiϕi ∈ H (2.4.26)

f =

dim(F)−1∑
j=0

fjψj ∈ F (2.4.27)

is written in Firedrake as

h = Function(H)

f = Function(F)

zero_form = h * f * dx

assembled_zero_form = assemble(zero_form)

5In the specific case of equation 2.4.5 and its assembled equivalent 2.4.16 the calculation we are doing is

∫
Ω

h(x)v(x)dx =

dim(H)−1∑
i=0

dim(H)−1∑
j=0

∫
Ω

hiϕi(x)vjψj(x)dx (2.4.19)

where vj are unknown. If we factor out vj we get an integral we can actually evaluate as a row-
vector/matrix/column-vector product.

∫
Ω

h(x)v(x)dx =

dim(H)−1∑
i=0

dim(H)−1∑
j=0

∫
Ω

hiϕi(x)ψj(x)dx vj (2.4.20)

=

dim(H)−1∑
i=0

dim(H)−1∑
j=0

h0iMijvj . (2.4.21)

Since we don’t yet know vj we have a row-vector which we treat as an operator

v∗0j =

dim(H)−1∑
i=0

h0iMij . (2.4.22)

This is equivalent to treating our unknown argument v ∈ V as the set of raw basis functions ψj

v∗0j =

∫
Ω

h(x)ψj(x)dx (2.4.23)

=

dim(H)−1∑
i=0

∫
Ω

hiϕi(x)ψj(x)dx (2.4.24)

=

dim(H)−1∑
i=0

h0iMij . (2.4.25)

37

and can be thought of mathematically as leaving all the coefficients in

∫
Ω

h(x)f(x)dx =

dim(H)−1∑
i=0

dim(F)−1∑
j=0

∫
Ω

hiϕi(x)fjψj(x)dx (2.4.28)

This is a real number which corresponds to

dim(H)−1∑
i=0

dim(F)−1∑
j=0

h0iMijfj. (2.4.29)

assembled_zero_form will contain this value. If H = F then this is the specific value

for the L2 inner product of these functions ⟨h, f⟩L2 .

So whilst zero_form was symbolically a number, assembly made it concretely so, i.e.

assembled_zero_form is a Python float. This has not been changed.

38

Chapter 3

Getting Data into Finite Element

Functions: FInAT Dual Evaluation

Interpolation

39

3.1 Motivation

Before we can start solving PDEs using the finite element method, we need a way to take

expressions such as f(x, y) = x2 + y and represent them on our mesh. Furthermore, we might

have a solution to one PDE in one finite element function space which we want to use in another.

In this chapter two ways to do that are introduced, one of which - dual evaluation - we will

use throughout this thesis. As we will see, dual evaluation is computationally efficient and, as

will be demonstrated throughout this thesis, has wide applications. After the definitions, an

efficient implementation of dual evaluation will be demonstrated, which is able to exploit the

structure of certain finite elements to reduce computational cost. It does this by making use of

the pre-existing high-level abstractions used by Firedrake to compose finite elements.

3.2 Dual Evaluation Interpolation

In most implementations of finite element methods we have a set of ‘global’ coordinates x

covering our meshed domain and a set of ‘local’ coordinates x̃ defined on some reference cell.

For each mesh cell we transform from global to local coordinates, perform an operation, then

transform our result back. Nodal dual evaluation, also referred to as simply dual evaluation, is

a way of representing arbitrary functions in finite element function spaces which can be done

in a straightforward cell-by-cell manner using these transformations.

This is an outline of the definition of dual evaluation interpolation found in Sect. 3.3 of [35]

using our notation. As a reminder, finite elements on a reference cell can be represented using

a Ciarlet triple [34]

(K,P ,N) (3.2.1)

where N = {ϕ̃∗
i }ki=0 is a set of k + 1 cofunctions which are defined on the reference cell K and

are known as the nodal dual basis. The nodal dual basis is often shortened to the dual basis or

the nodes.

3.2.1 Local Interpolation

Local interpolation IP(K) of some locally defined function f̃ into the local function space P(K)
is given by the linear operator

[
IP(K)(; f̃)

]
(x̃) =

k−1∑
i=0

ϕ̃∗
i (; f̃)ϕ̃i(x̃) (3.2.2)

which we see is the evaluation of the dual basis {ϕ̃∗
i }ki=0 on the function f̃ . Each dual evaluation

ϕ̃∗
i (; f̃) gives us the coefficient for the corresponding basis function ϕ̃i(x̃).

Strictly speaking, if ϕ̃∗
i are some set of cofunctions to ϕ̃i, as Ciarlet’s finite element definition

40

[34] states, then

ϕ̃∗
i : P(K)∗ → R. (3.2.3)

This implies that f̃ ∈ P(K), in which case

f̃(x) =
k−1∑
j=0

f̃jϕ̃j(x) (3.2.4)

and

[
IP(K)(f̃)

]
(x) =

k−1∑
i=0

k−1∑
j=0

ϕ̃∗
i (; f̃jϕ̃j)ϕ̃i(x) (3.2.5)

=
k−1∑
i=0

k−1∑
j=0

ϕ̃∗
i (; ϕ̃j)f̃jϕ̃i(x) (3.2.6)

=
k−1∑
i=0

k−1∑
j=0

δij
1f̃jϕ̃i(x) (3.2.7)

=
k−1∑
j=0

f̃jϕ̃j(x) = f̃(x). (3.2.8)

This isn’t really an interpolation operation, since it gives us the function we already had. We

want the operation to take a function from a different function space P̄(K̄) into this one. I.e.

IP(K) : P̄(K̄)→ P(K) (3.2.9)

This requires us to define an extension to our dual basis functionals, let us call them ¯̃ϕ∗
i (; f̃), as

¯̃
ϕ∗
i (; f̃) : P̄(K̄)→ R. (3.2.10)

This can be done without needing to redefine the dual basis as long they can be evaluated in the

new space P̄(K̄). For example ¯̃ϕ∗
i can’t require the evaluation of a point on the source reference

cell K̄ which is not in target reference cell K. So long as this can be done with sufficient

accuracy in the function space we are interpolating from, we can perform our interpolation and

get results which have properties which we expect the new space to give us, such as having

particular values at particular points (for more see Maddison and Farrell [36]).

If f̃ ∈ P̄(K̄), i.e.

f̃(x) =
l−1∑
j=0

f̃jψ̃j(x) (3.2.11)

1from Ciarlet’s definition

41

where ψ̃j ∈ P̄(K̄) and there are l local basis functions then we have

[
IP(K)(f̃)

]
(x) =

k−1∑
i=0

l−1∑
j=0

¯̃
ϕ∗
i (; ψ̃j)f̃jϕ̃i(x) (3.2.12)

=
k−1∑
i=0

l−1∑
j=0

Ãij f̃jϕ̃i(x) (3.2.13)

Ãij is the k × l local interpolation matrix where each Ãij =
¯̃ϕ∗
i (; ψ̃j).

It is important to highlight that the interpolation operator is unique for a particular choice

of extended dual basis ¯̃ϕ∗
i . Let ¯̃ϕ∗

i be mappings from some function space W → R (W being

the space of continuous functions C0 for example), making them members of W ∗. These can

then be restricted to mappings from P(K)→ R giving the nodal dual basis ϕ̃∗
i ∈ P(K)∗.

There may be several functionals inW ∗, such as nodes of another finite element basis, which

have the same restriction to P(K)∗. For example, a 1 dimensional functional ¯̃ϕ∗
i might be defined

as the integral of the reference cell. When restricted to act on linear polynomials, this will be

equal to a particular point evaluation on the cell. In that case, one could equivalently define ¯̃ϕ∗
i

as that point evaluation. The two extensions are equivalent for the linear polynomials but not

for functions in W . In Firedrake, via FIAT, the extended dual basis, and therefore the nodes

of finite elements, are defined as quadrature sums (see Sect. 3.7).

3.2.2 Global Interpolation

Global interpolation over the entire mesh Ω for the complete finite element function space

FS(Ω), which we denote IFS(Ω), is the cell-local application (i.e. transformed to local reference

coordinates) of IP(K) to a globally defined function f ∈ V .

IFS(Ω) : V → FS(Ω) (3.2.14)

If we exclusively consider global space, where we have a global set of dim(FS(Ω)) basis functions

ϕi ∈ FS(Ω) and associated extended dual basis functionals ϕ̄∗
i then global interpolation is

[
IFS(Ω)(; f)

]
(x) =

dim(FS(Ω))−1∑
i=0

ϕ̄∗
i (; f)ϕi(x). (3.2.15)

If f ∈ V has its own global basis ψj ∈ V , i.e.

f(x) =

dim(V)−1∑
j=0

fjψj(x) (3.2.16)

42

then

[
IFS(Ω)(; f)

]
(x) =

dim(FS(Ω))−1∑
i=0

dim(V)−1∑
j=0

ϕ̄∗
i (; fjψj)ϕi(x) (3.2.17)

=

dim(FS(Ω))−1∑
i=0

dim(V)−1∑
j=0

ϕ̄∗
i (;ψj)fjϕi(x) (3.2.18)

=

dim(FS(Ω))−1∑
i=0

dim(V)−1∑
j=0

Aijfjϕi(x). (3.2.19)

Aij , with entries ϕ∗
i (;ψj), is the dim(FS(Ω))× dim(V) global interpolation matrix Aij. Here,

the union of all function spaces to which all ϕ̄∗
i can be applied is referred to as X.

Note that for cross mesh interpolation, we can only define this as the cell-by-cell application

of IP(K) if each local dual basis functional ϕ̃∗
i can be evaluated on the source mesh’s local

reference cell. If not, we can still define the global interpolator as in Eq. 3.2.15, but must

evaluate each extended global dual basis function ϕ̄∗
i in global coordinates. For this to be a

valid extension we usually strictly require the finite element function spaces to be continuous

at cell boundaries for the extended dual basis to be well defined (the functionals might involve

a point evaluation at a cell boundary) but this is not always explicitly checked for. Cross mesh

interpolation is returned to in chapter 8.

A note on nomenclature: we generally assume that the dual basis functionals are valid, and

therefore usually write ϕ̄∗
i as ϕ∗

i .

3.2.3 An example of Local Dual Evaluation

Here and in the rest of this chapter, local coordinates and local dual evaluation will be used

exclusively. To avoid unnecessary visual clutter, the tildes and hats are disregarded, i.e. f̃ is

now f , ϕ̃i is now ϕi, and x̃ is now x.

Take for example the second order Lagrange basis polynomials on a line in figure 3.1 each

of which are 1 at each of {0, 0.5, 1} and 0 elsewhere. These points are decided in the Ciarlet

triple finite element definition by the dual basis functionals

ϕ∗
0(; f) = f(0)

ϕ∗
1(; f) = f(0.5)

ϕ∗
2(; f) = f(1)

(3.2.20)

which then define the element function space P(K) as the span of basis functions {ϕj} that

43

Figure 3.1: The second order Lagrange basis polynomials on an interval [0, 1].

obey the biorthogonality relationship

ϕ∗
i (;ϕj) = δij =

1 if i = j,

0 otherwise.
(3.2.21)

When we interpolate some function or expression f into this space we need a set of coefficients

for these basis functions which are the values of f at the locations where the basis functions

have magnitude 1. If f ∈ P(K) these correspond to the dual evaluation of f with the correct

dual basis functional to then perform the correct point evaluations[
IP(K)(f)

]
(x) = f0ϕ0(x) + f1ϕ1(x) + f2ϕ2(x)

= f(0)ϕ0(x) + f(0.5)ϕ1(x) + f(1)ϕ2(x)

= ϕ∗
0(; f)ϕ0(x) + ϕ∗

1(; f)ϕ1(x) + ϕ∗
2(; f)ϕ2(x).

(3.2.22)

To calculate this for functions which are not members of P(K) we need an extension to the

dual basis functionals. The dual basis in equation 3.2.20 is made up of so-called point evaluation

nodes : they are the evaluations of f at given points. To extend the dual basis functionals, we

44

take the obvious choice of using point evaluations at the same locations

ϕ̄∗
0(; g) = g(0)

ϕ̄∗
1(; g) = g(0.5)

ϕ̄∗
2(; g) = g(1)

(3.2.23)

The extended dual basis is valid as long as we can evaluate g at 0, 0.5 and 1 on the reference

element.

3.3 Galerkin Projection

In Sect. 3.2, dual evaluation was described as a way of representing arbitrary functions in finite

element function spaces. The other commonly used approach is Galerkin projection. This is

not the topic of this work, but it is worth briefly discussing the differences between the two.

For example, given some arbitrary function f , then the function fh ∈ FS(Ω) such that

⟨v, fh⟩L2 = ⟨v, f⟩L2 ∀ v ∈ FS(Ω) (3.3.1)

is the L2 Galerkin projection of f onto V . Galerkin projections can also be found for other

inner products.

Finding fh given some f is a problem that one can specify and solve, but it is not something

that can usually be done cell-by-cell. This is inherantly more computationally expensive than

dual evaluation. For example, to solve Eq. 3.3.1 we have to solve a matrix-vector equation

with the global mass matrix for the function space on the domain of interest.

Of course, the solution to a Galerkin projection problem is not the same thing as the result of

dual evaluation interpolation. L2 Galerkin projection can introduce new maxima and minima

into the solution which are not present in the original function f , whereas dual evaluation

interpolation will not. L2 Galerkin projection can, however, conserve certain properties of f

which dual evaluation interpolation will not necessarily conserve, particularly when moving

between meshes. Conservative interpolation is possible though, see the brief discussion in Sect.

8.1. Dual evaluation interpolation, as defined here, being an operator rather than an equation

which must be solved makes it a more versatile mathematical tool: it can be placed within

expressions and usually has a well defined derivative.

3.4 Existing Dual Basis and Interpolation Implementa-

tions

It is usual for systems which support multiple finite elements to include some package which

represents each finite element for a given reference cell. Both Firedrake and legacy FEniCS use

45

FIAT [37] for this: for each element it provides a method for evaluating local basis functions at

one or more reference cell points, a process known as tabulation2; tabulation will be returned

to in chapter 4. FIAT derives the local basis functions from the local dual basis functions of a

given element, as in Ciarlet’s definition [34] from which the extended dual basis can be directly

taken. The symbolic finite element definition library Symfem [38] and FEniCSx’s tabulation

library Basix [39] do the same. The finite element solver frameworks NGSolve [22] and MFEM

[31, 32] also give elements a dual basis, though the element definitions are not in a separate

library. Some other frameworks where this is documented such as DUNE [40] (used by both the

DUNE-Fem [18], DUNE-PDELab [41] frameworks), FREEFEM [21] and Finch [20] implement

the finite element directly without appealing to the nodal dual basis.

In principal anywhere we have a finite element definition which includes a dual basis should

allow for dual evaluation interpolation. One merely has to coordinate transform a function

or expression from each mesh cell to the local coordinates where the dual bases are defined,

apply them to the function or expression to get the local basis function coefficients, then trans-

form the result back to global coordinates. This is what Firedrake does with FIAT, FEniCSx

does with Basix and NGSolve does with its internal library of finite elements. MFEM has a

GetLocalInterpolation method of its finite element class which, from inspecting the source

code, appears to retrieve the interpolation matrix using the nodal dual basis in certain cases,

though this is not documented in the literature or the API documentation. The DUNE frame-

work provides tools for nodal interpolation (i.e. dual evaluation) for certain finite elements,

though apparently appeals to L2 Galerkin Projection and other methods in some cases [42]: it is

not made clear in Engwer et al. [42], Sander [40] or in the API documentation which operation

is performed for a given element. Neither FREEFEM nor Finch appear to have any explicit

dual evaluation interpolation functionality.

3.4.1 Firedrake Dual Evaluation

Exactly how one gets from a function or expression on global space to local coordinates and

back again is, unfortunately, not documented for dual evaluation for any of the aforementioned

libraries. Finite element systems usually perform calculations cell-by-cell by building a so-called

kernel which runs on each mesh cell in turn. In Firedrake (and, presumably, elsewhere), we do

this for dual evaluation interpolation.

The Two Stage Form Compiler (TSFC, Homolya et al. [8]) builds a kernel which (1.) trans-

forms a given function or expression from its global coordinates on a mesh cell to local reference

cell coordinates, (2.) performs the dual evaluation operation (prior to this work, using FIAT

as described in Sec. 3.7), then (3.) transforms the result back to global coordinates.

This kernel needs to be run over each mesh cell and deal with mesh parallel domain decom-

position parallelism (see chapter 7, Sect. 7.2). The kernel needs to be supplied with data from

2hence FIAT standing for FInite element Automatic Tabulator

46

global space and the result needs to be supplied back to a new data structure in global space

which corresponds to a new finite element function. This is all handled by the PyOP2 library

[15]. Firedrake then wraps this in a high level API: see listing 5.

Note that Firedrake’s interpolation operation can be used on UFL expressions which may

be nonlinear in their arguments, as on line 29 of Listing 5. When that occurs, it is not a linear

operator since the expression itself requires evaluation before it can be dual evaluated. This

has implications on finding its derivative, which we do in chapter 5, Sect. 5.5. For now, when

we discuss the dual evaluation interpolation operator, we treat it as being strictly linear.

1 from firedrake import *

2 import numpy as np

3

4 # Create a mesh and two function spaces

5 omega = UnitSquareMesh(2, 2)

6 P1CG = FunctionSpace(omega, "CG", 1)

7 P2CG = FunctionSpace(omega, "CG", 2)

8

9 w = Function(P2CG) # w is a function in P2CG

10

11 # Any of the following interpolate w in P2CG into u in P1CG

12 u = interpolate(w, P1CG) # interpolate into the function space

13 interpolate(w, u) # interpolate into the function u

14 u.interpolate(w) # use the interpolate method

15 i = Interpolator(w, u) # create a a reusable interpolator...

16 i.interpolate() # ...and use it to fill u

17

18 # We can also create the interpolation matrix A : P2CG -> P1CG

19 A = Interpolator(TestFunction(P2CG), P1CG)

20 # and use it to interpolate w in P2CG into some v in P1CG

21 v = A.interpolate(w)

22 # and get the adjoint operation A^* : P1CG^* -> P2CG^*

23 u_star = assemble(TestFunction(P1CG) * dx) # a cofunction in P1CG^*

24 v_star = Cofunction(P2CG.dual()) # a cofunction in P2CG^*

25 A.interpolate(u_star, transpose=True, output=v_star)

26

27 # Interpolation also provides a way to set function values from symbolic

28 # expressions

29 x, y = SpatialCoordinate(omega)

30 w.interpolate(x**2 + y**2)

31 assert np.isclose(w.at(0.5,0.5), 0.5)

32

33 # Functions themselves can also be included in symbolic expressions

34 g = Function(P1CG).interpolate(2*w)

35 assert np.isclose(g.at(0.5,0.5), 1.0)

Listing 5: Firedrake’s dual evaluation interpolation API.

47

3.4.2 FInAT

FInAT [14] inherits and wraps all of FIAT’s element definitions and provides performance en-

hancements for elements which can be defined in terms of the outer product of lower rank

equivalents (quadrilateral reference cells being given as the outer product of two interval refer-

ence cells for example, as shown in figure 3.2); tabulating on such elements is able to make use

of this tensor product structure in a process known as ‘sum-factorisation’ [43]. See section 3.8.2

for more. Similar capability is also available in MFEM, deal.II [33] and, to a limited extent,in

Basix.

Firedrake, via the kernel builder TSFC, uses FInAT to improve element tabulation per-

formance when solving PDEs. Whilst FInAT wraps all of FIAT’s element definitions it does

not provide a wrapper of the dual basis. Such a wrapper would need to allow elements to be

composed as tensor products of one another such that FInAT and TSFC’s sum-factorisation

machinery can work. The tensor algebra Domain Specific Language ‘GEM’3, which is built into

TSFC, is used extensively in FInAT, for example when describing a set of points. It is through

symbolic manipulation of ‘GEM’ that tensor-product structure is preserved by FInAT. It there-

fore makes sense that the dual basis of elements should be advertised as GEM tensors and that

their composition and eventual dual evaluation should be expressed as tensor manipulations in

GEM.

3.5 A primer on tensors in UFL and GEM

TSFC’s primary Domain Specific Language (DSL), ‘GEM’ is used throughout this chapter.

Whilst it is explained in detail in Homolya et al. [8], key terms are also explained here.

Expressions in finite element function spaces, expressed in Firedrake using UFL, generally

boil down to large tensor contractions. A 0-linear form for an L2 inner product, for example, is

a vector-matrix-vector product where the two vectors are the coefficients of the two sets of basis

functions and the matrix is the mass matrix. GEM, which can be compiled from UFL, ensures

that information such as ‘which vector contracts with which matrix index’ is maintained at a

symbolic level, and allows optimisations such as sum factorisation to be expressed symbolically

prior to further compilation into loops.

Many of its types are inherited directly from UFL, which is aware of the tensor-contraction

nature of the calculations involved. GEM jettisons the finite element specific parts of UFL,

which are not necessary in TSFC, and introduces new types which are particularly useful for

constructing kernels.

Tensors in UFL have shape and free indices. This is most easily explained through demon-

stration. Imagine we have a tensor M which has dimensions 2× 3 (i.e. it is a matrix). In UFL

this can be represented as

3GEM is not an acronym, just the name of the language

48

1. a tensor valued object M : this has shape (2, 3) but no free indices.

2. A scalar object Mij: this has shape () and two free indices i and j where i has an extent

of 2 and j has an extent of 3.

3. A vector valued object Mi: this has shape (3,) and a free index i of extent 2.

4. A vector valued object Mj: this has shape (2,) and a free index j of extent 3.

Shape is always ordered: M has dimensions 2 × 3 (2 rows and 3 columns) so its shape is

(2, 3). Free indices are unordered but are labelled and have an extent: once another tensor is

introduced they represent dimensions to sum along in a contraction. For more see page 8 of

Homolya et al. [8]. Free indices are represented by an Index type.

GEM inherits UFL’s definition of shape, free indices and an Index type, and introduces new

types which are summarised on page 13 of Homolya et al. [8]. Of particular note are Literal

and Variable.

• Literal represents a tensor which is concretely known at the moment of creation (i.e.

during creation of the TSFC kernel). These are initialised from a numpy [44] ndarray,

the shape of which is used as the shape of the tensor. These have no free indices.

• Variable represents a tensor which is not concretely known at the moment of creation

(i.e. which will be supplied to the TSFC kernel after it has been created). These are

initialised with some shape, and again have no free indices.

GEM expressions can be built from Literal and Variable using Indexed, IndexSum,

ComponentTensor, and ListTensor. These are also inherited from UFL and are strictly defined

on pages 9 of Homolya et al. [8]. To the definitions, here are illustrative examples:

• Indexed: An expression representing a tensor which has been indexed: it has shape ()

and 0 or more free indices. To quote Homolya et al. [8] “Indexed can convert shape to

free indices”.

For example, if A is a tensor valued expression with shape (2, 3) (i.e. it corresponds to a

matrix A of dimension 2× 3) then

– Indexed(A, (Index(1), Index(2)) is the scalar valued expression Aij with shape

() and two free indices, Index(1) with extent 2, and Index(2) with extent 3,

– Indexed(A, (Index(1), 1)) is the scalar valued expression Ai1 with shape () and

one free index, Index(1) with extent 2, and

– Indexed(A, (0, 1)) is the scalar valued expression A01 with shape () and no free

indices.

49

• IndexSum: An expression for summing along a given free index.

Given a scalar valued expression B, corresponding to Bij with shape () and free in-

dices Index(1) corresponding to i and Index(2) corresponding to j (Bij is typically

an Indexed) then

– IndexSum(B, (Index(1), Index(2))) is an expression for summation along indices

i and j, i,e,
∑

i,j Bij = c. The result has no free indices.

– IndexSum(B, (Index(1),)) is an expression for summation along index i, i,e,∑
iBij = Cj. The result now has a single free index Index(2) corresponding to j.

– IndexSum(B, (Index(2),)) is an expression for summation along index j, i,e,∑
j Bij = Di. The result now has a single free index Index(1) corresponding to

i.

• ComponentTensor: An expression representing a tensor with shape and 0 or more free

indices. These can turn free indices back into shape.

For example, given the scalar valued expression B, corresponding to Bij from the IndexSum

example above, then

– ComponentTensor(B, (Index(1),)) is a vector valued expression with shape

(extent(i),) and a single free index Index(2) corresponding to j. This represents

Bj.

– ComponentTensor(B, (Index(2),)) is a vector valued expression with shape

(extent(j),) and a single free index Index(1) corresponding to i. This represents

Bi.

– ComponentTensor(B, (Index(1), Index(2))) is a scalar expression with shape

(extent(i), extent(j)) and no free indices. This represents B.

– ComponentTensor(B, (Index(2), Index(1))) is a scalar expression with shape

(extent(j), extent(i)) and no free indices. This represents BT .

• ListTensor: An expression representing a concatenation of tensor expressions along a

new 1st dimension. Given two tensor expressions E and D, each with shape (3, 3) the

ListTensor(A, B) created from them will have shape (2, 3, 3).

3.6 Summary of Contributions

Section 3.8 contains the main contributions. I firstly came up with a generalised formulation of

dual evaluation as a tensor contraction (equation 3.8.1). I implemented this in FInAT4, making

full use of GEM to represent the tensors involved, such that highly optimised dual evaluation

4See https://github.com/FInAT/FInAT/pull/89 for FInAT changes.

50

https://github.com/FInAT/FInAT/pull/89

routines could be compiled with TSFC. This required adding an API for dual evaluation to

FInAT elements, where each element advertises a dual basis and performs the tensor contraction

in a general dual evaluation routine.

Appropriate dual bases have been implemented for most elements:

1. Where the tensor contraction would be multiplying by an identity tensor, this is indicated

symbolically (equation 3.8.7) such that code is not generated in that case.

2. Where elements are wrappers around other elements which raise their rank (‘tensor ele-

ments’) the new dual basis and dual evaluation routines allow for an optimisation known

as delta elimination (see section 3.8.1).

3. Where elements have a tensor product structure (‘tensor product elements’), the structure

is preserved such that TSFC can perform relevant optimisations such as sum-factorisation

(see section 3.8.2).

Being able to maintain structure has led to a dramatic improvement in performance (see the

end of section 3.8.2). Mathematical expressions for the calculations performed can be found

throughout section 3.8. Care had to be taken to ensure compatibility with interpolation onto

elements where the dual basis is specified after code is generated (i.e. at run-time), such as

when interpolating onto a VertexOnlyMesh (introduced in chapter 4). Cases where expressions

contain unknowns also had to be catered for. Some specific further optimisations have been

suggested, see section 3.8.3.

TSFC and Firedrake also had to be modified5,6 to use this new API and various bugs had to

be fixed. Tests were added throughout. An initial implementation of FInAT dual evaluation,

which moved the existing FIAT dual evaluation code (discussed in section 3.7) from TSFC into

FInAT, had been done by Matthew Kan7 as part of a masters project: this was used as a base

for this work but has largely been superseded (dual evaluation being a tensor contraction for

example). Lawrence Mitchell8 also contributed by giving advice and performing edits.

3.7 Existing FIAT Dual evaluation

We start by looking at the pre-existing implementation. Consider the example of this invented

element which consists of 3rd order polynomials (4 degrees of freedom) on a reference interval

5See https://github.com/firedrakeproject/tsfc/pull/250 for TSFC changes.
6See https://github.com/firedrakeproject/firedrake/pull/2115 for Firedrake changes.
7ting.kan19@imperial.ac.uk
8(Formerly) Department of Computer Science, Durham University

51

https://github.com/firedrakeproject/tsfc/pull/250
https://github.com/firedrakeproject/firedrake/pull/2115
mailto:ting.kan19@imperial.ac.uk

cell

ϕ∗
0(; f) = f(0)

ϕ∗
1(; f) = f(1)

ϕ∗
2(; f) =

∫ 1

0

f(x) dx

ϕ∗
3(; f) =

∫ 1

0

xf(x) dx.

(3.7.1)

In FIAT, MFEM and Basix all dual basis functionals (nodes) are represented as weighted

sums of function evaluations at particular points

ϕ∗
i (; f) =

∑
j

wjf(xj) (3.7.2)

which are also the extended dual basis

ϕ̄∗
i (; f) =

∑
j

wjf(xj). (3.7.3)

This extension is well-defined on all functions that are defined at the quadrature points. In

FIAT, this is calculated via a complicated data structure based around Python dictionaries.9

For point evaluation nodes such as ϕ∗
0 we have, from the biorthogonality relationship (equation

3.2.21), wj = δ0j = 1 when j = 0 and that xj = x0 = 0. Similarly for ϕ∗
1 we have wj = δ1j = 1

when j = 1 and that xj = x1 = 1. For integral nodes (often called ‘moment’ nodes) on an

interval, such as ϕ∗
2 and ϕ∗

3 in equation 3.7.1, an exact Gaussian quadrature rule for evaluating

the integral with 3rd order polynomials is used by FIAT:

ϕ∗
2(; f) =

∫ 1

0

f(x) dx =
∑
j

wjf(xj) =

5

18
× f

(
1−

√
3
5

2

)
+

4

9
× f(0.5) + 5

18
× f(0.88729833..) (3.7.4)

ϕ∗
3(; f) =

∫ 1

0

xf(x) dx =
∑
j

wjf(xj) =

0.03130602..× f
(
1−

√
3
5

2

)
+

2

9
× f(0.5) + 0.24647176..× f(0.88729833..) (3.7.5)

The vast majority of elements employ some combination of point evaluation and integral

9NGSolve represents basis functionals as specially defined C++ lambda functions for each finite element.

52

nodes. For derivative nodes such as those found on Hermite elements [35] a similar represen-

tation as weighted sums can be done (and is found in FIAT) but has yet to be implemented in

FInAT.

Code for performing dual evaluations of point and integral nodes was added to the dual

evaluation kernel compilation routines in TSFC in 2020 by bypassing FInAT and using the FIAT

element representation directly. Each dual basis functional weighted sum in i was considered

sequentially for a given function or expression f to interpolate via dual evaluation. This caused

any element structure, such as the ability to perform sum-factorisation, to be lost. Dual

evaluation kernels therefore were unoptimised and used many more FLoating point OPerations

(FLOPs) than necessary. They also contained unnecessarily unrolled loops; this made them

difficult to understand and increased their memory requirements. In the next section, we discuss

how these problems were solved by making full use of FInAT.

3.8 FInAT Dual Evaluation

In general, dual basis evaluation can be represented as a contraction of an evaluation tensor Q

with a tensor-valued function to dual evaluate f ∈ RS1×...×SN applied to each point in a point

set tensor x (which is lower ranked than Q):

ϕ∗
i (;f) =

∑
j,k,l,...,β1,...,βN

Qijkl...β1...βN
fβ1...βN

(xjkl...). (3.8.1)

where the index i covers all the dual basis functionals and the indices represented by greek

letters correspond to the tensor components of f

extent(β1) = S1, ..., extent(βN) = SN (3.8.2)

and

fβ1...βN
(x) = [f(x)]β1...βN

(3.8.3)

is an indexing operation on f that gives its scalar components. Note that this expression

applies to elements whose basis functions are scalar or tensor valued but does not apply to

FInAT TensorFiniteElement which is described later.

For the invented element in equation 3.7.1 where f evaluates a single point xj (i.e. there

are no higher indices kl etc. which feature in the dual evaluation) and f ∈ R then equation

3.8.1 is the matrix-vector contraction:

ϕ∗
i (; f) =

∑
j

Qijf(xj) (3.8.4)

53


ϕ∗
0(; f)

ϕ∗
1(; f)

ϕ∗
2(; f)

ϕ∗
3(; f)

 =


1 0 0 0 0

0 1 0 0 0

0 0 5
18

4
9

5
18

0 0 0.03130602.. 2
9

0.24647176..





f(0)

f(1)

f(
1−
√

3
5

2
)

f(0.5)

f(0.88729833..)


. (3.8.5)

The representation in equation 3.8.1 has been added to FInAT. Each element advertises a

dual_basis property that returns a FInAT AbstractPointSet x representing the points x to

sum over and a GEM ComponentTensor representing the evaluation tensor Q which is cached

to avoid unnecessary recalculation.

An AbstractPointSet is the abstract base class for a number of concrete classes which are

used to represent sets of points. The most commonly used is the PointSet class: it is instan-

tiated with a vector array of points and creates a GEM expression from the array, containing

a GEM Literal created with the vector itself, which can be used for tensor operations. If the

array of points have tensor shape, there is a similar TensorPointSet class. Alongside these,

an UnknownPointSet has been introduced by the author. This is instantiated with a GEM

Variable, allowing the points to remain a free variable to be supplied to the kernel at run

time. For an application of UnknownPointSet, see Sect. 4.5.3.

The API for performing dual evaluation of the dual basis of an element el is then

evaluation, basis_indices = el.dual_evaluation(fn)

where evaluation is an optimised GEM expression for the contraction 3.8.1, fn (representing

f) is any Python callable that takes x as an argument and returns a GEM tensor fn(x) that can

be contracted with Q along the point indices j and point shape indices kl..., and basis_indices

are the nodal basis indices i. Note that extra free indices may be found in the dual evaluated

expression represented by fn (typically when the expression contains unknowns represented

as UFL Arguments) or in the expression for the point set represented by x (when the points

are to be specified at run-time and therefore do not have a concretely-known GEM.Literal

expression). These are not modified by this contraction and remain in the GEM expression

which is used to build an interpolation kernel. Note also that the free indices of the advertised x

are indexed from the advertised Q in the dual_basis to make the contraction straightforward.

Much of the time the evaluation is an IndexSum along the indices to be contracted. Where

Q is an identity matrix, which occurs for elements whose dual basis is composed entirely from

single unweighted point evaluations (i.e. exclusively point evaluation nodes), Q is represented

in GEM as a single Kronecker delta.

Q = I (3.8.6)

=⇒ Qij = δij. (3.8.7)

Before the GEM expression for the contraction is compiled into a kernel the delta is eliminated,

54

removing the necessity to perform any summation:

ϕ∗
i (; f) =

∑
j

Qijf(xj)

=
∑
j

δijf(xj)

= f(xi).

(3.8.8)

When the expression being dual evaluated is tensor valued, further delta elimination is often

still possible as is outlined next.

3.8.1 Tensor Finite Elements and Delta Elimination

FInAT tensor finite elements provide an opportunity to speed up dual evaluation. These are

wrappers around another, typically scalar, base element which add one or more dimensions of

a requested shape to the element basis such that, at any given location x in the element, the

function is appropriately tensor valued. If the base element has scalar basis functions ϕ̂i and

the requested tensor shape is (S1, ..., SN) (i.e. the tensor function is in RS1×...×SN) then the

tensor valued basis is

ϕiα1...αN
= ϕ̂ieα1 ⊗ ...⊗ eαN

(3.8.9)

where {eα1}S1
α1=1 are the standard basis vectors of RS1 and {eαN

}SN
αN=1 are the standard basis

vectors of RSN .

It is now necessary to introduce the concepts of index_shape and value_shape which are

properties of GEM tensors:

• index_shape is a tuple that describes the total number of the basis functions, allowing

efficient iteration over them.

• value_shape is a tuple that describes the shape of the basis functions, irrespective of

how many there are.

For a scalar basis like that in equation 3.7.1, the index_shape is stored as a tuple with one

entry:

(extent(i),). (3.8.10)

The value_shape in that case would be an empty tuple:

(). (3.8.11)

In equation 3.8.1 there are extent(i) × S1 × ... × SN basis functions. To allow iteration over

these the index_shape is stored as

(extent(i), S1, ..., SN). (3.8.12)

55

The value_shape meanwhile are the extra dimensions which are added to each base element

by the basis vectors which is stored as

(extent(α1), ..., extent(αN)) = (S1, ..., SN). (3.8.13)

In certain cases, for example with Raviert Thomas elements, the final base element is in-

trinsically non-scalar valued. Where we construct a tensor finite element from these we still

perform an outer product with basis vectors as in equation 3.8.1 but find that the value_shape,

which always reflects the shape of the basis functions (irrespective of how many there are), is

not a subset of the index_shape, which always reflects the total number of basis functions.

Tensor finite elements can also be made from other tensor finite elements. Where we

have some pre-existing value_shape (B1, ..., BN̂) the introduced tensor shape is appended

as (B1, ..., BN̂ , S1, ..., SN) to give the final value_shape. Here we will stick to the scalar base

element case for simplicity.

In general an index_shape has structure: it is a tuple rather than a number. This allows

efficient iteration over the tensor structure through a performance optimisation known as delta

elimination which is described later in the section. However, because of this structure, the gen-

eral dual evaluation expression given in equation 3.8.1 does not apply here and is implemented

in a separate method for tensor finite elements.

As an aside which aids the comprehension of the vector example later, we note that the

scalar components of the basis functions in 3.8.1 can be expressed with Kronecker deltas

[ϕiα1...αN
]γ1...γN = δγ1α1 ...δγNαN

ϕ̂i (3.8.14)

where indices have been introduced for each tensor dimension: 1 ≤ γ1 ≤ S1 to 1 ≤ γN ≤ SN .

Square brackets for the indexing operation have been included to help differentiate

between the indices of the tensor valued basis functions (where index_shape is

(extent(i), extent(α1), ..., extent(αN))) and the indexing into the tensors themselves along each

axis ([·]γ1...γN).
Returning to the main analysis, a tensor valued expression on a tensor finite element f(x)

has scalar components given by

fα1...αN
(x) =

∑
β1,...,βN

δα1β1 ...δαNβN
fβ1...βN

(x). (3.8.15)

Dual evaluation of f(x) is then

ϕ∗
iα1...αN

(;f(x)) = ϕ̂∗
i (; fα1...αN

(x))

=
∑

β1,...,βN

ϕ̂∗
i (; δα1β1 ...δαNβN

fβ1...βN
(x)) (3.8.16)

56

which implies that the general dual evaluation expression for FInAT tensor finite elements is

ϕ∗
iα1...αN

(;f) =
∑

j,k,l,...,β1,...,βN

Q̂ijkl...δα1β1 ...δαNβN
fβ1...βN

(xjkl...)

=
∑
j,k,l,...

Q̂ijkl...fα1...αN
(xjkl...)

(3.8.17)

where Q̂ is the dual evaluation tensor advertised by the base element.

The advertised Q is the tensor product of the base Q̂ with, first, an S1×S1 identity matrix

represented by the δα1β1 , all the way to an SN × SN identity matrix represented by the δαNβN
:

Qijkl...α1β1...αNβN
= Q̂ijkl...δα1β1 ...δαNβN

(3.8.18)

Q = Q̂⊗ IS1×S1 ⊗ ...⊗ ISN×SN
. (3.8.19)

This Q can only be used with equation 3.8.17, not 3.8.1. The Kronecker deltas simply raise

the rank of Q̂ as appropriate for contraction with the indexed f so that it can be correctly

advertised as the dual_basis. Thankfully, since they are symbolic, they can be eliminated

before compiling the GEM code to simplify the contraction to that which is given in the second

equality of equation 3.8.17, i.e. that the base element dual basis applied to to the correct

components of f gives tensor element dual evaluation.

Vector Example

To give a concrete example, in the vector case we have shape (S1,)

ϕiα1 = ϕ̂ieα1 (3.8.20)

with scalar components given by

[ϕiα1]γ1 = eγ1 · ϕiα1 = eγ1 · ϕ̂ieα1 = δγ1α1ϕ̂i (3.8.21)

i.e. there are extent(i) × S1 basis functions: each scalar function in extent(i) is replicated for

each spatial dimension in S1. Note that the three greek letter indices here α1, β1 and γ1 all

have extent S1.

A vector valued expression f(x) has scalar components

fα1(x) =
∑
β1

δα1β1fβ1(x) (= eα1 · f(x)). (3.8.22)

57

Dual evaluation of this is given by

ϕ∗
iα1

(;f(x)) = ϕ̂∗
i (; fα1(x))

=
∑
β1

ϕ̂∗
i (; δα1β1fβ1(x))

(3.8.23)

which implies the general dual evaluation expression for FInAT tensor finite elements with

vector shape:

ϕ∗
iα1

(;f) =
∑

j,k,l,...,β1

Q̂ijkl...δα1β1fβ1(xjkl...)

=
∑
j,k,l,...

fα1(xjkl...).
(3.8.24)

The advertised Q can be seen to be the tensor product of the base Q̂ with an S1 × S1

identity matrix represented by the δα1β1 :

Qijkl...α1β1 = Q̂ijkl...δα1β1 (3.8.25)

Q = Q̂⊗ IS1×S1 . (3.8.26)

As before, this Q can only be used with equation 3.8.17 or 3.8.24, not 3.8.1. Note that we can

also now write out the biorthogonality of the primal and dual spaces:

ϕ∗
iγ1
(;ϕkα1) = ϕ̂∗

i (; [ϕkα1]γ1) = ϕ̂∗
i ; (δγ1α1ϕ̂k) = δγ1α1ϕ̂

∗
i (; ϕ̂k) = δγ1α1δik. (3.8.27)

3.8.2 Tensor Product Finite Elements

FInAT element tabulations, expressed in GEM, can be composed as the tensor product of lower

rank elements, the typical example being elements on a quadrilateral as the outer product of

two appropriately defined elements on intervals (see figure 3.2).

The GEM compiler and optimisation routines are able to recognise tensor product structure

and perform relevant optimisations such as sum-factorisation on the resultant kernels: the loop

nests that the tensor contractions give have certain operations lifted from inner to outer loops

minimising FLOPs. [14] To illustrate this consider the tensor contraction

[E]il = [ABC]il =
∑
j

∑
k

AijBjkCkl (3.8.28)

which requires contraction loops over j and k for each i and l. Naively the indexed multiplication

operation involving all 3 tensors would be done in the innermost loop

extent(i)× extent(l)× extent(j)× extent(k) (3.8.29)

58

=×

𝜙!

𝜙"

𝜙# 𝜙! 𝜙" 𝜙#

𝜙!! 𝜙!" 𝜙!#

𝜙"! 𝜙"" 𝜙"#

𝜙#! 𝜙#" 𝜙##

Figure 3.2: A quadrilateral element can be composed from the tensor product of two interval
elements. Here the interval elements have 2nd order Lagrange point evaluation nodes as shown
in figure 3.1). The extended dual basis is equation 3.2.23. The resulting element is a quadri-
lateral with 2nd order Lagrange point evaluation nodes.

times in total (see algorithm 1) which scales as

O(p2d) (3.8.30)

for tensor depth p and number of contraction indices d.

Algorithm 1 The naive contraction [E]il =
∑

j

∑
k AijBjkCkl.

1: for all i do
2: for all l do
3: Eil ← 0
4: for all j do
5: for all k do
6: Eil ← Eil + Aij ×Bjk × Ckl

7: end for
8: end for
9: end for
10: end for

A is not involved in the contraction along k so the result of this can be stored in a temporary

variable

[D]jl =
∑
k

BjkCkl (3.8.31)

which requires

extent(j)× extent(l)× extent(k) (3.8.32)

59

indexed multiplication operations. All that remains is to contract A with D

[E]il = [ABC]il =
∑
j

Aij

(∑
k

BjkCkl

)
=
∑
j

AijDjl (3.8.33)

which requires a further

extent(i)× extent(l)× extent(j) (3.8.34)

indexed multiplication operations. The total number of indexed multiplication operations is

then reduced to

extent(j)× extent(l)× extent(k) + extent(i)× extent(l)× extent(j) (3.8.35)

at the expense of needing to store D (see algorithm 2) which scales as

O(pd+1) (3.8.36)

for tensor depth p and number of contraction indices d. It is this ‘lifting out’ or ‘factoring

Algorithm 2 The sum-factorised contraction [E]il =
∑

j

∑
k AijBjkCkl =

∑
j AijDjl.

1: for all j do
2: for all l do
3: Djl ← 0
4: for all k do
5: Djl = Djl +Bjk × Ckl

6: end for
7: end for
8: end for
9: for all i do
10: for all l do
11: Eil ← 0
12: for all j do
13: Eil ← Eil + Aij ×Djl

14: end for
15: end for
16: end for

out’ of the unique sums into temporary variables which is referred to as sum-factorisation of a

tensor contraction.

In general sum-factorisation can be applied to any tensor contraction loops where indices

only repeat in particular terms of a larger contraction: a temporary variable is created and the

relevant summation is lifted out of the inner loop.

Consider an element with a tensor product structure which is built from lower rank elements

of the same shape (the factors). The dual evaluations of the factors (from equation 3.8.1) are

60

given by

ϕ∗1
i1
(;f) = Q1

i1j1kl...β1...βN
fβ1...βN

(x1j1kl...) (3.8.37)

and

ϕ∗2
i2
(;f) = Q2

i2j2kl...β1...βN
fβ1...βN

(x2j2kl...). (3.8.38)

Since we have a tensor product structure, the basis and dual basis are indexed by their factors

ϕ∗
i (f) = ϕ∗

i1i2
(f). (3.8.39)

Similarly, points sets on the tensor product element x are indexed from the factors

xj1j2kl... = x1j1kl...x
2
j2kl...

(3.8.40)

and are stored as FInAT TensorPointSets constructed directly from the x1 and x2. The dual

evaluation expression implied by equation 3.8.1 therefore has the form

ϕ∗
i1i2

(;f) = Qi1i2j1j2kl...β1...βN
fβ1...βN

(xj1j2kl...) (3.8.41)

where we observe that Q is the tensor product of Q1 and Q2 from the factors

Qi1i2j1j2kl... = Q1
i1j1kl...β1...βN

Q2
i2j2kl...β1...βN

(3.8.42)

Q = Q1 ⊗Q2. (3.8.43)

The full dual evaluation expression is then

ϕ∗
i1i2

(;f) = Q1
i1j1kl...β1...βN

Q2
i2j2kl...β1...βN

fβ1...βN
(x1j1kl...x

2
j2kl...

). (3.8.44)

Since there are unique contraction indices i1 and j1 in Q
1 and x1, as well as i2 and j2 in Q

2 and

x2, sum-factorisation can be applied to this contraction similarly to in equation 3.8.33.

Note that each point set and expression tensor could already have been composed as prod-

ucts of factors: the number of indices in the contraction simply increases in this case. The

expression f which is dual evaluated may also have some tensor-product structure (i.e. be

composed as fγδ = f 1
γf

2
δ) which allows further sum-factorisation speed-ups.

Because this is all expressed in GEM, dual evaluations expressed in this way can have

their resultant expression kernels optimised by TSFC as usual to improve performance. The

result is a drastic improvement in element-local kernel FLOP count which, given a polynomial

degree p (which is proportional to the maximum extent of Q) and spatial dimension d (which

is proportional to the number of contraction indices), scales as O(pd+1) rather than O(p2d)
because of the ability to apply sum-factorisation to the Q and x contractions. A test has been

61

added to TSFC which ensures that this is the case10.

3.8.3 Future Improvements

At present Q is a dense tensor but, as the example in 3.8.5 demonstrates, it is generally sparse

even after delta elimination. Additional performance enhancements can therefore be reaped

by skipping the zero multiplications in the contraction: this will require a new node in GEM’s

Abstract Syntax Tree such as GEM.SparseLiteral for tensors like Q and a new contraction

node such as GEM.SparseContraction for the contraction with a second dense tensor (general

sparse-sparse contraction is much more difficult to build loops for than sparse-dense contraction

and is not necessary here).

The Q tensor has been implemented for most cases where there is a well-defined dual

evaluation operation. It has not yet been implemented for so-called enriched elements : given

two elements with local basis functions {ϕi}ki=0 and {ϕj}lj=0, the enriched element created from

them has a basis

{ϕi}ki=0 ∪ {ϕj}lj=0 (3.8.45)

For dual evaluation to produce something sensible with such elements, we need the opposing

sets of basis and dual basis functions to be orthogonal to one another to avoid unexpected cross

terms in the interpolation:

ϕ∗
i (;ψj) = 0 and (3.8.46)

ψ∗
i (;ϕj) = 0 ∀ i, j. (3.8.47)

This will only be true in special cases.

Firedrake uses enriched elements to define H(div) and H(curl) elements on quadrilaterals

and hexahedra (for example ‘Raviart–Thomas cubical H(curl)’ and ‘Raviert Thomas Cubical

H(div)’11). These are, respectively, spaces where the normal or tangent components of a vector-

valued function are continuous along cell edges. This is often a requirement for functions with

conservation requirements and are often used for modelling fluids. The reasoning is laid out

in McRae et al. [45]. In this case the sets of basis functions are orthogonal to each other so it

makes sense to define it.

This will likely involve concatenating the Q tensors of the underlying elements along an

appropriate axis, though this has not been investigated fully. Such a concatenation would also

imply some ordering of the union - this would have to be explicitly checked against the element

definitions. For triangular and tetrahedral meshes, H(div) and H(curl) conforming elements

are not instances of Enriched Element in Firedrake and do have a Q tensor defined. For more

10See https://github.com/firedrakeproject/tsfc/blob/351994d0ba192b4cb53692ca98d552f9859b5283/
tests/test_interpolation_factorisation.py. Note this test was written by Lawrence Mitchell.

11see the quadrilateral variants at https://defelement.com/elements/nedelec1.html and https://

defelement.com/elements/qdiv.html respectively

62

https://github.com/firedrakeproject/tsfc/blob/351994d0ba192b4cb53692ca98d552f9859b5283/tests/test_interpolation_factorisation.py
https://github.com/firedrakeproject/tsfc/blob/351994d0ba192b4cb53692ca98d552f9859b5283/tests/test_interpolation_factorisation.py
https://defelement.com/elements/nedelec1.html
https://defelement.com/elements/qdiv.html
https://defelement.com/elements/qdiv.html

on Enriched Elements and H(div) and H(curl) spaces see McRae et al. [45]

63

Chapter 4

A New Abstraction for Point

Evaluation: Interpolation onto

Vertex-Only Meshes

64

This chapter adapts and reuses, without further attribution, text and diagrams from Nixon-

Hill et al. [3] which were created by the author.

4.1 Motivation

Point data are sets of values which are defined at particular locations in space, possibly over

some period of time. These are found everywhere. Take the example of geosciences: The air

temperature at a weather station, ice sheet elevation measurements from satellite altimetry and

ocean salinity and temperature from drifting buoys are all examples of point data that may be

measured from or assimilated into a geoscientific model. Models themselves contain point data.

Since finite element functions are defined everywhere, we can request a value of the function

anywhere we like. These can be used in PDEs or for coupling models together.

Point data manipulations are conspicuously absent from UFL: there is no operation which

takes a UFL expression, such as a Function1 on some mesh, and returns a UFL expression

which is equivalent to the point evaluation of that expression. If there were, we could create

expressions involving points (Dirac deltas for example). Prior to this work, such terms were

typically approximated in Firedrake as narrow Gaussians (so-called ‘bump functions’).

The assimilation of point data into PDE models in Firedrake is a good example: UFL and

Firedrake operations can be taped with the automated adjoint generation tool pyadjoint [46]

which is integrated with Firedrake. If UFL has point data as part of its type system, such

problems can be solved. For more on these see chapters 5 and 6. The addition of point data

to UFL is therefore useful for Firedrake (and is a much requested feature) and adds a concept

necessary to define any statistics which have no spatial extent.

Whilst there are perhaps many ways that point data could be introduced to UFL, ideally

we would come up with a formulation which is sufficiently general and abstract that it can be

applied to other finite element libraries. This would make this work significantly more useful.

Point evaluation in Firedrake was, prior to this work, limited to point wise data output of

Firedrake Functions via a simple Function.at method which reports the value of the function

at the specified point(s). As well as not returning a UFL expression, this has many problems.

It bypasses Firedrake’s code generation pathway (typically accessed by compiling or assembling

UFL forms), it does not work well in parallel (the same point must be specified on all MPI

processes and, if there’s a disagreement about which cell owns the point, the method will fail),

and does not provide exact solutions for all finite elements.

1Function is a subclass of UFL Coefficient, it represents finite element function data in the Firedrake
ecosystem

65

4.2 Existing Work

No fully generalisable approach for interacting with point data exists in current finite element

libraries to the author’s knowledge.

Libraries which do not tie themselves to a mathematical framework like UFL are able to deal

with point data by hard coding point evaluations and point forcing terms. For example, deal.II

[33] contains functionality for dealing with point sources via a create_point_source_vector

function, and it has a particles class for dealing with large numbers of points. MFEM [31,

32] has a DeltaCoefficient type for representing Dirac deltas. Linking these together, and

integrating them with the rest of the library, is left to the user.

Legacy FEniCS [17] and its rewrite FEniCSx, by far the most similar libraries to Firedrake,

are bound to UFL and therefore have no symbolic way of dealing with point data. Point

evaluation must be done manually using low level cell-search methods which are not inherantly

parallel safe (see discussion in Sect. 7.5).

DUNE-PDELab [41] and DUNE-fem [18] do not have any documented ability to interact

with point data outside of low-level basis-function point evaluation routines. MOOSE [25] has

a PointValueSampler class for sampling points and application-specific point source and sink

terms that can be inserted into compatible PDEs2. Elmer-FEM [23] has no documented point

evaluation capability but does provide PDE specific point source and sink terms. Finch [20],

FREEFEM [21], and GOMA [24] have no documented capability at all.

Where point data interaction are not available, one is forced to make approximations such

as the ‘bump functions’ mentioned in the previous section or an extrapolation of a sampled

field to the whole domain. The consequences of such approximations are discussed in chapter

6.

More approaches to dealing with point data are discussed in chapter 7, for example in Sect.

7.3.

4.3 Point data as finite element functions

We can integrate point data with the paradigm of finite element functions being members of

finite element function spaces defined over meshes (see Sect. 1.2) by looking carefully at what

we mean by point data. Point data can be separated into two parts: (a) the locations {Xi} of
the N data points at a given time (a point cloud) and (b) the N values {yi(Xi)}N−1

i=0 associated

with the point cloud (see Fig. 4.1). Finite element functions have a similar distinction: (a)

the discretised shape of the domain of interest (the mesh Ω) and (b) the values associated with

that mesh (the weights applied to the basis functions).

Applying the finite element distinction to the locations of the data (a) suggests a ‘point

2see https://mooseframework.inl.gov/modules/porous_flow/sinks.html

66

https://mooseframework.inl.gov/modules/porous_flow/sinks.html

1.2
61.6

-5.0
or

x

y

{𝑋!}

𝑦!

Figure 4.1: Point data consist of (a) a set of N spatial coordinates {Xi}N−1
i=0 (a ‘point cloud’)

and (b) the scalar, vector or (not shown) tensor values {yi(Xi)}N−1
i=0 at those coordinates.

Maintaining this distinction is key when trying to form a rigorous way of handling point data
for any numerical method, such as the finite element method, which separates the idea of
domain and values on the domain.

cloud mesh’ formed of N disconnected vertices at each location Xi:

Ωv = {Xi}N−1
i=0 . (4.3.1)

We refer to this as a ‘vertex-only mesh’. This is an unusual mesh: a vertex has no extent

(it is topologically zero dimensional) but exists at each location Xi in a space of geometric

dimension dim(Xi). Fortunately meshes with topological dimension less than their geometric

dimension are not unusual: 2D meshes of the surface of a sphere in 3D space are commonly used

to represent the surface of the earth. Such domains are typically called ‘immersed manifolds’.

Disconnected meshes are also not unheard of: the software responsible merely needs to be able

to iterate over all the cells of the mesh. In this case each cell is a vertex Xi. We can therefore

legitimately construct such a mesh.

We now need to consider the values {yi(Xi)}N−1
i=0 (b). Only one value, be it scalar, vector

or tensor, can be given to each cell (i.e. each point or vertex). Fortunately a finite element

function space for this case exists: the space of zero order discontinuous Lagrange polynomials

y ∈ P0DG(Ωv) (4.3.2)

where P0DG stands for Polynomial degree 0 Discontinuous Galerkin.3 Here y is a single dis-

continuous function which contains all of our point data values at all of our point locations

(mesh vertices)

y(x) =

y(Xi) if x = Xi,

undefined elsewhere.
(4.3.3)

3For more on why this function space was deemed appropriate, see Appendix A.1.1, specifically ‘Notes on
the Choice of Function Space and Integration Behaviour’.

67

Integrating this over our vertex-only mesh Ωv gives

∫
Ωv

y(x)dx =
N−1∑
i=0

y(Xi) ∀ y ∈ P0DG(Ωv) (4.3.4)

where dx is a sum of Dirac measures dδXi
at each vertex Xi (a discrete measure with unity

weightings).4 A fuller analysis of vertex-only meshes and functions on them can be found in

the appendix to this chapter (Sect. A.1.1).

This definition lets us directly reason about point data in finite element language and yield

useful results. Recall that, in the finite element method, we approximate fields on domains

with finite element functions (Sect. 1.2). So long as the locations of our vertices Xi of our

vertex-only mesh Ωv are within the domain of our ‘parent’ mesh

Ωv ⊆ Ω (4.3.5)

then we can go from some function u in some finite element function space defined on our

parent mesh

u ∈ FS(Ω) (4.3.6)

to one defined on our vertex-only mesh

uv ∈ P0DG(Ωv) (4.3.7)

by performing point evaluations at each vertex location u(Xi) ∀ i.

The operator for this can be formulated as dual evaluation interpolation into P0DG, i.e.

IP0DG(Ωv) : FS(Ω)→ P0DG(Ωv) (4.3.8)

such that

IP0DG(Ωv)(;u) = uv. (4.3.9)

This operator is linear in u which we denote by a semicolon before the argument. The con-

struction of this operator is described in the next section.

4.4 Point evaluation as dual evaluation interpolation

For uv = IP0DG(Ωv)(;u) where u(x) ∈ FS(Ω) we require, at each vertex cell Xi of our vertex-

only mesh Ωv, the point evaluation u(Xi). The global dual bases for global interpolation (Eq.

4This measure is also discussed further in Appendix A.1.1, ‘Notes on the Choice of Function Space and
Integration Behaviour’.

68

𝑥!

𝑥"

Global	Ω# ⊂ Ω Local	Ω	Cell	𝒦&

0 1
0

1𝑋!

𝑋*!

𝑥+!

𝑥+"

𝑋"

𝑋*"

𝑥!

𝑥"

Global	Ω# Local	Ω#	Cell	𝒦

0 1
0

1𝑋!

𝑋, (Fixed)
𝑥-!

𝑥-"

𝑋"

𝑋, = 𝒦𝜙$ 𝑥 ∈ P0DG(Ω#)

𝜓,$ 𝑋*$ = 1

𝜙$∗ ∈ P0DG(Ω#)∗ 𝜙,∗ = 𝒩
𝜙,(𝑥-) ∈ 𝒫

𝜙6$∗(𝑥) = 𝑢(𝑋$)
where	𝑥 = 𝑋$

𝑢 ∈ FS(Ω)
𝑢+ ∈ 	𝒫*(𝒦&)

Variable	𝑋,$
𝜓,$∗ 𝑢+ = 𝑢+ 𝑋*$
where	𝑥+ = 𝑋*$

(a) (b)

(c) (d)

Figure 4.2: A summary of where the various functions and functionals described in this section
are defined. (a) is the globally defined vertex-only mesh, upon basis functions ϕi and dual basis
functions ϕ∗

i are defined. In the scalar case there is one for each vertex. (b) is the local cell of
the vertex-only mesh K with a fixed local vertex X̃ and, in the scalar case, a single local basis
function ϕ̃ and functional ϕ̃∗ from which the global function space P0DG(Ωv) is built. In (c)
we introduce a parent mesh Ω with some function u ∈ FS(Ω) that we want to point evaluate at
each vertex. The global dual bases for global interpolation ϕ̄∗

i which perform this for each vertex
Xi, giving the coefficients to ϕi, ought to be able to operate on u. Rather than attempting to
calculate this on the reference cell of the vertex-only mesh, we do so on the reference cell of
the parent mesh K̂. (d) shows this reference cell where the local function û is defined: here P̂
is the local function space defined on K̂. We introduce new basis functions ψ̃i and dual basis
functionals ψ̃i

∗
each defined by a newly varying X̂i in K̂ , where the functional performs the

point evaluation. When the coordinate transform back to global space (c) is performed, each
of these corresponds to ϕ̄∗

i .

69

3.2.15) are then

ϕ̄∗
i (;u) = u(Xi) (4.4.1)

= δXi
(;u) (4.4.2)

where δXi
is the Dirac delta functional (as opposed to the Dirac delta that is placed inside an

integrand which often appears in physics contexts) that produces the evaluation of u at Xi.
5

Looking at the local definition of interpolation (Eq. 3.2.2) we require, for each Xi, a single

local dual basis functional (k = 1 in Eq. 3.2.2) to perform the point evaluation at each vertex

cell using a fixed reference cell. This would have us transforming u on a particular vertex cell

to some ũ on our reference vertex such that our local dual basis functional is

ϕ̃∗(; ũ) = ũ(X̃) (4.4.5)

This is the single dual basis functional that can be used in the Ciarlet triple formulation [34]

of the P0DG function space on a vertex-only mesh:

(K,P ,N) (4.4.6)

where K = X̃ is a reference vertex and we have one node N = ϕ̃∗ which is the single dual basis

functional to P∗, the dual to our local function space P . This gives a local basis function of P6

ϕ̃(x̃) =

1 where x̃ = X̃,

0 otherwise.7
(4.4.8)

The Ciarlet definition of the finite element P0DG(Ωv) is derived step-by-step in the appendix,

Sect. A.1.1.

5For vector or tensor valued function spaces u ∈ RS1×...×SN we follow the notation of chapter 3 Sect. 3.7
where {eα1}S1

α1=1 are the standard basis vectors of RS1 and {eαN }SN
αN=1 are the standard basis vectors of RSN .

Here we have dual basis functions for each for each dimension

ϕ∗iα1...αN
(;u) = u(Xi) · eα1 ⊗ ...⊗ eαN (4.4.3)

= δXi(;u) · eα1 ⊗ ...⊗ eαN . (4.4.4)

6For vector or tensor valued function spaces, we have a local basis function for each local Cartesian basis
vector or tensor respectively

ϕ̃α1...αN (x̃) =

{
ẽα1 ⊗ ...⊗ ẽαN where x̃ = X̃,

0 otherwise.
(4.4.7)

7This second case is never realised since ϕ̃ only takes on a value at the reference vertex X̃, but it follows from
the definition of ϕ̃∗ via the Ciarlet triple formulation and allows us to build up global basis functions which
have more than one vertex.

70

We can equivalently let the reference vertex, and therefore our functionals, vary for each Xi

ψ̃∗
i (; û) = û(X̂i) (4.4.9)

where û is our locally defined function on the reference cell of our parent mesh Ω and x̂ are the

reference coordinates in that cell. Now for each vertex Xi in Ωv, X̂i is its equivalent location

in the reference cell of the parent mesh Ω. This gives us a local basis function

ψ̃i(x̂) =

1 where x̂ = X̂i,

0 otherwise.
(4.4.10)

This is equivalent to ϕ̃(x̃) since, after transforming back to global coordinates, they both equal 1

at Xi.
8 Figure 4.2 is a summary diagram showing where these various functions and functionals

are defined.

The global dual evaluation interpolation operator then requires the following for each vertex

cell Xi in our vertex-only mesh Ωv:

1. finding the cell of the parent mesh Ω that Xi resides in,

2. finding the equivalent reference coordinate X̂i in that cell,

3. transforming our function u to the parent mesh reference cell giving û,

4. performing the point evaluation û(X̂i) and

5. transforming the result back to global coordinates giving u(Xi).

This formalises the process of point evaluation with everything remaining a finite element

function defined on a mesh. These functions can have concrete values or be symbolic unknowns.

If the symbolic unknown is a point, we can now express that in the language of finite elements.

For example

∫
Ωv

IP0DG(Ωv)(; f(x))dx =
N−1∑
i=0

f(xi) =
N−1∑
i=0

∫
Ω

f(x)δ(x− xi)dx. (4.4.11)

Given the discussion in chapter 6, note here that what we call an ‘interpolation’ operation

is exact and, excepting finite element function spaces with discontinuities, unique: we get

the value of u at the points {Xi} on the new mesh Ωv. We are able to perform this exact

interpolation because u is a function which has a value everywhere.

Note that by picking a reference point X̂i in a unique cell for each Xi we allow interpolation

from discontinuous Galerkin finite element function spaces, even though point evaluation is not

well defined on the cell boundaries (the nature of the method implies that a function value

8The vector/tensor case is similarly equivalent.

71

in one cell at the boundary will be different to the value on the adjoining cell). Those who

use such spaces will probably still want to be able to point evaluate so point evaluation is still

allowed: points exactly at cell boundaries are chosen to belong in one the cells they border.9

4.5 Firedrake implementation

4.5.1 Vertex-only mesh

Prior to this work, all meshes in Firedrake required an underlying PETSc [9, 10] DMPlex

to represent the topology of the mesh as detailed in Lange et al. [47]. DMPlex is a data

management structure for representing unstructured grids and meshes: the connectivity of

vertices, lines, planes and volumes are represented as a Directed Acyclic Graph (DAG).

Since we have no connectivity to consider we can instead use PETSc’s implementation of

point clouds, the DMSwarm data structure, to represent the mesh topology. DMSwarm and

DMPlex are both subclasses of an abstract DM class for representing grids and meshes: this

lets us swap out DMPlex for DMSwarm and build data structures on top of it in exactly the

way Lange et al. describe10. Details of DMPlex, DMSwarm, and DM can be found in the

PETSc manual [10]. More details on the specific implementation here can be found in Sect.

A.1.2 in the appendix.

The Firedrake implementation is called VertexOnlyMesh which, at construction, takes a

list of coordinates and a ‘parent’ mesh to be immersed in. The coordinates are stored on the

DMSwarm in a ‘field’ which associates each DMSwarm entity (topological vertex) with a piece

of data. The DMSwarm is also directly linked to the parent mesh DM using in-built PETSc

tools.

We then search for each coordinate within the parent mesh and identify the parent mesh

cell (step 1 in Sect. 4.4) alongside the reference coordinate X̂i in that cell (step 2). These are

also stored in DMSwarm ‘fields’ to associate them with each vertex. The cell search algorithm

is convered in detail in chapter 7 (Sect. 7.4).

The map from local coordinates x̂ to global coordinates x

x = G(x̂) (4.5.1)

9See the description of the cell location and voting algorithms in chapter 7 for how this is implemented in
Firedrake.

10Whilst the swap of DMPlex for DMSwarm may not be strictly necessary, it aided the development of our
implementation thanks to special DMSwarm features such as the ability to associate itself with another DM. A
future reimplementation could perhaps swap DMSwarm back to DMPlex.

72

𝑥!

𝑥"

𝐺#"(𝑥)

𝐺(𝑥%)	

Global Local

0 1
0

1
𝑋$

𝑋*$

𝑥%!

𝑥%"

Figure 4.3: G and its inverse, G−1 map between local and global coordinate systems, respec-
tively. Here the map between a reference triangle, as used by Firedrake, and a triangle on a
mesh in global coordinates is shown with the corresponding point locations X̂i and Xi.

is known a-priori for a given mesh.11 We find the inverse

x̂ = G−1(x) (4.5.4)

for each Xi from G using Newton’s method with initial guess X̂0
i at the centre of the reference

cell.12 This was pre-existing Firedrake functionality. See Fig. 4.3 for an illustration.

DMSwarm natively supports embedding in a DMPlex so DMPlex’s cell numberings, which

differ from Firedrake’s, are similarly stored at this point in a pre-existing DMSwarm field.13 A

full list of all the fields stored on the DMSwarm can be found in the appendix to chapter 7

(Sect. A.3.2).

11The mesh coordinates are stored as a vector valued finite element function on the mesh such that

x =

dim(FS(Ω))−1∑
i=0

xiψi(x) (4.5.2)

where ψi are the vector valued basis functions and xi are global coordinate coefficients (‘locations’ of the basis
functions). Most meshes have the finite element function as degree 1 continuous polynomials FS(Ω) = P1CG(Ω)
in which case xi are the coordinates of the vertices of the mesh. The vertex-only mesh has its coordinate function
as a vector valued P0DG(Ωv) space - each xi here are also the vertex coordinates. Meshes without straight
edges can be represented with higher order coordinate functions: these are called high-order meshes. The global
basis functions are derived from a reference-cell-local basis ψ̃i ∈ P where P is our smaller reference-cell-local
function space. We weight these by our global coordinates to get the mapping

G(x̂) =

dim(P)−1∑
i=0

xiψ̃i(x̂) = x. (4.5.3)

12Where the transformation from global to reference coordinates is affine, as is often the case for non-high-
order meshes, this converges in one iteration.

13The two cell numberings do not have a one-to-one mapping in the case of extruded meshes [48], instead
both base mesh DMPlex cell and extrusion height are saved.

73

4.5.2 Making a finite element function space on a vertex-only mesh

The construction of a finite element function space, in Firedrake called a FunctionSpace,

proceeds exactly as shown in Fig. 2 of [47] but with DMPlex now a DMSwarm. Only minor

modifications had to be made to the Firedrake software stack to allow for creation of the

P0DG(Ωv) finite element function space. These generally involved making sure that a reference

cell which was a point would behave as expected since no use for this had previously been

considered. All other finite element function spaces are disallowed on a vertex-only mesh since

they require cells which have some extent.

Vector and tensor valued equivalents, needed to store point evaluations from vector or tensor

valued finite element function spaces on parent meshes, are created from the scalar P0DG(Ωv)

finite element function space. The reference FInAT element is a wrapper around the scalar

element, as described in Sect. 3.8.1, such that, at any given location x in the element, the

function is appropriately vector or tensor valued. The full finite element function space is built

up from the reference FInAT elements, so is also appropriately vector or tensor valued.

4.5.3 Point evaluation operation

Firedrake’s implementation of global dual evaluation interpolation was described in Sect. 3.4.1.

So long as the high level API of interpolation and its adjoint is maintained, it can be taped by

pyadjoint and can be used for PDE constrained optimisation problems such as data assimilation.

Up to this point, only dual evaluation interpolations between finite element function spaces on

the same mesh have been considered. Here we are interpolating across meshes: from the parent

mesh Ω to the vertex-only mesh Ωv.

PyOP2 can loop over mesh cells, but which mesh should it loop over? If it were to loop

over the parent mesh Ω, we would need to identify any vertices of vertex-only mesh Ωv inside

it, then perform the necessary dual evaluations in each case. Of course there will then be cases

where some cells of Ω contain no vertex cells of Ωv, leading to loops where no calculations

are performed. Conversely, where there are large numbers of vertex cells of Ωv in each cell of

Ω, it may make sense to gather all the vertex locations and have TSFC build a kernel which

can assign values to however many vertices of Ωv there are. Since we have already saved the

parent cell number and parent mesh reference cell location X̂i on each vertex Xi of Ωv, the

most straightforward option is to instead loop over its vertex cells.

Having made this decision, Firedrake needs to (a) construct a dual evaluation kernel, (b) as-

sign data from that kernel to the P0DG(Ωv) finite element function space and (c) appropriately

loop over the vertex-only mesh cells Xi.

For step (a), we use TSFC: as described Sect. 3.4.1 it is responsible for transforming to and

from reference cells but does not play a part in assigning data to or from global function spaces

(that is PyOP2’s role). The kernel therefore need not know about differing meshes: from its

point of view, the dual evaluation operation only involves the parent mesh: the target space

74

has a single local dual basis functional14

ψ̃∗
i (; û) = û(X̂i) (4.5.5)

(from Eq. 4.4.9) and the kernel it compiles will produce a value corresponding to that.

For step (c), equation 4.5.5 is executed for every point in the vertex-only mesh by PyOP2.

The implementation details of this are in the appendix, Sect. A.1.3.

Providing the correct FInAT element: runtime tabulation

Inside TSFC we need to supply an appropriate FInAT element for point evaluation on the

reference cell with the dual basis functional

ψ̃∗
i (; û) = û(X̂i) (4.5.6)

from Eq. 4.4.9. X̂i will vary for each reference cell. Specifying a new FInAT element for each

point Xi is not feasible: Our kernel needs to be generalisable to any X̂i we supply. We store X̂i

for every vertex-only mesh cell Xi, all we need then is for X̂i to be an argument to the kernel.

Evaluation of basis functions at an arbitrary point on a reference element is referred to as

‘runtime tabulation’. ‘Tabulation’ is the operation of evaluating local basis functions at one or

more points and ‘runtime’ implies that this is performed after the generation of the kernel (i.e.

the point is an argument supplied to the kernel). TSFC can automatically create kernels with

runtime specified arguments by creating GEM Variables that correspond to them (see Sect.

3.5).

FInAT and FIAT already have an element which performs arbitrary point evaluations on

the reference cell called a QuadratureElement. These are intended for experimentation with

arbitrary quadrature rules for integration: one supplies them with a quadrature rule which are

a set of weights wi and locations on the reference cell xi to sum. The dual basis of the element

are defined to be the evaluations at the points

ψ̃∗
i (; f̃) = f̃(xi).

15 (4.5.7)

For our purposes, we need a quadrature rule with a single point in the reference cell (the weight

is inconsequential) the location of which we specify at runtime. For details see the appendix,

Sect. A.1.4.

The kernel is then compiled in Firedrake as follows:

1. Identify if our interpolation target is P0DG(Ωv).

14or one for each tensor dimension
15The Q tensor for FInAT dual evaluation is identity in this case: see Eq. 3.8.7.

75

2. Change this to an equivalent QuadratureElement on the reference cell of the parent mesh

built from a FInAT quadrature rule with a single runtime-specified point. 16

3. Supply the quadrature element and the parent mesh (upon which the expression to in-

terpolate is found) to the TSFC dual evaluation kernel builder.

4. Receive a dual evaluation kernel which has a point on the reference cell to dual evaluate

at as an argument to the kernel.

This can be executed once for each Xi with X̂i as the point evaluate at.

4.6 Demonstration

0.0
0.2

0.4
0.6

0.8
1.0

x 0.0

0.2

0.4

0.6

0.8

1.0

y

0.000

0.005

0.010

0.015

0.020

0.025

Figure 4.4: 1000 samples at randomly generated coordinates of the solution to the Poisson
equation from Eq. 1.3.2, generated with the code in Listing 6.

Listing 6 demonstrates the new Firedrake functionality. The Poisson equation we solved

in Sect. 1.3 (Eq. 1.3.2, Listing 2 with forcing function17 and solution plotted in Fig. 1.3) is

sampled at a list of coordinates by creating a vertex-only mesh at those coordinates. A P0DG

finite element function space on the vertex-only mesh is created and the solution u to Poisson’s

equation interpolated onto it. A plot of the resulting function is shown in Fig. 4.4.

16If we are dual evaluation interpolating from a vector or tensor valued finite element function space we must
be dual evaluation interpolating into a vector or tensor valued finite element function space built from the
scalar P0DG(Ωv) space. These kinds of dual evaluation operations are described in Sect. 3.8.1. The equivalent
QuadratureElement in these cases is identically built from the scalar QuadratureElement which will perform
a scalar point evaluation for each dimension.

17Note: as for the previous example of solving Poisson’s equation (Listing 2) the random forcing term f here
is not mesh independent so adaptation of the example should be approached with caution.

76

1 from firedrake import *

2

3 def poisson_point_eval(coords):

4 """Solve Poisson's equation on a unit square for a random forcing term

5 with Firedrake and evaluate at a user-specified set of point coordinates.

6

7 Parameters

8 ----------

9 coords: numpy.ndarray

10 A point coordinates array of shape (N, 2) to evaluate the solution at.

11

12 Returns

13 -------

14 firedrake.function.Function

15 A finite element function containing the point evaluatations.

16 """

17 omega = UnitSquareMesh(20, 20)

18 P2CG = FunctionSpace(omega, family="CG", degree=2)

19 u = TrialFunction(P2CG)

20 v = TestFunction(P2CG)

21

22 # Random forcing Function with values in [1, 2].

23 f = RandomGenerator(PCG64(seed=0)).beta(P2CG, 1.0, 2.0)

24

25 a = inner(grad(u), grad(v)) * dx

26 L = f * v * dx

27 bc = DirichletBC(P2CG, 0, "on_boundary")

28 u_sol = Function(P2CG) # solution will be stored here

29 solve(a == L, u_sol, bc)

30

31 omega_v = VertexOnlyMesh(omega, coords)

32 P0DG = FunctionSpace(omega_v, "DG", 0)

33 return interpolate(u_sol, P0DG)

Listing 6: An example point evaluation in Firedrake: the last three lines are our new function-
ality. A plot of the output with 1000 randomly generated points is shown in Fig. 4.4.

Vertex-only meshes can be created in 1D, 2D and 3D meshes, semi-structured extruded

meshes [48], meshes with periodic boundary conditions, and immersed manifold meshes. All

cell types Firedrake supports (intervals, triangles, tetrahedra, quadrilaterals and hexahedra)

are supported. Extensive automated tests have been added to Firedrake which test DMSwarm

creation and vertex-only mesh creation in all of these mesh types, alongside various other tests

(behaviour at cell boundaries for example). At the time of writing, only high order meshes

cannot have vertex-only meshes immersed in them.18 The creation of P0DG finite element

18This would require changes to the bounding box algorithm, discussed in Sect. 7.4, with improvements
suggested in Sect. 7.8.

77

function spaces on vertex-only meshes are extensively tested to make sure they behave as

expected when compared to other Firedrake finite element function spaces.

Other than finite element function spaces which cannot, at present, be dual evaluated using

FInAT (notably enriched elements - see Sect. 3.8.3), all are supported.

4.6.1 Solving a Point Forced PDE

1 from firedrake import *

2 import numpy as np

3

4 omega = UnitSquareMesh(20, 20)

5 U = FunctionSpace(omega, "CG", 1)

6

7 forcing_coords = np.asarray([[0.5, 0.25], [0.5, 0.75], [0.25, 0.5], [0.75, 0.5]])

8 omega_v = VertexOnlyMesh(omega, forcing_coords)

9

10 # Create the RHS point forcing cofunction

11 P0DG = FunctionSpace(omega_v, "DG", 0)

12 x, y = SpatialCoordinate(omega_v)

13 f_v = Function(P0DG).interpolate(x * y)

14 v_v = TestFunction(P0DG)

15 L_v = assemble(f_v * v_v * dx)

16 L = Cofunction(U.dual())

17 I = Interpolator(TestFunction(U), P0DG)

18 I.interpolate(L_v, output=L, transpose=True)

19

20 # LHS Bilinear form

21 u = TrialFunction(U)

22 v = TestFunction(U)

23 a = inner(grad(u), grad(v)) * dx

24

25 bc = DirichletBC(U, 0, "on_boundary")

26 u_sol = Function(U) # solution will be stored here

27 solve(a == L, u_sol, bc)

Listing 7: Code for solving the Poisson equation on a unit square with multiple point sources as
the right hand side (Eq. 4.6.16). The point sources are samples of f(x, y) = x×y of which there
are 4: f(0.5, 0.25) = 0.125, f(0.5, 0.75) = 0.375, f(0.25, 0.5) = 0.125 and f(0.75, 0.5) = 0.375.
The solution is shown in Fig. 4.5

The new abstraction ought to allow PDEs with Dirac deltas in as source and sink terms to

be solved. Consider the Poisson equation again

−∇2u = f (4.6.1)

this is a linear PDE, so we can express it in weak form as a linear variational problem “find

78

0.0
0.2

0.4
0.6

0.8
1.0

x 0.0

0.2

0.4

0.6

0.8

1.0

y

0.00

0.05

0.10

0.15

0.20

0.25

u

u(x,y)

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

y

u(x,y)

0.00

0.05

0.10

0.15

0.20

0.25

Figure 4.5: The solution to the Poisson equation for 4 points sources at (0.5, 0.25), (0.5, 0.75),
(0.25, 0.5) and (0.75, 0.5), sampled from f(x, y) = x× y created using the code in Listing 7.

u ∈ U such that ∫
Ω

∇u · ∇v dx =

∫
Ω

fv ∀ v ∈ U dx (4.6.2)

with boundary conditions u = 0 on the boundary”. The form of this is

a(;u, v) = L(; v) (4.6.3)

where a is a 2-linear form and L is a 1-linear form (a cofunction) in U∗.

Sometimes we need to solve a linear variational problem where the 1-linear form is con-

strained by some linear operator

L(; v) = L(;A(;u)) ∀u ∈ U (4.6.4)

where

A : U → V (4.6.5)

can be calculated for all test functions u ∈ U giving some v ∈ V . From the definition of an

operator adjoint (Eq. 2.1.2), recalling that L ∈ U∗, we have

L(; v) = L(;A(;u)) = A∗(;L)(;u) ∀u ∈ U. (4.6.6)

It is common, particularly in physics, to modify the right hand side forcing term with a

79

Dirac delta ∫
Ω

∇u · ∇v dx =
N−1∑
i=0

∫
Ω

f(x)v(x)δ(x−Xi) dx ∀ v ∈ U. (4.6.7)

This represents N samples at Xi of some continuous function f over the domain. This forcing

function only takes on values at the points: it can be rewritten in terms of functions on a

vertex-only mesh. Firstly

N−1∑
i=0

∫
Ω

f(x)δ(x−Xi) dx =

∫
Ωv

IP0DG(Ωv)(; f) dx =
N−1∑
i=0

f(Xi) ∈ K (4.6.8)

is a 0-linear form. We relabel

fv = IP0DG(Ωv)(; f) ∈ P0DG(Ωv) (4.6.9)

since we can evaluate the expression for f directly in P0DG(Ωv) on each vertex Xi of Ωv without

reference to the parent mesh:

fv(Xi) = f(Xi) (4.6.10)

Multiplying this by the test function vv ∈ P0DG(Ωv) gives us a 1-linear form (cofunction)

Lv ∈ P0DG(Ωv)
∗. (4.6.11)

where

Lv(; vv) =

∫
Ωv

fvvv dx ∀ vv ∈ P0DG(Ωv). (4.6.12)

To formulate the linear variational problem over the whole domain Ω, we need a 1-linear

form L ∈ U∗ which takes on the same values as Lv wherever the point evaluations of some

v ∈ U match the values of vv ∈ P0DG, i.e.

L(; v) = Lv

(
; IP0DG(Ωv)(; v)

)
∀ v ∈ V (4.6.13)

= I∗P0DG(Ωv)(;Lv)(; v) ∀ v ∈ V (4.6.14)

from Eq. 4.6.6. Here

I∗P0DG(Ωv) : P0DG(Ωv)
∗ → U∗. (4.6.15)

The forcing term is therefore

N−1∑
i=0

∫
Ω

f(x)v(x)δ(x−Xi) dx = I∗P0DG(Ωv)

(
;

∫
Ωv

fvvv dx

)
∈ U∗ (4.6.16)

which we solve ∀ vv ∈ P0DG(Ωv) thereby constraining the test functions v ∈ U for the rest

of the terms in the linear variational problem. The construction of the adjoint dual evaluation

interpolation operator from the interpolation matrix is described in chapter 5, Sect. 5.4.1.

80

Code for solving the Poisson equation with this right hand side is shown in Listing 7 and

the solution u in Fig. 4.5.

4.7 Future Work

The requirement of a parent mesh at vertex-only mesh construction is a limitation of the current

implementation. However, most19 conceivable use cases of vertex-only meshes require associa-

tion with another mesh. For example, point evaluations may be done more than once without

changing the list of coordinates. Since the search over parent mesh cells and identification of

coordinate locations within them is computationally expensive, we avoid computing this every

time by storing the information on the vertex-only mesh. Nevertheless, making this an optional

constructor argument and allowing the association of a VertexOnlyMesh with multiple meshes

is possible future work.

The choice to have PyOP2 loop over vertex-only mesh cells rather than parent mesh cells

may not be optimal for cases where we have large numbers of vertex-only mesh cells in each

cell of the parent mesh. The current implementation has TSFC transforming to and from the

parent mesh cell reference coordinates for each vertex. Looping over parent mesh cells could

reduce this overhead but would introduce additional complexity to the data structures and

would not be optimal for cases where we have a sparse vertex-only mesh. Any investigation of

this approach would require careful profiling of the TSFC kernels for each case.

The re-appropriation of QuadratureElement for runtime dual evaluation works for this

case, but somewhat hides its real use. For full generality a new element type could be created,

e.g. RuntimeElement, which would build a dual basis from (optionally) runtime-specified point

evaluation locations and weights to apply to those locations as in Eq. 3.7.2:

ϕ∗
i (; f) =

∑
j

wjf(xj). (4.7.1)

4.8 Summary of Contributions

I have developed a mathematical abstraction, vertex-only meshes and P0DG finite element

function spaces on them, that allow one to reason about point data in the finite element

method framework. I have defined an operation, dual-evaluation interpolation, which is the

point evaluation operation. This is made possible because finite element functions, which

approximate fields, have, with the exception of discontinuous Galerkin methods, well defined

values everywhere on a domain. To my knowledge, this is the first fully generalisable approach

for integrating point data and finite element methods.

By separating out the data from the spatial coordinates, I avoid making assumptions about

the use case. Whilst there are plenty of libraries that consider particles within a finite element

19but not all, see Sect. 7.6.3 for an example

81

method ecosystem (as I have identified), they are generally specialised towards particular use

cases such as particle tracing and particle-in-cell methods (for more on these see chapter 7, Sect.

7.3). Since my point evaluation operation is defined at a high level, it can be interacted with as

a mathematical operator without needing to worry about implementation. I have demonstrated

that this can be used to describe point source terms and implemented an example. As I will go

on to show, this will also allow me to differentiate the operator20, allowing not only interrogation

of point data in a finite element function, but also assimilation of that data.

I have implemented my abstractions in Firedrake: Vertex-only meshes are created in a

similar way to other Firedrake meshes, though use a special constructor to let them be associated

with another mesh and accept a set of coordinates and store their mesh topology in a PETSc

DMSwarm rather than a DMPlex (see Sect. 4.5.1).

I identified a straightforward algorithm for implementing the dual evaluation operation (see

Sect. 4.4) which ought to be applicable to other finite element libraries. I used this algorithm

in my implementation, making the necessary modifications to loop over vertex-only mesh cells

and retrieve the parent mesh cell and generate a kernel with TSFC using its runtime-tabulation

capability (see Sect. 4.5.3). To integrate with my FInAT dual evaluation capability, described

in chapter 3, I used the newly created FInAT UnknownPointSet with the pre-existing FInAT

QuadratureElement (see appendix A.1.4). The implementation has been extensively tested

and is now the recommended point evaluation API in Firedrake.

20see Sect. 5.5

82

Chapter 5

Applying Automatic Differentiation to

Interpolation

83

5.1 Introduction

Consider some arbitrary function F which maps some set of inputs to a set of outputs: If we

want to know how changing certain inputs affects the outputs we call that sensitivity analysis.

If F is some model of a phenomenon and we want to know which inputs give us a particular

set of outputs we call that solving an inverse problem or variational data assimilation. If we

want to change some parameters of F to correlate particular inputs and outputs we, amongst

other things, call this machine learning. Knowing the gradient of F - how much the outputs of

F changes given perturbations in its inputs - is useful when trying to solve all these problems.

Take for example an inverse problem: we have a so-called forward model of a phenomenon

we are interested in (F) and measurements of that phenomenon. For the sake of simplicity we

say that the outputs of F need to match our measurements. We set up an optimisation problem

where we minimise, for given inputs to our forward model, the difference between the model

outputs and the measurement. We call this a misfit function, misfit functional or objective

function depending on which field you work in:

min
inputs

misfit(inputs) = ∥F (inputs)−measurements∥2some norm (5.1.1)

:= min
x
J(x) = ∥F (x)− y∥2some norm. (5.1.2)

We could blindly change our parameters until we find the lowest value of our misfit - clever

ways of doing this are called Monte Carlo methods. Alternatively we note that the gradient of

the misfit is zero at a minimum
dJ

dx
= 0 (5.1.3)

and perform gradient based optimisation. In the simplest case, this means moving J(x) for

some x in the direction of steepest gradient until our gradient is zero. Since our measurements

y are fixed this means finding the gradient of F .

A field of research which has emerged for this purpose is Automatic or Algorithmic Differ-

entiation (AD). Typically this considers F as an algorithm or computer program, i.e.

F : Rn → Rm (5.1.4)

which is made up of a series of fundamental operations encapsulated in the code for that

program. Since we have a series of fundamental operations, AD makes the leap of seeing that

we can define F as a gigantic composition of functions

F = fp ◦ fp−1 ◦ ... ◦ f1 (5.1.5)

which we can then apply the chain rule to.

Here a comprehensive description of AD as it is applied to Firedrake using the dolfin-

84

adjoint/pyadjoint [46] tool will be given. This will start by introducing the key mathematical

concepts then describe how they can be used to build an AD tool appropriate for us. The aim

here is to allow us to apply this to the interpolation operator in Firedrake and to do so in a

way that gives us gradients quickly. An initial application of this work is found in chapter 6.

A summary of the contributions of this chapter can be found in section 5.6.

5.2 Gateaux Derivatives

Gradient based minimisation techniques require a way of computing the gradient of a function

or functional with respect to one or more of its parameters. Consider some arbitrary function

f which maps between function spaces U and V

f : U → V (5.2.1)

i.e.

f(u) ∈ V ∀u ∈ U. (5.2.2)

This is a function which operates on arbitrary functions u ∈ U (which we consider to be vectors)

to produce new functions in V . We need a way of expressing the derivative of f with respect

to u given some small perturbation in the vector function space U .

The Gateaux derivative, which is defined for all complete normed vector spaces, and there-

fore all finite element function spaces, is suitable for this and, following the notation used by

Schwedes et al. [29], is defined as the bounded linear map such that

dfu(u;u
′) = lim

ϵ→0

(
f(u+ ϵu′)− f(u)

ϵ

)
∀u′ ∈ U

(5.2.3)

where the subscript u indicates that the derivative is with respect to u. Our perturbation in

the U direction is the new argument u′ which dfu is necessarily linear in; the semicolon ‘;’

indicates this.1 All arguments to the left of ‘;’ are possibly nonlinear, whilst those to the right

are necessarily linear. dfu is therefore a map

dfu : U × U︸︷︷︸
linear

→ V, (5.2.4)

(where the second U necessarily linear) i.e.

dfu(u;u
′) ∈ V. (5.2.5)

1If, as the limit ϵ→ 0 is taken, one yields something which is not linear in u′, we say that the function f is
not Gateaux differentiable.

85

Much as Hilbert spaces generalise Euclidean vectors (u ∈ Rn or c ∈ Cn) and their associated

spaces (Rn and Cn) to include infinite dimensions and vectors which are functions, the Gateaux

derivative generalises the directional derivative to generic vectors (such as functions) with,

potentially, infinite dimensions. In the case where f is a scalar function applied to a vector, i.e.

f : Rn → R, (5.2.6)

the Gateaux derivative yields

dfu(u;u
′) = ∇f · u′ (5.2.7)

If, as we show in the appendix section A.2.1, we consider a vector function applied to a vector,

i.e.

f : Rn → Rm (5.2.8)

the Gateaux derivative yields a Jacobian matrix vector product

dfu(u;u
′) = Jf · u′. (5.2.9)

This pattern can be extended: returning to the case of f : V → U we can consider dfu as a

V × U sized infinite dimensional tensor operator applied to u′ ∈ U since dfu is linear in u′.

This gives a very useful alternative notation which we use to aid comprehension throughout

this chapter

dfu(u;u
′) :=

df

du

∣∣∣∣
u

· u′ (5.2.10)

where |u is shorthand for ‘evaluated at u’.

It is key to emphasise here that this is a derivative of a function f of functions u ∈ U : the
Gateaux derivative can be thought of as a formalisation of the so-called ‘functional derivative’

found in the calculus of variations that is used in physics and engineering for Lagrangian and

Hamiltonian mechanics.

If we have more than one argument we can also define a partial derivative. Given the (not

necessarily linear) map

g : U × U → V (5.2.11)

i.e.

g(u, µ) ∈ V ∀u, µ ∈ U (5.2.12)

we define

∂gu(u, µ;u
′) = lim

ϵ→0

(
g(u+ ϵu′, µ)− g(u, µ)

ϵ

)
∀u′ ∈ U

(5.2.13)

as the partial derivative with respect to u where u′ is a linear perturbation in the u direction.

86

Since we have 3 arguments, this is now a map

∂gu : U × U × U︸︷︷︸
linear

→ V (5.2.14)

(where the third U is necessarily linear) i.e.

∂gu(u, µ;u
′) ∈ V. (5.2.15)

As with equation 5.2.10, this can be expressed as

∂gu(u, µ;u
′) :=

∂g

∂u
· u′. (5.2.16)

We can understand the partial Gateaux derivative in finite dimensions by considering a

scalar function of a vector f as a scalar function of the scalar vector elements g

f : Rn → R ≡ g : R× R× ...× R︸ ︷︷ ︸
n times

→ R i.e. (5.2.17)

f(u) ≡ g(u0, ..., un−1) (5.2.18)

Now that we have a function of multiple variables we can take a partial derivative with respect

to one of them

∂gui
: R× R× ...× R︸ ︷︷ ︸

n times

× R︸︷︷︸
new!

→ R (5.2.19)

which recovers the usual definition of the partial derivative in vector calculus taken with respect

to a vector element ui (a scalar number), multiplied by the direction vector u′

∂gui
(u;u′) :=

∂g

∂ui

∣∣∣∣
u︸ ︷︷ ︸

≡ ∂f
∂ui

∣∣
u

·u′. (5.2.20)

5.2.1 Chain Rule

As with most derivatives we can define a chain rule. Consider the following

J : V → R i.e. J(v) ∈ R ∀ v ∈ V, (5.2.21)

f : U → V i.e. f(u) ∈ V ∀u ∈ U, (5.2.22)

J ◦ f : U → R i.e. J(f(u)) ∈ R ∀u ∈ U, (5.2.23)

87

where ‘◦’ is the composition operator hence it implying J being a function of f . We can think

of J ◦ f as the composition of two maps

J ◦ f : U →︸︷︷︸
f

V →︸︷︷︸
J

R. (5.2.24)

We want the derivative with respect to u

d[J ◦ f]u : U × U︸︷︷︸
linear

→ R i.e. d[J ◦ f]u(u;u′) ∈ R ∀u ∈ U. (5.2.25)

The chain rule here has us substituting in v = f |u ∈ V (see the composite map equation 5.2.24),

where |u is again shorthand for ‘evaluated at u’, to get

d[J ◦ f]u(u;u′) = dJv(v = f |u; v′ = dfu(u;u
′)) (5.2.26)

which, in the generic infinite-dimensional tensor notation of equation 5.2.10, is the familiar

expression
d[J ◦ f]

du

∣∣∣∣
u

· u′ = dJ

dv

∣∣∣∣
v=f |u

· df
du

∣∣∣∣
u

· u′︸ ︷︷ ︸
v′|v=f |u

. (5.2.27)

The idea of composite maps (equation 5.2.24) is highlighted here to show how the chain

rule has us dealing with the derivatives of each underlying map (i.e. function) separately. As

expressions get more complex, for example when trying to take the derivative of an entire

computer program as we will go on to discuss, we will see that we just need to employ the

chain rule.

For completeness, the generic expression for the chain rule, where we are dealing with multi-

variable functions, is given by the expression for the total derivative. To define this we introduce

a new multivariate functional J ′ which maps from V and a new function space X

J ′ : V ×X → R i.e. J ′(v, x) ∈ R ∀ v ∈ V, x ∈ X, (5.2.28)

f : U → V i.e. f(u) ∈ V ∀u ∈ U, (5.2.29)

g : U → X i.e. g(x) ∈ U ∀x ∈ X, (5.2.30)

J ′ ◦ (f, g) : U → R i.e. J ′(f(u), g(u)) ∈ R ∀u ∈ U, (5.2.31)

where J ′ ◦ (f, g) is used to express the composition of J ′ on the tuple of functions f and g. Our

composite map is

J ′ ◦ (f, g) : U →︸︷︷︸
(f,g)

(V,X) →︸︷︷︸
J ′

R. (5.2.32)

88

We want the total derivative with respect to u

d[J ′ ◦ (f, g)]u : U × U︸︷︷︸
linear

→ R i.e. d[J ′ ◦ (f, g)]u(u;u′) ∈ R (5.2.33)

that is given by

d[J ′ ◦ (f, g)]u(u;u′) = ∂J ′
v

(
v = f |u; v′ = dfu(u;u

′)
)

+ ∂J ′
x

(
x = g|u;x′ = dgu(u;u

′)
)
. (5.2.34)

In the generic infinite-dimensional tensor notation of equations 5.2.10 and 5.2.16 this is

d[J ′ ◦ (f, g)]
du

∣∣∣∣
u

· u′ = ∂J ′

∂v

∣∣∣∣
v=f |u

· df
du

∣∣∣∣
u

· u′︸ ︷︷ ︸
v′|v=f |u

+
∂J ′

∂x

∣∣∣∣
x=g|u

· dg
du

∣∣∣∣
u

· u′︸ ︷︷ ︸
x′|x=g|u

. (5.2.35)

If a partial derivative is required (here equal to the total derivative since J ′ ◦ (f, g) is only a

function of u) the expressions in each notation are

∂[J ′ ◦ (f, g)]u(u;u′) = ∂J ′
v

(
v = f |u; v′ = ∂fu(u;u

′)
)
+ ∂J ′

x

(
x = g|u;x′ = ∂gu(u;u

′)
)
. (5.2.36)

and
∂[J ′ ◦ (f, g)]

∂u

∣∣∣∣
u

· u′ = ∂J ′

∂v

∣∣∣∣
v=f |u

· ∂f
∂u

∣∣∣∣
u

· u′︸ ︷︷ ︸
v′|v=f |u

+
∂J ′

∂x

∣∣∣∣
x=g|u

· ∂g
∂u

∣∣∣∣
u

· u′︸ ︷︷ ︸
x′|x=g|u

. (5.2.37)

An example of the chain rule being used can be found in the appendix, section A.2.2. The

beginnings of the relationship between the chain rule and Automatic Differentiation (AD) is

discussed at the end of the example.

5.3 Automatic Differentiation

Let us return to the introduction (section 5.1), where we considered an algorithm or computer

program to be

F : Rn → Rm (5.3.1)

which we apply the chain rule to

F = fp ◦ fp−1 ◦ ... ◦ f1. (5.3.2)

In most AD literature one considers F as a map between two sets of real numbers as above.

In Firedrake F is a PDE where one argument is a control variable m ∈ M giving a solution

89

z ∈ Z which we typically use in an optimisation setting (minimising some function, such as a

misfit) as above. Solving such problems is known as PDE constrained optimisation. The most

general case then is to consider F as a map between arbitrary vector spaces

F :M → Z (5.3.3)

where, above, we have M = Rn and Z = Rm. It is important to keep this generalisation

because in the finite element method we consider vector spaces which are finite dimensional

but are generally not Rn. This has important impacts on the adjoint approach where we are

forced to consider the covectors to vectors which we refer to as their adjoints. As we saw in

section 1.4 this means finding the particular inverse Riesz representer for the vector.

Being aware that the Riesz map is not necessarily ‘take the transpose’ (which it is only

for Rn with the l2 inner product) highlights problems which otherwise would be difficult to

understand: For example, users of Firedrake and pyadjoint/dolfin-adjoint (discussed later)

expect to get convergence: when they supply finer and finer meshes the solution to their

problem, be it solving a PDE or a PDE constrained optimisation problem, converges towards

the true solution. Assuming we are using the adjoint method, then each time we take the adjoint

of a given vector in a particular discretised vector space we use a different inner product (matrix

M in equation 1.4.35). This is fine since there is an ‘equivalence of norms’ theorem which states

that all norms in a finite dimensional vector spaces are equivalent up to some constant which

stays the same for the given vector space. However, when we change meshes or bases, such

as when we perform refinement, we change to a different finite dimensional vector space: here

the equivalence of norms theorem still holds but the constants will not be the same. Rather

than our optimisation problem tending to the same solution, we can find ourselves ending up

with different solutions particularly if we refine our mesh in non-uniform ways. This is made

worse by optimisation algorithms typically having some stopping condition to avoid going on

forever: since different norms have different associated error in finite dimensions, you can reach

a stopping condition in a very different part of the PDE’s solution space depending on the

specifics of the mesh refinement.

AD’s eponymous differentiation works by taking the derivative with respect to some argu-

ment multiplied by a perturbation direction of that argument. As we will go on to see, the

perturbation direction is propagated through the function decomposition. Henceforth we will

refer to the perturbation direction as the direction. This form of differentiation is, by definition,

a directional derivative of which the Gateaux derivative is the most general case. Fortunately

the Gateaux derivative is the correct derivative to use for our general case of maps between

vector spaces. Unlike elsewhere in AD literature, our description is here generalised to use

Gateaux derivatives throughout.

Maintaining such a high level mathematical abstraction allows concrete discretisation to

happen when a particular mesh and finite element function space basis is supplied. This is very

90

convenient: at the programmatic level one can easily change mesh and basis from being, for

example, 2nd order discontinuous Lagrange polynomials on a course mesh of a domain to 3rd

order Bernstein polynomials on a fine mesh.

AD has two forms: The first, and most easy to understand, is the tangent linear approach,

also known as the forward mode of AD and forward accumulation. This was first described by

Wengert [49] and, as we will see, is the usual approach one might manually take to applying

the chain rule to a set of functions.

The second is the, often much harder to understand, adjoint approach, also known as the

reverse mode of AD, or reverse accumulation. This has a more complex history spanning

multiple fields and has been reinvented several times (see section 3.3 of Baydin et al. [50]).

Of particular note, the adjoint approach is the generalisation of backpropagation algorithms

used in machine learning for training neural networks (see section 3.2 of Baydin et al. [50]). In

essence, the idea is to save decomposed function intermediate values then use the chain rule in

the opposite direction to that usually taken - this will be explored in more depth later.

AD tools are generally implemented in one of two ways. One approach is to analyse code

bases using sets of rules that define the derivatives of given operations to produce new code for

finding the gradient - a so-called source-to-source approach. So x = sin(y) is transformed to

x′ = cos(y) ·y′. The other is to augment the variable types in your code with information about

the derivative: i.e. still use your rules but introduce a new type which contains both x and

x′ which can then be propagated through the code and modified as necessary. This requires

modification of the source code such that functions can accept the augmented type. Since the

usual Object Oriented Programming way to do that is known as overloading this approach is

known as operator overloading. For more see chapter 2 of [51].

Partly due to the recent popularity of machine learning, and AD’s important role in it, there

are now many examples of AD libraries available such as Google JAX[52] and within machine

learning tools like TensorFlow[53] and PyTorch[54]. A very non-exhaustive, but wide ranging,

list of libraries can be found at autodiff.org.

We will explain the tangent linear and adjoint approaches using example functions which

we then go on to use in our explanation of pyadjoint[46] and the specific work here of making

interpolation compatible with pyadjoint. Consider a scenario where we have

J ◦ f ◦ (h, k) :M → R i.e. J(f(h(m), h(m))) ∈ R (5.3.4)

J ◦ f ◦ (h, k) is the decomposition of the program F which we wish to apply AD to. Breaking

91

autodiff.org

this down we have

J : V → R i.e. J(v) ∈ R, (5.3.5)

f : U ×G→ V i.e. f(u, g) ∈ V, (5.3.6)

h :M → U i.e. h(m) ∈ U, (5.3.7)

k :M → G i.e. k(m) ∈ G. (5.3.8)

J is a functional, such as in integration over a domain of V . f can be any operation which

takes us from two function spaces U and G into one V . h and k are functions applied to a

variable m. We assign intermediate variables as outputs of each function

j = J |v (5.3.9)

v = f |(u,g) (5.3.10)

u = h|m (5.3.11)

g = k|m. (5.3.12)

In combining function definitions (here equations 5.3.5 to 5.3.8) with intermediate output

variable definitions (here equations 5.3.9 to 5.3.12) we have defined a Directed Acyclic Graph

(DAG). Our DAG is shown pictorially in figure 5.1. A DAG is the natural way of displaying

any sequence of operations that can be broken down into a composition of functions with

intermediate output variables (i.e. an algorithm which can be broken down using the chain rule).

Crucially we note that output function variables can be inputs to more than one downstream

function: here we limit ourselves to a simple case where the variable m is an argument of both

h and k. This will be explored in more detail in section A.2.5. This simple case allows us to

write down our whole program F as a function decomposition J ◦f ◦ (h, k). However in general

you need to write out or draw a DAG to fully describe a function decomposition.

The Gateaux derivative of J ◦ f ◦ (h, k) is

d[J ◦ f ◦ (h, k)]m :M × M︸︷︷︸
linear

→ R i.e. d[J ◦ f ◦ (h, k)]m(m;m′) ∈ R. (5.3.13)

We can Curry this into two functions

d[J ◦ f ◦ (h, k)]m(m;m′) = D1(m)︸ ︷︷ ︸
D0=D1|m

(;m′) (5.3.14)

92

𝐽 𝑓

ℎ

𝑣

𝑢

𝑚

𝑢'∗

𝑣̅∗ 𝑚)∗

Forward,	Tangent	Linear	and	Downstream Direction

𝑢̇

𝑚̇𝑣̇

𝑗

𝑗
∗

∈ ℝ

𝚥̇̇

𝑘𝑔

𝑔̅∗

𝑔̇

Reverse,	Adjoint	and	Upstream Direction

∈ 𝑉

∈ 𝑈

∈ 𝑀∈ ℝ

∈ 𝐺

∈ 𝑉∗

∈ 𝑈∗

∈ 𝑀∗

∈ 𝐺∗

Figure 5.1: Directed Acyclic Graph (DAG) for the operations given in equations 5.3.5 to 5.3.8
linked by the intermediate output variables in equations 5.3.9 to 5.3.12. Functions are in large
boxes with input and output variables directly connected. Associated Tangent Linear Mode
(TLM) variables are shown with dots above, whilst adjoint mode variables have bars above.2The
vector spaces that variables are members of are shown in red above-right for input/output/TLM
variables and below for adjoint variables.

where D1 is the not-necessarily-linear operation of supplying the point at which to evaluate

D1 :M → (M︸︷︷︸
linear

→ R) i.e. D1(m)(; •) ∈ (M︸︷︷︸
linear

→ R) ∀m ∈M (5.3.15)

=d[J ◦ f ◦ (h, k)]m(m; •) (5.3.16)

:=
d[J ◦ f ◦ (h, k)]

dm

∣∣∣∣
m

· • (5.3.17)

and D0 is the necessarily-linear operation of supplying the direction

D0 : M︸︷︷︸
linear

→ R i.e. D0(;m
′) ∈ R ∀m′ ∈M (5.3.18)

=d[J ◦ f ◦ (h, k)]m(m;m′) (5.3.19)

:=
d[J ◦ f ◦ (h, k)]

dm

∣∣∣∣
m

·m′. (5.3.20)

which can be written as

D0 = D1|m for given m ∈M. (5.3.21)

2These are the primal form of the adjoint mode variables. Each has a dual-space equivalent (v̄∗ ∈ V ∗ for
example), which becomes relevant when discussing differing approaches to adjoint mode AD. See Sect. 5.3.2.

93

The symbol ‘•’ once again indicates where we place our operand.3

Our aim is to find the linear operator D0 = D1|m at m such that it can supplied with a

direction. This is the process of ‘linearisation’ about a point, here m. We refer to m as the

‘control’. Going forwards we will write this as d[J ◦ f ◦ (h, k)]m(m; •). This operator is usually
called the Jacobian, here taken with respect to m. By comparison see the ‘Jacobian matrix’,

which is an expansion of this operator in a particular finite dimensional basis (see appendix

section A.2.1).

5.3.1 Tangent Linear Approach

The Jacobian we wish to find takes a vector m′ ∈M and gives us the Jacobian vector product.

If we have a complete basis for our vector space M then, by operating on each basis vector in

turn, we recover the complete Jacobian. This is the tangent linear approach to retrieving the

full Jacobian: you work out how to find a directional derivative (more on that below) and then

supply seed vectors on the right hand side until you recover the complete Jacobian.

In the tangent linear approach we introduce intermediate tangent linear operators which

give us intermediate Jacobians of our functions with respect to our control:

j̊(; •) = d[J ◦ f ◦ (h, k)]m(m; •) :M → R for given m ∈M (5.3.22)

v̊(; •) = d[f ◦ (h, k)]m(m; •) :M → V for given m ∈M (5.3.23)

ů(; •) = dhm(m; •) :M → U for given m ∈M (5.3.24)

g̊(; •) = dkm(m; •) :M → G for given m ∈M (5.3.25)

m̊(; •) = dmm(m; •) = I(; •) :M →M for given m ∈M (5.3.26)

where I is an identity operator which performs no operation (i.e. an identity matrix of

span(M) × span(M) dimensions) and j̊ is the operator we aim to find. If we apply the chain

rule to these operators, we find a neat pattern emerges.

We first note that

ů(; •) = dhm
(
m;m′ = dmm(m; •)

)
= dhm

(
m;m′ = m̊(; •)

)
,

(5.3.27)

and

g̊(; •) = dkm
(
m;m′ = dmm(m; •)

)
= dkm

(
m;m′ = m̊(; •)

)
.

(5.3.28)

Then, using the chain rule (immediately swapping partial derivatives for ordinary where they

3Note that our alternative notation for Gateaux derivatives is similar, though not identical, to the Liebniz
notation for AD introduced by Christianson [55].

94

are equal - i.e. where we have functions of 1 variable) we find that

v̊(; •) = d[f ◦ (h, k)]m(m; •)
= ∂fu

(
u = h|m, g = k|m;u′ = dhm(m; •)

)
+ ∂fg

(
u = h|m, g = k|m; g′ = dkm(m; •)

)
= ∂fu

(
u = h|m, g = k|m;u′ = ů(; •)

)
+ ∂fg

(
u = h|m, g = k|m; g′ = g̊(; •)

)
(5.3.29)

and

j̊(; •) = d[J ◦ f ◦ (h, k)]m(m; •)
= dJv

(
v = f |u=h|m,g=k|m ; v

′ = d[f ◦ (h, k)]m(m; •)
)

= dJv
(
v = f |u=h|m,g=k|m ; v

′ = v̊(; •)
)
.

(5.3.30)

We see then that we can propagate our directional derivative seed ṁ forwards from m̊, to ů and

g̊, eventually reaching j̊. In practice this is done for a concrete seed by introducing intermediate

variables

ṁ = dmm(m;m′ = ṁ)(= I(; ṁ)) ∈M for given m ∈M (5.3.31)

u̇ = dhm(m;m′ = ṁ) ∈ U for given m ∈M (5.3.32)

ġ = dkm(m;m′ = ṁ) ∈ G for given m ∈M (5.3.33)

v̇ = ∂fu(u = h|m, g = k|m;u′ = u̇) + ∂fg(u = h|m, g = k|m; g′ = ġ) ∈ V for given m ∈M
(5.3.34)

j̇ = dJv(v = f |u=h|m,g=k|m ; v
′ = v̇) ∈ R for given m ∈M (5.3.35)

where we have replaced the operators m̊(; •) to j̊(; •) with our intermediate variables ṁ to j̇.

These are referred to as ‘TLM variables’. The downstream-most TLM variable is the Jacobian-

vector product for our given TLM seed vector ṁ. These TLM variables, alongside the definitions

of the tangent linear operators define the DAG shown pictorially in figure 5.2.

Usefully, the above calculation of derivatives for some seed ṁ can be done in lock step with

the calculation of functions themselves for given m without having to save any intermediate

values. Unfortunately to recover the Jacobian operator we have to traverse our DAG (i.e.

compute directional/Gateaux derivatives) dim(M) times assuming that our basis is dim(M).

So if M = Rm then our computational time scales with m. More specifically, if we were finding

a Jacobian for a function F : Rn → Rm (which would be an m× n Jacobian matrix) then the

time would scale as n · c · operations(F) where c is a constant [56]. We can see, therefore, that

an alternative approach is needed.

95

𝑘

ℎ

𝑓𝐽

𝑑𝐽!
𝑑𝑓"
+
𝑑𝑓!

𝑑ℎ#

𝑣̇

𝑢̇

𝑚̇
∈ 𝑉

∈ 𝑈

Forward,	Tangent	Linear	and	Downstream Direction

∈ 𝑀
𝚥̇̇

∈ ℝ

𝑑𝑘#𝑔̇
∈ 𝐺

Reverse, Adjoint and Upstream Direction

𝐼 𝑚̇

Figure 5.2: Directed Acyclic Graph (DAG) for the operations given in equations 5.3.22, 5.3.27,
5.3.28, 5.3.29 and 5.3.30 linked by the intermediate output variables in equations 5.3.31 to
5.3.35. Functions are in large boxes with input and output variables directly connected. In
practice the initial identity operation is skipped. The blocks associated with each operation in
pyadjoint which annotate each operation and allow derivatives to be calculated (see section 5.4)
are shown as thick boxes. The vector spaces that variables are members of are shown below
each set in red. We see that the DAG is similar to figure 5.1. For each function output variable
there is a corresponding TLM variable. Instead of evaluating functions we evaluate the relevant
derivative to get the next TLM variable.

In our alternative notation this is:

j̊(; •) = d[J ◦ f ◦ (h, k)]
dm

∣∣∣∣
m

· • :M → R for given m ∈M (5.3.36)

v̊(; •) = d[f ◦ (h, k)]
dm

∣∣∣∣
m

· • :M → V for given m ∈M (5.3.37)

ů(; •) = dh

dm

∣∣∣∣
m

· • :M → U for given m ∈M (5.3.38)

g̊(; •) = dk

dm

∣∣∣∣
m

· • :M → G for given m ∈M (5.3.39)

m̊(; •) = dm

dm

∣∣∣∣
m

· • = I · • :M →M for given m ∈M (5.3.40)

then

ů(; •) = dh

dm

∣∣∣∣
m

· dm
dm

∣∣∣∣
m

· •

=
dh

dm

∣∣∣∣
m

· m̊(; •),
(5.3.41)

96

g̊(; •) = dk

dm

∣∣∣∣
m

· dm
dm

∣∣∣∣
m

· •

=
dk

dm

∣∣∣∣
m

· m̊(; •),
(5.3.42)

v̊(; •) = d[f ◦ (h, k)]
dm

∣∣∣∣
m

· •

=
∂f

∂u

∣∣∣∣
u=h|m,g=k|m

· dh
dm

∣∣∣∣
m

· •+ ∂f

∂u

∣∣∣∣
u=h|m,g=k|m

· dk
dm

∣∣∣∣
m

· •

=
∂f

∂u

∣∣∣∣
u=h|m,g=k|m

· ů(; •) + ∂f

∂u

∣∣∣∣
u=h|m,g=k|m

· g̊(; •),

(5.3.43)

and

j̊(; •) = d[J ◦ f ◦ (h, k)]
dm

∣∣∣∣
m

· •

=
dJ

dv

∣∣∣∣
v=f |u=h|m,g=k|m

· d[f ◦ (h, k)]
dm

∣∣∣∣
m

· •

=
dJ

dv

∣∣∣∣
v=f |u=h|m,g=k|m

· v̊(; •).

(5.3.44)

The practical introduction of intermediate variables for a given seed is then

ṁ =
dm

dm

∣∣∣∣
m

· ṁ(= I · ṁ) ∈M for given m ∈M (5.3.45)

u̇ =
dh

dm

∣∣∣∣
m

· ṁ ∈ U for given m ∈M (5.3.46)

ġ =
dk

dm

∣∣∣∣
m

· ṁ ∈ G for given m ∈M (5.3.47)

v̇ =
∂f

∂u

∣∣∣∣
u=h|m,g=k|m

· u̇+ ∂f

∂u

∣∣∣∣
u=h|m,g=k|m

· ġ ∈ V for given m ∈M (5.3.48)

j̇ =
dJ

dv

∣∣∣∣
v=f |u=h|m,g=k|m

· v̇ ∈ R for given m ∈M. (5.3.49)

5.3.2 Adjoint Approach

Instead of calculating the derivative of each operator to the controlm, we will instead investigate

the derivative of our output (here j) to our intermediate variables (v, u and g) as well as,

ultimately, m. Let us consider then the following partial derivative ‘Jacobian’ linear operators,

97

each taken with respect to our intermediate variables:

m̂(; •) = ∂[J ◦ f ◦ (h, k)]m(m; •) :M → R for given m ∈M, (5.3.50)

ĝ(; •) = ∂[J ◦ f ◦ (h, k)]g(u, g; •) : G→ R for given u ∈ U, g ∈ G, (5.3.51)

û(; •) = ∂[J ◦ f ◦ (h, k)]u(u, g; •) : U → R for given u ∈ U, g ∈ G, (5.3.52)

v̂(; •) = ∂[J ◦ f ◦ (h, k)]v(v; •) : V → R for given v ∈ V, (5.3.53)

ĵ(; •) = ∂[J ◦ f ◦ (h, k)]j(j; •) = I(; •) : R→ R for given j ∈ R. (5.3.54)

where I is again an identity operator which performs no operation, here equal to 1 (i.e. an

identity matrix of span(R)× span(R) = 1× 1 dimensions) and m̂ is now the Jacobian operator

with respect to m which we aim to find (here the partial derivative of J ◦ f ◦ (h, k) is equal to
the total derivative). We will refer to these as ‘hat’ operators.

When we do a calculation of J for given m (run our ‘forward model’) and therefore build

our DAG, we are able to note which downstream operators our variables are sensitive to and

find that

ĝ(; •) = ∂[J ◦ f ◦ (h, k)]g(u, g; •) = ∂[J ◦ f]g(u, g; •), (5.3.55)

û(; •) = ∂[J ◦ f ◦ (h, k)]u(u, g; •) = ∂[J ◦ f]u(u, g; •), (5.3.56)

v̂(; •) = ∂[J ◦ f ◦ (h, k)]v(v; •) = ∂Jv(v; •). (5.3.57)

As with the tangent linear approach, we find that we can calculate each linear operator

from others, though here we start from the end of the calculation (i.e. as far downstream as

we can get, which means traversing the DAG backwards) and have to use concrete values for

the direction vectors to have the correct operator ranges. We first see that

v̂(; v′) = ∂Jv(v; v
′) ∈ R

= ĵ
(
; ∂Jv(v; v

′)
) (5.3.58)

then apply the chain rule (again immediately swapping partial derivatives for ordinary where

they are equal) to find

û(;u′) = ∂[J ◦ f]u(u, g;u′)
= dJv

(
v = f |u,g; v′ = ∂fu(u, g;u

′)
)

= v̂|v=f |u,g
(
; ∂fu(u, g;u

′)
)
∈ R,

(5.3.59)

ĝ(; g′) = ∂[J ◦ f]g(u, g; g′)
= dJv

(
v = f |u,g; v′ = ∂fg(u, g; g

′)
)

= v̂|v=f |u,g
(
; ∂fg(u, g; g

′)
)
∈ R,

(5.3.60)

98

and

m̂(;m′) = ∂[J ◦ f ◦ (h, k)]m(m;m′)

= dJv
(
v = f |u,g; d[f ◦ (h, k)]m(m;m′)

)
= v̂|v=f |u,g

(
; d[f ◦ (h, k)]m(m;m′)

)
= v̂|v=f |u,g

(
;
(
∂fu
(
u = h|m, g = k|m; dhm(m;m′)

)
+ ∂fg

(
u = h|m, g = k|m; dkm(m;m′)

)))
= û|u=h|m,g=k|m

(
; dhm(m;m′)

)
+ ĝ|u=h|m,g=k|m

(
; dkm(m;m′)

)
∈ R.

(5.3.61)

We see a pattern here: each ‘hat’ operator is built from the sum of immediately downstream

‘hat’ operators, each operating on a corresponding downstream Jacobian.

Our aim here is to be able to seed with a direction vector from the downstream-most function

j′ ∈ R upstream such that we, eventually, get the corresponding direction vector m′ ∈ M . I.e.

for each ‘hat’ Jacobian operator we need an equivalent operator that takes the downstream

direction vector and tells us what to pass upstream. This is generally done in one of two

subtly different ways each of which rely on slightly different definitions of the adjoint of a linear

operator. Consider a linear operator on Hilbert spaces A : U → V with inner products ⟨•, •⟩U
and ⟨•, •⟩V

1. the first adjoint definition is the linear operator

A† : V → U (5.3.62)

which satisfies

⟨A(;u), v⟩V = ⟨u,A†(; v)⟩U ∀u ∈ U, v ∈ V. (5.3.63)

2. The second adjoint definition is the one we already encountered in Eq. 2.1.2: it is the

linear operator

A∗ : V ∗ → U∗ (5.3.64)

which satisfies

v∗(;A(;u)) = A∗(; v∗)(;u) ∀ v∗ ∈ V ∗, u ∈ U. (5.3.65)

Note in particular that A∗ always corresponds to the application of a covector v∗ to the

operator A after it has been applied to its operand u:

A∗(; v∗)(;u′) = v∗(;A(;u′)) ∀ v∗ ∈ V ∗ for given u′ ∈ U. (5.3.66)

The two definitions are linked: A† is the same as A∗ but with every input and output covector

replaced by corresponding the vector yielded by the Riesz representer for the inner products

⟨•, •⟩U and ⟨•, •⟩V . When dealing with Euclidean vectors with an l2 inner product, as is usual

99

in AD (U = Rn, V = Rm), A is a matrix and A† = AT (its transpose). Since A is a matrix we

can consider it separately to its operand u′ ∈ Rn: since covectors are row vectors in 1×Rn we

see that A∗(; •) = •T · A.
Each type of adjoint can be used to perform adjoint mode AD by either

1. taking the •† adjoint of each intermediate Jacobian to which we feed, firstly, a primal

upstream direction vector j′ which gives us the next direction vector v′ and so on, or

2. taking the •∗ adjoint of each intermediate Jacobian, to which we feed the covector j′∗

(which corresponds to j′ for the inner product that defines the adjoint) which gives us v′∗

(which corresponds to v′) and so on.

The difference between these approaches is rarely highlighted in the AD literature since we

traditionally consider maps between Rn and Rm where the relationship between vectors and

covectors is so apparently trivial due to the use of the l2 inner product. Either one transposes

the Jacobian matrices and multiplies on the right, or one transposes the vector and multiplies

on the left. The A† adjoint turns out to be highly impractical when not in this scenario (see

the end of Sect. 5.4.1). Here, adjoint mode AD is therefore only derived with the definition of

the adjoint corresponding to A∗ (a derivation using A† can be found in appendix A.2.3).

In each case we need to look at our intermediate Jacobians evaluated at given points:

dJv(v; •) : V → R for given v ∈ V, (5.3.67)

∂fu(u, g; •) : U → V for given u ∈ U, g ∈ G, (5.3.68)

∂fg(u, g; •) : G→ V for given u ∈ U, g ∈ G, (5.3.69)

dhm(m; •) :M → U for given m ∈M, (5.3.70)

dkm(m; •) :M → G for given m ∈M. (5.3.71)

The adjoints of these, with respect to the inner products that defines the dual spaces, are

dJ∗
v (v; •) : R∗ → V ∗ for given v ∈ V, (5.3.72)

∂f ∗
u(u, g; •) : V ∗ → U∗ for given u ∈ U, g ∈ G, (5.3.73)

∂f ∗
g (u, g; •) : V ∗ → G∗ for given u ∈ U, g ∈ G, (5.3.74)

dh∗m(m; •) : U∗ →M∗ for given m ∈M, (5.3.75)

dk∗m(m; •) : G∗ →M∗ for given m ∈M. (5.3.76)

We can use these in the adjoints of our ‘hat’ operators (taken with respect to the same inner

100

products) which are adjoint Jacobians operating on upstream adjoint Jacobians

ĵ∗(; •) = I∗(; •) = I(; •) : R∗ → R∗ ∀ j ∈ R (5.3.77)

v̂∗(; •) = ∂J∗
v

(
v; ĵ∗(; •)

)
: R∗ → V ∗ for given v ∈ V, (5.3.78)

û∗(; •) = ∂f ∗
u

(
u, g; v̂|∗v=f |u,g(; •)

)
: R∗ → U∗ for given u ∈ U, g ∈ G, (5.3.79)

ĝ∗(; •) = ∂f ∗
g

(
u, g; v̂|∗v=f |u,g(; •)

)
: R∗ → G∗ for given u ∈ U, g ∈ G, (5.3.80)

m̂∗(; •) = dh∗m

(
m; û|∗u=h|m,g=k|m(; •)

)
+ dk∗m

(
m; ĝ|∗u=h|m,g=k|m(; •)

)
: R∗ →M∗ for given m ∈M.

(5.3.81)

The full adjoint Jacobian for our example is m̂∗(; •). Supplying any of these with a direction

vector j′∗ ∈ R (recalling that R∗ = R) gives an adjoint Jacobian vector product. To recover

the Jacobian operator for our example we supply a seed of j′∗ = 1 to m̂∗ and take the adjoint

of m̂∗(; 1): i.e.

[m̂∗(; j′∗ = 1)]
∗ · • = d[J ◦ f ◦ (h, k)]m(m; •). (5.3.82)

In general, were J : V → X and we had a complete basis for X then, by operating on each

basis covector in turn, we would be able to recover the complete adjoint-Jacobian

In practice, we decompose our adjoint ‘hat’ operators into intermediate operations by sub-

stituting intermediate adjoint-Jacobian vector products (v̄∗ ∈ V ∗, ū∗ ∈ U∗ etc.) for the adjoint

of each ‘hat’ linear operator (v̂∗(; •), û∗(; •) etc.):

j̄∗ = I∗(; j̄∗) = I(; j̄∗) ∈ R∗(= R) (5.3.83)

v̄∗ = ∂J∗
v (v; j̄

∗) ∈ V ∗ for given v ∈ V, (5.3.84)

ū∗ = ∂f ∗
u(u, g; v̄

∗) ∈ U∗ for given u ∈ U, g ∈ G, (5.3.85)

ḡ∗ = ∂f ∗
g (u, g; v̄

∗) ∈ G∗ for given u ∈ U, g ∈ G, (5.3.86)

m̄∗ = dh∗m(m; ū∗) + dk∗m(m; ḡ∗)(= m̂∗(; j̄∗)) ∈M∗ for given m ∈M. (5.3.87)

These are referred to as ‘adjoint variables’. Alongside equations 5.3.72 to 5.3.76 these form a

DAG which is shown pictorially in figure 5.3.

Reverse/adjoint mode requires a full forward run of the calculation we are doing. This is

needed to (a) compute intermediate outputs, for example to supply the correct v ∈ V when

calculating a particular adjoint variable v̄, and to (b) record downstream dependencies in a

DAG. In general, the set of intermediate variables (a) is usually referred to as the tape. Here

(b) has been implicitly expressed by the way we have been able to simplify our ‘hat’ linear

operators (equations 5.3.55 to 5.3.57) before applying the chain rule.

In summary, to recover the Jacobian operator for some function we have to traverse the

DAG that describes the function once to find and save all the intermediate variables on the

tape, then traverse the DAG in reverse once for each dimension of the output space. Since our

101

𝐽

𝑓𝑑𝐽!∗ 𝑣̅∗

𝑢'∗

𝑚∗

∈ 𝑉∗

∈ 𝑈∗

Forward,	Tangent	Linear	and	Downstream Direction

∈ 𝑀∗
𝑗
∗

∈ ℝ

𝑔̅∗

∈ 𝐺∗

Reverse,	Adjoint	and	Upstream Direction

𝐼𝑗
∗

∈ ℝ

𝜕𝑓#∗

𝜕𝑓$∗

𝑑ℎ%∗

+

𝑑𝑘%∗

ℎ

𝑘

Figure 5.3: Directed Acyclic Graph (DAG) for the operations given in equations 5.3.72 to
5.3.76; linked by the intermediate output variables in equations 5.3.83 to 5.3.87. Functions
are in large boxes with input and output variables directly connected. In practice the initial
identity operation is skipped. The blocks associated with each operation in pyadjoint which
annotate each operation and allow derivatives to be calculated (see section 5.4) are shown as
thick boxes. The vector spaces that variables are members of are shown below each set in
red. This DAG is very similar to the original example and TLM DAGs (figures 5.1 and 5.2
respectively) but with arrow directions reversed. Once again we see that for each variable we
have a corresponding adjoint variable. Operations are now Jacobian evaluations although not
all the blocks have arrows pointing towards them which makes implementing this difficult. How
this is fixed is discussed and fixed in section A.2.5.

102

output space here is R this requires just a single reverse traversal! This is the optimal case for

adjoint mode AD.

In general, if we were finding a Jacobian for a function F : Rm → Rn (which would be an

m× n Jacobian matrix) then the time to compute it would scale as m · c · operations(F) where
c is a constant [56]. So where we we have n > m a tangent linear approach is better whilst

where we have n < m (as is the case when optimising a functional where m = 1) an adjoint

approach is better.

In our alternative notation the ‘hat’ Jacobian operators are

m̂(; •) = ∂[J ◦ f ◦ (h, k)]
∂m

∣∣∣∣
m

· • :M → R for given m ∈M, (5.3.88)

ĝ(; •) = ∂[J ◦ f ◦ (h, k)]
∂g

∣∣∣∣
u,g

· • : G→ R for given u ∈ U, g ∈ G, (5.3.89)

û(; •) = ∂[J ◦ f ◦ (h, k)]
∂u

∣∣∣∣
u,g

· • : U → R for given u ∈ U, g ∈ G, (5.3.90)

v̂(; •) = ∂[J ◦ f ◦ (h, k)]
∂v

∣∣∣∣
v

· • : V → R for given v ∈ V, (5.3.91)

ĵ(; •) = ∂[J ◦ f ◦ (h, k)]
∂j

∣∣∣∣
j

· • = I(; •) : R→ R for given j ∈ R (5.3.92)

Noting which downstream operators our variables are sensitive to gives us

ĝ(; •) = ∂[J ◦ f ◦ (h, k)]
∂g

∣∣∣∣
u,g

· • = ∂[J ◦ f]
∂g

∣∣∣∣
u,g

· •, (5.3.93)

û(; •) = ∂[J ◦ f ◦ (h, k)]
∂u

∣∣∣∣
u,g

· • = ∂[J ◦ f]
∂u

∣∣∣∣
u,g

· •, (5.3.94)

v̂(; •) = ∂[J ◦ f ◦ (h, k)]
∂v

∣∣∣∣
v

· • = ∂J

∂v

∣∣∣∣
v

· •. (5.3.95)

(5.3.96)

We now see that

v̂(; v′) =
∂J

∂v

∣∣∣∣
v

· v′

= ĵ · ∂J
∂v

∣∣∣∣
v

· v′
(5.3.97)

103

then apply the chain rule to find

û(;u′) =
∂[J ◦ f]
∂u

∣∣∣∣
u,g

· u′

=
dJ

dv

∣∣∣∣
v=f |u,g

· ∂f
∂u
|u,g · u′

= v̂|v=f |u,g ·
∂f

∂u
|u,g · u′,

(5.3.98)

ĝ(; g′) =
∂[J ◦ f]
∂g

∣∣∣∣
u,g

· g′

=
dJ

dv

∣∣∣∣
v=f |u,g

· ∂f
∂g
|u,g · g′

= v̂|v=f |u,g ·
∂f

∂g
|u,g · g′,

(5.3.99)

and

m̂(;m′) =
∂[J ◦ f ◦ (h, k)]

∂m

∣∣∣∣
m

·m′

=
dJ

dv

∣∣∣∣
v=f |u,g

· d[f ◦ (h, k)]
dm

∣∣∣∣
m

·m′

= v̂|v=f |u,g ·
(
∂f

∂u

∣∣∣∣
u=h|m,g=k|m

· dh
dm
|m ·m′ +

∂f

∂g

∣∣∣∣
u=h|m,g=k|m

· dk
dm

∣∣∣∣
m

·m′

)

= û|u=h|m,g=k|m ·
dh

dm

∣∣∣∣
m

·m′ + ĝ|u=h|m,g=k|m ·
dk

dm

∣∣∣∣
m

·m′.

(5.3.100)

The intermediate Jacobians evaluated at given points are

dJ

dv

∣∣∣∣
v

· • : V → R for given v ∈ V, (5.3.101)

∂f

∂u

∣∣∣∣
u,g

· • : U → V for given u ∈ U, g ∈ G, (5.3.102)

∂f

∂g

∣∣∣∣
u,g

· • : G→ V for given u ∈ U, g ∈ G, (5.3.103)

dh

dm

∣∣∣∣
m

· • :M → U for given m ∈M, (5.3.104)

dk

dm

∣∣∣∣
m

· • :M → G for given m ∈M. (5.3.105)

104

The adjoints of the intermediate Jacobians evaluated at given points are

dJ

dv

∣∣∣∣∗
v

· • : R∗ → V ∗ for given v ∈ V, (5.3.106)

∂f

∂u

∣∣∣∣∗
u,g

· • : V ∗ → U∗ for given u ∈ U, g ∈ G, (5.3.107)

∂f

∂g

∣∣∣∣∗
u,g

· • : V ∗ → G∗ for given u ∈ U, g ∈ G, (5.3.108)

dh

dm

∣∣∣∣∗
m

· • : U∗ →M∗ for given m ∈M, (5.3.109)

dk

dm

∣∣∣∣∗
m

· • : G∗ →M∗ for given m ∈M. (5.3.110)

The adjoints of our ‘hat’ operators are

ĵ∗(; •) = I∗(; •) = I(; •) : R∗ → R∗ ∀ j ∈ R (5.3.111)

v̂∗(; •) = ∂J

∂v

∣∣∣∣∗
v

· ĵ∗(; •) : R∗ → V ∗ for given v ∈ V, (5.3.112)

û∗(; •) = ∂f

∂u

∣∣∣∣∗
u,g

· v̂|∗v=f |u,g(; •) : R∗ → U∗ for given u ∈ U, g ∈ G, (5.3.113)

ĝ∗(; •) = ∂f

∂g

∣∣∣∣∗
u,g

· v̂|∗v=f |u,g(; •) : R∗ → G∗ for given u ∈ U, g ∈ G, (5.3.114)

m̂∗(; •) = dh

dm

∣∣∣∣∗
m

· û|∗u=h|m,g=k|m(; •) +
dk

dm

∣∣∣∣∗
m

· ĝ|∗u=h|m,g=k|m(; •) : R∗ →M∗ for given m ∈M,

(5.3.115)

we get the full Jacobian for example by

[m̂∗(; j′∗ = 1)]
∗ · • = d[J ◦ f ◦ (h, k)]

dm

∣∣∣∣
m

· • (5.3.116)

and the intermediate covectors adjoint variables for downstream-most seed covector j̄∗ (which

105

we use to calculate the full Jacobian) are

j̄∗ = I(; j̄) ∈ R∗ (5.3.117)

v̄∗ =
∂J

∂v

∣∣∣∣∗
v

· j̄∗ ∈ V ∗ for given v ∈ V, (5.3.118)

ū∗ =
∂f

∂u

∣∣∣∣∗
u,g

· v̄∗ ∈ U∗ for given u ∈ U, g ∈ G, (5.3.119)

ḡ∗ =
∂f

∂g

∣∣∣∣∗
u,g

· v̄∗ ∈ G∗ for given u ∈ U, g ∈ G, (5.3.120)

m̄∗ =
dh

dm

∣∣∣∣∗
m

· ū∗ + dk

dm

∣∣∣∣∗
m

· ḡ∗ (= m̂∗(; j̄∗)) ∈M∗ for given m ∈M. (5.3.121)

5.3.3 Higher Derivatives

Gradient descent algorithms, which find function minima by moving in the direction of steepest

gradient, are a key motivating factor for the development of AD. The standard gradient descent

method for a function f with a single parameter x ∈ R is found by iteratively evaluating

xk+1 = xk − α
df

dx

∣∣∣∣
xk

(5.3.122)

with f until

f(xk+1) ≈ f(xk) (5.3.123)

for some sufficiently small α. Gradient descent suffers from difficulty in finding an appropriately

small α (though methods exist for finding a step-specific αk - see section 1.5.1 of Schwedes et

al. [29]) and the direction of steepest gradient not necessarily pointing directly towards the

minimum at each step. The latter can cause a ‘zig-zagging’ within the solution space which

increases the number of steps needed to find the minimum.

Having access to a second derivatives of the function we wish to minimise, assuming the

function is twice differentiable, gives access to many more optimisation algorithms which can

be much more computationally efficient (i.e. take less time). The simplest example is to apply

Newton’s method to find where the first derivative of f is zero. This is done by iteratively

evaluating

xk+1 = xk − h (5.3.124)

where

h =

[
d2f

dx2

∣∣∣∣
xk

]−1
df

dx

∣∣∣∣
xk

(5.3.125)

is the so-called ‘Newton direction’. This is derived by taking the Taylor expansion approxima-

tion of f

f(xk +∆x) ≈ f(xk) +
df

dx

∣∣∣∣
x

∆x+
1

2!

d2f

dx2

∣∣∣∣
x

∆x2 (5.3.126)

106

where ∆x = xk+1 − xk and setting it’s first derivative with respect to ∆x equal to zero. If we

have a quadratic function then this becomes an exact equality and we converge in a single step.

Note that the above expression is for x, f(x) ∈ R: in the general case the expression is more

complicated, for example finding an equivalent to ∆x2. Where we cannot or do not wish to cal-

culate the second derivative, there exist various quasi-Newton methods which approximate the

second derivative such as the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method (see section

1.5.4 of Schwedes et al. [29]).

Equivalents to both gradient descent and Newton’s method exist for functions in vector

function spaces and therefore multivariate functions. For examples see section 1.5 of Schwedes

et al. [29]. Note that in general the Newton direction h is found by solving
[
d2f
dx2

∣∣
xk

]−1

h = df
dx

∣∣
xk

rather than computing an operator inverse which is generally computationally expensive.

The general mixed second derivative for a function

f : U ×G→ V i.e. f(u, g) ∈ V ∀u ∈ U, g ∈ G, (5.3.127)

which we assume can be multiply differentiated, is

∂
[
∂fu
]
g
: U ×G× U︸︷︷︸

linear

× G︸︷︷︸
linear

→ V i.e. ∂
[
∂fu
]
g
(u, g;u′, g′) ∈ V ∀u, u′ ∈ U, g, g′ ∈ G

(5.3.128)

:=
∂2f

∂u ∂g

∣∣∣∣
u,g

· u′ · g′. (5.3.129)

For a given u and g but unknown u′ and g′ this is a linear operator of two variables (i.e. a rank

3 tensor).

Two partial derivatives with respect to the same variable (assuming our function is twice

appropriately differentiable) is the operator

∂
[
∂fu
]
u
: U ×G× U︸︷︷︸

linear

× U︸︷︷︸
linear

→ V i.e. ∂
[
∂fu
]
u
(u, g;u′, u′′) ∈ V ∀u, u′, u′′ ∈ U, g ∈ G

(5.3.130)

:=
∂2f

∂u2

∣∣∣∣
u,g

· u′ · u′′ (5.3.131)

which is usually referred to as the Hessian of f with respect to u. Note that, as with the Jaco-

bian, this should not be confused with the ‘Hessian Matrix’ which is once again the expansion

of generalised Hessian in a particular finite dimensional basis.

We can find higher derivatives by applying tangent linear (forward) and adjoint (reverse)

modes more than once giving schemes such as forward-over-forward, reverse-over-reverse,

reverse-over-forward and forward-over-reverse for finding second derivatives. The naming

scheme goes ”second-over-first” which correspond to the order in which the schemes are

107

applied. A note on naming: Forward-over-forward is the second order tangent linear mode

which can be calculated alongside each step in the original calculation whilst the other three

are second order adjoint modes which require the creation of tapes. This naming can be

extended to give schemes like ”forward-over-reverse-over-forward” for finding a third

derivative. As with various topics in AD these schemes seem to have been discovered multiple

times in different fields, for reverse-over-forward see for example the mathematics outlined by

Christianson [57] in numerical analysis and Pearlmutter [58] in neural networks.

Without supplied directions a second derivative can be thought of as a Jacobian of a Jaco-

bian. With finite computing resources and discretised vector spaces, these are typically very

large data structures which are not desirable to store. Thankfully we can use AD’s inherent

property of performing Jacobian-vector and adjoint-Jacobian-vector products to our advantage.

Forward-over-forward requires two TLM seed vectors and produces a second-derivative-vector-

vector product (e.g. a Hessian-vector-vector product) such as

∂
[
∂fu
]
g
(u, g;u′, g′) (5.3.132)

Forward-over-reverse and reverse-over-forward both produce a second-derivative-vector product

operator (e.g. a Hessian-vector product) such as

∂
[
∂fu(u, g;u

′)
]
u
(u, g; •) =∂

[
∂fu
]
u
(u, g;u′, •) (5.3.133)

:=
∂2f

∂u2

∣∣∣∣
u,g

· u′ · • : U → V for given u, u′ ∈ U, g ∈ G (5.3.134)

without ever having to store any complete Jacobians of Jacobians. Reverse-over-reverse is rarely

used.

We take forward-over-reverse as our example with regards to our function f : this can be

thought of as

1. taping the entire process finding the Jacobian operator dfu or dfg (depending on which

second derivative we want) via the adjoint mode:

(a) that includes taping the calculation of f for given u and g and

(b) playing the tape in reverse, seeded with as many basis vectors as needed to calculate

the Jacobian operator.

2. Then performing TLM AD on the long tape which we replay forward, seeding it with the

vector u′ or g′ (depending on which first derivative we want).

(a) Since the beginning of this tape is the calculation of f this calculates the initial

∂fu(u, g;u
′) or ∂fg(u, g; g

′) needed (see equation 5.3.133) whilst

(b) at the adjoint mode section of the long tape the second derivative is found by travers-

ing the shorter tape of f in the reverse/adjoint/upstream direction.

108

In practice forward-over-reverse is rarely implemented like this where one takes tapes of tapes.

Instead books such as chapter 3 of Naumann [51] provide recipes for calculating higher deriva-

tives: forward-over-reverse is described by equation 3.8. The mathematics of this is covered in

more detail in sections 5.4.3 and 5.5.2.

5.4 Dolfin-Adjoint and Pyadjoint

Dolfin-adjoint [59] was a tool for solving PDE constrained optimisation problems using the

FEniCS system [17] via the adjoint method, a generalised term for the adjoint mode of AD.4

These are problems of the form ‘given some PDE, solve an optimisation problem for a function

involving the PDE solution’, similar to the example given in the introduction to AD. Dolfin-

adjoint limited itself to functions which map to R (functionals).

Much could be written about how to go about solving such problems, including the trans-

formation of the given unconstrained problem to a constrained one, and the creation of tangent

linear and adjoint systems from the original PDE discretisation. Such a discussion is lengthy

and not important for the discussion here but is very interesting. For that, attention is drawn

to the wide ranging briefing paper by Schwedes et al. [29], the original dolfin-adjoint paper

Farrell et al. [59], and the dolfin-adjoint documentation5.

In 2018 dolfin-adjoint was rewritten in Python as pyadjoint [46].6,7 Pyadjoint can be con-

sidered an operator overloaded AD tool, as described in Naumann [51] and in Sect. 5.3, for the

Python language. In pyadjoint, fundamental operations to be differentiated are referred to as

blocks with the process of creating a block (i.e. overloading the operation) being annotation.

Types are augmented such that they can store an operation’s intermediate input vectors and

TLM vectors, or intermediate output vectors and adjoint mode covectors, by encapsulating

them in a new ‘block variable’ type. Each block variable is able to encapsulate, in a single

object, each of (a) an input/output variable, (b) if calculated, a TLM variable and (c) if calcu-

lated, an adjoint variable. These correspond to the linked variables in figure 5.1 with associated

equations 5.3.5 to 5.3.8 (see figure 5.4)

On top of pyadjoint sit compatibility layers which provide support for the UFL domain

specific language and Firedrake. The latter is known as firedrake.adjoint. In

firedrake.adjoint blocks are provided to annotate high level operations such as solving a

PDE and, as implemented here, interpolating from one finite element function space to

another. A similar layer exists for FEniCS but is no longer maintained.

4The name dolfin-adjoint refers to the dolfin finite element library, which was historically part of the FEniCS
system.

5Available at https://www.dolfin-adjoint.org/en/latest/documentation/maths/
6One can read about the motivation behind the development of pyadjoint in Sebastian Mi-

tusch’s MSc thesis, which is available at https://www.duo.uio.no/bitstream/handle/10852/63505/

SebastianMitusch-thesis.pdf.
7Note: in literature, pyadjoint is often referred to as dolfin-adjoint/pyadjoint.

109

https://www.dolfin-adjoint.org/en/latest/documentation/maths/
https://www.duo.uio.no/bitstream/handle/10852/63505/SebastianMitusch-thesis.pdf
https://www.duo.uio.no/bitstream/handle/10852/63505/SebastianMitusch-thesis.pdf

𝑓𝑣

𝑢

𝑢$∗

𝑣̅∗

𝑢̇

𝑣̇

𝑔

𝑔̅∗

𝑔̇

Figure 5.4: A close up of the DAG in figure 5.1 with the adjoint variables now changed to the
corresponding covectors (pyadjoint uses method (2) in section 5.3.2). A block annotates the
function f . Block variables contain each of (a) an input/output variable, (b) if calculated, a
TLM variable (dotted) and (c) if calculated, an adjoint covector variable (barred and starred).

firedrake.adjoint is able to do this by finding the analytic expression for the necessary

TLM and adjoint mode derivatives: since all our calculations are written in the near mathe-

matical notation of UFL, which symbolically describes both the PDE and its discretisation, the

derivative of these expressions can be found by applying the rules of differentiation to them.

For a PDE in the adjoint mode this is known as finding the so-called continuous adjoint. Then,

since we retain the information about the discretisation (symbolically in UFL and concretely

in Firedrake), we can easily generate the code for the discretised derivative (in adjoint mode

the discrete adjoint). This can be thought of as an AD approach which operates at the highest

possible level of abstraction, thus avoiding most of the pitfalls found in other AD tools [60].8

The ability to easily generate discrete adjoints for PDE solves was a key part of the original

success of dolfin-adjoint[59], alongside being able to parallelise their solution, prior to its rewrite

as pyadjoint. Before this one would have to analytically find the continuous adjoint for a finite

element model, rediscretise it and re-code it up.

One of AD’s raisons d’être is that it avoids both the need to find a continuous solution and

that it avoids so-called ‘expression swell’ where the number of terms in the derivative becomes

very large [50]. This is true here, though it should be noted that PDE discretisations with

multiple time steps can have very long tapes.

8Perhaps the only pitfall Hückelheim et al. [60] describe which remains applicable to our approach is the
use of iterative methods for solving PDEs (section 3.4). In principal this causes inaccurate derivatives to be
calculated. It is also, of course, worth remembering that we are not solving the exact mathematical problems
we describe but rather our chosen numerical approximation of it.

110

5.4.1 Discretisation and the Impact on Covectors and Adjoints

In the finite element method, forward9 block variables (such as u and u̇) are vectors or covec-

tors10 in a Hilbert space which are represented as coefficients of basis functions or cofunctions.

How many basis functions or cofunctions we have, and what these are, is the ‘discretisation’

of our problem. As mentioned previously, the specific discretisation depends on the mesh and

choice of function space. In Firedrake and FEniCS specific instances of these variables are

stored as the coefficients of the basis functions: in Firedrake this is stored in the Function or

Cofunction class. For the rest of this discussion, forward block variables will only be consid-

ered as primal functions, but this is purely for clarity of the exposition as opposed to being a

limitation of the software.

In section 1.4, we demonstrated that covectors to vectors in finite element function spaces

can be represented as the transpose of the coefficients vector u multiplied by the appropriate

inner product matrix

u∗1j =

dim(U)∑
i

u1iM
U
ij . (5.4.1)

(equation 1.4.39) which gives us a discrete way of storing covectors as row vectors, with the

jth entry of the row vector being the coefficient for the jth dual basis function (see Sect. 2.3).

At the time of writing, firedrake.adjoint makes use of Function for storing vectors and the

new Cofunction type for storing covectors.11

Returning to section 1.4 again, we also showed the action of a covector is

u∗(; •) =
dim(U)∑

ij

u1iM
U
ij · [•]j (5.4.2)

in equation 1.4.38 whereMU is some inner product matrix for the finite element function space

U . This is useful for working out exactly what our adjoint operations are. Consider a linear

operator between finite element function spaces

B : U →M. (5.4.3)

We saw from the definition of B∗ (equation 5.3.65) that it is equivalent to

B∗(;u∗)(;m′) = u∗(;B(;m′)) ∀u∗ ∈ U∗ for given m′ ∈M (5.4.4)

9The distinction between forward and reverse block variables is outlined in section A.2.5.
10The output of assembling a 1-linear form is a covector as discussed in Sect. 2.3.
11Prior to the addition of dual spaces to UFL (chapter 2), both covectors and vectors were stored in Fire-

drake as Functions: Firedrake did not have any way of knowing if the data stored represented a vector or
a covector. firedrake.adjoint got around this by treating Firedrake Functions as vectors and covectors
as (confusingly) dolfin vectors which is the type one gets when assembling a 1-linear form in dolfin, the
codebase of FEniCS[17] with which Firedrake maintains some compatibility.

111

(equation 5.3.66 for B) i.e. the application of u∗ to B after its application to m′. Members of

U and M can be represented as vectors of weight coefficients, so B must be representable by a

matrix Bij.

B∗(;u∗)(;m′) =

dim(V)∑
l

dim(U)∑
j

u∗1jBjlm
′
l (5.4.5)

where, from Eq. 5.4.2

u∗1j =

dim(U)∑
i

u1iM
U
ij . (5.4.6)

This is a row-vector/matrix/vector product so

B∗(;u∗)(; •) = u∗ ·B · • (5.4.7)

as is the case with linear operators between Euclidean vector spaces. The key, then, is to make

sure our covectors are correctly represented with an appropriate inner product matrix to use

adjoint mode AD.

We can see now why using the definition of the adjoint as B∗, rather than B† is sensible: were

B our Jacobian we don’t need to transform it, just have the covector act on it. Furthermore, we

don’t have an obvious way of finding what B† is without appealing to the Riesz representation

theorem which would need us to transform our vectors to covectors and do the above calculation

anyway.

5.4.2 Tangent Linear Model and Adjoint Action

We assume at this point that we already have a DAG for all our operations, and therefore

know the TLM DAG (the same as that for the operation we are annotating) and Adjoint DAG

(which goes in the opposite direction). Pyadjoint has a core Block class which we subclass for

each operation we wish to annotate. This class implements two fundamental operations which

allow for tangent linear and adjoint mode operation. The first is Tangent Linear Model action

or ‘TLM action’ and the second is Adjoint action.

The TLM action for a block, calculated by an evaluate_tlm method, performs Jacobian-

vector products using the relevant upstream TLM variables given by the TLM DAG (see equa-

tions 5.3.31 to 5.3.35. It retrieves the relevant TLM variables, sums them up, then attaches

the output(s) to the block variable containing the function output(s). So for the block which

annotates f we do

v̇ = ∂fu(u = h|m, g = k|m; u̇) + ∂fg(u = h|m, g = k|m; ġ) (5.4.8)

:=
∂f

∂u

∣∣∣∣
u=h|m,g=k|m

· u̇+ ∂f

∂g

∣∣∣∣
u=h|m,g=k|m

· ġ. (5.4.9)

112

where v̇ is the single new output TLM variable which is attached to the block variable for v

(the output of f), whilst u̇ and ġ are the upstream TLM variables. These calculations have

to be implemented by us for a given block subclass in an evaluate_tlm_component method.

The evaluate_tlm method is predefined to be the same for all blocks and takes care of the

rare case where we have multiple block outputs: it inspects the DAG then loops through block

outputs calling evaluate_tlm_component for each.

The adjoint action, calculated by an evaluate_adjoint method, performs the application

of each block’s adjoint of its Jacobian to the incoming downstream covector and adds the output

to an appropriate upstream covector. For more on this see section A.2.5.

As with the TLM action, the evaluate_adjoint method is predefined to be the same for

all blocks. For a block which annotates f there will be two operations to perform given a

downstream covector v̄∗:

ū∗ = ∂f ∗
u(u, g; v̄

∗) ∈ U∗ for given u ∈ U, g ∈ G (5.4.10)

(equation 5.3.85) and

ḡ∗ = ∂f ∗
g (u, g; v̄

∗) ∈ G∗ for given u ∈ U, g ∈ G (5.4.11)

(equation 5.3.86) each of which is done in an evaluate_adj_component method which we

implement ourselves for a given block subclass. These then act as inputs to the h and k blocks

whose evaluate_adjoint method calculates our final m̄∗ (via equation 5.3.86).

Further discussion of the mathematics of the tape, forward and adjoint mode in pyadjoint

and AD in general can be found in appendix Sect. A.2.5, ‘Adjoint Mode Subtlety’.

5.4.3 Hessian Action

In pyadjoint the term Hessian is used to refer to any second derivative (i.e. Jacobian of a

Jacobian) including the mixed case given in equation 5.3.128. Pyadjoint contains an imple-

mentation of equation 3.8 in Naumann [51] which describes how forward-over-reverse mode

accumulates Hessian-vector products in the reverse/adjoint/upstream direction relative to our

original calculation. Here we will describe the process that the compute_hessian function,

found in pyadjoint’s driver.py file, uses to calculate a Hessian-vector product.

One must first perform an adjoint mode calculation on a tape with a seed of 1 to get a Ja-

cobian operator with respect to a control variable: this gives the second (outermost) derivative

of our Hessian. Unfortunately compute_hessian does not document this requirement and will

crash if it has not been done. Rather than taping the calculation of the adjoint, the adjoint-

mode calculation merely serves to populate the reverse block variables with adjoint covectors:

as we will see, these are needed to calculate each block’s Hessian-vector products alongside

the forward block variables from what was originally taped. Next a TLM seed vector for the

113

first (innermost) derivative, which is an argument to compute_hessian, is supplied: we run

a TLM calculation on the tape, which we have retrieved from the adjoint mode calculation,

using the seed vector to populate the forward TLM variables which we also require. We lastly

run backwards through the tape (in the reverse/adjoint/upstream direction) calculating the

so-called Hessian Action in each block’s evaluate_hessian method.

Returning to the example of equations 5.3.5 to 5.3.8 linked by the intermediate variables

shown in equations 5.3.9 to 5.3.12 (see figure 5.1) we typically aim to find the operator

d
[
d[J ◦ f ◦ (h, k)]m

]
m
(m; ṁ, •) :M → R for given m, ṁ ∈M (5.4.12)

:=
d2[J ◦ f ◦ (h, k)]

dm2

∣∣∣∣
m

· ṁ · • (5.4.13)

(5.4.14)

where ṁ ∈M is the TLM seed vector.

The Hessian action is the calculation of the product of a block’s Hessian and TLM direction

vector. At block f , the Hessian action, given a TLM direction vector u̇ ∈ U or ġ ∈ G, calculates
any of

∂
[
∂[J ◦ f]u

]
u
(u, g;u′ = u̇, •) : U → X for given u, u̇ ∈ U, g ∈ G (5.4.15)

:=
∂2[J ◦ f]
∂u2

∣∣∣∣
u,g

· u̇ · •, (5.4.16)

∂
[
∂[J ◦ f]g

]
g
(u, g; g′ = ġ, •) : G→ X for given u ∈ U, g, ġ ∈ G (5.4.17)

:=
∂2[J ◦ f]
∂g2

∣∣∣∣
u,g

· ġ · •, (5.4.18)

∂
[
∂[J ◦ f]u

]
g
(u, g;u′ = u̇, •) : G→ X for given u, u̇ ∈ U, g ∈ G (5.4.19)

:=
∂2[J ◦ f]
∂g ∂u

∣∣∣∣
u,g

· u̇ · •, (5.4.20)

and

∂
[
∂[J ◦ f]g

]
u
(u, g; g′ = ġ, •) : U → X for given u ∈ U, g, ġ ∈ G (5.4.21)

:=
∂2[J ◦ f]
∂u ∂g

∣∣∣∣
u,g

· ġ · • (5.4.22)

depending on which TLM direction vector we supply and which terms are necessary for the

upstream Hessian calculation.

The Hessian action works almost identically to the adjoint action (which makes sense given

114

we are going in the reverse/adjoint direction). As with the adjoint action the f block receives

downstream calculations of the Hessian action operators, in this case a single Hessian action

on J given a TLM direction vector v̇

∂
[
∂Jv
]
v
(v; v′ = v̇, •) : V → R for given v, v′ = v̇ ∈ V (5.4.23)

:=
∂2J

∂v2

∣∣∣∣
v

· v̇ · •. (5.4.24)

We decompose our Hessian action using the chain rule (which we will do later for the in-

terpolate block) and see that, in general, we can use this Hessian action input operator, the

adjoint action input covector (for blocks which annotate nonlinear functions) and the saved tan-

gent linear mode vectors to calculate this block’s Hessian action. Once again each block has an

evaluate_hessian_component method which we define ourselves in a block subclass that takes

a necessary subset of these inputs. We then sum the outputs of evaluate_hessian_component

as necessary in the block’s evaluate_hessian method to create Hessian action input operators

for our upstream blocks.

5.5 Differentiating Dual Evaluation: Interpolate Block

Annotation

Note that the following is adapted from the documentation, written by the author, for the

InterpolateBlock API in firedrake.adjoint.

We consider an interpolate block as f with forward model input u ∈ U and output v ∈ V
(there can, in principal, be any number of inputs or tensor valued output but we stick to the

single variable case for clarity):

f : U → V i.e. f(u) ∈ V ∀u ∈ U. (5.5.1)

We henceforth consider all function spaces to be finite dimensional (i.e. discretised) unless

stated otherwise. Here we have

dim(U) = m (5.5.2)

dim(V) = n (5.5.3)

The interpolate block f encompasses both the dual evaluation interpolation operator I,
which is linear in its arguments, and evaluation of some expression ‘expr’, which may not be

115

linear in its arguments (for example if expr(u) = u2).This can be considered as follows:

f = I ◦ expr : U → V i.e. f(u) = I(; expr(u)) ∈ V ∀u ∈ U, (5.5.4)

I : X → V i.e. I(;x) ∈ V ∀x ∈ X, (5.5.5)

expr : U → X i.e. expr(u) ∈ X ∀u ∈ U. (5.5.6)

Note that we once again adopt the notation of linear arguments following a semicolon ‘;’. X

is any space to which dual-evaluation interpolation can be validly applied (see Sect. 3.2). We

never explicitly see X, though we know that expr must represent some function of U that

produces values which can be dual evaluated by I.

𝑥

𝑢

∈ 𝑋

𝑣

∈ 𝑉

𝑔

∈ 𝐺

expr

∈ 𝑈𝑓

Figure 5.5: The f block can be decomposed into a linear dual evaluation interpolation operation
I applied to an expression evaluation expr.

The interpolate block is implemented in pyadjoint as a subclass of the Block class named

InterpolateBlock. Prior to this work, the InterpolateBlock already existed but the non-

linearity of its arguments had not been fully considered and the Hessian Action had not been

implemented. Adding the Hessian Action turned out to be far from trivial and required a full

understanding of AD in the context of Gateaux derivatives and pyadjoint hence a chapter of

this thesis being devoted to it.

5.5.1 Tangent Linear and Adjoint Action

It is first necessary to discuss the TLM and Adjoint action operations. The Gateaux derivative

of the linear operator I in a direction x′ ∈ X is the same as I(;x′):

if I(;x) = Ax (5.5.7)

then dIx(;x, x′) = Ax′ (5.5.8)

=⇒ dIx′(;x|x′ , x′) = Ax′ = I(;x′) (5.5.9)

where A is some linear operation. This is the case for any linear operator. In this case A is

multiplication by the interpolation matrix. The TLM evaluate_tlm_component method for a

116

single TLM variable u̇ ∈ U is therefore

v′(;u′ = u̇) = d[I ◦ expr]u(u;u′ = u̇) ∈ V for given u ∈ U (5.5.10)

= dIx(;x = expr|u, x′ = dexpru(u;u
′ = u̇)) (5.5.11)

= I
(
; dexpru(u;u

′ = u̇)
)

(5.5.12)

:= I · dexpr
du

∣∣∣∣
u

· u̇ (5.5.13)

i.e. it is the interpolation of the directional/Gateaux derivative of our expression dexpru(u;u
′ =

u̇) ∈ X into our new space V .

1 def evaluate_tlm_component(self, inputs, tlm_inputs, block_variable, idx,

2 prepared=None):

3 assert len(inputs) == len(tlm_inputs)

4 for i, input in enumerate(inputs):

5 if tlm_inputs[i] is None:

6 continue

7 dJdm += self.backend.derivative(prepared, input, tlm_inputs[i])

8 return self.backend.Interpolator(dJdm, self.V).interpolate()

Listing 8: Pyadjoint implementation of Eq. 5.5.13.

If we have multiple block inputs (as is implemented) we simply sum the interpolations of

the directional derivatives of our expression with respect to each input. The corresponding

code for this is shown in Listing 8. On the first line inputs and tlm_inputs are single entry

lists containing u and u̇ respectively whilst prepared is expr. The idx and block_variable

arguments, which relate to there being multiple outputs, are surplus to requirements here and

are not used.

Gateaux derivatives are calculated in UFL with the ufl.derivative operator. dexpr
du

∣∣∣∣
u

· u̇ is

calculated on the penultimate line: the first argument to ufl.derivative is the expression to

differentiate (prepared, i.e. expr) the second argument is what the derivative is calculated with

respect to (input, i.e. u) and the third argument is the direction (tlm_inputs[0] i.e. u̇). The

last line self.backend.Interpolator(dJdm, self.V) creates a linear interpolation operator

from the expression for this derivative, dJdm, into the function space V ; the .interpolate()

method performs the interpolation which is then returned.

The adjoint evaluate_adj_component method for a single adjoint input covector v̄∗ ∈ V ∗

117

is similarly

u′∗(; •) = ∂[I ◦ expr]∗u(u; v̄∗(; •)) ∈ U∗ for given u ∈ U (5.5.14)

= v̄∗ · d[I ◦ expr]u(u; •) (5.5.15)

= v̄∗ · I
(
; dexpru(u; •)

)
(5.5.16)

:= v̄∗ · I · dexpr
du

∣∣∣∣
u

· • (5.5.17)

i.e. we (a) take the directional/Gateaux derivative of our expression, without supplying a

direction, giving us dexpru(u; •) : U → X, (b) interpolate it into X giving us I
(
; dexpru(u; •)

)
:

U → V , then (c) operate on this with the covector v̄∗. At 5.5.15 we have used the fact that

our covectors are finite dimensional which allows us to represent their action as multiplication

on the left (see equation 5.4.7).

1 def evaluate_adj_component(self, inputs, adj_inputs, block_variable, idx,

2 prepared=None):

3 if len(adj_inputs) > 1:

4 raise(NotImplementedError("Interpolate block must have a single output"))

5

6 dJdm = self.backend.derivative(prepared, inputs[idx])

7

8 # make sure we have a cofunction output

9 arg, = extract_arguments(dJdm)

10 output = self.backend.Cofunction(arg.function_space().dual())

11

12 return self.backend.Interpolator(dJdm, self.V).interpolate(

13 adj_inputs[0], output=output, transpose=True)

Listing 9: Pyadjoint implementation of Eq. 5.5.17.

The corresponding code, for annotated interpolation with a single output vector space V

and therefore single adjoint input covector v̄∗, is shown in Listing 9. On the first line

inputs and adj_inputs are single entry lists containing u and v̄∗ respectively. idx,

which tells us the index into the inputs list we are taking partial derivative for is 0.

inputs[idx].saved_output is the same as block_variable, so block_variable is

surplus to requirements here. prepared is expr. Unlike evaluate_tlm_component here

self.backend.derivative(prepared, inputs[idx]) has no direction specified so dJdm is

dexpru(u; •). On the second-to-last line self.backend.Interpolator(dJdm, self.V) again

creates a linear interpolation operator from our expression into the function space V then

.interpolate(adj_inputs[0], output=output, transpose=True) left multiplies our

interpolation operator (thanks to setting transpose=True) by the covector adj_inputs[0],

i.e. has the covector operate on the interpolation operator.

To ensure our interpolation operation outputs a ufl.Cofunction, we create one in the dual

118

space U∗12 and provide it as the output of the adjoint interpolation. Before performing this

work this last step was not done: the analysis performed allowed this bug to be spotted and

corrected.13

Clearly any nonlinearity in expr ought to become manifest in both the TLM and Adjoint

actions due to them having dexpr
du

terms in them. If it is a linear operator it is a scaling factor

and if it is a nonlinear operator it is a function of u. In most cases we do not annotate nonlinear

operations and we merely deal with the scaling factor. We will go on to discuss this in the next

section.

5.5.2 Hessian Action

For Hessian actions we limit the interpolate block to having one output. The interpolate

block therefore has a single downstream adjoint mode covector and a single downstream

Hessian vector product. In these cases no summation is required and the output of

evaluate_hessian_component is our Hessian action.

For the purposes of this exposition, we limit ourselves to the non-mixed second derivative

of equation 5.4.15 with downstream Hessian action input given by 5.4.23. We deal with our

first derivative with the chain rule and our second derivative with the multivariate chain rule

∂
[
∂[J ◦ f]u

]
u
(u, g;u′, •) = ∂

[
∂[J ◦ f]u(u, g;u′)

]
u
(u, g; •) (5.5.18)

= ∂
[
dJv[v = f |u,g; v′ = ∂fu(u, g;u

′)]u
]
u
(u, g; •) (5.5.19)

= ∂[dJv]v
(
v = f |u,g; v′ = ∂fu(u, g;u

′), v′′ = ∂fu(u, g; •)
)

+ ∂[dJv]
′
v

(
v = f |u,g; v′ = ∂fu(u, g;u

′), v′′ = ∂[∂fu(u, g;u
′)]u(u, g; •)

)
.

(5.5.20)

In our second term we take the derivative of dJv with respect to the linear argument v′ which,

as in the case of the derivative of the interpolation operator (see equation 5.5.9), gives us dJv

applied to the second derivative direction vector v′′:

∂
[
∂[J ◦ f]u

]
u
(u, g;u′, •) = ∂[dJv]v

(
v = f |u,g; v′ = ∂fu(u, g;u

′), v′′ = ∂fu(u, g; •)
)

+ dJv
(
v = f |u,g; v′′ = ∂[∂fu]u(u, g;u

′, •)
)
. (5.5.21)

12the expression dJdm must contain a UFL Argument in U
13This was originally done by noticing that the interpolation result was still a Function so .vector() changed

it to the necessary type before returning. This has been superseded by the addition of dual spaces to UFL and
Firedrake.

119

In our alternative notation this is

∂2[J ◦ f]
∂u2

∣∣∣∣
u,g

· u′ · • = ∂

∂u

(
∂[J ◦ f]
∂u

∣∣∣∣
u,g

· u′
)∣∣∣∣∣

u,g

· • (5.5.22)

=
∂

∂u

(
dJ

dv

∣∣∣∣
v=f |u,g

· ∂f
∂u

∣∣∣∣
u,g

· u′︸ ︷︷ ︸
=v′

)∣∣∣∣
u,g

· • (5.5.23)

=
∂2J

∂v2

∣∣∣∣
v=f |u,g

· ∂f
∂u

∣∣∣∣
u,g

· u′︸ ︷︷ ︸
=v′

· ∂f
∂u

∣∣∣∣
u,g

· •︸ ︷︷ ︸
=v′′

+
∂

∂v′

(
dJ

dv

∣∣∣∣
v=f |u,g

· v′
)∣∣∣∣∣

v′= ∂f
∂u

∣∣
u,g

·u′

· ∂
∂u

(
∂f

∂u

∣∣∣∣
u,g

· u′
)∣∣∣∣∣

u,g

· • (5.5.24)

=
∂2J

∂v2

∣∣∣∣
v=f |u,g

· ∂f
∂u

∣∣∣∣
u,g

· u′ · ∂f
∂u

∣∣∣∣
u,g

· •

+
dJ

dv

∣∣∣∣
v=f |u,g

· ∂
2f

∂u2

∣∣∣∣
u,g

· u′ · •. (5.5.25)

Sticking to our alternative notation for now, we investigate these two terms. We first note

that ∂f
∂u

∣∣
u,g
· u′ is, for some TLM variable u′ = u̇, the TLM action for the f that gives us v̇.

Therefore
∂2J

∂v2

∣∣∣∣
v=f |u,g

· ∂f
∂u

∣∣∣∣
u,g

· u̇ =
∂2J

∂v2

∣∣∣∣
v=f |u,g

· v̇ (5.5.26)

i.e. it’s the downstream Hessian action input that we are given. To get our complete first term

we therefore just need to left multiply it (i.e. have it operate on) ∂f
∂u

∣∣
u,g
· • which is achieved

by calling evaluate_adj_component with adj_inputs replaced by the downstream Hessian

action input hessian_inputs (a single entry list). Listing 10 shows this, where inputs are the

calculated values u and g.

The full Hessian action calculation is now equivalent to equation 3.8 in Naumann [51]

which describes how forward-over-reverse mode accumulates Hessian-vector products (i.e.

hessian_inputs values which propagate upstream). There ν
(2)
(1)i are the calculated entries in

the Hessian-vector product, ν(1)i is the downstream adjoint variable, ν
(2)
k in the TLM variable,

and ν
(2)
(1)j are the downstream Hessian input values.

Since we operate a forward-over-reverse scheme we have also calculated and saved the down-

stream adj_inputs which, in this case, is a single entry list containing the covector/operator

v̄∗(; •) = j̄∗
(
∂Jv(v = f |u,g; •)

)
= ∂Jv(v = f |u,g; •) = v̂(; •) (5.5.27)

:= j̄∗ · ∂J
∂v

∣∣∣∣
v=f |u,g

· • =
∂J

∂v

∣∣∣∣
v=f |u,g

· • (5.5.28)

since the forward-over-reverse scheme has us calculate the complete adjoint-mode Jacobian (i.e.

120

1 def evaluate_hessian_component(self, inputs, hessian_inputs, adj_inputs,

2 block_variable, idx,

3 relevant_dependencies, prepared=None):

4

5 if len(hessian_inputs) > 1 or len(adj_inputs) > 1:

6 raise(NotImplementedError("Interpolate block must have a single output"))

7

8 component = self.evaluate_adj_component(inputs, hessian_inputs,

9 block_variable, idx, prepared)

Listing 10: Pyadjoint implementation of the first term in the sum of Eq. 5.5.21 (in alternative
notation, Eq. 5.5.25). The implementation of the second term is of the code is shown in Listing
11.

seeded with j̄∗ = 1). Note that were J = a ◦ b this would still work since the ∂J
∂v

∣∣
v=f |u,g

term

would then be ∂[a◦b]
∂v

∣∣
v=f |u,g

.

This is needed in order to calculate the second term in equation 5.5.21 which has this operate

on

∂[∂fu]u(u, g;u
′, •) = ∂[∂fu(u, g;u

′)]u(u, g; •) (5.5.29)

= ∂[∂[I ◦ expr]u(u, g;u′)]u(u, g; •) (5.5.30)

= ∂[I
(
; ∂expru(u, g;u

′)
)
]u(u, g; •) (5.5.31)

= ∂Ix
(
;x = ∂expr(u, g;u′), x′ = ∂[∂expru(u, g;u

′)]u(u, g; •)
)

(5.5.32)

= I(; ∂[∂expru(u, g;u′)]u(u, g; •)) (5.5.33)

where 5.5.31 makes use of the simplifications employed for finding the TLM action, 5.5.32 uses

the chain rule and 5.5.33 uses the simplifications for the TLM action again. I.e. we have our

covector/operator operate on the second derivative of our expression: the first derivative taken

in the u′ direction and the second left without a direction. We can calculate that explicitly,

substituting u′ with the TLM input variable u̇ for the block.

We see here that our second term is zero whenever we interpolate from linear expressions

since the second derivative of a linear expression is zero. The fact that we have nonlinear blocks

indicates the need to perform an adjoint sweep of our DAG before we do our Hessian sweep.

Returning to code then, Listing 11 shows the rest of the implementation. The

relevant_dependencies list here contain the block variable inputs u and g: when calculating

the example here of ∂
[
∂[J ◦ f]u

]
u
(u, g;u′ = u̇, •) only the block variable (bv) for u has

a bv.tlm_value which isn’t None which corresponds to u̇. We then take the first

derivative of our expression, where bv.saved_output is u, in the u̇ direction. The

block_variable.saved_output corresponds to the variable for which we want to take our

second derivative, here u, which we do to get d2exprdudu. Next we interpolate d2exprdudu

into our new space and, as with adjoint action, left multiply by our single adjoint input

121

1 def evaluate_hessian_component(self, inputs, hessian_inputs, adj_inputs,

2 block_variable, idx,

3 relevant_dependencies, prepared=None):

4 ...

5 # Prepare expression

6 expr = replace(self.expr, self._replace_map())

7

8 # Calculate first derivative for each relevant block

9 dexprdu = 0.

10 for _, bv in relevant_dependencies:

11 # Only take the derivative if there is a direction to take it in

12 if bv.tlm_value is None:

13 continue

14 dexprdu += self.backend.derivative(expr, bv.saved_output, bv.tlm_value)

15

16 # Calculate the second derivative leaving direction unspecified

17 d2exprdudu = self.backend.derivative(dexprdu, block_variable.saved_output)

18

19 # Make sure to have a cofunction output

20 output = self.backend.Cofunction(component.function_space())

21

22 # left multiply by dJ/dv (adj_inputs[0])

23 component += self.backend.Interpolator(d2exprdudu, self.V).interpolate(

24 adj_inputs[0], output=output, transpose=True

25 return component

Listing 11: Pyadjoint implementation of the second term in the sum of Eq. 5.5.21 (in alternative
notation, Eq. 5.5.25). The implementation of the first term, where component was given its
initial value, is shown in Listing 11.

covector/operator v̄∗(; •) = v̂(; •) = dJv(v = f |u,g; •). All that’s left to do is add this to our

first term. Since we limit ourselves to having single Hessian and adjoint inputs our final

operator is a covector rather than a matrix: we indicate this as before by returning a

Cofunction by setting the output argument of Interpolator.interpolate.

5.6 Summary of Contributions

In this chapter I have produced a comprehensive description of AD using Gateaux derivatives.

To my knowledge this is the first time this has been done. I have used this description to

derive, for pyadjoint, the three key annotation operators of the interpolate operation: the TLM

action, adjoint action and Hessian action. Whilst the TLM and Adjoint actions had already

been implemented, I fixed a bug in the adjoint action. The Hessian action was implemented

from scratch and required a different approach to the Hessian action found in other blocks in

Firedrake’s compatibility layer for pyadjoint firedrake.adjoint. The Hessian action is tested

122

for correctness with a Taylor remainder convergence test: these are described in Sect. 8.4.

Having added the Hessian action I am able to use techniques such as Newton’s method (see

section 5.3.3) when solving PDE constrained optimisation problems that involve interpolation.

This significantly increases the speed with which these problems can be solved. An example of

this in action for assimilating point data is found in chapter 6.

123

Chapter 6

Consistent Point Data Assimilation

124

This chapter adapts and reuses, without further attribution, text, results, and diagrams

from Nixon-Hill et al. [3] which were created by the author.

6.1 Introduction

Many disciplines face a common problem in the lack of observability of important fields and

quantities. Take the geosciences as an example. In groundwater hydrology, the conductivity

of an aquifer is not directly measurable at large scales; in seismology, the density of the earth;

and in glaciology, the fluidity of ice. Nevertheless, these are necessary input variables to the

mathematical models that are used to make predictions. Solving inverse problems or performing

data assimilation, described in Sect. 5.1 is therefore extremely useful.

For example, the large scale density (an immeasurable) and displacement (a measurable)

of the earth are related through the seismic wave equation (the F from Sect. 5.1). Combining

measurements of displacement or wave travel time from active or passive seismic sources can

then give clues to the density structure of the earth (an input to F).

Here we consider assimilating point data, as defined in Sect. 4.3. These encompass any

measurements which have been performed at a location in space, at a particular time, giving

some value. Returning to the geosciences, this encompasses most of the in-situ and remote

sensing measurements one can imagine: satellite laser altimetry measurements, drifting weather

buoys relaying weather and tidal information, geophone measurements of ground velocity and

more. Derived data sets, such as the BedMachine map of Antarctic ice thickness [61] and

the MEaSUREs InSAR phase-based velocity map of Antarctica [62], may appear to be field

measurements, but they are ultimately derived from individual measurements or contain data

that are fitted to discrete points on a grid.

So, we have some model

F (u,m) = 0 (6.1.1)

where m is a set of parameters; u is our solution; and F the equation, such as a PDE, that

relates m and u. The point data to assimilate are

uiobs at Xi for i = 0, ..., Nd − 1 (6.1.2)

where Nd is the number of measurements. We aim to find parameters m (the immeasurable)

that give us a particular u which we have discrete measurements of.

The functional we wish to minimise is

J = Jmodel-data misfit + Jregularisation. (6.1.3)

The term Jregularisation did not feature in the description in Sect. 5.1. It can be thought of as a

prior guess at the properties our solution should have. Often this uses known properties of the

125

physics of the model (such as some smoothness requirement) and, in general, ensures that the

problem is well posed given limited, typically noisy, measurements of the true field u.

A key question to ask here is “what metric should we use for the model-data misfit?” A

common approach, taken for example in glaciology by MacAyeal [63], Joughin, MacAyeal, and

Tulaczyk [64], Vieli et al. [65], and Shapero et al. [66], is to perform a field reconstruction: we

extrapolate from our set of observations to get an approximation of the continuous field we

aimed to measure. This reconstructed field uinterpolated is then compared with the solution field

u

Jfield
model-data misfit = ∥uinterpolated − u∥2N (6.1.4)

where ∥ · ∥N is some norm. The extrapolated reconstruction is referred to as uinterpolated since,

typically, this relies on some ‘interpolation’ regime found in a library such as SciPy [67] to find

the values between measurements. As will be shown when these methods are returned to in

Sect. 6.2, Jfield
model-data misfit is not unique since there is no unique uinterpolated field. The method

used to create uinterpolated is up to the modeller and is not always reported: there are always

only a finite number of data points, which could be concentrated in one region of the domain.

An alternative metric is to compare the point evaluations of the solution field u(Xi) with

the data uiobs

Jpoint
model-data misfit =

Nd−1∑
i=0

∥uiobs − u(Xi)∥2N . (6.1.5)

Importantly, Jpoint
model-data misfit is unique and independent of any assumptions made by the mod-

eller.

It is the difference between minimising Jfield
model-data misfit and Jpoint

model-data misfit which is

investigated here. Previously code could be generated to minimise a functional containing

Jfield
model-data misfit using Firedrake and dolfin-adjoint/pyadjoint. Indeed, due to their previously

discussed limitations, no automated code generating finite element system can be used for this

without taking a more lengthy approach such as deriving the continuous adjoint equations

and discretising them manually.

The new abstractions for point data and point evaluation introduced in this work have

changed this. As was described in Sect. 5.5, interpolation can be differentiated and, in

Firedrake, this differentiation is integrated with dolfin-adjoint/pyadjoint through

firedrake.adjoint. Since point evaluation is an interpolation operation this too is

differentiable and integrated with firedrake.adjoint.

6.1.1 Review of Data Assimilation Approaches

Only the assimilation of what one might call ‘state’ into a model has been considered here: a

snapshot of some measurement from an underlying probability distribution. Any reasonable

measurement will come with some estimate of its uncertainty, which should be included in the

126

assimilation process to give uncertainties in the derived quantities.

This requires that our model itself F in some way propagates probability distributions over

time, usually represented by Probability Density Functions (PDFs). We assimilate into this the

probability distributions of our measurements. This is a Bayesian inference problem of the form

‘given prior PDFs of variables which describe the state of our model (so-called state variables,

some of which may be hidden), and PDFs of some measurements, what are the resultant PDFs

of the state variables?’

In this context, there are various approaches to data assimilation. The Kalman filter [68]

produces an estimate of resultant state variable PDFs given Gaussian PDFs for the prior state

variables and of the data. It was formulated for use on time-series data, hence it being called a

‘filter’. It is a so-called ‘optimal filter’: assuming it operates on a linear time-invariant model1

, with Gaussian PDFs, the resultant Gaussian PDF is exact.

Extensions to the Kalman filter for nonlinear systems exist [69, 70], but for systems of

multiple variables, these, and the Kalman filter, require the calculation, storage and inversion

of large covariance matrices [71]. The ensemble Kalman filter [72] is a popular approximation

of the Kalman filter, where state variable PDFs are sampled from the larger, true set of state

variable PDFs. This can be thought of as a dimension reduction to allow computational feasi-

bility, or a Monte Carlo approach to solving the Bayesian inference problem. Realistic models

are unlikely to be linear, time-invariant and involve only Gaussian PDFs: the ensemble Kalman

filter assumes none of these to be true. There are also particle filters [73, 74], which implement

sampling directly from the relevant PDFs to more directly approximate the solution to the

Bayesian inference problem.

Here, a gradient based method for data assimilation is used which is commonly referred

to as variational data assimilation. Alongside ensemble Kalman filters, variational approaches

are widely used in numerical weather prediction [75], where huge quantities of data need to be

assimilated into very large models of the earth system (see, for example, the UK Met Office

[76, 77]). The method is broadly identical to that shown here with a misfit specified which

is minimised. Since the model F involves PDFs, the functional for minimisation is then also

stated in terms of PDFs. As an example, see Sect. 2.1 of Rihan, Collier, and Roulstone [78].

6.2 Unknown conductivity Experiment

We start with the squared L2 norm for our ‘field’ model-data misfit functional

Jfield
model-data misfit =

∫
Ω

(uinterpolated − u)2dx (6.2.1)

1A time-invariant model is one which does not itself change with time: a change in a model parameter
at some time t will produce the same model output as if, all other things being equal, it were done at some
alternative time t+ T .

127

and the squared Euclidean (l2) norm for the ‘point’ one

Jpoint
model-data misfit =

Nd−1∑
i=0

(uiobs − u(Xi))
2. (6.2.2)

We write the latter as

Jpoint
model-data misfit =

∫
Ωv

(uobs − IP0DG(Ωv)(u))
2dx (6.2.3)

where uobs ∈ P0DG(Ωv). Note that this is an expression for the L2 norm again: since integration

is equal to sums of point evaluations in P0DG(Ωv) (Eq. 4.3.4) l2 and L2 norm are equal.

This is applied this to the simple model

−∇ · k∇u = f (6.2.4)

for some solution field u and known forcing term f = 1 with conductivity field k under strong

(Dirichlet) boundary conditions

u = 0 on Γ (6.2.5)

where Γ is the domain boundary. Conductivity k is asserted to be positive by

k = k0e
q (6.2.6)

with k0 = 0.5.

The inverse problem is then to infer, for the known forcing field term f , the log-conductivity

field q using noisy sparse point measurements of the solution field u. This example has the

advantage of being relatively simple whilst having a control term q which is nonlinear in the

model.

To avoid considering model discretisation error, the log-conductivity field is generated as a

finite element function qtrue in the space of order 2 continuous Lagrange polynomials (P2CG)

in 2D on a 32 × 32 unit-square mesh Ω with 2048 triangular cells. The model is then solved

on the same mesh to get the solution field as another finite element function utrue ∈ P2CG(Ω).

Nd point measurements {uiobs}Nd−1
0 at coordinates {Xi}Nd−1

0 are sampled from utrue and Gaus-

sian random noise (representing the introduction of measurement uncertainty) with standard

deviation {σi}Nd−1
0 is added to each measurement.

A smoothing regularisation on the q field is used, which is weighted with a parameter α.

This helps to avoid over-fitting to the errors in uobs which are introduced by the Gaussian

128

random noise. There are now two functionals to minimise

J [u, q] =

∫
Ωv

(uobs − IP0DG(Ωv)(u))
2dx︸ ︷︷ ︸

Jpoint
model-data misfit

+α2

∫
Ω

|∇q|2dx︸ ︷︷ ︸
Jregularisation

(6.2.7)

and

J ′[u, q] =

∫
Ω

(uinterpolated − u)2dx︸ ︷︷ ︸
Jfield
model-data misfit

+α2

∫
Ω

|∇q|2dx︸ ︷︷ ︸
Jregularisation

. (6.2.8)

Each available method in SciPy’s interpolation library are tested to find uinterpolated:

• unear.interpolated using scipy.interpolate.NearestNDInterpolator,

• ulin.interpolated using scipy.interpolate.LinearNDInterpolator,

• uc.t.interpolated using scipy.interpolate.CloughTocher2DInterpolator with

fill_value = 0.0 and

• ugau.interpolated using scipy.interpolate.Rbf with Gaussian radial basis function.

Note that since uinterpolated ∈ P2CG(Ω) each of 6 degrees of freedom per mesh cell has to have

a value estimated given the available uobs.

The estimated log-conductivity qest which minimise the functionals are found using gradient

decent by generating code for the adjoint of our model using dolfin-adjoint/pyadjoint then using

the Newton-CG minimiser from the scipy.optimize library. This makes use of the ability to

calculate Hessian-vector products in firedrake.adjoint, described in Sect. 5.5.2.

It is standard practice (see for example Shapero et al. [66]) to perform an l-curve analysis

[79] to identify a value of α that balances the relative weights of the model-data misfit and

regularisation terms. For fairness, this is done for both J and J ′. The l-curves were gathered

for Nd = 256 randomly chosen point measurements with the resultant plots shown in Fig. 6.1

and Fig. 6.2. For low α, Jfield
misfit stopped being minimised and solver divergences were seen due

to the problem becoming ill formed. α = 0.02 was therefore chosen for each ‘field’ method. For

consistency α = 0.02 was also used for J .

An extract of the Firedrake and dolfin-adjoint/pyadjoint code needed to minimise J is shown

in Listing 12. The Firedrake expression for J in the code is the same as the mathematics in Eq.

6.2.7 given that assemble performs integration over the necessary mesh. The last 3 lines are all

that are required to minimise our functional with respect to q, with all necessary code being gen-

erated. Note that we require a reduced functional (firedrake.adjoint.ReducedFunctional)

since the optimisation problem depends on both q and u(q): for a thorough explanation see

Sect. 1.4 of [29].

129

0.00035
0.00040

0.00045
0.00050

0.00055
0.00060

0.00065
0.00070

0.00075

10 13

10 10

10 7

10 4

10 1

102

J re
gu

la
ris

at
io

n

 = 5e-05 = 0.0005 = 0.001
 = 0.002

 = 0.005
 = 0.01

 = 0.02

 = 0.05

 = 0.5

 = 1.0

 = 10.0

 = 50.0

'Nearest' interpolation

0.00015
0.00020

0.00025
0.00030

0.00035
0.00040

0.00045
0.00050

10 13

10 10

10 7

10 4

10 1

102 = 5e-05 = 0.0005
 = 0.001 = 0.002

 = 0.005
 = 0.01

 = 0.02

 = 0.05

 = 0.5

 = 1.0

 = 10.0

 = 50.0

'Linear' interpolation

0.0005
0.0006

0.0007
0.0008

Jfield
misfit

10 13

10 10

10 7

10 4

10 1

102

J re
gu

la
ris

at
io

n

 = 5e-05 = 0.0005 = 0.001 = 0.002
 = 0.005

 = 0.01

 = 0.02

 = 0.05

 = 0.5

 = 1.0

 = 10.0

 = 50.0

'Clough-tocher' interpolation

0.0016
0.0017

0.0018
0.0019

Jfield
misfit

10 13

10 10

10 7

10 4

10 1

102 = 5e-05 = 0.0005 = 0.001 = 0.002
 = 0.005

 = 0.01
 = 0.02

 = 0.05

 = 0.5

 = 1.0

 = 10.0

 = 50.0

'Gaussian' interpolation

L curves for J ′, N = 28

Figure 6.1: L-curves from minimising J ′ (Eq. 6.2.8) with different methods for estimating
uinterpolated. For low α, Jfield

misfit stopped being minimised and solver divergences were seen for
ugaussianinterpolated. The problem was likely becoming overly ill formed and the characteristic ‘L’ shape
(with sharply rising Jregularisation for low α and a tail-off for large α) is therefore not seen. To
keep the problem well formed without the regularisation parameter being too big α = 0.02 is
chosen for each method.

130

1 from firedrake import *

2 from firedrake.adjoint import *

3 continue_annotation()

4

5 # Import our noisy samples of the true u

6 u_obs_coords = ...

7 u_obs_vals = ...

8

9 # Solve PDE with a guess for q giving an initial u

10 ...

11

12 omega_v = VertexOnlyMesh(omega, u_obs_coords)

13 P0DG = FunctionSpace(omega_v, "DG", 0)

14 u_obs = Function(P0DG)

15

16 # safely input data (covered in another chapter)

17 P0DG_input_ordering = FunctionSpace(omega_v.input_ordering, "DG", 0)

18 u_obs_input_ordering = Function(P0DG_input_ordering)

19 u_obs_input_ordering.dat.data_wo[:] = u_obs_vals

20 u_obs.interpolate(u_obs_input_ordering)

21

22 J_misfit = assemble((u_obs - interpolate(u, P0DG))**2 * dx)

23 alpha = Constant(0.02)

24 J_regularisation = assemble(alpha**2 * inner(grad(q), grad(q)) * dx)

25 J = J_misfit + J_regularisation

26

27 q_hat = firedrake.adjoint.Control(q)

28 J_hat = firedrake.adjoint.ReducedFunctional(J, q_hat)

29 q_min = firedrake.adjoint.minimize(J_hat, method="Newton-CG")

Listing 12: Firedrake code for expressing J (Eq. 6.2.7) and dolfin-adjoint/pyadjoint code (inside
a Firedrake wrapper) for minimizing it with respect to q. The omitted PDE solve code is very
similar to that in Listing 2; for more see the code itself, archived on Zenodo at [80]. The section
where data is safely input (lines 6 and 7) is covered in chapter 7, Sect. 7.6.1.

6.2.1 Posterior consistency

It is expected that the error in our solution, when compared to the true solution, will always

decrease as the number of points assimilated increases. This has the caveat that the underlying

probability distribution that the measurements are drawn from should have unchanging variance

and the measurements themselves should be independent2. From a Bayesian point of view, this

is known as posterior consistency: under appropriate assumptions, in a well-posed Bayesian

inverse problem the posterior distribution should concentrate around the true values of the

estimated quantity [81]. The regularisation one chooses and the weighting it is given encodes

2there exists a generalisation of posterior consistency to certain kinds of correlated measurement errors which
is not relevant here

131

0.000 0.025 0.050 0.075 0.100 0.125 0.150

Jpoint
misfit

10 14

10 11

10 8

10 5

10 2

101

104

J re
gu

la
ris

at
io

n

 = 1e-05 = 0.0001
 = 0.001

 = 0.01
 = 0.02

 = 0.1
 = 0.2

 = 0.5
 = 1.0

 = 10.0

 = 100.0

 = 1000.0

L curve for J, N = 28

Figure 6.2: L-curve for minimising J (Eq. 6.2.7). The characteristic ‘L’ shape is seen and
α = 0.02 is seen to be close to the turning point and is therefore chosen for consistency with
the other L-curves (Fig. 6.1).

information about the assumed prior probability distribution of q before one starts assimilating

data (adding observations).

Take, for example, the regularisation used in this problem

α2

∫
Ω

|∇q|2dx. (6.2.9)

This asserts a prior that the solution q which minimises J and J ′ should be smooth and gives

a weighting α to the assertion. If we have posterior consistency, the contribution of increasing

numbers of measurements uobs should increase the weighting of our data relative to our prior

and qest should converge towards the true solution qtrue. It is clear that this ought to happen

for J , the point evaluation approach, since increasing Nd increases the number of terms in the

model-data misfit sum (i.e. the integral over Ωv gets bigger: see the equivalency of Eq. 6.2.3

and Eq. 6.2.2). There is no such mechanism for J ′, the field reconstruction approaches, since

adding more data merely ought to cause uinterpolated to approach utrue without increasing the

relative magnitude of the misfit term.

Figure 6.3 demonstrates that the problem formulated with J , the point evaluation approach,

both demonstrates posterior consistency and produces a qest which is closer to qtrue for all but

the lowest Nd when compared to our formulations with J ′.3 The point evaluation approach

therefore gives us consistent point data assimilation when compared to the particular field

reconstruction approach we test: it results in posterior consistency and is therefore consistent

3It should be noted that α has not been optimised for minimising J so it is not unreasonable to assume that
the prior is dominating the solution for low Nd.

132

with Bayes’ Theorem.

It is possible, were an l-curve analysis repeated for each Nd, that errors in our field recon-

struction approach could be reduced. The lack of convergence would not change due to there

being no mechanism for growing the misfit term with number of measurements.

Example calculated fields are shown in Fig. 6.4 and Fig. 6.5. These demonstrate that the

choice of interpolation method changes the field reconstruction.

One could attempt to enforce posterior consistency on the field reconstruction approach

(minimising J ′) by introducing a term in the model-data misfit which increases with the number

of measurements. When attempting to enforce posterior consistency we would also need to

ensure that our field reconstruction method approaches the true field as more measurement

are performed. There is no obvious way to do this which is universally applicable, particularly

since measurements are always subject to noise.

22 25 28 211 214 217

Number of points

0.5

1.0

1.5

2.0

2.5

3.0

3.5

||q
es

t
q t

ru
e||

L2

L-Curves
produced
for N = 28

Log-conductivity error
qest method

point
near.
lin.
c.t.
gau.

Figure 6.3: Error change as number of points Nd is increased for minimising J (uinterpolated
and qest method ‘point’ - see Eq. 6.2.7) and J ′ (the other lines - see Eq. 6.2.8) with different
methods for estimating uinterpolated where α = 0.02 throughout (see main text for justification).
The l-curves for α = 0.02 with Nd = 256 are shown in Fig. 6.1 and Fig. 6.2. Not all methods
allowed uinterpolated to be reconstructed either due to there being too few point measurements
or the interpolator requiring more system memory than was available.

6.3 Data Assimilation in Ice Shelf and Ice Sheet Litera-

ture

Given the apparent superiority of point evaluation misfit functionals, one is left to wonder

why they are not used more widely aside from limitations in software. In particular, field

133

0.0 0.5 1.0
0.0

0.5

1.0

y

utrue

0.0 0.5 1.0
0.0

0.5

1.0
qtrue

0.0 0.5 1.0
0.0

0.5

1.0

y

uobs

0.0 0.5 1.0
0.0

0.5

1.0
qpoint

est

0.0 0.5 1.0
0.0

0.5

1.0

L2 Norm
1.18

qpoint
est qtrue

0.0 0.5 1.0
0.0

0.5

1.0

y

unear.
interpolated

0.0 0.5 1.0
0.0

0.5

1.0
qnear.

est

0.0 0.5 1.0
0.0

0.5

1.0

L2 Norm
1.67

qnear.
est qtrue

0.0 0.5 1.0
0.0

0.5

1.0

y

ulin.
interpolated

0.0 0.5 1.0
0.0

0.5

1.0
qlin.

est

0.0 0.5 1.0
0.0

0.5

1.0

L2 Norm
1.67

qlin.
est qtrue

0.0 0.5 1.0
0.0

0.5

1.0

y

uc. t.
interpolated

0.0 0.5 1.0
0.0

0.5

1.0
qc. t.

est

0.0 0.5 1.0
0.0

0.5

1.0

L2 Norm
1.68

qc. t.
est qtrue

0.0 0.5 1.0
x

0.0

0.5

1.0

y

ugau.
interpolated

0.0 0.5 1.0
x

0.0

0.5

1.0
qgau.

est

0.0 0.5 1.0
x

0.0

0.5

1.0

L2 Norm
1.74

qgau.
est qtrue

0.0

0.1

0.2

M
ag

ni
tu

de
 (a

rb
.)

4

0

4

M
ag

ni
tu

de
 (a

rb
.)

0.0

0.1

0.2

4

0

4

4

0

4

0.0

0.1

0.2

4

0

4

4

0

4

0.0

0.1

0.2

4

0

4

4

0

4

0.0

0.1

0.2

4

0

4

4

0

4

0.0

0.1

0.2

4

0

4

4

0

4

Figure 6.4: Summary plot of fields for Nd = 256. Rows correspond to method used where
column 1 is the necessary u, column 2 is the corresponding q at the optimum solution, and
column 3 is the error. Row 1 shows the true u and q. Row 2 has us minimising J (Eq. 6.2.7)
whilst rows 3-6 have us minimising J ′ (Eq. 6.2.8). The regularisation parameter α = 0.02
throughout. The field we get after minimising J , qpointest , manages to reproduce some features
of qtrue. For minimising J ′ the solutions fail to reproduce any features of qtrue and the error is
therefore higher. Each of the uinterpolated fields are also visibly different from one another. For
comparison see Fig. 6.5.

134

0.0 0.5 1.0
0.0

0.5

1.0

y

utrue

0.0 0.5 1.0
0.0

0.5

1.0
qtrue

0.0 0.5 1.0
0.0

0.5

1.0

y

uobs

0.0 0.5 1.0
0.0

0.5

1.0
qpoint

est

0.0 0.5 1.0
0.0

0.5

1.0

L2 Norm
0.37

qpoint
est qtrue

0.0 0.5 1.0
0.0

0.5

1.0

y

unear.
interpolated

0.0 0.5 1.0
0.0

0.5

1.0
qnear.

est

0.0 0.5 1.0
0.0

0.5

1.0

L2 Norm
1.67

qnear.
est qtrue

0.0 0.5 1.0
0.0

0.5

1.0

y

ulin.
interpolated

0.0 0.5 1.0
0.0

0.5

1.0
qlin.

est

0.0 0.5 1.0
0.0

0.5

1.0

L2 Norm
1.66

qlin.
est qtrue

0.0 0.5 1.0
0.0

0.5

1.0

y

uc. t.
interpolated

0.0 0.5 1.0
0.0

0.5

1.0
qc. t.

est

0.0 0.5 1.0
0.0

0.5

1.0

L2 Norm
1.66

qc. t.
est qtrue

0.0 0.5 1.0
x

0.0

0.5

1.0

y

ugau.
interpolated

0.0 0.5 1.0
x

0.0

0.5

1.0
qgau.

est

0.0 0.5 1.0
x

0.0

0.5

1.0

L2 Norm
1.69

qgau.
est qtrue

0.0

0.1

0.2

M
ag

ni
tu

de
 (a

rb
.)

4

0

4

M
ag

ni
tu

de
 (a

rb
.)

0.0

0.1

0.2

4

0

4

4

0

4

0.0

0.1

0.2

4

0

4

4

0

4

0.0

0.1

0.2

4

0

4

4

0

4

0.0

0.1

0.2

4

0

4

4

0

4

0.0

0.1

0.2

4

0

4

4

0

4

Figure 6.5: Summary plot of fields for Nd = 32768. Rows and columns correspond to those
in Fig. 6.4. The regularisation parameter α = 0.02 throughout. We would expect the larger
number of measurements to correspondingly reduce the error: this only occurs to a significant
degree when solving J . This cannot be entirely blamed on a lack of mechanism in J ′ for having
the misfit term outgrow the regularisation term: the uinterpolated fields do not approximate utrue
with ugau.interpolated being particularly poor.

135

reconstruction misfit functionals seem particularly prevalent in ice shelf and ice sheet data

assimilation literature.

In the work where MacAyeal et al. introduce the ‘control method’ for ice sheets [63] they

start by considering an analytical solution for the ice velocity field in the Inverse Problem

section:

As is well known, there are many ways to interpolate a field of irregularly spaced

observations. Bindschadler and Scambos [1991] used a commercially available pack-

age based on kriging principles, and then adjusted the results by hand. It is thus

possible for the interpolation method to artificially affect the β field derived from

(4) and (5). To avoid these effects, I recommend using an interpolation scheme that

is faithful to the physics which govern the ice stream velocity. This scheme is the

control method which I discuss below.

The direct algebraic inversion also faces several other mathematical hazards. It

works only if the data, Ud = (ud, vd), possess all of the mathematical properties

required of a solution of (1) - (3). There may be velocity gradients contained in this

data that cannot be explained by any distribution of β.

Without diving into the symbols and equations being referenced here, it is pointed out that

(a) methods of interpolation vary and can change results and that (b), unless the observations

are exact solutions to the equations (which is unlikely given the approximations being made)

you won’t get a solution that makes sense anyway. Point (b) motivates setting the problem up

as a constrained optimisation problem but it seems that (a) is forgotten about. The control

method is introduced by forming a functional that directly compares computed and observed

velocity fields and, in a section titled Satellite Imagery Derived Velocity Data they write

Figure 2 shows a contour map of longitudinal and transverse components of the

observed surface velocity interpolated to a 65x65 finite difference grid to be used in

the modeling and inversion calculations.

The precise nature of this interpolation is not discussed despite the observed velocity data being

noted for its irregularity.

This first paper was written with finite difference models which inherently give solutions

on grids, nevertheless efforts could have been taken to interpolate the modelled grid data to

the specified location or to simply not use all grid points. Fortunately finite element methods

are not tied to grids and instead give solutions everywhere. Nevertheless MacAyeal’s approach

seems to have become the defacto method for performing data assimilation with ice sheets

with the subtly incorrect model-data misfit propagating through the literature, perhaps via the

tutorial he published in 1993 [82].

In another paper MacAyeal, Bindschadler, and Scambos [83] adopt the finite element

method but the model/observation misfit functional (Eq. 2) is once again given in terms

136

of the comparison of two fields defined over the entire domain. Efforts are made here to try and

deal with observational uncertainty in a section titled Treatment of observational uncertainty

but these require introducing scalar terms which are defined for the entire continuous vector

field of “observed” data (see Eq. 3 to Eq. 7): no attempt is made to deal with uncertainty of

specific measurements.

Joughin, MacAyeal, and Tulaczyk [64] is similar: the model-data misfit (Eq. 7) uses com-

plete field solutions despite data sparsity being mentioned when the data is introduced (Sect.

5). Efforts are made to characterise the model’s sensitivity to different solutions (Sect. 3) but

the manufactured data used are defined as continuous fields and are not passed through the

complete input data pipeline, including any interpolation that is done. This could significantly

undermine the quality of the results. Indeed the words ‘interpolation’ and ‘extrapolation’ are

not found in the paper.

Things initially look better in Vieli et al. [65] where a sum is used as the model-data misfit

functional (Eq. 2.4), but closer inspection reveals that this is done over all finite difference

grid points with no attention given to specific measurement locations. The data used is pre-

processed to give a complete velocity field and the grid is laid upon this to get the velocity

components in each case (Fig. 2).

The conclusion drawn here is that a combination of a reliance on what has been done before,

and no demonstration of the disadvantages of the approach are the reason, hence the value of

this work.

6.4 Future Work

This work has already been extended to assimilate data in groundwater hydrology and in

modelling the Larsen C ice shelf: see Nixon-Hill et al. [3]. It is not included here since it was

primarily the work of my coauthor, Daniel Shapero.

It is important that our estimated u reflect the measurement uncertainty, and future work

ought to integrate that with the Bayesian inference perspective used elsewhere in data assim-

ilation (for Antarctic ice flow, see, for example Isaac et al. [84]). The point evaluation misfit

approach allows raw location and value data to be directly used with measurement-specific

errors being defined as necessary. So instead of our model-data misfit being∫
Ω

(
uinterpolated − u

σ

)2

dx (6.4.1)

we can instead write
Nd−1∑
i=0

(
uiobs − u(Xi)

σi

)2

(6.4.2)

where uiobs are specific remote-sensing data and σi a relative quantification of their measurement

error (the width of the PDF) such as the standard deviation. Where σi are small, the u from

137

minimising the functional will be closer to uiobs and the more confident we can be in whatever

aspect of q is associated with that measurement. From a Bayesian inference point of view,

our regularisation is the prior. The measurements uiobs are the likelihood, with PDF widths

proportional to σi (the bigger the σi, the less confident we are in u
i
obs). The fields we estimate,

q and u, are the posterior. The challenge comes in finding the associated PDF widths of them,

since that would require our model F to propagate that information. Nevertheless, taking

this approach would ensure that q and u appropriately reflect the confidence we have in the

measurements and our prior.

We can estimate the PDFs of q and u by taking an ensemble of samples from the PDF of

the measurements (with appropriate weightings), propagating them through the minimisation,

and seeing how they affect the estimation of q and u. A more in-depth review of variational

data assimilation methods which use PDFs could also provide some options.

An interesting question arises when we consider uncertainty in the location of our measure-

ments. One approach is to simply solve this problem multiple times with the points in different

locations, as dictated by the PDF of the measurement location, to get a sense of the sensitivity

of the problem to the locations. Another approach would be to use the same misfit functional

but to also solve for the point locations via a penalty term which weights the point locations

as necessary given their location error

Nd−1∑
i=0

Ai

(
uiobs − u(Xi)

σi

)2

(6.4.3)

where Ai is a weighting and Xi is what we solve for. Solving for point locations via gradient

methods requires the derivative of our misfit functional with respect to the position. This could

be done by taking the derivative of an operator that moves points, which would be implemented

alongside movable points, discussed in Sect. 10.2.2.

6.5 Concluding Remarks

This is both a demonstration of new functionality and a general call for all scientific commu-

nities who face these kinds of inverse problems to carefully consider if point evaluation misfit

functionals would be appropriate for their use case. Using these instead of field reconstruction

approaches in data assimilation has several benefits: it (i) ensures our inverse problem displays

posterior consistency, (ii) reduces errors, (iii) avoids the need for ambiguously defined inter-

measurement interpolation regimes, and (iv) allows assimilation of very sparse measurements.

For data assimilation problems where this is not possible, ensuring that the model-data misfit

grows with the number of measurements could also be considered.

Of course, to use model-data misfits which are evaluated at discrete points we need to be

able to perform point evaluation on the fields which we compare to our discrete measurements.

138

These point evaluations need to integrate with whatever method we are using to solve our

optimisation problem: in many cases this requires finding a first or second derivative of the

point evaluation operation alongside operations such as solving a PDE. Such libraries are few

and far between. Vertex-only mesh and interpolation as a point evaluation operation make this

straightforward, and serve as a demonstration of the power of this abstraction. Firedrake and

firedrake.adjoint are excellent tools to use for this purpose, and makes solving the necessary

minimisation problem very straightforward.

6.6 Summary of Contributions

I have used my new abstractions to solve a PDE constrained optimisation problem which

directly uses point data. I have demonstrated the advantages of this approach over field recon-

struction methods which were (a) previously the only option with Firedrake or FEniCS without

hand-coding derivatives and (b) widely used. This work has been published as a preprint and

is currently under review for journal publication (see [3]).

The Firedrake code which generated the figures here, of which I wrote the

unknown-conductivity directory, is archived on Zenodo at [80] and used a Firedrake version

similarly archived at [85].

139

Chapter 7

Parallel Safe, Unlosable Point Data

140

This chapter adapts and reuses, without further attribution, text from Nixon-Hill et al. [3]

which was created by the author.

7.1 Introduction

This chapter further documents the implementation of the vertex-only mesh whose symbolic

properties were introduced in Chapter 4. When implementing a vertex-only mesh in a parallel

computing system, there are considerable challenges that must be overcome: these are outlined

in Sect. 7.2. The discussion then moves on to algorithms which uniquely associate vertex-

only mesh vertices with specific parent mesh cells (Sect. 7.4) and the movement of point data

between different parallel decompositions (Sections 7.5 and 7.6).

7.2 Motivation

Everything added to Firedrake is expected to work when run in parallel using MPI parallelism

and, ideally, to use that parallelism to speed up calculations. When meshes are created, they

are parallel decomposed such that different MPI ranks contain different sections of the mesh.

This so-called parallel domain decomposition is common to many systems which run in parallel

and solve problems on some domain [86]. At the edges of the domain on each rank there is a

halo which is a section of mesh which is also present on other MPI ranks. This is illustrated

in Fig. 7.1. The halo regions allow for communication between MPI ranks about, for example,

the values of a PDE solution on its local mesh section via a process known as halo exchange.

Rank	0	
owned
Rank	0	Halo,	
owned	by	
rank	1

Rank	1	
owned

Rank	2	
owned

Rank	1	Halo,	
owned	by	

rank	0

Rank	1	Halo,	
owned	by	
rank	2

Rank	1	Halo,	
owned	by	

rank	0

Serial	Mesh

Parallel	Mesh

Mesh	Halo	Regions

Rank	0/Rank	1
Parallel	Divide

Rank	1/Rank	2
Parallel	Divide

Figure 7.1: Parallel domain decomposition of an interval mesh across 3 ranks. The coloured
regions correspond to halos regions which are owned by other MPI ranks.

141

There is no guarantee that point data on one MPI rank will match the domain decomposition

of the model we want to use them with. If we are coupling models, one model may produce

point data with a different MPI domain decomposition than the model from which we consume

the data. Similarly we may be simultaneously reading different data from various data sets on

different MPI ranks.

An ideal implementation of vertex-only mesh should therefore allow each MPI rank to be

supplied with a set of coordinates to embed and redistribute them to the ranks that contain

the corresponding parent mesh domains. These points must be guaranteed to be embedded

in the mesh if they are in its domain. Furthermore, it should be possible to send the values

associated with those coordinates to the coefficients of the associated P0DG function.

Meshes are generally approximations to a domain: a curved surface may be approximated

by a number of planar facets for example. It is therefore important that it be possible to embed

point data which are outside the mesh domain by some specifiable tolerance, typically of the

order of the size of a mesh cell. The closest cell should then be chosen. This should apply both

at the domain edges and at the edges of parallel domains: where two ranks find a point outside

their rank-local domain, the cell which it is nearest to should be chosen. In the unlikely case

that the distances are the same, a single MPI rank should be chosen as the owner.

7.3 Existing Capability outside Firedrake

Particle methods, where the movement of some number of particles are tracked, are found

throughout scientific computing. Particle-in-cell methods, which combine mesh or grid based

methods for solving PDEs with particle methods, are often used for solving complex problems

in areas such as plasma physics. Implementations of these methods are typically built to run

in parallel on HPC platforms. Methods for linking point data with meshes and grids in parallel

has therefore been tackled before.

Particle methods are found elsewhere: often these don’t involve a mesh but work directly

on the basis of moving particles around (these are known as ‘mesh free’ methods). Applications

range from molecular dynamics, to computational fluid dynamics and methods which sample

from probability distributions to estimate new probability distributions. These methods all

involve moving particles, which is beyond the scope of this work, and since they don’t necessarily

involve a mesh, have more parallel distribution options available to them.1 Nevertheless, one

may wish to couple such methods to a simulation in Firedrake, which would require finding the

locations of those particles on a domain decomposed mesh.

Much work has been put into tracking particles as they move through an irregular domain

such as an unstructured mesh; the introduction to Kuang, Yu, and Zou [87] highlights and

1A quick summary of some options can be found in chapter 16 of Prof. Michael T. Heath’s Parallel Numerical
Algorithms course taught at the University of Illinois at Urbana-Champaign. These are available at https:

//courses.engr.illinois.edu/cs554/fa2011/notes/16_particle.pdf.

142

https://courses.engr.illinois.edu/cs554/fa2011/notes/16_particle.pdf
https://courses.engr.illinois.edu/cs554/fa2011/notes/16_particle.pdf

categorises some of the literature on this. There are plenty of highly sophisticated algorithms,

many of which could prove useful in the future (see Sect. 7.8), but for now we are interested

in the initial location of points. There is surprisingly little literature on this process and its

parallelisation, as most articles devote their attention to computationally expensive process of

relocating points.

A common approach, and that suggested by Strobl, Bannerman, and Pöschel [88], is to

use specialised database structures to efficiently locate coordinates within an unstructured

mesh. Such database structures and associated indexing tools are used extensively in graphical

applications such as ray tracing and in simulation environments for collision detection. The

specific approach used here (and indeed by other code-generating finite element libraries) is

highlighted in 7.4.

Deal.II, like Firedrake, uses parallel domain decomposition. Its Particles class encapsu-

lates the notion of particles in a mesh which can be thought of as vertices of a vertex-only mesh.

They carry a location in real space, another within the reference cell of the cell they are in, and

a unique ID. These can be given values to carry around, which is analogous to creating a P0DG

function on a vertex-only mesh. Large numbers of particles are handled by a ParticleHandler

class. Gassmöller et al. [89] used these tools to implement particle-in-cell methods in deal.II.

Legacy FEniCS and FEniCSx are also compatible with mesh parallel domain decomposition.

Both contain functionality for locating points, but no overarching data structure. Like deal.II,

the LEoPart add in for FEniCS [90] also has a particles class. This holds information

about the positions of particles and, optionally, quantities such as momentum, density and

concentration assigned to them. Rather than assign each particle information about the parent

cell and position, LEoPart takes the approach of keeping track of the number of particles within

each mesh cell. The intended use case is Lagrangian particle tracing, as Maljaars, Richardson,

and Sime [90] detail. Notably, the ‘point interpolation’ operation for getting values from a

function on a mesh in LEoPart is not differentiable.

7.4 Cell Location Algorithm: Avoiding Point Loss

A robust point location scheme ensures that each vertex or point in a vertex-only mesh is

assigned a parent mesh cell. This involves (A) identifying a list of candidate cells within which

the point may reside then (B) identifying the exact cell from the candidates.

We start with step (A): When meshes are created axis-aligned bounding boxes (boxes with

edges aligned to the global mesh coordinate system) are placed around the extrema of each

cell. These boxes necessarily overlap so a given point may be in more than one. Since they

are axis-aligned, the boxes that contain a given coordinate (x, y, z) can be quickly identified

by looking at the box limits. There is 1 bounding box per cell; the candidate cells are the

bounding boxes containing the coordinate. A visualisation of this is shown in Fig. 7.2 (b).

To include points which are close to the domain edge, each bounding box is expanded by a

143

1
2

3

4

1 2

3 4

1
2

3

4

1
2

3

4

1 2

3 4 4

3

2
1

(a) (b)

(c) (d)

Figure 7.2: A mesh of four cells (a) with axis aligned bounding boxes. (b) shows the bounding
boxes around the cell extrema: the point in cell 3 (the dot on the diagram) is inside three
overlapping boxes corresponding to cells 2, 3, and 4 which are the cell candidates. (c) and (d)
show the expansion of the bounding boxes to a hypercube centred on the middle of the cell to
allow for point location on immersed manifolds, of which (d) is an example. In this example,
the tolerance is zero: the boxes would be further expanded should a tolerance be included.

144

cell-size-relative tolerance.

This has obvious advantages over a brute force approach in which all cells are searched for

a given point: bounding boxes can also be constructed in other code-generating finite element

libraries such as deal.II2 [33], legacy FEniCS3 [17] and FEniCSx4. Maljaars, Richardson, and

Sime [90] use the FEniCS bounding box search for LEoPart. Similarly, Gassmöller et al. [89]

use the deal.II equivelent in their particle-in-cell implementation. More generally, axis-aligned

bounding boxes are widely used for extracting spatial subdomains from unstructured spatial

data [91] such as unstructured meshes.

To allow for cell location on immersed manifold meshes, each bounding box is expanded to

be an axis-aligned hypercube with geometric dimension of the mesh, centred on the midpoint of

the previous bounding box. The side length of the hypercube is the longest side of the previous

bounding box (the L1 diameter).5 This appears to be novel to Firedrake. A visualisation is

shown in Fig. 7.2 (c) and (d).

In practice, the bounding boxes are stored on the mesh in an R∗-tree [92] database structure

(a ‘spatial index’) using the libspatialindex library [93]. Candidate cell identification uses lookup

tools built into libspatialindex. For interval meshes all the cells are treated as candidates since

libspatialindex does not support 1D, though spatial indexing methods for 1D are relatively

straightforward.6

𝑥"!

𝑥""

Local

0 1
0

1
𝑋&! = (1, 1)

1

𝑋&" = (0.5, −0.5)

0.5
𝑋&# = (−0.25, −0.5)

0.75𝑥!

𝑥"

Global

𝐺$"(𝑥)

𝐺(𝑥")	

𝑋!

𝑋"

𝑋#

Figure 7.3: Each pointXi in the parent mesh local coordinate system X̂i has the L
1 cell distance

calculated and stored. For X0 the distance is 1, for X1 it’s 0.5 and for X2 it’s 0.75.

Moving on to step (B), we (1) loop over each candidate cell, (2) find the point location

2see the API documentation at https://www.dealii.org/current/doxygen/deal.II/classBoundingBox.
html

3see https://fenicsproject.org/olddocs/dolfin/1.4.0/python/programmers-reference/cpp/mesh/BoundingBoxTree.html
4see https://docs.fenicsproject.org/dolfinx/main/python/generated/dolfinx.geometry.html
5This step was the work of a masters student to whom I gave input. I tidied this and integrated it with the

rest of the algorithm.
6For example, one can created a sorted list of the centroids of each cell, which can be quickly indexed with

a simple binary (bisection) search.

145

https://www.dealii.org/current/doxygen/deal.II/classBoundingBox.html
https://www.dealii.org/current/doxygen/deal.II/classBoundingBox.html
 https://docs.fenicsproject.org/dolfinx/main/python/generated/dolfinx.geometry.html

in the reference coordinate space of each candidate cell (discussed in Sect. 4.5.1), then (3)

choose the cell with the reference coordinate which is closest to the reference cell as measured

in the L1 norm (the ‘Manhatten’ distance - see Fig. 7.3). For information on how these are

calculated see the appendix to this chapter (Sect. A.3.1). The L1 distance and the cell number

are stored for later use. In most cases a cell with zero L1 distance is found, indicating a point

is definitely inside, and the loop is terminated.7 When a zero distance is not found, the lowest

L1 distance is used as long as it is below a tolerance. The relative tolerance that was specified

when building the bounding boxes is used. Whilst intervals do not have bounding boxes, they

require that this tolerance be set such that they appropriately drop points which are outside

the mesh boundary8.

This is far more robust than the previous cell location scheme. That had step (3) query

whether the point in reference coordinates was located inside a candidate reference cell. As

soon as a cell was found which contained the point, up to some user defined absolute tolerance

(typically 10−14), the loop was terminated.

The problems with this were manyfold. Early loop termination would cause points to be

assigned to the wrong cells if the absolute tolerance was too high. A low tolerance risked

the rare, but potentially catastrophic, case of floating point round-off and truncation errors at

internal mesh cell boundaries causing points to not be assigned a cell. By choosing the cell

that the point is closest to this is guaranteed not to happen. The tolerance parameter is now

cell-size relative and exists only to ensure we capture points which are outside the domain.9

The bounding boxes from step (A) were also not expanded to take account of any tolerance,

meaning that cells at mesh or parallel domain edges that lined up with the coordinate axes

could be lost.

It is difficult to compare the approach to step (B) outlined here with other libraries: in the

deal.II particle-in-cell implementation article [89], for example, this is skipped over. The source

code for both legacy FEniCS and FEniCSx reveal that a unique cell is found by searching for

a geometric ‘shortest distance’. This ought to make them resilient against point loss due to

floating point arithmetic error, though it does not appear to be possible to specify a tolerance

to catch points just outside mesh boundaries. In FEniCSx, at time of writing, this appears

to be done by computing the distance between the point and the cell vertices via the iterative

Gilbert–Johnson–Keerthi distance algorithm [94]10, though this is not clearly documented.

A method for producing the L1 distance has been added to all cell types Firedrake uses.

These are stored in the tabulation library, FIAT (discussed in Sect. 3.7). A reference coordinate

is supplied and the L1 distance from the reference cell is produced: This is carefully written to

7If there happen to be two cells which both have a zero L1 distance whilst running in serial, the first to be
identified is chosen.

8see future work (Sect. 7.8) for more on this
9To see how we deal with edges of parallel domains, see Sect. 7.5.

10see https://github.com/FEniCS/dolfinx/blob/c56d30b23f2c2ce99e8c145d3aeb43aff5d6d229/cpp/

dolfinx/geometry/utils.cpp#L505-L543

146

https://github.com/FEniCS/dolfinx/blob/c56d30b23f2c2ce99e8c145d3aeb43aff5d6d229/cpp/dolfinx/geometry/utils.cpp##L505-L543
https://github.com/FEniCS/dolfinx/blob/c56d30b23f2c2ce99e8c145d3aeb43aff5d6d229/cpp/dolfinx/geometry/utils.cpp##L505-L543

ensure that a symbolic expression can be produced from FIAT’s Python code using the SymPy

library [95]. The point locations, reference coordinates and L1 reference-cell distances are all

calculated with generated C code.

The behaviour of the cell location algorithm and the tolerance have been tested extensively

to ensure that points are indeed not lost, whilst profiles have shown no significant impact on

cell location performance relative to the existing algorithm. Of course, for the purposes of point

evaluation, being able to specify a data structure (the vertex-only mesh) upon which we may

point evaluate more than once gives an overall performance gain.

7.5 Redistributing Point Coordinates: the ‘Voting Al-

gorithm’

As discussed in the motivation (Sect. 7.2), we must be able to redistribute point coordinates to

the MPI rank containing the corresponding sections of the parent mesh domain. DMSwarm’s

in-built tool for this11, which embeds a DMSwarm in a DMPlex, does not redistribute and is not

compatible with many Firedrake meshes due to underlying differences between Firedrake meshes

and PETSc DMPlexes. The redistribution algorithm is therefore implemented in Firedrake.

The requirements of this algorithm are:

1. It must assign each unique coordinate to a mesh cell.

2. The mesh cell may be visible to more than one MPI rank in core and halo regions of the

mesh; the coordinate should be assigned to all those ranks.

3. Coordinates should not be able to fall between the gaps of mesh partitions.

4. Coordinates should be assigned to a single cell, even if that cell appears on more than

one mesh partition.

5. It should be clear after running the algorithm which coordinates are not in the domain.

Firstly we tackle the uniqueness of coordinates (requirement 1). Upon vertex-only mesh

construction, there are two distinct situations which the user must be asked about:

A The same set of coordinates is being provided to all MPI ranks. The coordinates on all

but one rank are therefore considered to be redundant and can be redistributed from a

single rank.

B Different coordinates are supplied to each MPI rank. There is no implied redundancy

and every coordinate supplied must be assumed to require embedding.

11DMSwarmSetPointCoordinates see https://www.mcs.anl.gov/petsc/petsc-3.9/docs/manualpages/

DMSWARM/DMSwarmSetPointCoordinates.html

147

https://www.mcs.anl.gov/petsc/petsc-3.9/docs/manualpages/DMSWARM/DMSwarmSetPointCoordinates.html
https://www.mcs.anl.gov/petsc/petsc-3.9/docs/manualpages/DMSWARM/DMSwarmSetPointCoordinates.html

In both cases, there are n coordinates {Xi}n−1
0 . The index i is referred to as the global index :

this is used as a unique identification number for a given point. In the redundant case (A),

MPI rank 0 is assumed to have all n points and they are numbered sequentially. In the non-

redundant case (B), all points are numbered in rank order: if rank 0 has 10 points, rank 1 has

20 points, and rank 3 has 5 points (n = 35), then rank 0’s points have global indices 0-9, rank

1’s points have global index 10-29, and rank 3’s points have global indices 30-34.

Next, it is ensured that all MPI ranks have the same set of coordinates {Xi}n−1
0 : in the

redundant case all MPI ranks are given the set of coordinates on rank 0 (an MPI broadcast

operation from rank 0), whilst in the non-redundant case all ranks gather all the coordinates

from each rank in rank order (an MPI all-gather operation).12 All ranks now have the same set

of points so the redundant and non-redundant cases no longer need to be treated separately.

For all coordinates {Xi}n−1
0 the parent cell number (which is unique within an MPI rank),

the reference coordinates, the L1 distance from the reference cell and the MPI rank ownership

now need to be identified. The cell location algorithm (Sect. 7.4) produces the first three of

these, and the rank ownership can be found using the cell number.13

Now all coordinates which are within the meshed domain (including tolerance) will have

been claimed by one or more MPI ranks. Where there are coordinates which lie near the

boundaries of mesh partitions, cells on both sides of the partition may have laid claim to them

thanks to the tolerance behaviour of the cell location algorithm. To decide between them the

cell that has the lowest L1 distance from the reference cell is chosen: in most cases this will be

zero for one side of the partition and above zero for any others, allowing the points with larger

L1 distances to be discarded.

In most cases minimising the L1 distance will resolve any rank conflicts. In the case of a

tied L1 distance there are two key scenarios to consider:

(i) Multiple ranks claim that a parent mesh cell on their partition owns the point. Other

ranks may see the point, but not claim that they own it.

(ii) Each rank claims that a parent cell on a different rank owns the point.

Both of these cases involve a point exactly on the boundary between owned and halo regions.

To resolve (i), the highest numbered rank is chosen as the owner: the other ranks that claimed

the point are made to search again for the cell ownership (with the previously chosen cell

excluded from the search), alongside ranks which didn’t claim the point but did disagree about

12For very large numbers of points this step may limit performance, but it allows for the cell location algorithm
being collective at present (i.e. having to be run once on each rank) and provides a working implementation
that satisfies the requirements that were set out in the motivation. For a proposed improvement, see Future
Work (Sect. 7.8).

13A Firedrake Function on the parent mesh Ω is created which contains one value per cell (P0DG(Ω)). The
parent mesh rank number is then interpolated onto it. After a halo exchange is performed between parallel
decompositions, to each MPI rank this Function contains the rank ownership information of all cells in the
local mesh partition: the cell number of each coordinate indexes this to tell us the rank ownership of that
coordinate’s parent mesh cell.

148

the owner. All ranks which had claimed the point as their own are guaranteed to find a cell in

the halo, with the same L1 distance, that corresponds to the chosen rank since, on those ranks,

the point was on a boundary between owned and halo regions.

For case (ii) to occur, the point must be on an owned/halo boundary on all ranks that claim

to be able to see the point. To resolve (ii), the lowest numbered rank is chosen. Now the chosen

rank, alongside any other disagreeing ranks, are also made to search again for cell ownership.

In this case, all ranks are guaranteed to find a cell with the same L1 distance which is owned

by the chosen rank.

This cell-decision process is why we call this a ‘voting algorithm’: the cell a point is closest

to wins, with ties broken depending on whether the point fits scenario (i) or (ii). The algorithm

is summarised in Fig. 7.4.

This is implemented as follows: Coordinates which were not located by the cell location

algorithm on a given rank are labelled as ‘not locally visible’. The L1 distance and the rank

ownership of these ‘not locally visible’ coordinates are set to infinity. Ranks which claim to

have identified a point as owned by themselves have the rank ownership made negative. The L1

distances and rank ownerships are each arrays of length n which are stacked next to each other

to create an n× 2 shaped array. The lexicographic row-wise minimum14 of this array is taken

across all MPI ranks.15 After returning all ranks to be positive, there is an agreed set of L1

distances and rank owners for each coordinate on every MPI rank. Any coordinates which still

have their L1 distances and ranks as infinity must not be in the mesh: these can be counted

for output. Where the L1 distance has changed locally, the coordinate must have been claimed

by another rank so it is marked as ‘not locally visible’.

If the L1 distance has not changed but the rank has, a process of cell re-identification is

started: any previously identified cells are supplied to the cell location algorithm as cells-to-

ignore, and a new cell given. When a cell is found that matches both the agreed L1 distance

and rank, the identification process stops. If no matches are found (which only happens for

cells within halo boundaries), the coordinate is again marked as ‘not locally visible’16. Such

points are not included in the eventual DMSwarm embedding.

This satisfies all our requirements: Global indices ensure uniqueness (requirement 1). Taking

the approach of marking points as ‘not locally visible’ ensures that coordinates are assigned

to both core and halo cells as necessary (requirement 2). The voting algorithm taking the

minimum L1 distance ensures points cannot be lost between ranks (requirement 3). The voting

algorithm tie breaker ensures assignment is unique (requirement 4). The algorithm also tells

us how many coordinates are not found on any parallel partition of the mesh (requirement 5)

14i.e. first comparing the two arrays by their first column, returning the element-wise minimum, with ties
broken by comparing the second column element wise

15Combining values from all MPI ranks, performing an operation on them, and redistributing them back to
all ranks is known as an MPI allreduce operation: this is performed with a newly implemented lexicographic
row-wise minimum as the MPI operator.

16this may be susceptible to floating point errors - see Future Work, Sect. 7.8

149

Rank	0	
owned
Rank	0	Halo,	
owned	by	
rank	1

Rank	1	
owned

Rank	2	
owned

Rank	1	Halo,	
owned	by	

rank	0

Rank	1	Halo,	
owned	by	
rank	2

Rank	1	Halo,	
owned	by	

rank	0

Out	of	Domain
Point	Locations

0 Global	Index1 2 3 4 5 6 7 8 9 10

1 2 3 4 3 4 5 6 7 6 7 8 9

Rank	Ownership∞ 0 0 1 1 ∞ ∞∞ ∞ ∞ ∞

Rank	Ownership∞ ∞ 0 0 1 1 1 1 ∞ ∞ ∞

Rank	Ownership∞ ∞ ∞ ∞∞ ∞ 1 2 2 2 ∞

Rank	0

Rank	1

Rank	2

At	parallel	divide	

Collective
Lexicographic
Min	(dist,	rank)

𝑳𝟏 Distance∞ 0 0 0 0 ∞ ∞∞ ∞ ∞ ∞

𝑳𝟏 Distance∞ ∞ 0.9 0 0 0 0 0 ∞ ∞ ∞

𝑳𝟏 Distance∞ ∞ ∞ ∞∞ ∞ 0 0 0 0 ∞

Rank	Ownership∞ 0 0 0 1 1 1 2 2 2 ∞
𝑳𝟏 Distance∞ 0 0 0 0 0 0 0 0 0 ∞

Global	
Index

Embedding

At	parallel	divide	

Figure 7.4: Embedding 10 point locations into a parallel domain decomposed interval mesh.
Points 0 and 10 are outside of the domain. Point 2 is identified as being inside a cell on rank 0
(it has 0 L1 distance) but is also identified as being inside a cell on rank 1, albeit with nonzero
L1 distance. The collective lexicographic minimum operation chooses the lower distance so
assigns it to a cell on rank 0. Points 3 and 7 are in the unusual situation of being exactly on a
parallel decomposition boundary. Point 7 fits scenario (i) and point 3 scenario (ii). For point
7, both ranks are set to be negative and the collective lexicographic minimum operation breaks
the tie by choosing the most negative rank (−2). After restoring all ranks to be positive, the
result is the higher rank. Rank 1 is made to search for the cell again until it finds another cell
with zero L1 distance on rank 1. For point 3, the lowest rank is chosen. The cell is searched for
again until the point is identified as being on rank 2, still with zero L1 distance. In the final
embedding one can see how points have been uniquely assigned: duplicate global indices occur
for points in the halos.

150

which allows us to easily raise a warning or error.

Both FEniCS and FEniCSx do not deal with this aspect of point location directly, though

they contain tools that let the user implement a parallel safe point location algorithm them-

selves: After performing a cell search the user either finds a cell or not, where multiple cells

are found one must be chosen. Maljaars, Richardson, and Sime [90] do not explicitly doc-

ument how they decide on ownership where there are disagreements between MPI ranks in

LEoPart - the published source code17 does not appear to deal with this case. Deal.II has a

distributed_compute_point_locations function which the Particles library uses for point

redistribution. This, presumably, relies on some kind of voting algorithm to deal with disagree-

ments at both cell boundaries and parallel domain boundaries, but this is not documented.

Nevertheless, the algorithm presented here is most likely not entirely novel. Notably, ap-

pendix A.3 of Maddison [96] contains a very similar algorithm to that presented here, though

does not deal explicitly with domain containment.

7.6 Redistributing Point Data

Having redistributed our coordinates we now need a method of redistributing the data associ-

ated with them. When a vertex-only mesh is created some list of coordinates is specified: the

values associated with them will in all likelihood be in the same order. We therefore need

1. a way to associate the data with the input coordinates and

2. a way to map those to the coordinates of our vertex-only mesh.

This is a challenge which other libraries do not face, due to the novel nature of the distinction

made here between the coordinates (the vertex-only mesh) and the data (the P0DG function

space on the vertex-only mesh).

7.6.1 The Input-Ordering Vertex-Only Mesh

We start with (1.). The input coordinates can be thought of as a vertex-only mesh in their own

right. Rather than having coordinates redistributed to appropriate parent-mesh cell locations,

this vertex-only mesh maintains the order and MPI rank of the input coordinates. Crucially,

data associated with this mesh, such as Firedrake Functions, are stored in the order and on the

MPI rank of the input coordinates, allowing their direct access or modification. The mesh is

referred to as the input-ordering vertex-only mesh or Ωinput-ordering
v associated with a vertex-only

mesh Ωv.

17https://bitbucket.org/jakob_maljaars/leopart

151

https://bitbucket.org/jakob_maljaars/leopart

7.6.2 Redistribution as Interpolation

Moving on to (2.) then, we need to move data to and from P0DG(Ωinput-ordering
v) and P0DG(Ωv).

The input-ordering vertex-only mesh Ωinput-ordering
v may or may not have the same number of

vertices as the vertex-only mesh immersed in the parent mesh Ωv since some coordinates may

have been deemed to be outside the parent mesh

Ωv ⊆ Ωinput-ordering
v . (7.6.1)

The bases and dual bases of these will be similar

P0DG(Ωv) ⊆ P0DG(Ωinput-ordering
v) and (7.6.2)

P0DG(Ωv)
∗ ⊆ P0DG(Ωinput-ordering

v)∗ (7.6.3)

so, despite the vertex-only meshes only being defined at the vertex locations, the movement

between the function spaces can be thought of as a dual evaluation interpolation operation

IP0DG(Ωv) : P0DG(Ωinput-ordering
v)→ P0DG(Ωv). (7.6.4)

To be precise, this interpolation operation which performs our redistribution is a map from

the input ranks and input order of our coordinates (represented by Ωinput-ordering
v) to the ranks

assigned by the voting algorithm and the rank-local data layout of Ωv.

IP0DG(Ωv) can be considered a permutation that may operate on a subset of its domain. Say

we have

Ωinput-ordering
v =


X input-ordering

0

X input-ordering
1

X input-ordering
2

X input-ordering
3

 (7.6.5)

Ωv =

X0

X1

X2

 =

X
input-ordering
1

X input-ordering
0

X input-ordering
2

 . (7.6.6)

Here, X input-ordering
3 is outside the domain of the parent mesh of Ωv. A function

r ∈ P0DG(Ωinput-ordering
v) has four coefficients {ri}3i=0 on each {X input-ordering

i }3i=0 which

IP0DG(Ωv)maps to a function l ∈ P0DG(Ωv) with coefficients {li}2i=0 on each {Xi}2i=0. We then

152

have

0 1 0 0

1 0 0 0

0 0 1 0


︸ ︷︷ ︸

IP0DG(Ωv)


r0

r1

r2

r3

 =

r1r0
r2

 =

l0l1
l2

 (7.6.7)

=

0 1 0

1 0 0

0 0 1


︸ ︷︷ ︸

A

r0r1
r2

 (7.6.8)

Here, IP0DG(Ωv) has no inverse since the matrix is non-square and we cannot recover r3. The

inverse of A is its transpose AT since permutations are orthogonal. In general, if all vertices

of Ωinput-ordering
v are present in Ωv, IP0DG(Ωv) is a permutation and its inverse is the transpose.

The interpolation operation in the other direction

IP0DG(Ωinput-ordering
v) : P0DG(Ωv)→ P0DG(Ωinput-ordering

v) (7.6.9)

is therefore only strictly defined where all points in Ωinput-ordering
v are present in Ωv. This makes

sense; one cannot evaluate a dual basis function that uses a point which is not present in its

domain! In such cases

IP0DG(Ωinput-ordering
v) ≡ [IP0DG(Ωv)]

T (7.6.10)

and vice-versa.

The adjoint to our interpolation operations are the left multiplication of the matrix by the

row vector of cofunction coefficients (this is discussed in detail in Sect. 5.4.1). For

I∗P0DG(Ωv) : P0DG(Ωv)
∗ → P0DG(Ωinput-ordering

v)∗ (7.6.11)

with l∗ ∈ P0DG(Ωv)
∗ that has coefficients {l∗i }2i=0 this is

(
l∗0 l∗1 l∗2

)0 1 0 0

1 0 0 0

0 0 1 0


︸ ︷︷ ︸

IP0DG(Ωv)

=
(
l∗1 l∗0 l∗2 0

)
=
(
r∗0 r∗1 r∗2 r∗3

)
. (7.6.12)

153

Equivalently, we can start with a column vector of coefficients
0 1 0

1 0 0

0 0 1

0 0 0


︸ ︷︷ ︸
[IP0DG(Ωv)]

T

l
∗
0

l∗1

l∗2

 =


l∗1

l∗0

l∗2

0

 =


r∗0

r∗1

r∗2

r∗3

 . (7.6.13)

7.6.3 Implementation

Input-ordering Vertex-Only Mesh

The input-ordering vertex-only mesh Ωinput-ordering
v is created directly from the input coordinates

and is accessed via an .input_ordering property of a given vertex-only mesh Ωv. This still

sits on top of a DMSwarm and all DMSwarm ‘fields’ present in Ωv are reordered to correspond

to entries in Ωinput-ordering
v . It doesn’t necessarily make sense that Ωinput-ordering

v have a parent

mesh, since it is not necessarily immersed in another mesh. Nevertheless, to avoid modifying

the vertex-only mesh constructor, we make Ωv the parent.

Star Forests for Interpolation

The PETScSF or ‘Star Forest’ communication layer found inside PETSc [97] is designed to

deal with exactly the kind of parallel communication challenge we face. This provides an API

which allows one set of MPI ranks and data layouts to be associated with another set of MPI

ranks and data layouts such that data can be sent between them.

A rank with a local index into that rank is called a root. Each root can be associated with

zero or more other tuples of rank and local index: each of these is called a leaf. The tree of

links between a root and any associated leaves is called a star, whilst the union of all the stars

is called a star forest. For an illustration of stars see Fig. 1 in Zhang et al. [97] whilst a star

forest is shown in Fig. 2.

The star forest is a complete description of connectivity between two parallel data structures.

Sending all root data to associated leaves is called an SF broadcast, whilst sending all leaf data

to associated roots is an SF reduce. For more see Sect. 3.2 in Zhang et al. [97]. In many cases

these can be thought of as parallel distributed binary matrix operations. The IP0DG(Ωv) in Eq.

7.6.8 is an example of an SF broadcast. The roots are {ri}3i=0 and the leaves are {li}2i=0. r3 is

a root with no associated leaf. The reduce operation here is AT

0 1 0

1 0 0

0 0 1


︸ ︷︷ ︸

AT

l0l1
l2

 =

l1l0
l2

 =

r0r1
r2

 (7.6.14)

154

which only assigns values to the roots which have associated leaves. SF reduce can therefore

be used to represent adjoint interpolation where cofunction coefficients are taken as vectors to

right multiply (Eq. 7.6.13), so long as the output cofunction has its coefficients set to zero

where the matrix-vector product does not provide a value. We get a permutation matrix when

each root has 1 leaf: the reduce operation in this case is both the transpose and inverse of

broadcast. SF reduce can then also be used to represent interpolation in the other direction

(Eq. 7.6.9) where it is defined.

The data layout of P0DG functions on vertex-only meshes corresponds to the layout of the

meshes themselves. All the information needed to implement the interpolation operation

IP0DG(Ωv) : P0DG(Ωinput-ordering
v)→ P0DG(Ωv) (7.6.15)

is therefore contained in the data ordering and rank information of Ωinput-ordering
v and Ωv.

Ωinput-ordering
v is already arranged as necessary: for vertices specified on rank i in order

X input-ordering
j , the roots are tuples (i, j). The leaves are the non-halo vertices of Ωv: for

vertices now on rank k in order Xl, the leaves are tuples (k, l).

Why non-halo vertices? As a rule, dual evaluation interpolation operations in Firedrake

do not affect halo regions. This makes sense: halos are an implementation detail, so we do

not need to worry about Ωv in parallel having the same coordinate Xi on different processes.

Mathematically, each Xi is unique so the permutation-like operation in Eq. 7.6.8 remains valid.

Data associated with any Xi in halo regions are updated after a halo exchange.

As mentioned in Sect. 7.6.2, where the input-ordering vertex-only mesh Ωinput-ordering
v con-

tains points which are not in Ωv (they were not found in the parent mesh) interpolation is strictly

not defined. Nevertheless, the interpolation operator for points which are in both vertex-only

meshes is created and the values at missing points are left unmodified. This is an SF reduce

acting as a permutation. The adjoint interpolation, an SF broadcast, similarly ignores missing

points. This is used for cross-mesh interpolation, discussed in Chapter 8.

The star forest graph18 is embedded in Firedrake’s interpolation routines: Where a vertex-

only mesh and its input-ordering are both found as either source or target meshes, the input-

ordering star forest is requested, and an SF broadcast (for IP0DG(Ωv) or I∗P0DG(Ωinput-ordering
v)

) or SF

reduce (for I∗P0DG(Ωv)
or IP0DG(Ωinput-ordering

v)) operation chosen. This is either executed on a given

Function or Cofunction, or held as a partially applied function in a Firedrake Interpolator

for execution when one is specified. This is a ‘matrix-free’ approach - we never assemble the

binary interpolation matrix itself.

18accessed via an .input_ordering_sf property of a vertex-only mesh

155

7.7 Other Parallel Considerations

7.7.1 Constructing Halos

Star Forest

Star forests are used in Firedrake for halo exchange. This involves moving data stored upon

mesh topological entities (vertices, edges, facets and cells) from the edges of one parallel par-

tition to another. All the topological entities in a partition’s halo are leaves. In each case the

leaf tuple is the current rank and local index in memory of the entity being considered. The

root tuples are, for each halo entity, the remote rank which owns the entity and the local index

at which it is found on that remote rank. To update the values stored on a mesh halo, typically

in a Firedrake Function, an SF broadcast operation is performed.19 This is described in more

detail in Lange et al. [47].

This SF is created by default for most Firedrake meshes when the DMPlex is constructed

and is attached to the DMPlex: it is referred to as the point SF since topological entities in a

DMPlex are referred to as ‘points’. When constructing a vertex-only mesh, the point SF for a

DMSwarm is not created automatically: this is instead done manually at mesh construction to

ensure halo exchange works.

For a vertex-only mesh each entity is a vertex. The halo regions consist of vertices which

are in the halos of the parent mesh. The voting algorithm (Sect. 7.5) says which ranks own

these vertices: on a given MPI rank, these are the remote ranks which are the first entries in

the root tuple of each vertex. The local index of each vertex on its remote ranks (i.e. the index

in memory of the coordinate with the same global index) is the second entry in each root tuple.

These are identified and the point SF set.

Assigning PyOP2 Labels

Halo topological entities in a DMPlex or DMSwarm are given labels by PyOP2 to identify

them. This aids the execution of parallel loops of a given ‘kernel’, such as interpolation,

over the whole parallel distributed mesh. The kernel for the point evaluation dual evaluation

operation is discussed in Sect. 4.5.3. On a given rank the PyOP2 labels are:

• core: Data stored on these entities do not need to wait for halo exchange before the

PyOP2 kernel performs calculations with them. These are ‘owned’ by the rank, i.e. they

are a root (with or without leaves) in the DM point SF.

• owned: Data stored on these entities do need to wait for halo exchange before the PyOP2

kernel performs calculations with them. These are also ‘owned’ by the rank, as per the

definition above.

19Non-halo entities are roots without leaves - the broadcast operation does not affect them.

156

• ghost: Data stored on these entities are ‘owned’ by another rank: these can be labelled

as either core or owned on that rank.

All entities receive a unique label. When Firedrake is run in serial, all mesh entities are labelled

as PyOP2 core since no halo exchange will occur.

For a DMPlex, these labels are derived from the point SF via the connectivity information

contained in the DMPlex. Since DMSwarm represents the topology of a mesh of disconnected

vertices, the existing algorithm does not identify any vertices as owned. This is a problem: when

we loop over the vertices of a vertex-only mesh to interpolate from a parent mesh, we need to

ensure that the vertex-only mesh PyOP2 cell label, stored on the DMSwarm, matches that of

the parent mesh DMPlex. If we don’t, the PyOP2 kernel will make incorrect assumptions about

halo exchange and will not execute correctly. Fortunately, the simple solution is to inherit the

DMSwarm PyOP2 label from the DMPlex: this is done after cell location.

7.8 Future Work

The cell-location algorithm (Sect. 7.4) can be made more flexible. As yet, there is no accom-

modation for users who have a very coarse mesh and want to ensure all points outside it are

dropped (a bounding box tolerance in step (A) of zero), but still want to guarantee points

within the mesh cannot be lost (no tolerance for choosing the L1 bounding box in step (B)).

As stated in Sect. 7.4, the second tolerance is only needed because bounding boxes cannot yet

be constructed for intervals in 1D. Available options are to either only use the L1 bounding

box tolerance for intervals (perhaps the easiest option) or to allow bounding boxes to be drawn

for them. The latter option would either require a library other than libspatialindex or manual

implementation of a 1D spatial index. Should a different library be sought, the libraries inves-

tigated by Lawson, Gropp, and Lofstead [91] could provide a starting point. As is noted there,

changing library may also mean changing the database-lookup structure (spatial index): the

pros and cons of such a change would need to be considered given the relative ease of imple-

menting a simple 1D spatial index. A method for marking the outer boundaries of meshes prior

to parallel decomposition would also be needed to avoid point loss between parallel boundaries.

The cell location algorithm’s bounding boxes also currently preclude a safe cell-search al-

gorithm for high-order meshes. This is because the cell extrema, around which the bounding

boxes are created, are assumed to be at the vertices. A high order mesh may have a bend

between two vertices which extends outside the bounding box. Put another way, when the

mesh coordinates function is in a higher degree polynomial finite element function space, the

values saved as the global coefficients do not necessarily encapsulate the extrema of the func-

tion. Projecting the coordinates function to a basis of Bernstein polynomials, the coefficients

for which will always contain the extrema, could provide a solution.

More pressingly, the cell-location algorithm’s performance is limited to the speed of a Python

loop. This is because the generated C code includes a call to the Python interpreter. The exact

157

cause of this has yet to be identified, though it could be the SymPy code generation. This

has not yet inhibited uptake of the vertex-only mesh since its performance is comparible to the

existing .at method of Firedrake Functions and enables plenty of new use cases. Nevertheless,

moving points (discussed in Sect. 10.2.2) will likely need significant performance improvements

when using large numbers of particles.

Where a point is outside a mesh boundary, but is included due to the tolerance a relevant

question is “what value should we give the point when we perform point evaluation?” At

present, the value of the basis functions of the assigned mesh cell, extrapolated to the point

location, is used. So, for a ramp function f(x) = x on a line mesh 0 ≤ x ≤ 1, with a sufficiently

high tolerance that x = −0.1 is considered to be on the line, the point evaluation will be

f(−0.1) = −0.1. This may not be the correct behaviour for some use cases: it might be better

to project the point onto the closest on-mesh location and return the value there. In the case of

x = −0.1 we would project this onto x = 0 then evaluate f(−0.1) = 0. The simplest approach

would be to do this after transforming to reference coordinates: where the L1 distance is above

0, the output reference coordinates would be the projection of the given reference coordinate

onto the closest point on the reference cell.

The implementation of the voting algorithm (Sect. 7.5) may be susceptible to floating

point arithmetic error causing points to either be lost or halos to not accurately reflect the cell

locations. The algorithm relies on being able to find an exact match for rank and L1 distance

when points are on owned/halo boundaries in order to re-identify the owning cell. Of course,

floating point arithmetic error could, in rare scenarios, result in no exact match being found,

causing points to be lost. To avoid this, the implementation should specifically identify points

which are exactly on owned/halo boundaries (as opposed to halo/halo boundaries), then enforce

and communicate cell ownership.

The voting algorithm’s performance can also be improved. At present, the voting algorithm

requires all-to-all rank communication in the non-redundant case such that all MPI ranks have

the same set of points. Where this is found to limit performance, a more intelligent approach

could be used: Consider each rank as having a pool of coordinates to distribute. Firstly we

can remove from the pool any coordinates which are known to be on the core section of the

mesh and definitely not in any mesh halos by querying the rank-local bounding boxes (see Sect.

7.4). This would require more bounding box querying routines to be exposed at the level of

vertex-only mesh construction than is currently the case.

We can then redistribute the remaining points: this can take a similar approach to cell

location identification (see Sect. 7.4) this time applying axis-aligned bounding boxes around

each MPI rank’s decomposed mesh section. The coordinates of each point would provide

candidate ranks which could then vote on the point amongst themselves. For this to provide

significant performance improvements the cell location algorithm would probably need to be

made non-collective. This approach is similar to that taken in LEoPart [90] and the NESO-

Particles library [98].

158

As a result of the matrix-free approach to interpolation from and to the input-ordering

vertex-only mesh, the interpolation matrix itself is inaccessible. The matrix free approach has

advantages of course, interpolation matrices may be very large given the number of degrees

of freedom involved. Indeed, when otherwise performing adjoint interpolation in Firedrake,

we assemble the whole interpolation matrix and left multiply it by the given row-vector of

cofunction coefficients. That is a problem which needs fixing! To fix the problem at hand,

some way of turning a star forest graph into an equivalent logical matrix would need to be

found.

7.9 Summary of Contributions

I have implemented vertex-only meshes in Firedrake such that they satisfy my ideal require-

ments for parallel domain decomposition (see the motivation, Sect. 7.2). A voting algorithm,

outlined in Sect. 7.5, ensures that points can be specified on one rank and be correctly re-

distributed to another rank. I guarantee that points are embedded in the domain if they are

within it using a robust cell location algorithm, described in 7.4. The voting algorithm ensures

that the assigned cell is unique within the complete parallel distributed mesh.

In comparison to other similar libraries, this is beyond the present capability of FEniCS

and FEniCSx, and makes Firedrake at least comparable to deal.II. The additional flexibility of

Firedrake’s cell-location and voting algorithm allow points just outside the mesh but inside the

true domain to be captured.

To cope with my split of point data coordinates (the vertex-only mesh) and data at those

coordinates (the P0DG function space), I have introduced an input-ordering vertex-only mesh

alongside an interpolation operator to move from one to the other. I have implemented this in

Firedrake using PETSc Star Forests. This satisfies the requirement of being able to unambigu-

ously read and write P0DG functions on the vertex-only mesh in parallel. The interpolation

operation is differentiable; this allows for differentiable cross-mesh interpolation, discussed in

Chapter 8.

I have also ensured that Firedrake vertex-only meshes have halos for data exchange across

parallel partitions. This makes them comparable to other Firedrake meshes and allows PDEs

to be solved on them in parallel, as demonstrated for point forcing (Sect. 4.6.1).

159

Chapter 8

Arbitrary, Parallel Safe, Differentiable,

Mesh to Mesh Interpolation

160

The following text and code examples reuse, in places, work I contributed to the Firedrake

manual [5].

8.1 Motivation

Interpolation across meshes is useful wherever we want to move a finite element function from

a function space on one mesh, onto another function space on another mesh.

Prior to this work, this had been implemented in Firedrake for the special case of geometric

multigrid methods where PDE solutions are found by solving on a mixture of coarse and fine

meshes of the same domain. Solutions would be moved from a coarse mesh to a fine mesh

using dual evaluation interpolation (referred to as a prolongation operation). The adjoint to

this interpolation operation is referred to as the restriction operation and is used to down-

sample cofunctions on the fine mesh to the coarse mesh. Lastly there is an injection operation

which dual evaluates functions on fine meshes back into coarse meshes. Firedrake’s multigrid

infrastructure relies on well defined refinement relationships between the meshes. Generally

a hierarchy of mesh refinements is automatically generated: all the vertices of a coarse mesh

appear at the same locations in the refined mesh and the parallel domain decomposition is

maintained (see Fig. 8.1). This reliance on automatic generation is very limited. If one wanted

Unrefined First Refinement

Figure 8.1: The geometric effect of a single mesh refinement on quadrilaterals and triangles in
Firedrake. All vertices prior to refinement are present after refinement.

to move solutions between the meshes in Fig. 8.2 (a so-called ‘nonnested’ hierarchy of meshes),

one has to provide the links between coarse and fine cells manually and ensure that the parallel

domain decompositions match. Nonnested multigrid is known to be optimal for certain classes

161

of problems (see for example Scott and Zhang [99]) so providing a straightforward method of

creating the necessary operators would make the use of these methods in Firedrake much more

straightforward.

Coarser Finer

Figure 8.2: Four different ways of meshing the same square domain. Not all vertices in the
coarser meshes are present in the finer meshes, so, prior to this work, there was no straightfor-
ward way to interpolate between them in Firedrake.

Other, as yet unrealised, uses of mesh-to-mesh interpolation abound: one might wish to

mesh a domain with different cell shapes and examine the effects on the solution by interpolating

from one mesh to the other or to a third, finer mesh which has a well defined mathematical

relationship to both meshes. If meshes change in response to some metric, such as a changing

solution with time, one ideally should be able to interpolate from the mesh at one time step to

another to, for example, advance a time stepping algorithm.1

Being able to evaluate the dual basis of a mesh along an arbitrary domain, such as an

embedded line, surface or volume, would allow diagnostics to be calculated on a function.

Take, for example, the function

f(x, y) = x× y (8.1.1)

represented as a finite element function on a 2D mesh, with a line

L = (0, 0) to (1, 1) (8.1.2)

1The stability and conservation behaviour of such an algorithm would depend on the user’s implementation:
whilst dual evaluation interpolation avoids introducing new maxima and minima in finite element functions
(which Galerkin projection does not), conservation of quantities generally requires the use of ‘supermeshes’ (see
[100]).

162

along it (see Fig. 8.3). The line integral is∫
L

f(x, y) ds =
√
2/3. (8.1.3)

If we represent the 1D line in 2D space (making it an immersed manifold) we ought to be

able to (a) find the values of the function f along the line by performing interpolation onto

an appropriately defined function space then (b) evaluate the line integral by assembling the

appropriate expression.

(a)

f_line = interpolate(f, V_line)

(b)

assemble(f_line * dx) # = sqrt(2) / 3

This could be extended to appropriately defined surfaces and volumes.

x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0 0.2 0.4 0.6 0.8 1.0

f(x, y)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 8.3: The function f(x, y) = x × y on a meshed square domain with the line L =
(0, 0) to (1, 1) to integrate along.

Generic cross-mesh interpolation, particularly with the ability to interpolate over domains

that only partially match, would allow simulations to be coupled together. For fluid structure

interactions, one could solve the appropriate approximation to the Navier Stokes equations for

the fluid in the fluid domain, interpolate the solution from the fluid mesh onto a function on the

structure mesh (which would update the values of coefficients on boundaries on the structure),

use the interpolated function as a boundary condition on the structure along the interface,

163

then use those values to solve a PDE on the structure. Strong (Dirichlet) boundary conditions

will enforce a 1-way coupling by setting the value at the interface. Weak boundary conditions,

which are enforced as part of the problem formulation (the variational form expressed in UFL)

such as Neumann boundary conditions, allow for two way coupling: in a most basic sense, one

can iteratively interpolate a solution on the structure back into the fluid domain and repeat2.

Once interpolation can be expressed symbolically (see Chapter 9) the interpolation of UFL

arguments will be expressible between the two domains: this would allow the system to be

solved monolithically. Since all operations are compatible with automated adjoint generation

via pyadjoint (see Sect. 5.1, specifically Sect. 5.4) it will be possible to easily express and solve

optimisation problems involving multiple interacting problems.

It should be noted that, in limited circumstances, Galerkin projection can already be per-

formed across meshes. This, however, produces a different result to interpolation (see Sect.

3.3) and requires a global solve so is not always appropriate.

8.2 Existing Capability Outside Firedrake

Parallel compatible cross mesh interpolation with a differentiable interpolation operator, within

the domain of code generating Finite Element Method frameworks, has not, to the author’s

knowledge, been implemented before. The closest would be cross-mesh interpolation in FEn-

iCS[17]: when it was under active development it maintained compatibility with pyadjoint (see

Sect. 5.4) to allow differentiation of these operations. However, it only worked in serial3 which

limited its usefulness to small problems. The FEniCS rewrite, FEniCSx recently added sup-

port for cross-mesh interpolation in parallel4, though, at the time of writing, FEniCSx does not

support automated adjoint generation for these operations.

Other FEM code generation libraries also support cross-mesh interpolation, deal.II[33] for

example has a SolutionTransfer tool which works in parallel. The lack of explicit high-level

differentiation operations in the libraries means that finding derivatives of these operations

requires the use of traditional AD tools5 which, though powerful, have downsides [60] which

pyadjoint mostly avoids (see Sect. 5.4). MFEM [31, 32] also allows cross mesh interpolation,

seemingly aimed at grid transfer operations in multigrid6 and has its own AD tool7 which, in

principal, could work with the cross-mesh interpolation tools though this is not documented.

The DUNE framework also supports multigrid [101] though is not documented as being compat-

ible with any form of AD. NGSolve’s [22] dual basis evaluation functionality is not documented

as supporting multiple domains, but they do support multigrid methods; meanwhile the au-

2this can be thought of as a sort of home-made Additive Schwartz method
3see the FEniCS documentation
4see https://github.com/FEniCS/dolfinx/pull/2245
5for Deal.II see https://www.dealii.org/current/doxygen/deal.II/group__auto__symb__diff.html
6see the API documentation for the finite element class https://docs.mfem.org/2.0/

classFiniteElement.html and various tutorials referencing multigrid
7see https://mfem.org/autodiff/

164

https://github.com/FEniCS/dolfinx/pull/2245
https://www.dealii.org/current/doxygen/deal.II/group__auto__symb__diff.html
https://docs.mfem.org/2.0/classFiniteElement.html
https://docs.mfem.org/2.0/classFiniteElement.html
https://mfem.org/autodiff/

tomatic differentiation they document is seemingly limited to symbolic differentiation of their

UFL-like expressions: in principal this could be used to build something like pyadjoint though

no one has done this. FREEFEM [21] has MatPtAP and transferMat which implements a

‘fast interpolation algorithm’ between non-matching meshes, though this does not use dual

evaluation, rather it is a home-baked interpolation operator documented on their website8.

8.3 Mathematics and Firedrake Implementation

Internally, all Firedrake basis function coefficients are constructed by performing one or more

point evaluations as described in Sect. 3.7. Dual evaluation interpolation operations always

boil down to sums of point evaluations (see Eq. 3.7.2). If we find the locations of these

points in the global coordinate system of the source mesh, we merely have to perform the point

evaluations on the source function to reconstruct our basis function coefficients. By using the

global coordinate system, we avoid needing to worry about finding a valid extension to each

local dual basis functional in the source mesh reference cells (see Sect. 3.2).

Whilst this sounds straightforward, it has not been implemented for several reasons:

1. Meshes have different cell numbering and different parallel domain decomposition. This

means that when given the same list of point locations tied to cells of two different

meshes, one finds that the list is split differently across MPI ranks depending on which

mesh is being considered. See Fig. 8.4. When point evaluating on the source mesh, a

mechanism is then needed to send that to the destination mesh across the parallel domain

decomposition. Parallel domain decomposition of meshes and grids are found throughout

scientific computing software, so this is not a Firedrake specific problem.

2. An appropriate data structure is required which ties points to their locations in each mesh.

This data structure needs to be able to cope with the parallel domain decomposition.

3. In order to differentiate the interpolation operation, the underlying operations need to be

ones which we already know how to differentiate.

All these can be addressed by using a vertex-only mesh as the intermediary data structure.

We start with a simplified case of one point evaluation per basis function: the Lagrange

polynomials (see Fig. 3.1 and Eq. 3.2.23). As discussed in chapter 3, each global basis function

coefficient is now one point evaluation (we have point evaluation nodes).

The recipe for mesh-to-mesh dual evaluation interpolation

IV : U → V ∀u ∈ U (8.3.1)

8see https://doc.freefem.org/documentation/finite-element.html#a-fast-finite-element-interpolator

165

https://doc.freefem.org/documentation/finite-element.html##a-fast-finite-element-interpolator

−1.0−0.5
0.0

0.5
1.0 −1.0

−0.5
0.0

0.5
1.0

−1.0

−0.5

0.0

0.5

1.0

Point locations on Mesh A: Rank 0

−1.0−0.5
0.0

0.5
1.0 −1.0

−0.5
0.0

0.5
1.0

−1.0

−0.5

0.0

0.5

1.0

Point locations on Mesh B: Rank 0

Figure 8.4: We have two different meshes of a sphere, A and B, with the same set of points on
that sphere. After the meshes have been domain decomposed across MPI ranks, a given MPI
rank will have a different subset of the points depending on which mesh is being considered.

where

U = FSsource(Ωsource) (8.3.2)

V = FSdestination(Ωdestination) (8.3.3)

is now the following:

1. Find the global point evaluation node coordinates of the destination function space V .

This has the destination mesh Ωdestination domain decomposition.

2. Create a vertex-only mesh Ωv, immersed in the source mesh Ωsource, at those locations.

In Firedrake, vertex-only meshes inherit their parent mesh parallel domain decompo-

sition (here Ωsource). The point evaluation node coordinates have the parallel domain

decomposition of the destination mesh Ωdestination but are automatically redistributed to

the source mesh’s parallel domain decomposition by the voting algorithm. The input-

ordering vertex-only mesh Ωinput-ordering
v maintains the ordering and MPI rank of the point

evaluation node coordinates as supplied. Whilst the parent mesh of Ωinput-ordering
v is not

Ωdestination, we nevertheless see that

Ωinput-ordering
v ⊆ Ωdestination. (8.3.4)

3. Point evaluate the expression or function on the source mesh U at the destination mesh

point evaluation node coordinates Ωv. This is the dual evaluation interpolation operation

IP0DG(Ωv) : U → P0DG(Ωv). (8.3.5)

4. Interpolate the point evaluations from vertex-only mesh Ωv to a P0DG function space on

166

the input-ordering vertex-only mesh Ωinput-ordering
v

IP0DG(Ωinput-ordering
v) : P0DG(Ωv)→ P0DG(Ωinput-ordering

v) (8.3.6)

Under the hood, this is a PETSc SF reduce operation9 which moves the point evaluations

from the parallel domain decomposition and ordering of Ωv to Ωinput-ordering
v (a binary

matrix multiplication - see Sect. 7.6.3).

5. The Firedrake function in P0DG(Ωinput-ordering
v) this yields has point evaluations from the

source mesh function space at the destination mesh function space node coordinates, with

the corresponding ordering and domain decomposition. These are the coefficients of the

function in the destination function space V which can now be directly assigned.

C : P0DG(Ωinput-ordering
v)→ V. (8.3.7)

These steps are summarised in Fig. 8.5. More concisely, our mesh-to-mesh interpolation is the

composition of three linear operations

IV (;u) = C(; IP0DG(Ωinput-ordering
v)(; IP0DG(Ωv)(;u))) ∈ V ∀u ∈ U. (8.3.8)

We wrap the recipe up in a new subclass of firedrake.Interpolator which we automati-

cally create when interpolating across meshes. This recipe has the advantage of requiring very

little special case code since we use Firedrake functionality which we have already implemented.

This addresses the difficulty of differentiating this operation: we already know how to perform

forward, adjoint and higher derivative modes of AD on linear interpolation operations and the

linear assignment operation C (see sections 5.5.1 and 5.5.2).

Explicitly, the adjoint interpolation from cofunction to cofunction

I∗V : V ∗ → U∗, (8.3.9)

which we require for adjoint mode AD is the composition of the adjoint of each of the linear

operations

I∗V (; v∗) = I∗P0DG(Ωv)(; I∗P0DG(Ωinput-ordering
v)

(;C∗(; v∗)) ∈ U∗ ∀ v∗ ∈ V ∗. (8.3.10)

1. The first operation

C∗ : V ∗ → P0DG(Ωinput-ordering
v)∗ (8.3.11)

9see section 3.2 of Zhang et al. [97]
10This example uses immersed manifold sphere meshes: we therefore assume that Ωv ⊆ Ωsource up to the mesh

discretisation error. This is specified for each mesh with a cell-size-relative tolerance parameter. This example
was chosen because it clearly illustrates the node locations of V as identified in both Ωsource and Ωdestination.

167

Figure 8.5: Summary of the steps needed for cross-mesh interpolation where U =
FSsource(Ωsource) and V = FSdestination(Ωdestination).

10

168

is the assignment of the basis cofunction coefficients of V ∗ to an identically discretised

cofunction in P0DG(Ωinput-ordering
v)∗. We again use the input-ordering vertex-only mesh

Ωinput-ordering
v , exactly as it was set up for interpolating primal functions (i.e. it has point

evaluation node coordinates in the order and rank domain decomposition of Ωdestination).

2. The next operation

I∗
P0DG(Ωinput-ordering

v)
: P0DG(Ωinput-ordering

v)∗ → P0DG(Ωv)
∗ (8.3.12)

is the PETSc SF broadcast operation11 from the vertices of Ωinput-ordering
v to the equivalent

point evaluation node coordinate locations Ωv ⊆ Ωsource.

3. Lastly,

I∗P0DG(Ωv) : P0DG(Ωv)
∗ → U∗ (8.3.13)

is the adjoint to the point evaluation interpolation operation. At present, this involves

Firedrake assembling the primal interpolation operator as a matrix and left multiplying

it by the cofunction coefficients.

Returning to the original recipe: Where a target mesh does not fully overlap with the

source mesh, we default to raising an exception, but allow this to be overridden with a keyword

argument when creating the cross-mesh Interpolator object. This allows for applications such

as simulation coupling. The intermediary vertex-only Ωv mesh drops any points it can’t locate

in the source mesh but keeps those points in the input-ordering vertex-only mesh Ωinput-ordering
v .

We allow a default to be specified which we seed an intermediary Function on Ωinput-ordering
v

prior to interpolation onto it with IP0DG(Ωv). The interpolation itself then doesn’t assign a value

to the input-ordering vertex-only mesh, and the node value assignment operation C therefore

uses the default value.

For cases where we already have a Function which we want to interpolate onto, we similarly

supply NaNs12 to the intermediary Function on the Ωinput-ordering
v prior to interpolation. These

are then identified and removed such that the assignment operation C only writes to the nodes

it has values for. Regarding adjoint operations in this case: rather than explicitly filtering out

values to skip over (which would be strictly correct for C∗ as we’ve defined it here) we assign

all the cofunction basis-function values on Ωdestination to the cofunction on Ωinput-ordering
v , then

let the adjoint interpolation I∗P0DG(Ωv)
from Ωinput-ordering

v to Ωv remove the values for us.

11as before, see section 3.2 of Zhang et al. [97]
12Not a Number - a special value that is part of the IEEE specfification for floating point numbers

169

8.4 Discussion and Demonstrations

The new interpolation operations allow us to do everything we wanted in the motivation. Fig.

8.5 was created using Firedrake code which runs in parallel and has been integrated with

master Firedrake: see Listing 13. Similarly, we can evaluate the line integral in Fig. 8.3 by

interpolating onto a function space on the line and assembling the corresponding expression

(Listing 14).

1 from firedrake import *

2

3 # f = x + y + z on source mesh

4 src_mesh = UnitCubedSphereMesh(1) # quadrilateral cells

5 U = FunctionSpace(src_mesh, "S", 2) # "S" needs quadrilateral cells

6 x, y, z = SpatialCoordinate(src_mesh)

7 u = Function(U).interpolate(x + y + z)

8

9 # interpolate across mesh and function space

10 dest_mesh = UnitIcosahedralSphereMesh(1) # triangle cells

11 V = FunctionSpace(dest_mesh, "CG", 2)

12 v = Function(V).interpolate(u)

Listing 13: Interpolating from one mesh and function space to another. Fig. 8.5 contains plots
of the meshes (src_mesh is Ωsource and dest_mesh is Ωdestination), and Firedrake Functions u
and v.

1 from firedrake import *

2 import numpy as np

3

4 m = UnitSquareMesh(2, 2)

5 V = FunctionSpace(m, "CG", 2)

6 x, y = SpatialCoordinate(m)

7 f = Function(V).interpolate(x * y) # Exactly representable in CG2

8

9 cells = np.asarray([[0, 1]]) # Only 1 cell

10 vertex_coords = np.asarray([[0.0, 0.0], [1.0, 1.0]])

11 tdim = 1 # topological dimension

12 gdim = 2 # geometric dimension

13 dmplex = mesh.plex_from_cell_list(tdim, cells, vertex_coords, m.comm)

14 line = mesh.Mesh(dmplex, dim=gdim)

15

16 V_line = FunctionSpace(line, "CG", 2)

17 f_line = interpolate(f, V_line)

18 line_integral = assemble(f_line * dx)

19 assert np.isclose(line_integral, np.sqrt(2) / 3)

Listing 14: Evaluating a line integral in Firedrake using mesh-to-mesh interpolation. See also
Fig. 8.3

170

Since these operations are differentiable with pyadjoint, we can create functionals to min-

imise which involve lines, surfaces and volumes within a domain. For example, one might have

an ocean model, some pre-existing values of tidal fluxes through a surface (perhaps from a

diagnostic on another model), and want to optimise one’s own model to fit those values. The

code for forming the necessary misfit functional would involve creating the corresponding sur-

face for the flux immersed in the model domain, interpolating onto the surface, then assembling

a UFL expression for the flux on the surface. The general approach is shown in Listing 15.

When optimising for multiple diagnostics these misfits can be summed together alongside an

appropriate regularisation.

11 from firedrake import *

12

13 ...

14 point_mesh = VertexOnlyMesh(mesh, point_location)

15 V_point = FunctionSpace(point_mesh, "DG", 0)

16 f_point = interpolate(f, V_point)

17 point_eval = assemble(f_point * dx)

18 J_misfit_point_eval = (point_eval - data_point_eval)**2

19 ...

20 # line_mesh = ...

21 # V_line = FunctionSpace(line_mesh, ...)

22 f_line = interpolate(f, V_line)

23 line_integral = assemble(f_line * dx)

24 J_misfit_line_integral = (line_integral - data_line_integral)**2

25 ...

26 # surface_mesh = ...

27 # V_surface = FunctionSpace(surface_mesh, ...)

28 f_surface = interpolate(f, V_surface)

29 surface_integral = assemble(f_surface * dx)

30 J_misfit_surface_integral = (surface_integral - data_surface_integral)**2

31 ...

32 # V_vector_suface = VectorFunctionSpace(surface_mesh, ...)

33 f_vector_surface = interpolate(f_vector, V_vec_surface)

34 flux = assemble(inner(f_vector_surface, CellNormal(surface_mesh)) * dx)

35 J_misfit_flux = (flux - data_flux)**2

36 ...

37 # volume_mesh = ...

38 # V_volume = FunctionSpace(volume_mesh, ...)

39 f_volume = interpolate(f, V_volume)

40 volume_integral = assemble(f_volume * dx)

41 J_misfit_volume_integral = (volume_integral - data_volume_integral)**2

Listing 15: How we could assemble misfit functionals for PDE constrained optimisation given
some PDE solution f and a value of an equivalent diagnostic. In the most simple case (the top
of the code snippet), this is optimising to match with a single point evaluation which is done
using a vertex-only mesh as shown.

Where we have data that are only available in point, line, surface or volume data, for

171

example when coupling to a model which is supplying data from outside of Firedrake, we

can directly create functionals to minimise using this data much as we do for point data: see

listing 16. A mesh of 1 or more lines, surfaces or volumes which represent the data would

be created, an appropriate function space used and the PDE solution interpolated onto it

to form the functional. These misfits could be combined together, alongside point data misfit

functionals (see other chapters) and an appropriate regularisation to create an overall functional

to minimise.

1 from firedrake import *

2

3 ...

4 points_mesh = VertexOnlyMesh(mesh, point_locations)

5 V_points = FunctionSpace(points_mesh, "DG", 0)

6 f_points = interpolate(f, V_points)

7 # data_points is a function in V_points, alpha is a scalar

8 J_misfit_points = assemble(alpha * (f_points - data_points)**2 * dx)

9 ...

10 # lines_mesh = ...

11 # V_lines = ...

12 f_lines = interpolate(f, V_lines)

13 # data_lines is a function in V_lines, beta is a scalar

14 J_misfit_lines = assemble(beta * (f_lines - data_lines)**2 * dx)

15 ...

16 # surfaces_mesh = ...

17 # V_surfaces = ...

18 f_surfaces = interpolate(f, V_surfaces)

19 # data_surfaces is a function in V_surfaces, gamma is a scalar

20 J_misfit_surfaces = assemble(gamma * (f_lines - data_surfaces)**2 * dx)

21 ...

22 # volumes_mesh = ...

23 # V_volumes = ...

24 f_volumes = interpolate(f, V_volumes)

25 # data_volumes is a function in V_volumes, delta is a scalar

26 J_misfit_volumes = assemble(delta * (f_volumes - data_volumes)**2 * dx)

27

28 J_misfit = (

29 J_mistfit_points

30 + J_mistfit_lines

31 + J_misfit_surfaces

32 + J_misfit_volumes

33)

Listing 16: How we could assemble misfit functionals for point, line, surface and volume data
for PDE contrained optimisation given some PDE solution f . Here we use the L2 norm for
each misfit functional, but that need not be the case.

The in-built integration with pyadjoint via firedrake.adjoint (see Sect. 5.5) is tested

with a Taylor remainder convergence test. If we create a functional J(m), where m is the

172

control parameter we will take the derivative with respect to, then we expect from Taylor’s

theorem13 that

∥J(m+ hδm)− J(m)∥ → 0 at O(h) (8.4.1)

for some small scalar h and some small perturbation of the control δm. The Gateaux derivative

of J with respect to m in the m′ direction is dJm(m;m′). Applying Taylor’s theorem again to

find the next term in the expansion, we now expect that

∥J(m+ hδm)− J(m)− hdJm(m; δm)∥ → 0 at O(h2). (8.4.2)

If the Jacobian dJm(m; •) firedrake.adjoint gives us is correct, we expect to observe this rate

of convergence. Such tests already exist for firedrake.adjoint’s annotation of interpolation,

we extend these to cross-mesh interpolation with the functional

J(m) =

∫
Ωdestination

IP1CG(Ωdestination)(u
2 +mu)2 dx (8.4.3)

where Ωsource and Ωdestination are unit-square meshes with differing numbers of square and quadri-

lateral cells respectively14,

IP1CG(Ωdestination) : P2CG(Ωsource)→ P1CG(Ωdestination) (8.4.4)

is the cross-mesh interpolator from 2nd order continuous polynomials on the source mesh to

1st order continuous polynomials of the destination mesh,

u ∈ P2CG(Ωsource) (8.4.5)

is a ramp function which takes on the values of the x-axis of the domain and

m ∈ R (8.4.6)

such that

mu ∈ P2CG(Ωsource). (8.4.7)

A similar test for convergence of the Hessian action, which relies on the next term in the Taylor

expansion, has also been added. For more on Taylor tests, see section 1.4.6 of Schwedes et al.

[29].

13expanding J(m+ hδm) about m
14to be precise, they are the bottom left and top right meshes in Fig. 8.2, respectively

173

8.4.1 Model Coupling

Models can now be coupled together exactly as described in Sect. 8.1. As a proof of concept,

we use two square meshes (Fig. 8.6) and couple a Helmholtz problem to a Poisson problem

along the y = 1 boundary. The Helmholtz problem on the top mesh Ωtop with boundary ∂Ωtop

is taken from the Firedrake manual[5]:

−∇2u+ u = f (8.4.8)

∇u · n = 0 on ∂Ωtop (8.4.9)

with

f(x, y) = (1 + 8π2) cos 2πx cos 2πy. (8.4.10)

The variational form of the Helmholtz problem is to find u ∈ Vtop such that∫
Ωtop

∇u · ∇v + uv dx−
∫
Ωtop

fv dx−
∫
dΩtop

v∇u · n ds = 0 ∀ v ∈ Vtop (8.4.11)

The
∫
dΩtop

∇u · n ds term disappears where we set ∇u · n = 0.

The Poisson problem on the bottom mesh Ωbottom with boundary ∂Ωbottom is the same as

that used in sections 1.3 and 4.6:

−∇2u = f (8.4.12)

u = 0 on ∂Ωbottom (8.4.13)

with f(x, y) being a randomly generated forcing term. The variational form of the Poisson

problem is to find u ∈ Vbottom such that∫
Ωbottom

∇u · ∇v dx−
∫
Ωbottom

fv dx−
∫
dΩbottom

v∇u · n ds = 0 ∀ v ∈ Vbottom. (8.4.14)

The
∫
dΩbottom

∇u · n ds term disappears where we specify a value on the boundary.

We initially use strong (Dirichlet) boundary conditions to couple Helmholtz to Poisson: this

changes Eq. 8.4.13 to be

u = uinterpolated from Vtop on ∂Ωbottom (8.4.15)

where uinterpolated from Vtop is solution to the Helmholtz problem interpolated into Vbottom with

initial values set to zero. The effect of applying this Dirichlet boundary condition and the

solution Firedrake gives can be seen in Fig. 8.7. The code used is in Listing 17.

We achieve two way coupling iteratively as described in Sect. 8.1. The weak boundary

condition we apply is a penalty term added to the right hand side of each PDE:

w

∫
Γinterface

(uinterpolated − u)v dΓinterface (8.4.16)

174

where uinterpolated is the solution to the other problem at each iteration (on the first instance

this is a zero function) and v is the appropriate test function. This gets smaller as the solution

to each PDE at the interface approaches the interpolated interface solution from the other

mesh. The overall effect of the boundary condition is controlled by a positive scalar weighting

w. When the solutions to both PDEs stop changing we stop iterating. We now only apply

the strong (Dirichlet) boundary conditions to the Poisson problem (Eq. 8.4.13) away from the

interface: we therefore have to include the surface term
∫
dΩbottom

∇u ·n ds along the interface in

the variational form since we leave the value at the interface unspecified. Similarly we have to

include the surface term along the interface in the Helmholtz variational form
∫
dΩtop

∇u · n ds

since we no longer fix ∇u · n = 0 along the interface.

The code for the two can be found in the appendix to this chapter (Sect. A.4, Listing

19) with the results shown in Fig. 8.8. Whilst the solutions do not perfectly match across

the domains, the Poisson problem’s solution clearly now effects the solution to the Helmholtz

problem, pulling u(x, y) down.

0.0 0.5 1.0

x

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

y

Top and Bottom Meshes:
Interface at y = 1

Figure 8.6: The meshes we solve our coupled problems on. Helmholtz is solved on the top mesh
and Poisson on the bottom.

8.4.2 Generic External Field Point-Evaluation Data Input

Field data that one might wish to import from an external source are typically specified as a

set of point evaluations of the underlying field. The BedMachine map of Antarctic ice thickness

[61] and the MEaSUREs InSAR phase-based velocity map [62] mentioned in chapter 6 are both,

in principal, point evaluation measurements of the underlying thickness and velocity fields, in

each case aligned to a grid.

175

x

0.00.20.40.60.81.0

y

0.0

0.5

1.0

1.5

2.0

u

−1.0

−0.5

0.0

0.5

1.0

Before applying Dirichlet BC

x

0.00.20.40.60.81.0

y

0.0

0.5

1.0

1.5

2.0

u

−1.0

−0.5

0.0

0.5

1.0

After applying Dirichlet BC

x

0.00.20.40.60.81.0

y

0.0

0.5

1.0

1.5

2.0

u

−1.0

−0.5

0.0

0.5

1.0

Coupled Solutions: One way Coupling
(Helmholtz y > 1 to Poisson y < 1)

Figure 8.7: One way coupling in action, from the code in Listing 17. We solve a Helmholtz
problem on the top mesh (y > 1), then interpolate the solution onto the bottom mesh (y < 1),
giving values on the bottom mesh along the interface. The top two plots show the effect of
applying the Dirichlet (strong) boundary conditions using the interpolated Function. We then
solve the Poisson problem on the bottom mesh.

176

0.00.20.40.60.81.0
x

0.0

0.5

1.0

1.5

2.0

y

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

u

Coupled Solutions: One way Coupling
(Helmholtz y > 1 to Poisson y < 1)

0.00.20.40.60.81.0
x

0.0

0.5

1.0

1.5

2.0

y

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

u

Coupled Solutions: Two way coupling
2244 iterations, Penalty weight=10.0

Figure 8.8: One way coupling (left) versus two way coupling (right) of a Helmholtz problem and
a Poisson problem. The two way coupling uses a weakly enforced boundary condition 8.4.16
enforced as a penalty term in the variational form. The meshes used are shown in Fig. 8.6 and
the code is in Listing 19 in the appendix to this chapter (Sect. A.4).

177

1 from firedrake import *

2

3 m_top = UnitSquareMesh(9, 9, quadrilateral=True)

4 m_top.coordinates.dat.data_wo[:, 1] += 1.0

5 m_bot = UnitSquareMesh(7, 7)

6

7 V_top = FunctionSpace(m_top, "CG", 2)

8 V_bot = FunctionSpace(m_bot, "CG", 3)

9

10 # Helmholtz problem on the top mesh

11 u_top = Function(V_top)

12 v = TestFunction(V_top)

13 f_top = Function(V_top)

14 x, y = SpatialCoordinate(m_top)

15 f_top.interpolate((1 + 8 * pi * pi) * cos(x * pi * 2) * cos(y * pi * 2))

16 F = (inner(grad(u_top), grad(v)) + inner(u_top, v)) * dx - inner(f_top, v) * dx

17 solve(F == 0, u_top)

18

19 # Couple Helmholtz to Poisson with interpolate

20 u_top_in_V_bot = Function(V_bot).interpolate(u_top, allow_missing_dofs=True)

21 bc = DirichletBC(V_bot, u_top_in_V_bot, 4)

22

23 # Poisson problem on the bottom mesh, using the BCs from the top mesh

24 u_bot = Function(V_bot)

25 v = TestFunction(V_bot)

26 # Random forcing Function with values in [1, 2].

27 f_bot = RandomGenerator(PCG64(seed=0)).beta(V_bot, 1.0, 2.0)

28 F = (inner(grad(u_bot), grad(v)) - f_bot * v) * dx

29 solve(F == 0, u_bot, bc)

Listing 17: One-way coupling of a Helmholtz problem to a Poisson problem. The Helmholtz
problem is adapted from the ‘Simple Helmholtz equation’ demo in the Firedrake manual[5],
whilst the Poisson problem is adapted from Listing 2 (note again that the forcing term is mesh
dependent so this should only be used for demonstration). The meshes are shown in Fig. 8.6
and solutions in Fig. 8.7.

The input-ordering vertex-only mesh already gives us a parallel safe way to input point

data into a vertex-only mesh (see Sect. 7.6). More generically, we can use these, alongside

mesh-to-mesh interpolation, to input field point-evaluation data onto any mesh. These data

can be distributed across multiple MPI ranks, which would prove very useful for automating

diagnostics calculations on such data. For more, see Sect. 10.2.5.

This works as follows:

1. We have point evaluation data with values at various locations distributed across various

MPI ranks.

2. We create a Firedrake mesh Ωdata which has vertices at the data coordinates. This mesh

does not need to respect the parallel decomposition of the data.

178

3. We create a vertex-only mesh Ωv immersed in Ωdata with point locations at the data

coordinates: these are redistributed to have the parallel decomposition of the mesh Ωdata.

4. Our input-ordering vertex-only mesh Ωinput-ordering
v retains the original decomposition: we

use this to assign data values to a P0DG function space on Ωv (see Sect. 7.6). Our data

are now the point data function fv ∈ P0DG(Ωv).

5. Our vertex-only mesh Ωv has the same number of points as vertices of the mesh Ωdata.

If we now create a space of linear continuous polynomials on the mesh P1CG(Ωdata) we

have point evaluation nodes at each of our point locations. We therefore need to find the

dual evaluation interpolation operation which takes us from P0DG(Ωv) to P1CG(Ωdata).

The data in the point data function fv ∈ P0DG(Ωv) are not necessarily in the same

order as data in functions in P1CG(Ωdata): we need to find the correct permutation

from the former to the latter. Going the other way, the parallel safe permutation matrix

from P1CG(Ωdata) to P0DG(Ωv) is the point-evaluation interpolation matrix, itself a

permutation matrix. We want the permutation in the other direction - i.e. it’s inverse.

Fortunately permutations are orthogonal matrices, so the transpose is the inverse. The

transpose of the point-evaluation interpolation matrix performs the correct permutation.

We therefore apply this interpolation to get fdata ∈ P1CG(Ωdata).

6. We now have a finite element function on Ωdata in Firedrake which is a linear interpolation

between the originally supplied data points representing the field. We can interpolate this

onto other meshes as we see fit, perhaps to calculate some derived quantity such as a line

integral.

A simple example of this in action is shown in the appendix to this chapter (Sect. A.4, Listing

20) and a plot of the data and function produced is in Fig. 8.9.

To be clear, this produces a linear interpolation as Fig. 8.9 shows: the data will not be

smooth between vertices - we have not solved any kind of optimisation problem, which might

impose a smoothing constraint, to find it. This, however, does give us a parallel safe way of

bringing this kind of data into Firedrake to work with as we wish. If one does want to solve an

optimisation problem with such data, they should treat it as the point data it is. A vertex-only

mesh should be used directly, with data input using the input-ordering vertex-only mesh for

parallel safety, and formulate an appropriate misfit functional (see Chapter 6).

8.4.3 Line, Plane and Volume Sources and Sinks

In Sect. 4.6.1, it was demonstrated how the adjoint to the dual evaluation interpolation oper-

ation which performs point evaluation can be used to create point source and sink terms. If

v ∈ V is a test function on a parent mesh Ω and vv ∈ P0DG(Ωv) is the corresponding test

179

x

0.0
0.2

0.4
0.6

0.8
1.0

y

0.0

0.2

0.4

0.6

0.8

1.0

fdata

−2

0

2

4

6

Figure 8.9: The function produced after inputting 9 data points using the process outlined
in 8.4.2 using the code in Listing 20 in the appendix to this chapter (Sect. A.4). The data
themselves are shown in red. The full function is a linear interpolation between each of the
input field data points - i.e. we have triangular planes linking the points.

180

function on an immersed vertex-only mesh Ωv ⊆ Ω with N vertices at Xi, then

N−1∑
i=0

∫
Ω

f(x)v(x)δ(x−Xi) dx = I∗P0DG(Ωv)

(
;

∫
Ωv

fvvv dx

)
∈ V ∗ (8.4.17)

where fv(Xi) = f(Xi) is a function in P0DG(Ωv) for all N vertices {Xi}N−1
i=0 of Ωv. We can

simplify this by leaving out f , to just the equivalent ways of expressing point forcing at the

point Xi:
N−1∑
i=0

∫
Ω

v(x)δ(x−Xi) dx = I∗P0DG(Ωv)

(
;

∫
Ωv

vv dx

)
∈ V ∗. (8.4.18)

A reasonable question to ask is whether we can do the same for line, surface and volume

sources and sinks via the adjoint cross-mesh dual evaluation interpolation operation I∗V . We

start with some cofunction

v∗ =

∫
Ωdestination

fdestinationvdestination dx ∈ V ∗, (8.4.19)

where vdestination ∈ V is a test function on the target mesh Ωdestination, and fdestination is some

function on Ωdestination. Operating on this with

I∗V (; v∗) ∈ U∗ (8.4.20)

to get a cofunction in U∗, should allow, in some way, the introduction of a source term to a

linear variational problem with a left hand side primarily defined over the source mesh.

The question to answer is exactly how the two cofunctions are linked, since we want to

introduce the test function on the target mesh, so that we have a source term there. To answer

this, we need to look at the composition of the adjoint cross-mesh dual evaluation interpolation

operation I∗V : V ∗ → U∗

I∗V (; v∗) = I∗P0DG(Ωv)(; I∗P0DG(Ωinput-ordering
v)

(;C∗(; v∗)) ∈ U∗ ∀ v∗ ∈ V ∗ (8.4.21)

(Eq. 8.3.10). The inner operations

I∗
P0DG(Ωinput-ordering

v)
◦ C∗ : V ∗ → P0DG(Ωv)

∗ (8.4.22)

take the basis cofunction coefficients of some v∗destination ∈ V ∗ and assign them to P0DG(Ωv)
∗

where Ωv has vertices Xi at the point evaluation node locations of the target space V . The

outer operator, I∗P0DG(Ωv)
is the same as that used in Eq. 8.4.18 to introduce point source terms,

though in this case the points are at the point evaluation node locations. So if

v∗ =

∫
Ωdestination

vdestination(x) dx ∈ V ∗ (8.4.23)

181

then, by analogy with Eq. 8.4.18, I∗V (; v∗) is equivalent to

I∗V

(
;

∫
Ωdestination

vdestination(x) dx

)
=

N−1∑
i=0

∫
Ωsource

vsource(x)δ(x−Xi) dx (8.4.24)

where Xi are the N locations of the point evaluation nodes of the target space V .

What about where we have some fdestination in the cofunction v∗? If we introduce some

unknown fsource on the source mesh, then, from Eq. 8.4.17 we have

N−1∑
i=0

∫
Ωsource

fsourcevsource(x)δ(x−Xi) dx = I∗V

(
;

∫
Ωdestination

fdestinationvdestination(x) dx

)
(8.4.25)

= I∗V

(
;

∫
Ωdestination

IV (; fsource)vdestination(x) dx
)
(8.4.26)

i.e.

fsource = I−1
V (; fdestination) (8.4.27)

which may or may not exist depending on the function spaces involved. We can, however,

always introduce a source term by starting from a function fsource on the source mesh: the

source term will be that function evaluated at the point evaluation node locations of the target

space V .

So we see that we can introduce source terms using the adjoint cross-mesh dual evaluation

interpolation operation I∗V but it will always be a sum of point sources. Depending on the

target application, as long as one has enough point evaluation nodes, this may be sufficient.

As an example, the Poisson point source example in Sect. 4.6.1 is adapted to use a line

mesh from (0, 0) to (1, 1) as its source terms. The linear variational problem is ‘find u ∈ U

such that a(;u, v) = L(; v) for all v ∈ U ’ where

a(;u, v) =

∫
Ω

∇u · ∇v −
∫
dΩ

v∇u · n ds, (8.4.28)

L(; v(x)) =

dim(V)−1∑
i=0

∫
Ω

f(x)v(x)δ(x−Xi) dx and (8.4.29)

f(x) = x× y, (8.4.30)

where Xi are the point evaluation node locations of the target function space V , on the line

mesh, of which there is one per dimension of V . Boundary conditions are u = 0 on x = 0 and

y = 0, and ∇u · n = 0 on the x = 1 and y = 1 boundaries, so the surface term is always zero

and need not be calculated. The code for this is in the appendix to this chapter (Listing 21 in

Sect. A.4) and the results shown in Fig. 8.10. The more point evaluation nodes there are in

the target function space, the smoother the solution is.

182

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

y

u(x, y), 11 point evaluation nodes

0.0

0.1

0.2

0.3

0.4

0.5

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

y

u(x, y), 41 point evaluation nodes

0.0

0.1

0.2

0.3

0.4

0.0
0.2

0.4
0.6

0.8
1.0

x 0.0

0.2

0.4

0.6

0.8

1.0

y

0.0

0.1

0.2

0.3

0.4

0.5

u

u(x, y), 11 point evaluation nodes

0.0
0.2

0.4
0.6

0.8
1.0

x 0.0

0.2

0.4

0.6

0.8

1.0

y

0.0

0.1

0.2

0.3

0.4

u

u(x, y), 41 point evaluation nodes

Figure 8.10: The solution to the Poisson problem with point-forcing source terms on a line
mesh from (0, 0) to (1, 1), making use of the adjoint cross-mesh dual evaluation interpolation
operation I∗V , as described in Sect. 8.4.3. The more point evaluation nodes we have, the
smoother the solution is. The code for this is in the appendix to this chapter (Sect. A.4,
Listing 21).

183

8.5 Future Work

The current implementation has limitations: foremost is only being able to interpolate into

spaces with point evaluation nodes. This could be addressed in a number of ways: to continue

using vertex-only meshes as the intermediate data-structure, we could specify the points to sum

for each node (Eq. 3.7.2) in global coordinates with weights attached, perhaps as a DMSwarm

‘field’. We would then need to introduce some routine that summed over the necessary points

to build each of the dual basis functionals (nodes). Other limitations are those of vertex-only

meshes as implemented in Firedrake: we cannot yet immerse them in high-order meshes15 or

extruded meshes with variable layers. This means we cannot cross-mesh interpolate from these

meshes but can interpolate onto them. There is also the underlying issue of certain function

spaces, such as those built from Enriched Elements, not having an implemented dual evaluation

(see Sect. 3.8.3). These are often found in weather, ocean and climate model simulations (for

example in the Gusto dynamical core [102] which is built on Firedrake). Implementation would

therefore allow cross-mesh interpolation to be used there and bring all the benefits highlighted

in Sect. 8.1.

The vertex-only mesh is a significant performance bottleneck when creating a cross-mesh

interpolator, due to the factors highlighted in Sect. 7.8. Cross-mesh interpolation operations

via point evaluation node locations necessarily involve very large numbers of points so both

serial and parallel performance and scalability are important. Where one wishes to perform

multiple interpolations with a static interpolator (for example via two way model coupling)

this may be acceptable but otherwise this will limit the possible use cases of the cross-mesh

interpolation as it is presently implemented.

The mathematical description at the beginning of Sect. 8.3 jumps straight into using global

coordinates. This is only necessary where we cannot perform dual evaluation on the reference

cell, which would become an issue when we have dual basis functionals with more than one

point evaluation (see the original description of dual evaluation in Sect. 3.2). Where a target

reference cell’s coordinates are some subdomain of the source reference cell, this is not an issue

and performing the summation in reference space on the reference cell could be more performant

and could make direct use of existing dual evaluation routines. However, making this work with

vertex-only meshes, which have solved so many issues with cross-mesh interpolation, would be

a challenge.

The missing piece of the puzzle for evaluating line, surface and volume integrals, either for

direct use (Listing 14) or for optimisation (Listing 15) is an easy to use utility function for

creating immersed manifold meshes in Firedrake or for linking existing meshes to the locations

in a domain at which they should be evaluated. For example, the line mesh created in Listing

14 uses the internal Firedrake function plex_from_cell_list rather than a visible part of the

15these are meshes with coordinate fields which are not in the degree-1 Lagrange function space: these are
often referred to as ‘bendy meshes’ because their edges are generally not straight

184

API. So long as we are able to get cell connectivity information and vertex coordinates in the

geometric dimension of the domain (the contents of cells and vertex_coords in Listing 14,

respectively) this ought to be achievable using similar code to Listing 14.

When calculating the flux on an immersed manifold, as in Listing 15, the assembly operation

will only work after the reference cells have been given so-called “cell orientation” information.

This is a vector-valued UFL expression for a vector field which always points the same way

through the manifold: the cell normal is defined using this direction.16 This is not an imple-

mentation detail, it is vital information that must be supplied if we want to calculate anything

which involves a surface normal (a Möbius strip, for example, is not an orientable manifold

and cannot have a flux through it calculated). For simple cases where surfaces are planar, this

can be a straightforward expression of one of the basis vector directions, depending on which

direction the normal should point. Similarly for ellipsoids, the expression needs to merely be a

vector field pointing radially outward from some point within the ellipsoid.17 As soon as lines

and surfaces become more complicated, such as a line or curve in an S shape, this becomes

much more difficult. Careful consideration about how to make this a user friendly experience

would be needed.

For generic external data input (Sect. 8.4.2), we are missing a generic tool for creating a

triangulation given a list of points, ideally implemented directly in Firedrake. This is a solved

problem, a Delaunay triangulation, for example, does exactly this. Ideally the final Firedrake

implementation shouldn’t need to gather point locations from all MPI ranks (assuming each

rank contains contiguous locations), instead it should be able to build a mesh using the specified

locations on each rank. Very recently, the NETGEN mesh generator [103] has been integrated

with Firedrake: this may, therefore, already be possible. In the given recipe, step 5, dual

evaluation interpolation from P0DG(Ωv) onto P1CG(Ωdata), has not yet been explicitly imple-

mented in Firedrake as a single call to interpolate. Indeed, for completeness and consistency,

we should allow interpolation from vertex-only meshes in all cases: if we have point evaluation

nodes which are at locations where we have vertices, we should let them be set. Lastly, if

data are not stored as field point evaluations, perhaps instead as some set of quadrature point

values in a given function space, we would require the extension of cross-mesh interpolation to

non-point evaluation nodes: the machinery needed to specify quadrature points and sum them

up (described earlier in this section) would prove useful at this point.

The coupling included here is a proof of concept: more mathematical and testing work needs

to be done to verify that coupling works without issues. A starting point would be to solve the

same problem on two meshes and two function spaces which are identical in all but their position

relative to one another, such that the boundary between them is artificial. The solution on

these meshes versus an equivalent single mesh (and single function space) could be compared.

16The specific Firedrake method to call on a mesh is .init_cell_orientations(ufl_expression).
17For an ellipsoid around the origin called mesh, this would be

mesh.init_cell_orientations(SpatialCoordinate(mesh)) since SpatialCoordinate(mesh) is the
vector field of mesh coordinates.

185

For a more thorough study, one could use the Method of Manufactured Solutions to check that,

as the meshes are refined, the true solution is approached at the expected convergence rate.

Once symbolic expression of interpolation is available, the full system of PDEs ought to be

expressible in a single variational form which can be assembled: i.e. terms like the coupling

penalty (Eq. 8.4.16) will be expressible without having to first calculate the solution to one of

the PDEs.

A demonstration of PDE constrained optimisation using cross-mesh interpolation should be

made. This could use the example of coupling shown here: some samples of parameters in both

the Poisson and Helmholtz problems could be chosen as controls and the coupled problems

optimised to give the best fit.

Uses for line, plane, surface and volume sources and sinks should be explored, given the

mathematical description described in Sect. 8.4.3. As long as one has enough point evaluation

nodes, these can be used as forcing terms to represent a wide range of phenomena: for example,

a heat source in the heat equation. Recent work that uses Graph Neural Networks to aid

weather forecasting [104] requires an ‘encoding’ step, which could be an interpolation onto

a low resolution mesh of graph points at the point evaluation node locations, followed by a

‘decoding’ step which could be either interpolating back or, for a hybrid machine-learning and

numerical model method, using those node locations as forcing terms. One could also import

data from an external data set, which does not match the mesh, using the process identified

in Sect. 8.4.2 and then use them as source or sink terms. For example, aerosol or chemical

processes in a climate model are generally solved on different meshes to those where fluid flow

occur. These could now be introduced as forcing terms S in the transport equation

∂ϕ

∂t
+∇ · uϕ = S (8.5.1)

for the fluid flow where ϕ is the density of the species (aerosol or chemical) being transported,

and u is the velocity.

8.6 Summary of Contributions

I have implemented, for the first time, fully parallel compatible mesh-to-mesh interpolation in

Firedrake. The meshed domains can have fully or only partially overlapping domains and the

adjoint (transpose) interpolation operation has been implemented. A full test suite has been

written to test all these features.

I have demonstrated here that this can be used for moving functions across meshes and

function spaces, for calculating diagnostics by interpolating onto immersed domains, and for

coupling models together. Alongside the input-ordering vertex-only mesh, I have shown how

this can be used for generic external data input.

As a result of my implementation of both the forward and adjoint interpolation operations,

186

my work is fully compatible with pyadjoint via firedrake.adjoint thanks to the work detailed

in Sect. 5.5. I have added Taylor convergence tests to ensure this works as expected. This is

the first time, to my knowledge, that parallel compatible mesh-to-mesh interpolation capability

has been integrated with a high-level automatic differentiation system.

187

Chapter 9

Symbolic Interpolation

188

This chapter as a whole draws on ideas from [30].

9.1 Motivation

Recall from 1.3 that solving nonlinear variational problems ‘find u ∈ U such that

F (u; v) = 0 ∀ v ∈ V, ’ (9.1.1)

is done in Firedrake with Newton’s method: For some small perturbation to the solution u,

which we call u′, the residual, F , can be approximated by the first two terms in its Taylor

expansion

F (u+ u′; v) ≈ F (u; v) + ∂Fu(u; v, u
′) (9.1.2)

where ∂Fu(u; v, u
′) is the Gateaux derivative of F with respect to u in the perturbation direction

u′. Newton’s method has us starting with some some guess of the solution un, and finding the

perturbation direction u′, that sets these two terms equal to zero: ‘For un ∈ U find u′ ∈ U such

that

F (un; v) + ∂Fu(u
n; v, u′) = 0 ∀ v ∈ V.’ (9.1.3)

The improved guess, un+1, is then calculated from the identified perturbation direction

un+1 = un + u′ (9.1.4)

which is then the new un. Equation 9.1.3 is a linear variational problem with

a = ∂Fu(u
n; v, u′) and (9.1.5)

L = −F (un; v). (9.1.6)

This iterative set of linear solves, using both F and its first derivative ∂Fu, happens after

the statement of the problem in UFL, using the symbolic information UFL provides when the

problem is assembled, for example when calling Firedrake.solve.

At the moment when we request a dual evaluation interpolation be done with Firedrake,

we immediately perform the interpolation, and therefore lose any symbolic information about

whatever we interpolated. If the problem we want to solve requires us to interpolate the PDE

solution, we therefore cannot solve it if it is nonlinear, since we cannot re-evaluate F and ∂Fu

using the new solution at each iteration. To solve such a problem we need to find a way to

express interpolation symbolically in UFL, and provide that information to our assembly and

solver routines.

The problem outlined could potentially be solved by supplying an operation to apply to

the solution between each Newton iteration. Such a change would not be consistent with Fire-

0Department of Mathematics, Imperial College London

189

drake’s approach to solving problems: Where possible, operations are represented by symbolic

mathematics in UFL and specific calculations are performed at assembly. This is the design

philosophy that gives pyadjoint/dolfin-adjoint so many advantages, as laid out in Sect. 5.4.

Dual evaluation interpolation clearly can be expressed using symbolic maths so there is no

reason to jump ahead to calculation early.

As a motivating example, consider solving Burgers’ equation for advection and diffusion of

momentum
∂u

∂t
+ (u · ∇)u− ν∇2u = 0 (9.1.7)

on a 2D domain Ω with boundary condition

(n · ∇)u = 0 ∈ ΩΓ. (9.1.8)

u is a velocity field, n is an outward facing normal to the edge of the domain ΩΓ and ν is

a viscosity term. This is a nonlinear PDE which is one of the first demos in the Firedrake

documentation [5].

In that demo, ν is a constant. However, we could be solving it for some ν derived from an

implicit nonlinear constitutive law

f(u, ν;) = 0 (9.1.9)

where ν depends on u and we do not have an explicit relationship between them (i.e. there

is no explicit ν(u;) such as ν = 0.5(∇(u) + ∇(u)T)). These appear in continuum mechanics

(see, for example, [105] where the relation is between viscosity and pressure). If this relation

involved derivatives of u it is a differential equation, if not it is an algebraic equation. In either

case we have to solve for both fluid velocity and viscosity both here and in Burgers’ equation.

Burgers equation can be solved with the nonlinear variational problem ‘find u ∈ Vvelocity

such that

F velocity(u, ν; v) =

∫
Ω

∂u

∂t
· v + ((u · ∇)u) · v + ν∇u · ∇v dx

= 0 ∀ v ∈ Vvelocity.′
(9.1.10)

Assuming the nonlinear constitutive law is algebraic, we can choose to evaluate it at the quadra-

ture points of a finite element function space Vviscosity by interpolating it into that space1

IVviscosity
(; f(u, ν;)) = 0. (9.1.11)

1This is not intended to be a full analysis of the validity of such a discretisation, but gives us a useful
motivating example.

190

From the definition of global interpolation (Eq. 3.2.15) this is

dim(Vviscosity)−1∑
i=0

ϕ̄∗
i (; f(u, ν;))ϕi = 0 (9.1.12)

where ϕi are the basis functions of Vviscosity and ϕ̄∗
i the extended dual basis of V ∗

viscosity where

the extension is in the form of a quadrature rule (as in Firedrake, see Eq. 3.7.3). The basis

functions are linearly independent so to sum to zero their coefficients must all be zero:

ϕ̄∗
i (; f(u, ν;)) = 0 ∀ i. (9.1.13)

Each of these can be multiplied by any set of i scalar weights to make some arbitrary member

of the space of extended cofunctions

V̄ ∗
viscosity : X → R (9.1.14)

where, as in Sect. 3.2.2, X is the union of all function spaces to which each ϕ̄∗
i can be applied.

This gives us a second, nonlinear problem to solve ‘find ν ∈ Vviscosity such that

F viscosity(u, ν; γ̄∗) = γ̄∗(; f(u, ν;))

= 0 ∀ γ̄∗ ∈ V̄ ∗
viscosity’

(9.1.15)

If we consider this without being coupled to Burgers equation, each Newton loop iteration

will have us solving the linear problem ‘for some νn ∈ Vviscosity, find ν ′ ∈ Vviscosity such that

∂F viscosity
ν (u, νn; γ̄∗, ν ′) = −F viscosity

ν (u, νn; γ̄∗)

= γ̄∗(; ∂fν(u, ν
n; ν ′)) = −γ̄∗(; f(u, νn;)) ∀ γ̄∗ ∈ V̄ ∗

viscosity.’
(9.1.16)

In order to solve this we need to be able to represent the dual evaluation interpolation of

f(u, νn;) and ∂fν(u, ν
n; ν ′) into Vviscosity symbolically.

9.2 Existing Capability Outside Firedrake

Due to the previously described different design decisions and limitations of most other finite

element libraries, there is no equivalent to symbolic interpolation elsewhere. One can instead,

however, look at how the motivating problem of operating on a solution between Newton

iterations are solved.

None of the libraries which use UFL (legacy FEniCS, its rewrite, FEniCSx, and DUNE-

Fem) can solve these problems without manually implementing the Newton solver to apply

operations between iterations. Other libraries which operate at a lower level of abstraction

191

also require direct implementation of the Newton solver: This is the case for deal.II2 and

NGSolve3. As well as losing the level of flexibility and abstraction UFL provides, one generally

has to operate within the context of compiled programming languages in order to ensure speedy

operation. It should be noted that MFEM has nonlinear form types but it is not clear from

their documentation how MFEM would cope with such a problem.

9.3 Multilinear Forms as Linear Operations Between

Hilbert Spaces

This section as a whole draws on ideas from Bouziani and Ham [106] and Ham [30].

In section 1.4 we considered a 2-linear (bilinear) form

Mprevious : V1 × V0 → R (9.3.1)

which we Curried by fixing one of the arguments to find the inverse Riesz map M1, which is

equal to the covector M0.

Mprevious(; v1, •) =Mprevious
1 (; v1)(; •) =Mprevious

0 (; •) ∈ V ∗
0 . (9.3.2)

Let’s look at what happens if we start with a 2-linear form which contains an argument

from a dual space:

M : U × V ∗ → R i.e. M(;u, v∗) ∈ K ∀u ∈ U, v∗ ∈ V ∗. (9.3.3)

We start by Currying it into two new functions M1 and M0

M(;u, v∗) =M1(;u)︸ ︷︷ ︸
M0

(; v∗) =M0(; v
∗) (9.3.4)

where

M1 : U → (V ∗ → R︸ ︷︷ ︸
V ∗∗

) (9.3.5)

only evaluates u, leaving v∗ as a free argument such that

M1(;u)(; •) ∈ V ∗∗ ∀u ∈ U (9.3.6)

2see the introductory example of solving a nonlinear PDE https://www.dealii.org/current/doxygen/

deal.II/step_15.html
3see the nonlinear problems tutorial https://docu.ngsolve.org/v6.2.1910/i-tutorials/unit-3.

7-nonlinear/nonlinear.html

192

https://www.dealii.org/current/doxygen/deal.II/step_15.html
https://www.dealii.org/current/doxygen/deal.II/step_15.html
https://docu.ngsolve.org/v6.2.1910/i-tutorials/unit-3.7-nonlinear/nonlinear.html
https://docu.ngsolve.org/v6.2.1910/i-tutorials/unit-3.7-nonlinear/nonlinear.html

and

M0 : V
∗ → R︸ ︷︷ ︸
V ∗∗

(9.3.7)

already includes the evaluation of u such that

M0(; v
∗) ∈ K ∀ v∗ ∈ V ∗. (9.3.8)

Since our space of primal vectors V is a Hilbert space, our space of covectors V ∗ is also

a Hilbert space4. This implies that for each covector in V ∗ you can get a co-covector in V ∗∗

using the Riesz representation theorem. Hilbert spaces have the property that they are reflexive

meaning that they are naturally isomorphic under the canonical evaluation map given by

v∗∗(; v∗) = v∗(; v) ∈ K (9.3.9)

for all v ∈ V with covector v∗ ∈ V ∗ and co-covector v∗∗ ∈ V ∗∗.5 The isomorphism is ‘natural’ in

the sense that it comes immediately from the properties of V and V ∗∗: there is no dependency

on other choices such as a particular basis. All vector space operations and norms are preserved

through the evaluation map. We can therefore use V and V ∗∗ interchangeably

V ∗∗ ∼= V (9.3.10)

with members of V operating on members of V ∗ such that

v(; v∗) ≡ v∗∗(; v∗)

= v∗(; v) ∈ K ∀ v∗ ∈ V ∗.
(9.3.11)

Note that if our vector space is a space of functions this does not imply the evaluation of

the functions.

4This can be proved with the Riesz representation theorem.
5A note on this: The inverse Riesz representers in both these cases are

v∗(; •) = ⟨v, •⟩V : V → R ∀ v ∈ V (9.3.12)

v∗∗(; •) = ⟨v∗, •⟩V ∗ : V ∗ → R ∀ v∗ ∈ V ∗ (9.3.13)

What is this inner product on V ∗? In spaces with a finite number of basis functions we can represent the inner
product as

⟨v, ν⟩V =

dim(V)∑
i,j

v1iMijνj (9.3.14)

and

⟨v∗, ν∗⟩V ∗ =

dim(V ∗)∑
i,j

v∗1iM
mystery
ij ν∗j (9.3.15)

Eq. 9.3.9 requires that
Mmystery =M−1. (9.3.16)

193

Returning to our newly Curried forms, the operation

M1 : U → V ∗∗ (9.3.17)

is, through the isometric isomorphism, indistinguishable from

M̃1 : U → V. (9.3.18)

This has two impacts: firstly it tells us that the 1-linear form

M0(; •) =M1(;u)(; •) =M(;u, •) ∈ V ∗∗ ∼= V. (9.3.19)

where the assembled output is a co-covector (the missing argument inM is a covector v∗ ∈ V ∗)

can be treated as a primal vector (a function). Compare this with the 1-linear form example

in section 2.4.2: there after assembly we got a covector (in UFL a new Cofunction), now we

get a vector (a Coefficient).

More broadly, we now have an equivalence for the linear operator between Hilbert spaces

M̃1 : U → V (9.3.20)

and the uncurried 2-linear (bilinear) form

M : U × V ∗ → R (9.3.21)

since we can replace M̃1 with M1. The action of supplying an operand to the linear operator

M̃1 gives the same result, via the isomorphism, as supplying that operand to the 2-linear form

giving a 1-linear form:

M̃1(;u)(; •) ∈ V ∼= V ∗∗ ∀u ∈ U (9.3.22)

=M(;u, •) ∈ V ∗∗ ∼= V ∀u ∈ U. (9.3.23)

If we supply some v∗ ∈ V ∗ to the 2-linear form we have

M(;u, v∗) =M1(;u)(; v
∗) = v∗(;M1(;u)) (9.3.24)

from the canonical evaluation map (Eq. 9.3.9). If we supply neither operand we have

M(; •, •) =M1(; •)(; •) (9.3.25)

which is the raw operator.

194

V and V ∗∗ are henceforth treated as indistinguishable so any distinction between M̃1 and

M1 is dropped.

Now we can represent linear operators as forms, we ought to be able to express them in

UFL and assemble them with Firedrake. For a given 2-linear form M , the UFL types supplied

dictate the symbolic meaning of the operation performed and the assembled output:

1. If we supply both arguments to M , i.e.

• u ∈ U is a known ufl.Coefficient and

• v∗ ∈ V ∗ is a known ufl.Cofunction

implying UFL code

u = Coefficient(U)

v_star = Cofunction(V.dual())

zero_form = M(u, v_star)

Symbolically, zero_form is a 0-linear form which symbolically corresponds to

M(;u, v∗) = v∗(;M1(;u)) =M∗
1 (; v

∗)(;u) ∈ K. (9.3.26)

If we add data to our symbolic types and assemble this with Firedrake we get a scalar

∈ K, concretely a Python float or complex.

The second equality in Eq. 9.3.26 comes from the definition of an adjoint operator

(equation 2.1.2) we have that

v∗(;M1(;u)) =M∗
1 (; v

∗)(;u) ∀ v∗ ∈ V ∗, u ∈ U. (9.3.27)

where

M∗
1 : V ∗ → U∗. (9.3.28)

For finite element spaces, M∗
1 is evaluated by having the covector v∗ ∈ V ∗ operate on M1

(see Sect. 5.4.1, in particular Eq. 5.4.7).

2. If we supply only the primal argument to M , i.e.

• u ∈ U is a known ufl.Coefficient and

• v∗ ∈ V ∗ is an unknown ufl.Coargument (argument slot 0, a ufl.TestFunction on

a dual function space)

then we have UFL code

195

u = Coefficient(U)

v_star = Coargument(V.dual(), 0) # Or TestFunction(V.dual())

one_form_A = M(u, v_star)

Symbolically, one_form_A is a 1-linear form which symbolically corresponds to the linear

operation M1

M(;u, •) =M1(;u)(; •) ∈ V. (9.3.29)

If we assemble this with Firedrake we get a firedrake.Function (a ufl.Coefficient)

in the firedrake.FunctionSpace, V.

3. If we supply only the dual argument to M , i.e.

• u ∈ U is an unknown ufl.Argument (argument slot 0, a ufl.TestFunction) and

• v∗ ∈ V ∗ is a known ufl.Cofunction

then we have UFL code

u = Argument(U, 0) # Or TestFunction(U)

v_star = Cofunction(V.dual())

one_form_B = M(u, v_star)

Symbolically, one_form_B is a 1-linear form which symbolically corresponds to the adjoint

linear operation M∗
1

M(; •, v∗) =M∗
1 (; v

∗)(; •) ∈ U∗. (9.3.30)

If we assemble this with Firedrake we get a firedrake.Cofunction (a ufl.Cofunction)

in the firedrake.FiredrakeDualSpace, U.dual().

4. If we supply neither argument to M , i.e.

• v∗ ∈ V ∗ is an unknown ufl.Coargument (argument slot 0, a ufl.TestFunction on

a dual function space)

then we have UFL code

u = Argument(U, 1) # Or TrialFunction(U)

v_star = Coargument(V.dual(), 0) # Or TestFunction(V.dual())

two_form = M(u, v_star)

Symbolically, two_form is the 2-linear form we started with

M : U × V ∗ → R (9.3.31)

196

which corresponds to our raw linear operator M1. If we assemble this with Firedrake

we get a dim(V) × dim(U) matrix (we use that dim(V) = dim(V ∗)). Symbolically the

output is the new UFL ufl.Matrix type that was introduced with ufl.Cofunction and

ufl.Coargument.

In UFL we can take a symbolic form but change the argument order. For example, we might

take our form M from above and assemble the 2-linear form with the argument slots reversed:

u = Argument(U, 0) # before this was Argument(U, 1)

v_star = Coargument(V.dual(), 1) # before this was Coargument(V.dual(), 0)

two_form = M(u, v_star)

This represents a new form

M∗ : V ∗ × U → R (9.3.32)

which uses the adjoint to our linear operator M1

M∗(; v∗, u) = u(;M∗
1 (; v

∗)). (9.3.33)

We call M∗ the adjoint to M and, when we use the UFL function ufl.adjoint on M we get

M∗. The assembly rules with swapped arguments follow the rules for M above, but with M

swapped for M∗ and M1 swapped for M∗
1 . So in this case, where we assemble a 2-linear form,

we get a dim(U)× dim(V) matrix (again, dim(U) = dim(U∗) rather than a dim(V)× dim(U)

one.

The significance of representing linear operations as forms is that we can always represent

them symbolically in a form language. We only need to perform the operation itself when we

reach the point of assembly. This has two clear advantages. Raising the level of abstraction like

this allows one to derive things like the derivative and to compose operations at a high level

without having to perform the operation itself. As was highlighted in Sect. 5.4, that is the prin-

cipal advantage of dolfin-adjoint/pyadjoint’s approach to automatic differentiation. This work

has played a significant role in allowing general operations from outside Firedrake to be inte-

grated with it, including giving a simple interface for integrating with dolfin-adjoint/pyadjoint

as detailed in Bouziani and Ham [106].

9.3.1 Dual Evaluation Interpolation as a Form

Dual evaluation interpolation, defined in defined in Sect. 3.2, is a linear operator between

function spaces

IV : U → V. (9.3.34)

Treating this asM1
6, in equation 9.3.23, we come up with an equivalent uncurried 2-linear form

(M) which we will call ‘interp’.

6technically M̃1, but recall that we are treating V and V ∗∗ as indistinguishable so the tilde is dropped

197

Recall from Sect. 3.2 (Eq. 3.2.19) that when we have u =
∑dim(U)−1

i=0 uiψi ∈ U and v =∑dim(V)−1
i=0 uiϕi ∈ V , then we find a dim(V)× dim(U) interpolation matrix Aij

[
IV (;u)

]
(x) =

dim(V)−1∑
i=0

ϕ̄∗
i (;u)ϕi(x) (9.3.35)

=

dim(V)−1∑
i=0

dim(U)−1∑
i=0

Aijujϕi(x) ∈ V ∀u ∈ U. (9.3.36)

In much the same way as the mass matrix is associated with assembling an L2 inner product

(see Sect. 2.4.2), the interpolation matrix is associated with assembling the interp form.

In UFL, we call this form ufl.Interpolate and it is used as follows:

1. Starting with interp as a 0-linear form such that

• u ∈ U is a known ufl.Coefficient and

• v∗ ∈ V ∗ is a known ufl.Cofunction

then we have UFL code

u = Coefficient(U)

v_star = Cofunction(V.dual())

zero_form = Interpolate(u, v_star)

Symbolically, zero_form is

interp(;u, v∗) = v∗(; IV (;u)) = I∗V (; v∗)(;u) (9.3.37)

=

dim(V)−1∑
k=0

dim(V)−1∑
i=0

dim(U)−1∑
j=0

v∗kϕ
∗
k(;Aijujϕi) (9.3.38)

=

dim(V)−1∑
k=0

dim(V)−1∑
i=0

dim(U)−1∑
j=0

v∗kAijuj ϕ
∗
k(;ϕi)︸ ︷︷ ︸
δki

(9.3.39)

=

dim(V)−1∑
i=0

dim(U)−1∑
j=0

v∗iAijuj ∈ K. (9.3.40)

If we assemble this with firedrake.assemble we perform the sums and get a scalar ∈ K,

typically be a Python float or complex.

As before

I∗V : V ∗ → U∗ (9.3.41)

is the adjoint interpolation operator.

198

2. If we have a 1-linear form such that

• u ∈ U is a known ufl.Coefficient and

• v∗ ∈ V ∗ is an unknown ufl.Coargument (argument slot 0, a ufl.TestFunction on

a dual function space)

then we have UFL code

u = Coefficient(U)

v_star = Coargument(V.dual(), 0) # or TestFunction(V.dual())

one_form_A = Interpolate(u, v_star)

then, symbolically, one_form_A is the dual evaluation interpolation operation

interp(;u, •) = IV (;u)(; •) (9.3.42)

=

(
dim(V)−1∑

i=0

dim(U)−1∑
j=0

Aijujϕi

)
(; •). (9.3.43)

If we assemble this we get a firedrake.Function (a ufl.Coefficient) in V .

3. If we have a 1-linear form such that

• u ∈ U is an unknown ufl.Argument (argument slot 0, a ufl.TestFunction) and

• v∗ ∈ V ∗ is a known ufl.Cofunction

i.e. we have UFL code

u = Argument(U, 0) # or TestFunction(U)

v_star = Cofunction(V.dual())

one_form_B = Interpolate(u, v_star)

then, symbolically, one_form_B is the adjoint dual evaluation interpolation operation

interp(; •, v∗) = I∗V (; v∗)(; •) (9.3.44)

=

dim(V)−1∑
i=0

dim(U)−1∑
j=0

v∗iAijψ
∗
j (; •) ∈ U∗7 (9.3.45)

i.e. the jth global basis cofunction coefficient in U∗ is given by
∑dim(V)−1

i=0 v∗iAij. If we

assemble this we get a firedrake.Cofunction (ufl.Cofunction) in U∗.

This is the operation performed when doing the ‘adjoint action’ for the annotation of

interpolation in pyadjoint: see section 5.5.1 and specifically the code on page 118.

7To prove this is correct, consider supplying this expression with some u =
∑dim(U)−1

k=0 ukψk, making it a

199

4. If we have a 2-linear form such that

• u ∈ U is an unknown ufl.Argument (argument slot 1, a ufl.TrialFunction) and

• v∗ ∈ V ∗ is an unknown ufl.Coargument (argument slot 0, a ufl.TestFunction on

a dual function space)

i.e. we have UFL code

u = Argument(U, 1) # or TrialFunction(U)

v_star = Coargument(V.dual(), 0) # or TestFunction(V.dual())

two_form = Interpolate(u, v_star)

then, symbolically, two_form is the dual evaluation interpolation operation (the interpo-

lation matrix) itself. If we assemble this we get the dim(V)×dim(U) interpolation matrix

Aij as a firedrake.Matrix) (itself now a ufl.Matrix).

As before, we can swap the UFL ufl.Argument and ufl.Coargument argument slot num-

bering

u = Argument(U, 0) # or TestFunction(U)

v_star = Coargument(V.dual(), 1) # or TrialFunction(V.dual())

adj_two_form = Interpolate(u, v_star)

and assemble the 2-form

interp∗ : V ∗ × U → R (9.3.49)

to get the adjoint interpolation operator I∗V with equivalent dim(U)× dim(V) matrix A∗
ji.

8

9.4 Using the interp Form in UFL and Firedrake

Thus far, we have considered using interp for the linear dual evaluation operation between finite

element function spaces. As was discussed in Sect. 5.5, Firedrake’s interpolation operation

0-linear form:

interp(;u, v∗) =

dim(V)−1∑
i=0

dim(U)−1∑
j=0

dim(U)−1∑
k=0

v∗iAijψ
∗
j (;ukψk) (9.3.46)

=

dim(V)−1∑
i=0

dim(U)−1∑
j=0

dim(U)−1∑
k=0

v∗iAijuk ψ
∗
j (;ψk)︸ ︷︷ ︸
δjk

(9.3.47)

=

dim(V)−1∑
i=0

dim(U)−1∑
j=0

v∗iAijuj ∈ K (9.3.48)

which is the expression for the 0-linear form in Eq. 9.3.40.
8Equivalently we can use UFL’s symbolic adjoint operator: adjoint(Interpolate(u, v_star)) where u

is a ufl.TrialFunction and v_star is ufl.Coargument 0 to get A∗
ji.

200

covers both the dual evaluation interpolation operator I, which is linear in its arguments, and

evaluation of some expression ‘expr’, which may not be linear in its arguments. With this in

mind, interp can be treated in the same way. When calculations involving interp are evaluated,

the expression will either (a) have all its arguments specified with a ufl.Coefficient and

ufl.Cofunction, in which case the expression can simply be evaluated prior to dual evaluation,

or (b) will have a ufl.Argument, ufl.Coargument, or both, in which case we have a nonlinear

problem which will require linearisation and iteration to find a solution (as previously discussed).

Returning to our motivating example, we need to be able to express ‘find ν ∈ Vviscosity such

that

F viscosity(u, ν; γ̄∗) = γ̄∗(; f(u, ν;))

= 0 ∀ γ̄∗ ∈ V̄ ∗
viscosity’

(9.4.1)

as part of our problem statement. This can now be directly represented with the new interp

2-linear form as ‘find ν ∈ Vviscosity such that

interp(; f(u, ν;), γ∗) = 0 ∀ γ∗ ∈ V ∗
viscosity.’ (9.4.2)

In UFL we would express this as

u = Coefficient(V_velocity)

nu = Coefficient(V_viscosity)

gamma_star = TestFunction(V_viscosity.dual())

f_expr = f(u, nu) # = 0

F_viscosity = Interpolate(f_expr, gamma_star)

where f is a function that returns a nonlinear UFL expression of u and nu representing the

nonlinear constitutive law. Here, gamma_star is the new Coargument type.9

When assembling this, we need to be able to solve the following linear problem during each

Newton iteration: ‘For some νn ∈ Vviscosity, find ν ′ ∈ Vviscosity such that

γ̄∗(; ∂fν(u, ν
n; ν ′)) = −γ̄∗(; f(u, νn;)) ∀ γ̄∗ ∈ V̄ ∗

viscosity’ (9.4.3)

(Eq. 9.1.16). This can be represented as ‘For some νn ∈ Vviscosity, find ν ′ ∈ Vviscosity such that

a(; ν ′, γ∗) = L(; γ∗) ∀ γ∗ ∈ V ∗
viscosity.’ (9.4.4)

9Notice that the interp form uses cofunctions γ∗ rather than γ̄∗ in the problem statement. This is intentional:
the unbarred cofunctions can be thought of as selecting the target interpolation space, in this case Vviscosity,
but are not themselves involved in dual evaluation. Nevertheless, if they are a ufl.Argument they will, once
linearised, lead to the correct dual evaluation calculation detailed in the previous section. See equations 9.4.7
and 9.4.8 for the linearisation.

201

where

a(; ν ′, γ∗) = interp(; ∂fν(u, ν
n; ν ′), γ∗) (9.4.5)

L(; γ∗) = −interp(; f(u, νn), γ∗). (9.4.6)

In Firedrake we write this as

u = Function(V_velocity)

nu_n = Function(V_viscosity)

... # assign values to u and nu_n

gamma_star = TestFunction(V_viscosity.dual())

nu_prime = TrialFunction(V_viscosity)

f_expr = f(u, nu_n) # = 0

a = Interpolate(derivative(f_expr, nu_prime), gamma_star)

L = -Interpolate(f_expr, gamma_star)

nu_prime_sol = Function(V_viscosity)

solve(a == L, nu_prime_sol)

Assembling a gives a dim(Vviscosity)×dim(Vviscosity) matrix which is the interpolation operator

IVviscosity
acting on the partial Gateaux derivative ∂fν . Using the notation from chapter 5, we

can write this as

aij =

[
IVviscosity

◦ ∂f
∂ν

∣∣∣∣
u,νn

]
ij

(9.4.7)

which acts on a primal trial function ν ′ ∈ Vviscosity. Assembling L gives a dim(Vviscosity) vector

corresponding to the interpolation of f into Vviscosity (a primal function):

Li = −IVviscosity
(; f(u, ν))i. (9.4.8)

This is in contrast to the assembly of a 1-linear form when solving a PDE which gives the basis

coefficients of a cofunction.10 These can be then be passed to a linear solver at each Newton

iteration, producing the coefficients of a new primal function ν ′ ∈ Vviscosity at each step.

9.4.1 Demonstration Code

At time of writing (January 2024), the interp form has just been implemented (albeit not

directly by the author) in both UFL and Firedrake. When a symbolic Interpolate form is

identified in assembly, Firedrake’s pre-existing interpolation functionality is used. Firedrake’s

assembly mechanisms have had to be extended to allow forms to be composed with other forms,

10Similarly, the matrix aij for solving a PDE (such as the mass matrix) acts on a the basis coefficients of a
primal function, and gives the basis coefficients of a cofunction.

202

to allow for interpolation expressed with the interp form within another form, such as an L2

inner product.

Code which demonstrates how the example problem would be solved is shown in Listing 18.

It is not intended to represent a well conditioned problem, but exemplifies the concept.11

After a backwards Euler time discretisation F velocity becomes ‘find un+1 ∈ Vvelocity such that

F velocity
δt (un+1, un, ν; v) =

∫
Ω

un+1 − un
δt

· v + ((un+1 · ∇)un+1) · v + ν∇un+1 · ∇v dx

= 0 ∀ v ∈ Vvelocity.’
(9.4.9)

Firedrake solves coupled equations by formulating them as a single variational problem with

solutions and test functions drawn from so-called ‘mixed’ finite element spaces. Such approaches

were first discussed by Fraeijs de Veubeke [107] and Herrmann [108] and involve creating Carte-

sian products of function spaces from which solutions can be drawn. The formulation becomes

‘find (un+1, ν) ∈ Vvelocity × Vviscosity such that

F ((un+1, ν); (v, γ̄∗)) = 0 ∀ (v, γ̄∗) ∈ Vvelocity × V̄ ∗
viscosity’ (9.4.10)

where

F ((un+1, ν); (v, γ̄∗)) =

∫
Ω

un+1 − un
δt

· v + ((un+1 · ∇)un+1) · v + ν∇un+1 · ∇v dx︸ ︷︷ ︸
F velocity

+ γ̄∗(; f(un+1, ν;))︸ ︷︷ ︸
F viscosity

. (9.4.11)

To linearise and solve this using Newton’s method, we have to take the Gateaux derivative of

this new F with respect to a member of the mixed function space Vvelocity×Vviscosity. Each of the

two terms of F only act on part of the mixed function, so we can take the Gateaux derivative

of each such term separately and sum them to get the full derivative. This means our existing

mathematics for taking the derivative of F viscosity is still what happens when we reformulate as

a mixed problem.

9.5 Future Work

Eventually Firedrake’s API could be simplified to have only two operations which directly

manipulate data: function and cofunction assignment and assembly. Should one wish to eagerly

perform an operation like interpolation12, one would assemble the interp form. This ought to

11In time, the existing firedrake.interpolate function will be changed to return the symbolic output of
the Interpolate form.

12to, for example, avoid symbolic expression swell when one comes to differentiate it

203

allow much more flexibility in the way that Firedrake can be used, as demonstrated here for the

case of dual evaluation interpolation. Other concrete operations, such as Galerkin projection,

will need to be identified and made symbolic.

9.6 Summary of Contributions

I have demonstrated how linear operations can be reformulated as forms. This allows us to

represent them as symbolic objects which can be assembled at a later stage. This work was

the joint work of me, David Ham, Colin Cotter and Nacime Bouziani, all of Imperial College

London.

David Ham and I developed the theory of the interp form. This can be used to represent

dual evaluation interpolation and its adjoint as forms, themselves linear operations. As I have

shown here, this can be used to solve coupled problems where part of the problem formulation

includes interpolating a nonlinear expression of one of the solutions.

This is a whole new class of problems which Firedrake should now be able to solve. I have

demonstrated this for the case of the Burgers equation with a viscosity term dictated by a

nonlinear constitutive law. At time of writing, the interp form has just been implemented in

Firedrake as firedrake.Interpolate. Firedrake is not the only finite element library which

could benefit from this, since the theory is general and forms are a common abstraction in finite

element libraries.

204

1 from firedrake import *

2

3 n = 30

4 mesh = UnitSquareMesh(n, n)

5 timestep = 1.0 / n

6

7 # Function Spaces

8 V_velocity = VectorFunctionSpace(mesh, "CG", 2)

9 V_velocity_out = VectorFunctionSpace(mesh, "CG", 1)

10 V_viscosity = FunctionSpace(mesh, "CG", 1)

11 W_sol = V_velocity * V_viscosity

12 W_test = V_velocity * V_viscosity.dual()

13

14 # Functions and Test Functions

15 w = Function(W_sol, name="State")

16 u_ = Function(V_velocity, name="Velocity")

17 w.subfunctions[0].name = "VelocityNext"

18 w.subfunctions[1].name = "Viscosity"

19 u, nu = split(w) # split is for inserting into UFL expressions

20 v, gamma_star = TestFunctions(W_test)

21

22 # Initial Condition

23 x = SpatialCoordinate(mesh)

24 ic = project(as_vector([sin(pi * x[0]), 0]), V_velocity)

25 u_.assign(ic)

26 w.subfunctions[0].assign(ic)

27

28 # burgers equation residual

29 F_velocity = (

30 inner((u - u_) / timestep, v)

31 + inner(dot(u, nabla_grad(u)), v)

32 + nu * inner(grad(u), grad(v))

33) * dx

34

35 # Algebraic equation residual (for demonstration,

36 # can be made explicit!)

37 f = 10000 * nu - exp(-inner(u, u))

38 F_viscosity = Interpolate(f, gamma_star)

39

40 # Complete residual

41 F = F_velocity + F_viscosity

42

43 # Save initial condition

44 outfile = File("burgers.pvd")

45 outfile.write(project(u, V_velocity_out, name="Velocity"))

46

47 # Solve

48 t = 0.0

49 end = 0.5

50 while t <= end:

51 solve(F == 0, w)

52 u_.assign(w.subfunctions[0]) # update u_ with u

53 t += timestep

54 outfile.write(project(u, V_velocity_out, name="Velocity"))

Listing 18: Solving the Burgers equation with a viscosity term dictated by a nonlinear consti-
tutive law.

205

Chapter 10

Conclusion

206

10.1 Conclusion

The aim here was to identify abstractions for representing arbitrary data in the finite element

method, and operators for their interaction with scalar, vector and tensor fields represented as

finite element functions. This has been successfully achieved this for point data which can now

also be represented as finite element functions (Sect. 4.3): in this case, the coordinates are a

vertex-only mesh and the values as the finite element function space of zeroth-order discon-

tinuous Lagrange polynomials on that mesh (P0DG(Ωv)). The dual evaluation interpolation

operation (Sect. 3.2) has been identified as a suitable way of describing interactions between

these data and finite element fields (Sect. 4.4).

The diverse range of scenarios where this abstraction proves useful demonstrates that it

is sufficiently general: Point evaluation of fields represented as finite element functions can

be done by interpolating onto the function space on the vertex-only mesh (mathematics in

Sect. 4.4, implementation in Sect. 4.5.3). Point sources can be represented as these finite

element functions with the interpolation operator and its adjoint giving us an appropriate

forcing function (Sect. 4.6.1).

Differentiation of the interpolation operator has been demonstrated (Sect. 5.5). This allows

optimisation problems and sensitivity analysis involving arbitrary point data and finite element

models to be solved. As a demonstration of PDE constrained optimisation, it was shown that

arbitrary point data can be assimilated, with ease, into finite element models in a way that is

consistent with Bayes’ Theorem (chapter 6).

By considering the dual bases of finite element functions as weighted sums of point evalu-

ations, this work has been extended from point data to arbitrary external data represented on

a domain as outlined in chapter 8. These data could already be represented as finite element

functions, but the new abstraction of point data allows arbitrary dual evaluation interpolations

between them and external input data (see Sect. 8.4.2). These can be used for interacting

with data defined on lines planes or volumes, much as we could with point data: this work has

shown how one can introduce line, plane or volume source or sink terms for a sufficiently dense

mesh (see Sect. 8.4.3).

The ability to interpolate across meshes also allows for model coupling, another form of

model-data interaction. The fact that this all starts from abstractions for point data again

demonstrates the sufficiency of that abstraction. Since the point-evaluation interpolation op-

eration is differentiable and has an adjoint, the arbitrary mesh-to-mesh dual evaluation inter-

polations, and model coupling, do too.

This, other than perhaps model coupling which works as a result of the Firedrake imple-

mentation, is applicable generally in the finite element method framework. One can implement

vertex-only meshes and interpolations onto them as point-evaluations in another library and

achieve the same results. So long as one represents dual bases as sums of point evaluations, one

can extend this work to arbitrary function spaces on other meshes, as has been implemented

207

here.

On the implementation side, the new abstractions in Firedrake are entirely parallel safe,

as discussed in chapters 7 and 8. Elsewhere, I have been involved in adding dual spaces to

UFL and Firedrake (chapter 2). This improves the quality of the abstraction that is provided,

making it closer to the mathematical objects we aim to represent. The element local dual

evaluation routines have also been improved, as described in chapter 3, to make better use

of the finite element abstraction provided. By using the correct abstraction there, one can

now compose finite elements from pre-defined ones, and have the dual evaluation operations

efficiently compose as well. Lastly, the work to make dual-evaluation interpolation into a

symbolic operation will, when fully completed, allow new systems of equations to be solved.

10.2 Future work

In each chapter, future work that could add to what has been done has been noted, so the

reader is therefore referred to each such section. Here some more general suggestions are made.

10.2.1 More Applications

The demonstrations here are in no way an exhaustive list of what this work could be used for.

A sensitivity analysis demonstration using firedrake.adjoint would also be a good ad-

dition, for example to investigate the sensitivity of the unknown conductivity measurements

(Sect. 6.2) to the measured data.

There are other opportunities to, relatively straightforwardly, implement real modelling

applications using this work. Nixon-Hill et al. [3] already contains a textbook groundwater

hydrology inverse problem using point data, alongside a glaciological data assimilation example.

This assimilates the MEaSUREs InSAR phase-based velocity map [62] into a model of the

Larcen C ice shelf in Antarctica. The model is built in Icepack [109] which is built on top of

Firedrake and so has access to all its features. Further data assimilation could be done using

other packages built on top of Firedrake: atmospheric flow measurements could be assimilated

into the dynamical core Gusto [102] and various ocean measurements into the ocean model

Thetis [110]. I am aware of work that would use point data in seismic inversion problems built

on top of Firedrake, though none of these have yet been published.

To bring all this work together, one could come up with a multiphysics simulation which

includes data assimilation and model coupling, perhaps even using data from a model produced

by another software package. Firedrake could then operate so-called ‘digital twin’ simulations

[111] where real-life objects or systems are simulated with multiple sets of coupled equations.

These are updated as data becomes available, allowing one to, for example, know the stresses on

an aircraft wing as a result of wind speed measurements and internal deflection measurements.

208

10.2.2 Moving Points

As was highlighted when looking at existing capability in Sect. 7.3, moving particles are widely

used and would be a significant addition to Firedrake. The generality of the abstractions of

vertex-only meshes, functions on them, and associated differentiable interpolation operations

are very powerful. Movable vertex-only meshes would, partially, allow for assimilation of moving

point data (for example, assimilating measurements from ocean floats into an ocean model

or balloon trajectories into an atmospheric model) and other moving data (see cross-mesh

interpolation, Chapter 8). A general approach, from a Bayesian point of view, is outlined by

Apte, Jones, and Stuart [112] (see also Cotter, Dashti, and Stuart [113]). The abstraction is a

key difference between other libraries which implement moving points such as Deal.II’s particles:

the point evaluation operator is differentiable without having to resort to cumbersome external

automatic differentiation tools.

Moving points allow tracer methods, where the motion of the vertices (here, Lagrangian

particles) is determined by a velocity vector field on the underlying mesh. In so-called active

tracer methods, the movement of the particles then influences the equations being solved. These

are used for computational fluid simulations in areas ranging from biomedicine [114, 115] to

environmental fluid mechanics [116, 117, 118, 119, 120]. Indeed, any method which involves

moving particles and meshes, such as particle-in-cell methods, would become available.

In the simplest sense, one could implement moving particles by producing a new vertex-only

mesh at each time step. The problem with this is that the two sets of particles have no link to

one another so there’s no obvious way to move data from one to the other. One could somehow

engineer them having the same global index but that would be cumbersome. Nevertheless in a

hypothetical scenario where this was the approach taken, one would create a new function on

the new vertex-only mesh and create an operation that moved data from one to the other via

some PETSc star forest operation.

Since the issue is point identification within a vertex-only mesh, one could create a wrapper

class which creates a single vertex-only mesh for each particle. Point identification and the

assignment of values would then be devolved to the wrapper which can make use of Firedrake’s

interpolation as point evaluation functionality.

Alternatively, assuming one is happy to accept the cost of re-embedding all particles each

time they are moved, one could have the wrapper class control the input coordinates to a vertex-

only mesh Ωv which the input-ordering vertex-only mesh Ωinput-ordering
v is guaranteed to respect.

This would aid solution setting and transfer: values would be members of a function on the

input-ordering vertex-only mesh, which one would interpolate onto the usual vertex-only mesh

for interactions with the parent mesh. To move coordinates, the wrapper class coordinates list

would be updated and a new vertex-only mesh ∆v created with input-ordering ∆input-ordering
v .

Solution transfer would require interpolation from Ωv onto Ωinput-ordering
v , changes in values as

necessary to match the change in coordinates, then assignment to a function on ∆input-ordering
v

209

which would then be interpolated onto a function on ∆v.

Ideally we would maintain a single vertex-only mesh and move the vertices: any functions

defined on the mesh would move with it (as currently happens with other meshes that have their

coordinates function changed). If this movement was performed by modifying the coordinates

function, we would need to recalculate the embedding in the parent mesh. That means (1.)

finding the parent mesh cells and (2.) finding the coordinates of the point within the cell. We

can speed up step (1.) by initially assuming that no particles have moved, checking that is the

case, then only relocating those that have: this is the general approach outlined by Martin,

Loth, and Lankford [121] and would be a good first step.

Where we have information about particle trajectory, for example an assigned velocity at

a given time step, we gain access to techniques which track the trajectory of particles. These

avoid the high computational cost of resorting all particles [88] since one can simply work out

whether a particle will move outside of a cell or mesh partition boundary. Many algorithms

are available [122, 87, 123] and they could be combined with the ‘nearest cell’ approach to

avoid known problems with floating point imprecision [88]. The challenge will be to maintain

generality: how do we tell a moving vertex-only mesh that we have velocity information?

At this point we might again consider wrapping up our functionality in something like the

particles classes found in deal.II and LEoPart. Ideally we would avoid the design limitations

these have.1 Before committing to an approach, significant consideration of the correct design

should be undertaken.

Once we have very large numbers of particles involved in computations, load balancing

may become an issue. Gassmöller et al. [89] make relevant suggestions for dealing with this

including repartitioning the parent mesh, adjusting particle density (if the application allowed)

and adjusting the parent mesh to accommodate the particle density (again, if the application

allowed).

To assimilate data from moving particles, one would need to consider all the places where

the misfit functional to minimise is affected by the change in coordinates: the operation that

changes those coordinates would need to be differentiable to minimise with variational assim-

ilation methods. For Firedrake and firedrake.adjoint this would mean ensuring that such

operations are taped for adjoint generation.

Tracing and data assimilation could be tested in the ocean model Thetis [110] and the

atmospheric model Gusto [102], both of which have been built using Firedrake. Tracers would

be useful for studying the movement of pollutants or other substances in the atmosphere or

ocean, whilst moving point data assimilation could be used to produce forecasts.

1Deal.II’s particle implementation, for example, is not suitable for points which move large distances. Those
which move outside cell halos are deleted. To find them again, one has to manually request that they be
re-located [89].

210

10.2.3 Moving Mesh to Mesh Interpolation

Once vertex-only mesh vertices are movable, we ought to be able to interpolate between moving

meshes without having to recreate the interpolation object each time. No finite element library,

to the author’s knowledge, has such capability. With a well thought-out API, we ought to be

able to achieve efficient interpolation from lines and planes that move with the flow of a vector

field, data assimilation from moving lines planes or volumes, and coupling between problems

with moving meshes.

10.2.4 Alternative Implementation

To prove the generality of the abstractions that have been identified, it would be useful to

implement them in another library. The most obvious candidate is FEniCSx, the rewrite of

FEniCS [16, 17] which uses UFL and maintains a similar level of abstraction to Firedrake. The

first step would be to check if point cells, and a P0DG finite element on it, can be instatiated

with Basix [39], which FEniCSx uses for finite element tabulation.

NGSolve [22] is another candidate for straightforward implementation since it also maintains

a high level of abstraction and has a UFL-like API, though recent work has coupled its mesh

generation capabilities to Firedrake making this a less attractive proposition. Libraries which

do not maintain the high level of abstraction found in Firedrake and FEniCS ought to be able

to implement the same functionality but could require more work.

Of course no other library (exluding legacy FEniCS) currently supports automated adjoint

generation with dolfin-adjoint/pyadjoint [46], so their are fewer use cases. Nevertheless, any

library that supports adjoint dual-evaluation interpolation would allow for point sources and

sinks, as demonstrated here, and cross-mesh interpolation could be implemented in a similar

way to that outlined in chapter 8.

10.2.5 Querying Geoscientific Model Outputs

Motivation: Data Output from Geoscientific Models

Geoscientific models, particularly those of the earth’s climate, produce very large, unwieldy

data sets. When more supercomputing resources become available, models tend to become

more precise and run for longer, producing bigger and bigger data sets. The Coupled Model

Intercomparison Project (CMIP) data sets provide a good example: these have increased expo-

nentially in size with each report [124] with the sixth phase (CMIP6) producing between 20 and

40 Petabytes of data [125]. So-called ‘big-data’ does not get much bigger than this. Different

models may be simulating the same phenomenon but typically will use one or more different

numerical and discretisation methods (finite volume, finite element, spectral, finite difference

and more) to reach results, any of which will produce data in different formats with different

properties.

211

Querying geoscientific models is therefore not a straightforward or unified process. Bespoke

code may have to be written, a time-consuming and easily error-prone endeavour, in order

to investigate some metric of interest: such code may not be referenced or, if it is, may not

give reproducible results without reimplementation. Data is often copied from a data center

instead of using the powerful High Performance Computing (HPC) systems which run the

models and are typically nearest to the storage data centres containing the model outputs.

As well as being inefficient, community commentators [126] [127] have pointed out that such

data movement has associated energy and environmental costs which ought not be neglected.

When comparing some particular statistic across models, especially where such statistics are

complicatedly defined, these challenges are almost guaranteed. Statistic comparison is often

done to quantify uncertainty in headline results (as is done in CMIP). Statistic comparison is

also valuable when developing an understanding of complex phenomena which are known to

occur in nature, have measurements limited due to their temporal or spacial extent, but which

emerge in models such as climate variability and certain ocean currents (see, for example,

Medhaug and Furevik [128]).

Efforts to address the difficulties of model statistic querying are underway. The UK’s

JASMIN HPC cluster [129] and the US’s National Center for Atmospheric Research (NCAR)

CMIP Analysis Platform [130] provide dedicated resources for data analysis of climate and

earth system model data. Common file formats such as NetCDF [131] exist and tools such as

NetCDF Operators [132] and the NCAR Command Language (NCL) [133] provide serialised

tools for their analysis. Integration of NetCDF with traditional data science parsing tools have

also been attempted [124].

Perhaps the most exciting recent development has been Pangeo [134] which provides a stack

for data analysis locally, in the cloud, or on an HPC cluster. The user interface, data model,

computing system, data storage system and resource management system are all separate in-

terchangeable modules. For more on Pangeo, Odaka et. al. [135] provide a good introduction.

HPC and cloud based approaches to model output data analysis using tools like Pangeo is

likely to grow in future with uptake actively encouraged in the community [136] [137] [135].

Indeed, data analysis in the Intergovernmental Panel on Climate Change (IPCC) Sixth Assess-

ment Report (AR6) was meant to have taken such approaches [138].

Solution: An ‘In Situ’ Domain Specific Language for Querying

Available statistics in tools such as Pangeo are necessarily limited to those which have been

pre-programmed into the software. Instead, a Domain Specific Language (DSL) for query-

ing geoscientific models for statistics derived from their saved field data, with generated code

running on the HPC systems closest to the data (hence ‘in situ’), is proposed.

The DSL should contain abstractions of the mathematical concepts needed to describe a

particular statistic and compile to produce optimised, scalable, and, crucially, highly parallelised

code (i.e. using multiple computing ‘cores’ or ‘nodes’ distributed across an HPC system) for

212

finding it. Should another model need investigating then the same query, written in the DSL,

could be compiled and run for that model. Like UFL, introduced in chapter 1, and the tensor

algebra DSL GEM, introduced in chapter 3, the new DSL should be embedded in another

language such as Python to aid development and allow straightforward interfacing with existing

tools. The language and the tools for parsing and compiling it should be provably correct, freely

and openly available and implement a straightforward referencing procedure so that queries can

be reproduced.

This DSL may have other uses: for example, complex geoscientific models typically do not

output all their field data at every time step due to the quantity of data produced. As well as

providing a tool for querying models, the language could perhaps be used to specify a desired

statistic prior to the running of a model such that it would be output at each time step.

The work described here provides an ideal platform for the development of this DSL. UFL

can now be used to describe point evaluations (chapter 4) as well as line, surface and volume

integrals. One merely needs to read in the external data (in parallel) then use cross-mesh

interpolation operations (chapter 8) to compute the query.

Generic external data input in parallel was the topic of Sect. 8.4.2. All that is left to do

to is to introduce tools that can read the stored NetCFD data in parallel and to deal with the

missing mesh-building infrastructure, as raised in the future work section of chapter 8 (Sect.

8.5). In particular we require a tool for building a mesh at the coordinates of data alongside a

tool for building meshes from a query of, for example, a surface integral.

Firedrake was built from the outset to run in parallel on HPC system since the kinds

of problems it is designed to solve (big PDE systems including ocean and weather models)

often require the enormous computing power an HPC gives you. Firedrake also contains the

infrastructure to enable full reproducibility and referencing of the exact code used to reach a

solution which can be adapted for use here.

Models written in Firedrake can be used as initial test beds. In particular, there is the

glaciological modelling toolkit Icepack [109], the atmospheric model Gusto [102] and the ocean

model Thetis [110].

The completed software should allow any query expressible by the new DSL to be found

for any grid or unstructured mesh based field data set. The design of the language will need

therefore to avoid using the language of specific application areas or particular numerical meth-

ods to ensure its wide use. Work currently being done on UFL is removing most finite-element

specific terminology (elements, for example, will no longer be defined in UFL), nevertheless to

gain traction, it might be necessary to write a layer on top of Firedrake to obfuscate some of

the inner workings.

The earth sciences aren’t the only area where very large quantities of gridded field data are

produced. Pangeo, for example, has found applications in astrophysics [139]. The impact of

this work could therefore be wide-ranging.

If the DSL is sufficiently self contained then it may be desirable to integrate with Pangeo.

213

Below, Pangeo’s architecture is explored to get a sense of how this might be done. Pangeo has

separable pieces which are supposed to be interchangeable2. Working from the bottom up, the

‘foundation’ is the Python programming language, which suits Firedrake. There are 3 supported

‘compute platforms’ - HPC, Amazon Web Services (AWS) and Google Cloud Platform and,

above this 3 ‘processing modes’ which are interactive Jupyter sessions, batch runs of scripts

and the ‘serverless computing’ cloud execution model. Firedrake merely needs a Python virtual

environment in which to run so is agnostic to these. Next there are two ‘N-D Arrays’ pieces:

NumPy and DASK [140]. At this point things start to diverge: under the hood, Firedrake

is an increasingly thin layer around PETSc [10, 9]. Firedrake uses PETSc vectors (Vecs) and

matrices (Mats) for data storage alongside numpy arrays. DASK is a parallel computing tool

that distributes serial tools such as numpy: whilst it’s possible that this could be used alongside

Firedrake, it is not directly compatible with it since Firedrake is already parallelised. Firedrake

would therefore be a new third column at this point and would not be easilly hot-swappable.

At the highest level there are three ‘data models’ for high level data analysis: xarray [141],

Iris [142] and pandas [143]. Firedrake also provides a ‘data model’ in the form of Firedrake

Functions which represent fields and and meshes which represent the domains that those fields

are defined over; data analysis involves manipulating these with UFL and assembly operations.

2see https://pangeo.io/architecture.html#interoperability-in-pangeo

214

https://pangeo.io/architecture.html##interoperability-in-pangeo

Bibliography

[1] Colin J. Cotter and David A. Ham. Imperial College London Mathematics

module MATH96063/MATH97017/MATH97095 Finite Elements: Numerical

Analysis and Implementation. Lecture Series. Imperial College London, 2020. url:

https://finite-element.github.io/ (visited on 05/26/2020).

[2] V. V. Davydov. Types of Generalization in Instruction: Logical and Psychological Prob-

lems in the Structuring of School Curricula. Soviet Studies in Mathematics Education.

Volume 2. en. Tech. rep. ISBN: 9780873532914 ERIC Number: ED318633. National

Council of Teachers of Mathematics, 1906 Association Dr, 1990. (Visited on 11/21/2023).

[3] Reuben W. Nixon-Hill et al. Consistent Point Data Assimilation in Firedrake and

Icepack. arXiv:2304.06058 [cs, math]. Aug. 2023. url: http://arxiv.org/abs/2304.

06058 (visited on 10/30/2023).

[4] Florian Rathgeber et al. “Firedrake: automating the finite element method by composing

abstractions”. In: ACM Transactions on Mathematical Software 43.3 (Dec. 2016). arXiv:

1501.01809, pp. 1–27. issn: 00983500. doi: 10.1145/2998441. url: http://arxiv.

org/abs/1501.01809 (visited on 02/04/2020).

[5] David A. Ham et al. Firedrake User Manual. First edition. Imperial College London

et al., May 2023. doi: 10.25561/104839.

[6] Martin Sandve Alnæs. “UFL: a finite element form language”. en. In: Automated Solution

of Differential Equations by the Finite Element Method: The FEniCS Book. Ed. by

Anders Logg, Kent-Andre Mardal, and Garth Wells. Lecture Notes in Computational

Science and Engineering. Berlin, Heidelberg: Springer, 2012, pp. 303–338. isbn: 978-3-

642-23099-8. doi: 10.1007/978-3-642-23099-8_17. url: https://doi.org/10.

1007/978-3-642-23099-8_17 (visited on 02/04/2020).

[7] Marjan Mernik, Jan Heering, and Anthony M. Sloane. “When and how to develop

domain-specific languages”. In: ACM Computing Surveys 37.4 (Dec. 2005), pp. 316–

344. issn: 0360-0300. doi: 10.1145/1118890.1118892. url: https://dl.acm.org/

doi/10.1145/1118890.1118892 (visited on 11/20/2023).

215

https://finite-element.github.io/
http://arxiv.org/abs/2304.06058
http://arxiv.org/abs/2304.06058
https://doi.org/10.1145/2998441
http://arxiv.org/abs/1501.01809
http://arxiv.org/abs/1501.01809
https://doi.org/10.25561/104839
https://doi.org/10.1007/978-3-642-23099-8_17
https://doi.org/10.1007/978-3-642-23099-8_17
https://doi.org/10.1007/978-3-642-23099-8_17
https://doi.org/10.1145/1118890.1118892
https://dl.acm.org/doi/10.1145/1118890.1118892
https://dl.acm.org/doi/10.1145/1118890.1118892

[8] Miklós Homolya et al. “TSFC: a structure-preserving form compiler”. In: SIAM Journal

on Scientific Computing 40.3 (Jan. 2018). arXiv: 1705.03667, pp. C401–C428. issn: 1064-

8275, 1095-7197. doi: 10.1137/17M1130642. url: http://arxiv.org/abs/1705.03667

(visited on 03/04/2020).

[9] Satish Balay et al. PETSc Web page. 2022. url: https://petsc.org/.

[10] Satish Balay et al. PETSc/TAO Users Manual. Tech. rep. ANL-21/39 - Revision 3.18.

Argonne National Laboratory, 2022.

[11] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard Version

4.0. June 2021. url: https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.

pdf.

[12] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable Parallel Pro-

gramming with the Message-Passing Interface. The MIT Press, 2014. isbn: 978-0-262-

52739-2.

[13] Robert C. Kirby. “Algorithm 839: FIAT, a new paradigm for computing finite element

basis functions”. In: ACM Transactions on Mathematical Software 30.4 (Dec. 2004),

pp. 502–516. issn: 0098-3500. doi: 10.1145/1039813.1039820. url: https://doi.

org/10.1145/1039813.1039820 (visited on 02/26/2020).

[14] Miklós Homolya, Robert C. Kirby, and David A. Ham. “Exposing and

exploiting structure: optimal code generation for high-order finite element

methods”. In: arXiv:1711.02473 [cs] (Nov. 2017). arXiv: 1711.02473. url:

http://arxiv.org/abs/1711.02473 (visited on 04/06/2020).

[15] Florian Rathgeber et al. “PyOP2: A High-Level Framework for Performance-Portable

Simulations on Unstructured Meshes”. In: 2012 SC Companion: High Performance Com-

puting, Networking Storage and Analysis. ISSN: null. Nov. 2012, pp. 1116–1123. doi:

10.1109/SC.Companion.2012.134.

[16] Anders Logg. “Efficient Representation of Computational Meshes”. In: International

Journal of Computational Science and Engineering 4.4 (2009). arXiv: 1205.3081, p. 283.

issn: 1742-7185, 1742-7193. doi: 10.1504/IJCSE.2009.029164. url: http://arxiv.

org/abs/1205.3081 (visited on 03/04/2020).

[17] Martin Alnæs et al. “The FEniCS Project Version 1.5”. en. In: Archive of Numerical

Software 3.100 (Dec. 2015). Number: 100. issn: 2197-8263. doi: 10.11588/ans.2015.

100.20553. url: https://journals.ub.uni- heidelberg.de/index.php/ans/

article/view/20553 (visited on 07/30/2020).

[18] Andreas Dedner et al. “A generic interface for parallel and adaptive discretization

schemes: abstraction principles and the Dune-Fem module”. en. In: Computing 90.3

(Nov. 2010), pp. 165–196. issn: 1436-5057. doi: 10.1007/s00607-010-0110-3. url:

https://doi.org/10.1007/s00607-010-0110-3 (visited on 03/23/2023).

216

https://doi.org/10.1137/17M1130642
http://arxiv.org/abs/1705.03667
https://petsc.org/
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://doi.org/10.1145/1039813.1039820
https://doi.org/10.1145/1039813.1039820
https://doi.org/10.1145/1039813.1039820
http://arxiv.org/abs/1711.02473
https://doi.org/10.1109/SC.Companion.2012.134
https://doi.org/10.1504/IJCSE.2009.029164
http://arxiv.org/abs/1205.3081
http://arxiv.org/abs/1205.3081
https://doi.org/10.11588/ans.2015.100.20553
https://doi.org/10.11588/ans.2015.100.20553
https://journals.ub.uni-heidelberg.de/index.php/ans/article/view/20553
https://journals.ub.uni-heidelberg.de/index.php/ans/article/view/20553
https://doi.org/10.1007/s00607-010-0110-3
https://doi.org/10.1007/s00607-010-0110-3

[19] Mathias Louboutin et al. “Devito (v3.1.0): an embedded domain-specific language for

finite differences and geophysical exploration”. English. In: Geoscientific Model Develop-

ment 12.3 (Mar. 2019). Publisher: Copernicus GmbH, pp. 1165–1187. issn: 1991-959X.

doi: 10.5194/gmd-12-1165-2019. url: https://gmd.copernicus.org/articles/

12/1165/2019/ (visited on 11/21/2023).

[20] Eric Heisler, Aadesh Deshmukh, and Hari Sundar. “Finch: Domain Specific Language

and Code Generation for Finite Element and Finite Volume in Julia”. en. In: Compu-

tational Science – ICCS 2022. Ed. by Derek Groen et al. Lecture Notes in Computer

Science. Cham: Springer International Publishing, 2022, pp. 118–132. isbn: 978-3-031-

08751-6. doi: 10.1007/978-3-031-08751-6_9.

[21] F. Hecht. “New development in FreeFem++”. In: Journal of Numerical Mathematics

20.3-4 (2012), pp. 251–265. issn: 1570-2820. url: https://freefem.org/.

[22] Joachim Schöberl. “C++ 11 implementation of finite elements in NGSolve”. In: Insti-

tute for analysis and scientific computing, Vienna University of Technology 30 (2014).

Publisher: Citeseer.

[23] CSC – IT CENTER FOR SCIENCE LTD. Elmer. Nov. 2020. url: https://www.csc.

fi/web/elmer/.

[24] Peter Randall Schunk et al. “GOMA 6.0 - A Full-Newton Finite Element Program for

Free and Moving Boundary Problems with Coupled Fluid/ Solid Momentum, Energy,

Mass, and Chemical Species Transport: User’s Guide”. In: (July 2013). doi: 10.2172/

1089869. url: https://www.osti.gov/biblio/1089869.

[25] Cody J. Permann et al. “MOOSE: Enabling massively parallel multiphysics simulation”.

In: SoftwareX 11 (Jan. 2020), p. 100430. issn: 2352-7110. doi: 10.1016/j.softx.

2020 . 100430. url: https : / / www . sciencedirect . com / science / article / pii /

S2352711019302973 (visited on 11/21/2023).

[26] Abaqus - Mechanical and Civil Engineering Simulation. en. url: https://www.3ds.

com/products-services/simulia/products/abaqus/ (visited on 11/21/2023).

[27] COMSOL: Multiphysics Software for Optimizing Designs. en. url: https : / / www .

comsol.com/ (visited on 11/21/2023).

[28] Ansys — Engineering Simulation Software. en-US. url: https://www.ansys.com/

(visited on 11/21/2023).

[29] T. Schwedes et al. Mesh dependence in PDE-constrained optimisation an application in

tidal turbine array layouts. Accepted: 2017-11-06T14:18:09Z. Springer, Aug. 2017. isbn:

978-3-319-59483-5. url: http://spiral.imperial.ac.uk/handle/10044/1/53084

(visited on 06/22/2020).

217

https://doi.org/10.5194/gmd-12-1165-2019
https://gmd.copernicus.org/articles/12/1165/2019/
https://gmd.copernicus.org/articles/12/1165/2019/
https://doi.org/10.1007/978-3-031-08751-6_9
https://freefem.org/
https://www.csc.fi/web/elmer/
https://www.csc.fi/web/elmer/
https://doi.org/10.2172/1089869
https://doi.org/10.2172/1089869
https://www.osti.gov/biblio/1089869
https://doi.org/10.1016/j.softx.2020.100430
https://doi.org/10.1016/j.softx.2020.100430
https://www.sciencedirect.com/science/article/pii/S2352711019302973
https://www.sciencedirect.com/science/article/pii/S2352711019302973
https://www.3ds.com/products-services/simulia/products/abaqus/
https://www.3ds.com/products-services/simulia/products/abaqus/
https://www.comsol.com/
https://www.comsol.com/
https://www.ansys.com/
http://spiral.imperial.ac.uk/handle/10044/1/53084

[30] David A. Ham. “UFL Dual Spaces, a proposal”. In: arXiv:2101.05158 [cs] (Jan. 2021).

arXiv: 2101.05158. url: http://arxiv.org/abs/2101.05158 (visited on 03/18/2021).

[31] R. Anderson et al. “MFEM: AModular Finite Element Methods Library”. In: Computers

& Mathematics with Applications 81 (2021), pp. 42–74. doi: 10.1016/j.camwa.2020.

06.009.

[32] MFEM: Modular Finite Element Methods [Software]. Published: mfem.org. doi: 10.

11578/dc.20171025.1248.

[33] Daniel Arndt et al. “The \textttdeal.II Library, Version 9.5”. In: Journal of Numerical

Mathematics 31.3 (2023), pp. 231–246. doi: 10.1515/jnma-2023-0089. url: https:

//dealii.org/deal95-preprint.pdf.

[34] Philippe G. Ciarlet. The Finite Element Method for Elliptic Problems. Classics in Ap-

plied Mathematics. Society for Industrial and Applied Mathematics, Jan. 2002. isbn:

978-0-89871-514-9. doi: 10.1137/1.9780898719208. url: https://epubs.siam.org/

doi/book/10.1137/1.9780898719208 (visited on 02/25/2020).

[35] Susanne C. Brenner and L. Ridgway Scott. The Mathematical Theory of Finite Element

Methods. Ed. by J. E. Marsden, L. Sirovich, and S. S. Antman. Vol. 15. Texts in Applied

Mathematics. New York, NY: Springer, 2008. isbn: 978-0-387-75933-3 978-0-387-75934-

0. doi: 10.1007/978-0-387-75934-0. url: http://link.springer.com/10.1007/

978-0-387-75934-0 (visited on 11/09/2022).

[36] J. R. Maddison and P. E. Farrell. “Directional integration on unstructured meshes via

supermesh construction”. en. In: Journal of Computational Physics 231.12 (June 2012),

pp. 4422–4432. issn: 0021-9991. doi: 10.1016/j.jcp.2012.02.009. url: https:

//www.sciencedirect.com/science/article/pii/S0021999112000885 (visited on

03/21/2023).

[37] Robert C. Kirby. “FIAT: numerical construction of finite element basis functions”. en.

In: Automated Solution of Differential Equations by the Finite Element Method: The

FEniCS Book. Ed. by Anders Logg, Kent-Andre Mardal, and Garth Wells. Lecture

Notes in Computational Science and Engineering. Berlin, Heidelberg: Springer, 2012,

pp. 247–255. isbn: 978-3-642-23099-8. doi: 10.1007/978-3-642-23099-8_13. url:

https://doi.org/10.1007/978-3-642-23099-8_13 (visited on 02/04/2020).

[38] Matthew W. Scroggs. “Symfem: a symbolic finite element definition library”. en. In:

Journal of Open Source Software 6.64 (Aug. 2021), p. 3556. issn: 2475-9066. doi: 10.

21105/joss.03556. url: https://joss.theoj.org/papers/10.21105/joss.03556

(visited on 10/28/2023).

218

http://arxiv.org/abs/2101.05158
https://doi.org/10.1016/j.camwa.2020.06.009
https://doi.org/10.1016/j.camwa.2020.06.009
https://doi.org/10.11578/dc.20171025.1248
https://doi.org/10.11578/dc.20171025.1248
https://doi.org/10.1515/jnma-2023-0089
https://dealii.org/deal95-preprint.pdf
https://dealii.org/deal95-preprint.pdf
https://doi.org/10.1137/1.9780898719208
https://epubs.siam.org/doi/book/10.1137/1.9780898719208
https://epubs.siam.org/doi/book/10.1137/1.9780898719208
https://doi.org/10.1007/978-0-387-75934-0
http://link.springer.com/10.1007/978-0-387-75934-0
http://link.springer.com/10.1007/978-0-387-75934-0
https://doi.org/10.1016/j.jcp.2012.02.009
https://www.sciencedirect.com/science/article/pii/S0021999112000885
https://www.sciencedirect.com/science/article/pii/S0021999112000885
https://doi.org/10.1007/978-3-642-23099-8_13
https://doi.org/10.1007/978-3-642-23099-8_13
https://doi.org/10.21105/joss.03556
https://doi.org/10.21105/joss.03556
https://joss.theoj.org/papers/10.21105/joss.03556

[39] Matthew W. Scroggs et al. “Basix: a runtime finite element basis evaluation library”.

en. In: Journal of Open Source Software 7.73 (May 2022), p. 3982. issn: 2475-9066. doi:

10.21105/joss.03982. url: https://joss.theoj.org/papers/10.21105/joss.

03982 (visited on 10/28/2023).

[40] Oliver Sander. “Local Finite Elements and the dune-localfunctions Module”. en. In:

DUNE — The Distributed and Unified Numerics Environment. Ed. by Oliver Sander.

Lecture Notes in Computational Science and Engineering. Cham: Springer International

Publishing, 2020, pp. 301–324. isbn: 978-3-030-59702-3. doi: 10.1007/978-3-030-

59702-3_8. url: https://doi.org/10.1007/978-3-030-59702-3_8 (visited on

10/28/2023).

[41] Peter Bastian, Felix Heimann, and Sven Marnach. “Generic implementation of finite

element methods in the Distributed and Unified Numerics Environment (DUNE)”. eng.

In: Kybernetika 46.2 (2010). Publisher: Institute of Information Theory and Automation

AS CR, pp. 294–315. issn: 0023-5954. url: https://dml.cz/handle/10338.dmlcz/

140745 (visited on 10/28/2023).

[42] Christian Engwer et al. Function space bases in the dune-functions module.

arXiv:1806.09545 [cs]. June 2018. doi: 10 . 48550 / arXiv . 1806 . 09545. url:

http://arxiv.org/abs/1806.09545 (visited on 10/28/2023).

[43] Steven A Orszag. “Spectral methods for problems in complex geometries”. en. In: Jour-

nal of Computational Physics 37.1 (Aug. 1980), pp. 70–92. issn: 0021-9991. doi: 10.

1016/0021-9991(80)90005-4. url: https://www.sciencedirect.com/science/

article/pii/0021999180900054 (visited on 09/24/2021).

[44] Charles R. Harris et al. “Array programming with NumPy”. In: Nature 585.7825 (Sept.

2020). Publisher: Springer Science and Business Media LLC, pp. 357–362. doi: 10.1038/

s41586-020-2649-2. url: https://doi.org/10.1038/s41586-020-2649-2.

[45] Andrew T. T. McRae et al. “Automated generation and symbolic manipulation of tensor

product finite elements”. In: SIAM Journal on Scientific Computing 38.5 (Jan. 2016).

arXiv: 1411.2940, S25–S47. issn: 1064-8275, 1095-7197. doi: 10.1137/15M1021167. url:

http://arxiv.org/abs/1411.2940 (visited on 08/26/2020).

[46] Sebastian K. Mitusch, Simon W. Funke, and Jørgen S. Dokken. “dolfin-adjoint 2018.1:

automated adjoints for FEniCS and Firedrake”. en. In: Journal of Open Source Software

4.38 (June 2019), p. 1292. issn: 2475-9066. doi: 10.21105/joss.01292. url: https:

//joss.theoj.org/papers/10.21105/joss.01292 (visited on 06/22/2020).

[47] Michael Lange et al. “Efficient mesh management in Firedrake using PETSc-DMPlex”.

In: SIAM Journal on Scientific Computing 38.5 (Jan. 2016). arXiv: 1506.07749, S143–

S155. issn: 1064-8275, 1095-7197. doi: 10.1137/15M1026092. url: http://arxiv.

org/abs/1506.07749 (visited on 02/07/2020).

219

https://doi.org/10.21105/joss.03982
https://joss.theoj.org/papers/10.21105/joss.03982
https://joss.theoj.org/papers/10.21105/joss.03982
https://doi.org/10.1007/978-3-030-59702-3_8
https://doi.org/10.1007/978-3-030-59702-3_8
https://doi.org/10.1007/978-3-030-59702-3_8
https://dml.cz/handle/10338.dmlcz/140745
https://dml.cz/handle/10338.dmlcz/140745
https://doi.org/10.48550/arXiv.1806.09545
http://arxiv.org/abs/1806.09545
https://doi.org/10.1016/0021-9991(80)90005-4
https://doi.org/10.1016/0021-9991(80)90005-4
https://www.sciencedirect.com/science/article/pii/0021999180900054
https://www.sciencedirect.com/science/article/pii/0021999180900054
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1137/15M1021167
http://arxiv.org/abs/1411.2940
https://doi.org/10.21105/joss.01292
https://joss.theoj.org/papers/10.21105/joss.01292
https://joss.theoj.org/papers/10.21105/joss.01292
https://doi.org/10.1137/15M1026092
http://arxiv.org/abs/1506.07749
http://arxiv.org/abs/1506.07749

[48] Gheorghe-Teodor Bercea et al. “A structure-exploiting numbering algorithm for finite

elements on extruded meshes, and its performance evaluation in Firedrake”. English.

In: Geoscientific Model Development 9.10 (Oct. 2016). Publisher: Copernicus GmbH,

pp. 3803–3815. issn: 1991-959X. doi: 10 . 5194 / gmd - 9 - 3803 - 2016. url: https :

//gmd.copernicus.org/articles/9/3803/2016/ (visited on 01/25/2023).

[49] R. E. Wengert. “A simple automatic derivative evaluation program”. en. In: Commu-

nications of the ACM 7.8 (Aug. 1964), pp. 463–464. issn: 0001-0782, 1557-7317. doi:

10.1145/355586.364791. url: https://dl.acm.org/doi/10.1145/355586.364791

(visited on 07/29/2022).

[50] Atilim Gunes Baydin et al. Automatic differentiation in machine learning: a survey.

arXiv:1502.05767 [cs, stat]. Feb. 2018. doi: 10.48550/arXiv.1502.05767. url: http:

//arxiv.org/abs/1502.05767 (visited on 08/04/2022).

[51] Uwe Naumann. The Art of Differentiating Computer Programs. Software, Environments

and Tools. Society for Industrial and Applied Mathematics, Jan. 2011. isbn: 978-1-

61197-206-1. doi: 10.1137/1.9781611972078. url: https://epubs.siam.org/doi/

book/10.1137/1.9781611972078 (visited on 02/19/2021).

[52] James Bradbury et al. JAX: composable transformations of Python+NumPy programs.

2018. url: http://github.com/google/jax.

[53] Mart́ın Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Sys-

tems. 2015. url: https://www.tensorflow.org/.

[54] Adam Paszke et al. “Automatic differentiation in PyTorch”. en. In: (Oct. 2017). url:

https://openreview.net/forum?id=BJJsrmfCZ (visited on 09/27/2022).

[55] Bruce Christianson. “A Leibniz Notation for Automatic Differentiation”. In: Recent Ad-

vances in Algorithmic Differentiation. Ed. by Shaun Forth et al. Vol. 87. Lecture Notes

in Computational Science and Engineering. ISSN: 1439-7358. Berlin: Springer, 2012,

pp. 1–9. isbn: 978-3-540-68935-5. doi: 10.1007/978-3-642-30023-3_1.

[56] Andreas Griewank and Andrea Walther. Evaluating Derivatives:

Principles and Techniques of Algorithmic Differentiation. Second. eprint:

https://epubs.siam.org/doi/pdf/10.1137/1.9780898717761. Society for Industrial and

Applied Mathematics, 2008. doi: 10 . 1137 / 1 . 9780898717761. url:

https://epubs.siam.org/doi/abs/10.1137/1.9780898717761.

[57] Bruce Christianson. “Automatic Hessians by reverse accumulation”. In: IMA Journal

of Numerical Analysis 12.2 (Apr. 1992), pp. 135–150. issn: 0272-4979. doi: 10.1093/

imanum/12.2.135. url: https://doi.org/10.1093/imanum/12.2.135 (visited on

09/15/2022).

220

https://doi.org/10.5194/gmd-9-3803-2016
https://gmd.copernicus.org/articles/9/3803/2016/
https://gmd.copernicus.org/articles/9/3803/2016/
https://doi.org/10.1145/355586.364791
https://dl.acm.org/doi/10.1145/355586.364791
https://doi.org/10.48550/arXiv.1502.05767
http://arxiv.org/abs/1502.05767
http://arxiv.org/abs/1502.05767
https://doi.org/10.1137/1.9781611972078
https://epubs.siam.org/doi/book/10.1137/1.9781611972078
https://epubs.siam.org/doi/book/10.1137/1.9781611972078
http://github.com/google/jax
https://www.tensorflow.org/
https://openreview.net/forum?id=BJJsrmfCZ
https://doi.org/10.1007/978-3-642-30023-3_1
https://doi.org/10.1137/1.9780898717761
https://epubs.siam.org/doi/abs/10.1137/1.9780898717761
https://doi.org/10.1093/imanum/12.2.135
https://doi.org/10.1093/imanum/12.2.135
https://doi.org/10.1093/imanum/12.2.135

[58] Barak A. Pearlmutter. “Fast Exact Multiplication by the Hessian”. In: Neural Computa-

tion 6.1 (Jan. 1994), pp. 147–160. issn: 0899-7667. doi: 10.1162/neco.1994.6.1.147.

url: https://doi.org/10.1162/neco.1994.6.1.147 (visited on 09/01/2022).

[59] P. E. Farrell et al. “Automated Derivation of the Adjoint of High-Level Transient Finite

Element Programs”. In: SIAM Journal on Scientific Computing 35.4 (Jan. 2013). Pub-

lisher: Society for Industrial and Applied Mathematics, pp. C369–C393. issn: 1064-8275.

doi: 10.1137/120873558. url: https://epubs.siam.org/doi/10.1137/120873558

(visited on 12/15/2020).

[60] Jan Hückelheim et al. Understanding Automatic Differentiation Pitfalls.

arXiv:2305.07546 [cs, math]. May 2023. doi: 10 . 48550 / arXiv . 2305 . 07546. url:

http://arxiv.org/abs/2305.07546 (visited on 05/15/2023).

[61] Mathieu Morlighem et al. “Deep glacial troughs and stabilizing ridges unveiled beneath

the margins of the Antarctic ice sheet”. In: Nature Geoscience 13.2 (2020). Publisher:

Nature Publishing Group UK London, pp. 132–137.

[62] J Mouginot, E Rignot, and B Scheuchl. “Continent-wide, interferometric SAR phase,

mapping of Antarctic ice velocity”. In: Geophysical Research Letters 46.16 (2019). Pub-

lisher: Wiley Online Library, pp. 9710–9718.

[63] Douglas R. MacAyeal. “The basal stress distribution of Ice Stream E, Antarctica, in-

ferred by control methods”. en. In: Journal of Geophysical Research: Solid Earth 97.B1

(1992). eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/91JB02454, pp. 595–

603. issn: 2156-2202. doi: 10.1029/91JB02454. url: https://onlinelibrary.wiley.

com/doi/abs/10.1029/91JB02454 (visited on 01/24/2023).

[64] Ian Joughin, Douglas R. MacAyeal, and Slawek Tulaczyk. “Basal

shear stress of the Ross ice streams from control method inversions”.

en. In: Journal of Geophysical Research: Solid Earth 109.B9 (2004).

eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2003JB002960.

issn: 2156-2202. doi: 10 . 1029 / 2003JB002960. url:

https://onlinelibrary.wiley.com/doi/abs/10.1029/2003JB002960 (visited on

01/24/2023).

[65] Andreas Vieli et al. “Numerical modelling and data assimilation of the Larsen B ice

shelf, Antarctic Peninsula”. In: Philosophical Transactions of the Royal Society

A: Mathematical, Physical and Engineering Sciences 364.1844 (May 2006).

Publisher: Royal Society, pp. 1815–1839. doi: 10 . 1098 / rsta . 2006 . 1800. url:

https://royalsocietypublishing.org/doi/10.1098/rsta.2006.1800 (visited on

01/24/2023).

221

https://doi.org/10.1162/neco.1994.6.1.147
https://doi.org/10.1162/neco.1994.6.1.147
https://doi.org/10.1137/120873558
https://epubs.siam.org/doi/10.1137/120873558
https://doi.org/10.48550/arXiv.2305.07546
http://arxiv.org/abs/2305.07546
https://doi.org/10.1029/91JB02454
https://onlinelibrary.wiley.com/doi/abs/10.1029/91JB02454
https://onlinelibrary.wiley.com/doi/abs/10.1029/91JB02454
https://doi.org/10.1029/2003JB002960
https://onlinelibrary.wiley.com/doi/abs/10.1029/2003JB002960
https://doi.org/10.1098/rsta.2006.1800
https://royalsocietypublishing.org/doi/10.1098/rsta.2006.1800

[66] Daniel R Shapero et al. “Basal resistance for three of the largest Greenland outlet

glaciers”. In: Journal of Geophysical Research: Earth Surface 121.1 (2016). Publisher:

Wiley Online Library, pp. 168–180.

[67] Pauli Virtanen et al. “SciPy 1.0: Fundamental Algorithms for Scientific Computing in

Python”. In: Nature Methods 17 (2020), pp. 261–272. doi: 10.1038/s41592-019-0686-

2.

[68] Rudolph Emil Kalman. “A New Approach to Linear Filtering and Prediction Problems”.

In: Transactions of the ASME–Journal of Basic Engineering 82.Series D (1960), pp. 35–

45.

[69] S.J. Julier, J.K. Uhlmann, and H.F. Durrant-Whyte. “A new approach for filtering

nonlinear systems”. In: Proceedings of 1995 American Control Conference -

ACC’95. Vol. 3. June 1995, 1628–1632 vol.3. doi: 10 . 1109 / ACC . 1995 . 529783.

url: https : / / ieeexplore . ieee . org / abstract / document / 529783 ? casa _

token = LQHB45niHncAAAAA : j120uzZFEs620vBlgTrG - zEaR2W4PQ - ctPUwqNlPe -

4u408SCzgVFBkeEh-MiJdPfFCpmy6ZFg (visited on 11/15/2023).

[70] Michael Roth, Gustaf Hendeby, and Fredrik Gustafsson. “Nonlinear Kalman Filters

Explained: A Tutorial on Moment Computations and Sigma Point Methods”. In: Journal

of Advances in Information Fusion 11 (June 2016).

[71] Michael Roth et al. “The Ensemble Kalman filter: a signal processing perspective”. In:

EURASIP Journal on Advances in Signal Processing 2017.1 (Aug. 2017), p. 56. issn:

1687-6180. doi: 10.1186/s13634-017-0492-x. url: https://doi.org/10.1186/

s13634-017-0492-x (visited on 11/15/2023).

[72] Geir Evensen. “Sequential data assimilation with a nonlinear

quasi-geostrophic model using Monte Carlo methods to forecast error

statistics”. en. In: Journal of Geophysical Research: Oceans 99.C5 (1994).

eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/94JC00572,

pp. 10143–10162. issn: 2156-2202. doi: 10 . 1029 / 94JC00572. url:

https : / / onlinelibrary . wiley . com / doi / abs / 10 . 1029 / 94JC00572 (visited on

11/15/2023).

[73] N. J. Gordon, D. J. Salmond, and A. F. M. Smith. “Novel approach to nonlinear/non-

Gaussian Bayesian state estimation”. en. In: IEE Proceedings F (Radar and Signal Pro-

cessing) 140.2 (Apr. 1993). Publisher: IET Digital Library, pp. 107–113. issn: 2053-9045.

doi: 10.1049/ip-f-2.1993.0015. url: https://digital-library.theiet.org/

content/journals/10.1049/ip-f-2.1993.0015 (visited on 11/15/2023).

222

https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1109/ACC.1995.529783
https://ieeexplore.ieee.org/abstract/document/529783?casa_token=LQHB45niHncAAAAA:j120uzZFEs620vBlgTrG-zEaR2W4PQ-ctPUwqNlPe-4u408SCzgVFBkeEh-MiJdPfFCpmy6ZFg
https://ieeexplore.ieee.org/abstract/document/529783?casa_token=LQHB45niHncAAAAA:j120uzZFEs620vBlgTrG-zEaR2W4PQ-ctPUwqNlPe-4u408SCzgVFBkeEh-MiJdPfFCpmy6ZFg
https://ieeexplore.ieee.org/abstract/document/529783?casa_token=LQHB45niHncAAAAA:j120uzZFEs620vBlgTrG-zEaR2W4PQ-ctPUwqNlPe-4u408SCzgVFBkeEh-MiJdPfFCpmy6ZFg
https://doi.org/10.1186/s13634-017-0492-x
https://doi.org/10.1186/s13634-017-0492-x
https://doi.org/10.1186/s13634-017-0492-x
https://doi.org/10.1029/94JC00572
https://onlinelibrary.wiley.com/doi/abs/10.1029/94JC00572
https://doi.org/10.1049/ip-f-2.1993.0015
https://digital-library.theiet.org/content/journals/10.1049/ip-f-2.1993.0015
https://digital-library.theiet.org/content/journals/10.1049/ip-f-2.1993.0015

[74] Fredrik Gustafsson. “Particle filter theory and practice with positioning applications”.

In: IEEE Aerospace and Electronic Systems Magazine 25.7 (July 2010). Conference

Name: IEEE Aerospace and Electronic Systems Magazine, pp. 53–82. issn: 1557-959X.

doi: 10.1109/MAES.2010.5546308. url: https://ieeexplore.ieee.org/document/

5546308 (visited on 11/15/2023).

[75] Mark Buehner, Ron McTaggart-Cowan, and Sylvain Heilliette. “An Ensemble Kalman

Filter for Numerical Weather Prediction Based on Variational Data Assimilation:

VarEnKF”. EN. In: Monthly Weather Review 145.2 (Feb. 2017). Publisher:

American Meteorological Society Section: Monthly Weather Review, pp. 617–635.

issn: 1520-0493, 0027-0644. doi: 10 . 1175 / MWR - D - 16 - 0106 . 1. url: https :

//journals.ametsoc.org/view/journals/mwre/145/2/mwr-d-16-0106.1.xml

(visited on 11/15/2023).

[76] F. Rawlins et al. “The Met Office global four-dimensional variational data assimilation

scheme”. en. In: Quarterly Journal of the Royal Meteorological Society 133.623 (2007).

eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/qj.32, pp. 347–362. issn: 1477-

870X. doi: 10.1002/qj.32. url: https://onlinelibrary.wiley.com/doi/abs/10.

1002/qj.32 (visited on 11/14/2023).

[77] A. M. Clayton, A. C. Lorenc, and D. M. Barker. “Operational implementation

of a hybrid ensemble/4D-Var global data assimilation system at the

Met Office”. en. In: Quarterly Journal of the Royal Meteorological Society

139.675 (2013). eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/qj.2054,

pp. 1445–1461. issn: 1477-870X. doi: 10 . 1002 / qj . 2054. url:

https : / / onlinelibrary . wiley . com / doi / abs / 10 . 1002 / qj . 2054 (visited on

11/15/2023).

[78] Fathalla A. Rihan, Chris G. Collier, and Ian Roulstone. “Four-dimensional variational

data assimilation for Doppler radar wind data”. In: Journal of Computational and Ap-

plied Mathematics 176.1 (Apr. 2005), pp. 15–34. issn: 0377-0427. doi: 10.1016/j.

cam.2004.07.003. url: https://www.sciencedirect.com/science/article/pii/

S0377042704003176 (visited on 11/15/2023).

[79] Per Christian Hansen and Dianne O’leary. “The Use of the L-Curve in the Regularization

of Discrete Ill-Posed Problems”. In: SIAM J. Sci. Comput. 14 (Nov. 1993), pp. 1487–

1503. doi: 10.1137/0914086.

[80] Reuben W. Nixon-Hill and Daniel Shapero. ReubenHill/point-data-paper-code: Consis-

tent Point Data Assimilation in Firedrake and Icepack: Code. May 2023. doi: 10.5281/

zenodo.7950441. url: https://doi.org/10.5281/zenodo.7950441.

[81] Lorraine Schwartz. “On bayes procedures”. In: Zeitschrift für Wahrscheinlichkeitstheorie

und verwandte Gebiete 4.1 (1965). Publisher: Springer, pp. 10–26.

223

https://doi.org/10.1109/MAES.2010.5546308
https://ieeexplore.ieee.org/document/5546308
https://ieeexplore.ieee.org/document/5546308
https://doi.org/10.1175/MWR-D-16-0106.1
https://journals.ametsoc.org/view/journals/mwre/145/2/mwr-d-16-0106.1.xml
https://journals.ametsoc.org/view/journals/mwre/145/2/mwr-d-16-0106.1.xml
https://doi.org/10.1002/qj.32
https://onlinelibrary.wiley.com/doi/abs/10.1002/qj.32
https://onlinelibrary.wiley.com/doi/abs/10.1002/qj.32
https://doi.org/10.1002/qj.2054
https://onlinelibrary.wiley.com/doi/abs/10.1002/qj.2054
https://doi.org/10.1016/j.cam.2004.07.003
https://doi.org/10.1016/j.cam.2004.07.003
https://www.sciencedirect.com/science/article/pii/S0377042704003176
https://www.sciencedirect.com/science/article/pii/S0377042704003176
https://doi.org/10.1137/0914086
https://doi.org/10.5281/zenodo.7950441
https://doi.org/10.5281/zenodo.7950441
https://doi.org/10.5281/zenodo.7950441

[82] Douglas R. MacAyeal. “A tutorial on the use of control methods in ice-sheet modeling”.

en. In: Journal of Glaciology 39.131 (1993). Publisher: Cambridge University Press,

pp. 91–98. issn: 0022-1430, 1727-5652. doi: 10 . 3189 / S0022143000015744.

url: https : / / www . cambridge . org / core / journals / journal - of -

glaciology/article/tutorial-on-the-use-of-control-methods-in-icesheet-

modeling/CD1F93F5EBF26E7CDAADC376CA2BC6DE (visited on 01/25/2023).

[83] Douglas R. MacAyeal, Robert A. Bindschadler, and Theodore A. Scambos. “Basal fric-

tion of Ice Stream E, West Antarctica”. en. In: Journal of Glaciology 41.138 (1995).

Publisher: Cambridge University Press, pp. 247–262. issn: 0022-1430, 1727-5652. doi:

10.3189/S0022143000016154. url: https://www.cambridge.org/core/journals/

journal- of- glaciology/article/basal- friction- of- ice- stream- e- west-

antarctica/B6ADB22419F499A72AE52FF6D7B71AD4 (visited on 01/24/2023).

[84] Tobin Isaac et al. “Scalable and efficient algorithms for the propagation of uncertainty

from data through inference to prediction for large-scale problems, with application

to flow of the Antarctic ice sheet”. In: Journal of Computational Physics 296 (Sept.

2015), pp. 348–368. issn: 0021-9991. doi: 10.1016/j.jcp.2015.04.047. url: https:

//www.sciencedirect.com/science/article/pii/S0021999115003046 (visited on

04/19/2024).

[85] Software used in ‘Consistent Point Data Assimilation in Firedrake and Icepack: Un-

known Conductivity Demonstration’. Mar. 2023. doi: 10.5281/zenodo.7741741. url:

https://doi.org/10.5281/zenodo.7741741.

[86] Thomas George and Vivek Sarin. “Domain Decomposition”. In: Encyclopedia of Parallel

Computing. Ed. by David Padua. Boston, MA: Springer US, 2011, pp. 578–587. isbn:

978-0-387-09766-4. doi: 10.1007/978-0-387-09766-4_291. url: https://doi.org/

10.1007/978-0-387-09766-4_291.

[87] S. B. Kuang, A. B. Yu, and Z. S. Zou. “A new point-locating

algorithm under three-dimensional hybrid meshes”. In: International

Journal of Multiphase Flow 34.11 (Nov. 2008), pp. 1023–1030. issn:

0301-9322. doi: 10 . 1016 / j . ijmultiphaseflow . 2008 . 06 . 007. url:

https : / / www . sciencedirect . com / science / article / pii / S030193220800102X

(visited on 10/19/2023).

[88] Severin Strobl, Marcus N. Bannerman, and Thorsten Pöschel. “Robust event-driven par-

ticle tracking in complex geometries”. In: Computer Physics Communications 254 (Sept.

2020), p. 107229. issn: 0010-4655. doi: 10.1016/j.cpc.2020.107229. url: https:

//www.sciencedirect.com/science/article/pii/S0010465520300667 (visited on

10/19/2023).

224

https://doi.org/10.3189/S0022143000015744
https://www.cambridge.org/core/journals/journal-of-glaciology/article/tutorial-on-the-use-of-control-methods-in-icesheet-modeling/CD1F93F5EBF26E7CDAADC376CA2BC6DE
https://www.cambridge.org/core/journals/journal-of-glaciology/article/tutorial-on-the-use-of-control-methods-in-icesheet-modeling/CD1F93F5EBF26E7CDAADC376CA2BC6DE
https://www.cambridge.org/core/journals/journal-of-glaciology/article/tutorial-on-the-use-of-control-methods-in-icesheet-modeling/CD1F93F5EBF26E7CDAADC376CA2BC6DE
https://doi.org/10.3189/S0022143000016154
https://www.cambridge.org/core/journals/journal-of-glaciology/article/basal-friction-of-ice-stream-e-west-antarctica/B6ADB22419F499A72AE52FF6D7B71AD4
https://www.cambridge.org/core/journals/journal-of-glaciology/article/basal-friction-of-ice-stream-e-west-antarctica/B6ADB22419F499A72AE52FF6D7B71AD4
https://www.cambridge.org/core/journals/journal-of-glaciology/article/basal-friction-of-ice-stream-e-west-antarctica/B6ADB22419F499A72AE52FF6D7B71AD4
https://doi.org/10.1016/j.jcp.2015.04.047
https://www.sciencedirect.com/science/article/pii/S0021999115003046
https://www.sciencedirect.com/science/article/pii/S0021999115003046
https://doi.org/10.5281/zenodo.7741741
https://doi.org/10.5281/zenodo.7741741
https://doi.org/10.1007/978-0-387-09766-4_291
https://doi.org/10.1007/978-0-387-09766-4_291
https://doi.org/10.1007/978-0-387-09766-4_291
https://doi.org/10.1016/j.ijmultiphaseflow.2008.06.007
https://www.sciencedirect.com/science/article/pii/S030193220800102X
https://doi.org/10.1016/j.cpc.2020.107229
https://www.sciencedirect.com/science/article/pii/S0010465520300667
https://www.sciencedirect.com/science/article/pii/S0010465520300667

[89] Rene Gassmöller et al. “Flexible and Scalable Particle-in-Cell Methods

With Adaptive Mesh Refinement for Geodynamic Computations”.

en. In: Geochemistry, Geophysics, Geosystems 19.9 (2018). eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1029/2018GC007508,

pp. 3596–3604. issn: 1525-2027. doi: 10 . 1029 / 2018GC007508. url:

https://onlinelibrary.wiley.com/doi/abs/10.1029/2018GC007508 (visited on

10/19/2023).

[90] Jakob M. Maljaars, Chris N. Richardson, and Nathan Sime. “LEoPart: A particle library

for FEniCS”. en. In: Computers & Mathematics with Applications. Development and

Application of Open-source Software for Problems with Numerical PDEs 81 (Jan. 2021),

pp. 289–315. issn: 0898-1221. doi: 10.1016/j.camwa.2020.04.023. url: https:

//www.sciencedirect.com/science/article/pii/S089812212030170X (visited on

03/31/2023).

[91] Margaret Lawson, William Gropp, and Jay Lofstead. Exploring Spatial Indexing for

Accelerated Feature Retrieval in HPC. arXiv:2106.13972 [cs]. Aug. 2021. url: http:

//arxiv.org/abs/2106.13972 (visited on 10/18/2023).

[92] Norbert Beckmann et al. “The R*-tree: an efficient and robust access method for points

and rectangles”. In: Proceedings of the 1990 ACM SIGMOD international conference

on Management of data. SIGMOD ’90. New York, NY, USA: Association for Com-

puting Machinery, May 1990, pp. 322–331. isbn: 978-0-89791-365-2. doi: 10.1145/

93597.98741. url: https://dl.acm.org/doi/10.1145/93597.98741 (visited on

10/18/2023).

[93] Marios Hadjieleftheriou. libspatialindex. Oct. 2019. url:

https://github.com/libspatialindex/libspatialindex.

[94] E.G. Gilbert, D.W. Johnson, and S.S. Keerthi. “A fast procedure for computing the

distance between complex objects in three-dimensional space”. In: IEEE Journal on

Robotics and Automation 4.2 (Apr. 1988). Conference Name: IEEE Journal on

Robotics and Automation, pp. 193–203. issn: 2374-8710. doi: 10.1109/56.2083. url:

https : / / ieeexplore . ieee . org / abstract / document / 2083 ? casa _ token =

jD9mGKEsjy0AAAAA : T9TF1h7czvnLUacFLusY0 - i27Rh8G6nb1lLaa2CeUAY -

h8rKQK5p0EiaZVAurCAA17CqA-qNdA (visited on 10/24/2023).

[95] Aaron Meurer et al. “SymPy: symbolic computing in Python”. In: PeerJ Computer

Science 3 (Jan. 2017), e103. issn: 2376-5992. doi: 10 . 7717 / peerj - cs . 103. url:

https://doi.org/10.7717/peerj-cs.103.

[96] James R. Maddison. “Adaptive mesh modelling of the thermally driven annulus”. eng.

Book Title: Adaptive mesh modelling of the thermally driven annulus. PhD thesis. Pro-

225

https://doi.org/10.1029/2018GC007508
https://onlinelibrary.wiley.com/doi/abs/10.1029/2018GC007508
https://doi.org/10.1016/j.camwa.2020.04.023
https://www.sciencedirect.com/science/article/pii/S089812212030170X
https://www.sciencedirect.com/science/article/pii/S089812212030170X
http://arxiv.org/abs/2106.13972
http://arxiv.org/abs/2106.13972
https://doi.org/10.1145/93597.98741
https://doi.org/10.1145/93597.98741
https://dl.acm.org/doi/10.1145/93597.98741
https://github.com/libspatialindex/libspatialindex
https://doi.org/10.1109/56.2083
https://ieeexplore.ieee.org/abstract/document/2083?casa_token=jD9mGKEsjy0AAAAA:T9TF1h7czvnLUacFLusY0-i27Rh8G6nb1lLaa2CeUAY-h8rKQK5p0EiaZVAurCAA17CqA-qNdA
https://ieeexplore.ieee.org/abstract/document/2083?casa_token=jD9mGKEsjy0AAAAA:T9TF1h7czvnLUacFLusY0-i27Rh8G6nb1lLaa2CeUAY-h8rKQK5p0EiaZVAurCAA17CqA-qNdA
https://ieeexplore.ieee.org/abstract/document/2083?casa_token=jD9mGKEsjy0AAAAA:T9TF1h7czvnLUacFLusY0-i27Rh8G6nb1lLaa2CeUAY-h8rKQK5p0EiaZVAurCAA17CqA-qNdA
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103

Quest Dissertations Publishing, 2011. url: https://search.proquest.com/docview/

1221974795?pq-origsite=primo (visited on 04/19/2024).

[97] Junchao Zhang et al. The PetscSF Scalable Communication Layer. arXiv:2102.13018

[cs]. May 2021. doi: 10.48550/arXiv.2102.13018. url: http://arxiv.org/abs/

2102.13018 (visited on 07/12/2023).

[98] William Robert Saunders. NESO-Particles. June 2023. doi: 10.5281/zenodo.8386778.

url: https://doi.org/10.5281/zenodo.8386778.

[99] L. Ridgway Scott and Shangyou Zhang. “Higher-Dimensional Nonnested Multigrid

Methods”. In: Mathematics of Computation 58.198 (1992). Publisher: American

Mathematical Society, pp. 457–466. issn: 0025-5718. doi: 10 . 2307 / 2153196. url:

https://www.jstor.org/stable/2153196 (visited on 09/28/2023).

[100] P. E. Farrell et al. “Conservative interpolation between unstructured meshes via super-

mesh construction”. en. In: Computer Methods in Applied Mechanics and Engineering

198.33 (July 2009), pp. 2632–2642. issn: 0045-7825. doi: 10.1016/j.cma.2009.03.004.

url: http://www.sciencedirect.com/science/article/pii/S0045782509001315

(visited on 07/27/2020).

[101] Peter Bastian et al. The DUNE Framework: Basic Concepts and Recent Developments.

arXiv:1909.13672 [cs]. June 2020. url: http://arxiv.org/abs/1909.13672 (visited

on 10/28/2023).

[102] David Ham et al. “Automating the generation of finite element dynamical cores with

Firedrake”. In: EGU General Assembly Conference Abstracts. 2017, p. 17987.

[103] Joachim Schöberl. “NETGEN An advancing front 2D/3D-mesh generator based on ab-

stract rules”. en. In: Computing and Visualization in Science 1.1 (July 1997), pp. 41–52.

issn: 1432-9360. doi: 10.1007/s007910050004. url: https://doi.org/10.1007/

s007910050004 (visited on 10/10/2023).

[104] Remi Lam et al. GraphCast: Learning skillful medium-range global weather forecasting.

arXiv:2212.12794 [physics]. Aug. 2023. url: http://arxiv.org/abs/2212.12794

(visited on 11/22/2023).

[105] K. R. RAJAGOPAL. “On implicit constitutive theories for fluids”. In: Journal of Fluid

Mechanics 550 (2006). Publisher: Cambridge University Press, pp. 243–249. doi: 10.

1017/S0022112005008025.

[106] Nacime Bouziani and David A. Ham. Escaping the abstraction: a foreign function in-

terface for the Unified Form Language [UFL]. arXiv:2111.00945 [cs, math]. Nov. 2021.

url: http://arxiv.org/abs/2111.00945 (visited on 11/07/2023).

[107] Baudouin Fraeijs de Veubeke. “Displacement and equilibrium models in the finite ele-

ment method”. In: Stress Analysis. John Wiley & Sons, 1965.

226

https://search.proquest.com/docview/1221974795?pq-origsite=primo
https://search.proquest.com/docview/1221974795?pq-origsite=primo
https://doi.org/10.48550/arXiv.2102.13018
http://arxiv.org/abs/2102.13018
http://arxiv.org/abs/2102.13018
https://doi.org/10.5281/zenodo.8386778
https://doi.org/10.5281/zenodo.8386778
https://doi.org/10.2307/2153196
https://www.jstor.org/stable/2153196
https://doi.org/10.1016/j.cma.2009.03.004
http://www.sciencedirect.com/science/article/pii/S0045782509001315
http://arxiv.org/abs/1909.13672
https://doi.org/10.1007/s007910050004
https://doi.org/10.1007/s007910050004
https://doi.org/10.1007/s007910050004
http://arxiv.org/abs/2212.12794
https://doi.org/10.1017/S0022112005008025
https://doi.org/10.1017/S0022112005008025
http://arxiv.org/abs/2111.00945

[108] Leonard R Herrmann. “Elasticity equations for incompressible and nearly incompressible

materials by a variational theorem.” In: AIAA journal 3.10 (1965), pp. 1896–1900.

[109] Daniel R. Shapero et al. “icepack: a new glacier flow modeling package in Python,

version 1.0”. English. In: Geoscientific Model Development 14.7 (July 2021). Publisher:

Copernicus GmbH, pp. 4593–4616. issn: 1991-959X. doi: 10.5194/gmd- 14- 4593-

2021. url: https://gmd.copernicus.org/articles/14/4593/2021/ (visited on

11/21/2023).

[110] Tuomas Kärnä et al. “Thetis coastal ocean model: discontinuous Galerkin discretiza-

tion for the three-dimensional hydrostatic equations”. English. In: Geoscientific Model

Development 11.11 (Oct. 2018). Publisher: Copernicus GmbH, pp. 4359–4382. issn:

1991-959X. doi: https://doi.org/10.5194/gmd- 11- 4359- 2018. url: https:

//gmd.copernicus.org/articles/11/4359/2018/ (visited on 07/30/2020).

[111] Fei Tao et al. “Digital twin modeling”. In: Journal of Manufacturing Systems 64 (July

2022), pp. 372–389. issn: 0278-6125. doi: 10.1016/j.jmsy.2022.06.015. url: https:

//www.sciencedirect.com/science/article/pii/S0278612522001108 (visited on

11/22/2023).

[112] A. Apte, C. K. R. T. Jones, and A. M. Stuart. “A Bayesian approach to Lagrangian data

assimilation”. In: Tellus A: Dynamic Meteorology and Oceanography 60.2 (Jan. 2008).

Publisher: Taylor & Francis eprint: https://doi.org/10.1111/j.1600-0870.2007.00295.x,

pp. 336–347. issn: null. doi: 10.1111/j.1600-0870.2007.00295.x. url: https:

//doi.org/10.1111/j.1600-0870.2007.00295.x (visited on 10/25/2023).

[113] S. L. Cotter, M. Dashti, and A. M. Stuart. “Variational data assimilation using targetted

random walks”. en. In: International Journal for Numerical Methods in Fluids 68.4

(2012). eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/fld.2510, pp. 403–421.

issn: 1097-0363. doi: 10.1002/fld.2510. url: https://onlinelibrary.wiley.com/

doi/abs/10.1002/fld.2510 (visited on 10/25/2023).

[114] E. A. Hathway et al. “CFD simulation of airborne pathogen transport due to human

activities”. In: Building and Environment 46.12 (Dec. 2011), pp. 2500–2511. issn: 0360-

1323. doi: 10.1016/j.buildenv.2011.06.001. url: https://www.sciencedirect.

com/science/article/pii/S0360132311001727 (visited on 10/24/2023).

[115] D. C. Cohen Stuart, C. R. Kleijn, and S. Kenjereš. “An efficient and robust method for

Lagrangian magnetic particle tracking in fluid flow simulations on unstructured grids”.

In: Computers & Fluids 40.1 (Jan. 2011), pp. 188–194. issn: 0045-7930. doi: 10.1016/j.

compfluid.2010.09.001. url: https://www.sciencedirect.com/science/article/

pii/S004579301000229X (visited on 10/24/2023).

227

https://doi.org/10.5194/gmd-14-4593-2021
https://doi.org/10.5194/gmd-14-4593-2021
https://gmd.copernicus.org/articles/14/4593/2021/
https://doi.org/https://doi.org/10.5194/gmd-11-4359-2018
https://gmd.copernicus.org/articles/11/4359/2018/
https://gmd.copernicus.org/articles/11/4359/2018/
https://doi.org/10.1016/j.jmsy.2022.06.015
https://www.sciencedirect.com/science/article/pii/S0278612522001108
https://www.sciencedirect.com/science/article/pii/S0278612522001108
https://doi.org/10.1111/j.1600-0870.2007.00295.x
https://doi.org/10.1111/j.1600-0870.2007.00295.x
https://doi.org/10.1111/j.1600-0870.2007.00295.x
https://doi.org/10.1002/fld.2510
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.2510
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.2510
https://doi.org/10.1016/j.buildenv.2011.06.001
https://www.sciencedirect.com/science/article/pii/S0360132311001727
https://www.sciencedirect.com/science/article/pii/S0360132311001727
https://doi.org/10.1016/j.compfluid.2010.09.001
https://doi.org/10.1016/j.compfluid.2010.09.001
https://www.sciencedirect.com/science/article/pii/S004579301000229X
https://www.sciencedirect.com/science/article/pii/S004579301000229X

[116] Eric J. M. Delhez et al. “Toward a general theory of the age in ocean modelling”. In:

Ocean Modelling 1.1 (Jan. 1999), pp. 17–27. issn: 1463-5003. doi: 10.1016/S1463-

5003(99)00003-7. url: https://www.sciencedirect.com/science/article/pii/

S1463500399000037 (visited on 10/24/2023).

[117] Paul J. Tackley and Scott D. King. “Testing the tracer ratio method

for modeling active compositional fields in mantle convection simulations”.

en. In: Geochemistry, Geophysics, Geosystems 4.4 (2003). eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1029/2001GC000214.

issn: 1525-2027. doi: 10 . 1029 / 2001GC000214. url:

https://onlinelibrary.wiley.com/doi/abs/10.1029/2001GC000214 (visited on

10/24/2023).

[118] Eric Deleersnijder, Jean-Michel Campin, and Eric J. M. Delhez. “The concept of age

in marine modelling: I. Theory and preliminary model results”. In: Journal of Ma-

rine Systems 28.3 (Apr. 2001), pp. 229–267. issn: 0924-7963. doi: 10.1016/S0924-

7963(01)00026-4. url: https://www.sciencedirect.com/science/article/pii/

S0924796301000264 (visited on 10/24/2023).

[119] Amvrossios C. Bagtzoglou, David E. Dougherty, and Andrew F. B. Tompson. “Appli-

cation of particle methods to reliable identification of groundwater pollution sources”.

en. In: Water Resources Management 6.1 (Mar. 1992), pp. 15–23. issn: 1573-1650. doi:

10.1007/BF00872184. url: https://doi.org/10.1007/BF00872184 (visited on

10/24/2023).

[120] Oliver J. Tooth, Helen L. Johnson, and Chris Wilson. “Lagrangian Overturning Path-

ways in the Eastern Subpolar North Atlantic”. EN. In: Journal of Climate -1.aop (Oct.

2022). Publisher: American Meteorological Society Section: Journal of Climate, pp. 1–

53. issn: 0894-8755, 1520-0442. doi: 10.1175/JCLI- D- 21- 0985.1. url: https:

//journals.ametsoc.org/view/journals/clim/aop/JCLI-D-21-0985.1/JCLI-D-

21-0985.1.xml (visited on 11/04/2022).

[121] G. D. Martin, E. Loth, and D. Lankford. “Particle host cell determination in unstruc-

tured grids”. In: Computers & Fluids 38.1 (Jan. 2009), pp. 101–110. issn: 0045-7930.

doi: 10.1016/j.compfluid.2008.01.005. url: https://www.sciencedirect.com/

science/article/pii/S0045793008000261 (visited on 10/19/2023).

[122] A. Haselbacher, F.M. Najjar, and J.P. Ferry. “An efficient and

robust particle-localization algorithm for unstructured grids”.

en. In: Journal of Computational Physics 225.2 (Aug. 2007),

pp. 2198–2213. issn: 00219991. doi: 10 . 1016 / j . jcp . 2007 . 03 . 018. url:

https://linkinghub.elsevier.com/retrieve/pii/S002199910700126X (visited on

10/19/2023).

228

https://doi.org/10.1016/S1463-5003(99)00003-7
https://doi.org/10.1016/S1463-5003(99)00003-7
https://www.sciencedirect.com/science/article/pii/S1463500399000037
https://www.sciencedirect.com/science/article/pii/S1463500399000037
https://doi.org/10.1029/2001GC000214
https://onlinelibrary.wiley.com/doi/abs/10.1029/2001GC000214
https://doi.org/10.1016/S0924-7963(01)00026-4
https://doi.org/10.1016/S0924-7963(01)00026-4
https://www.sciencedirect.com/science/article/pii/S0924796301000264
https://www.sciencedirect.com/science/article/pii/S0924796301000264
https://doi.org/10.1007/BF00872184
https://doi.org/10.1007/BF00872184
https://doi.org/10.1175/JCLI-D-21-0985.1
https://journals.ametsoc.org/view/journals/clim/aop/JCLI-D-21-0985.1/JCLI-D-21-0985.1.xml
https://journals.ametsoc.org/view/journals/clim/aop/JCLI-D-21-0985.1/JCLI-D-21-0985.1.xml
https://journals.ametsoc.org/view/journals/clim/aop/JCLI-D-21-0985.1/JCLI-D-21-0985.1.xml
https://doi.org/10.1016/j.compfluid.2008.01.005
https://www.sciencedirect.com/science/article/pii/S0045793008000261
https://www.sciencedirect.com/science/article/pii/S0045793008000261
https://doi.org/10.1016/j.jcp.2007.03.018
https://linkinghub.elsevier.com/retrieve/pii/S002199910700126X

[123] Graham B. Macpherson, Niklas Nordin, and Henry G. Weller. “Particle tracking

in unstructured, arbitrary polyhedral meshes for use in CFD and molecular

dynamics”. en. In: Communications in Numerical Methods in Engineering 25.3

(2009). eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/cnm.1128,

pp. 263–273. issn: 1099-0887. doi: 10 . 1002 / cnm . 1128. url:

https : / / onlinelibrary . wiley . com / doi / abs / 10 . 1002 / cnm . 1128 (visited on

10/19/2023).

[124] Juan Manuel Carmona Loaiza, Graziano Giuliani, and Giuseppe Fiameni. “Big-Data

in Climate Change Models — A Novel Approach with Hadoop MapReduce”. In: 2017

International Conference on High Performance Computing Simulation (HPCS). July

2017, pp. 45–50. doi: 10.1109/HPCS.2017.17.

[125] Veronika Eyring et al. “Overview of the Coupled Model Intercomparison Project Phase

6 (CMIP6) experimental design and organisation”. In: Geoscientific Model Development

Discussions 8 (Dec. 2015), pp. 10539–10583. doi: 10.5194/gmdd-8-10539-2015.

[126] Energy and the Information Infrastructure Part 4: Data is ’The New Oil,’ Blowing Past

the Zettabyte Era — RealClearEnergy. Library Catalog: www.realclearenergy.org. url:

https://www.realclearenergy.org/articles/2019/02/01/energy_and_the_

information_infrastructure_part_4_data_is_the_new_oil_blowing_past_the_

zettabyte_era_110389.html (visited on 07/31/2020).

[127] Earth System Modeling Must Become More Energy Efficient. en-US. Library Catalog:

eos.org. url: https://eos.org/opinions/earth-system-modeling-must-become-

more-energy-efficient (visited on 07/31/2020).

[128] Iselin Medhaug and Tore Furevik. “North Atlantic 20th century multidecadal variability

in coupled climate models: Sea surface temperature and ocean overturning circulation”.

In: Ocean Science 7 (June 2011), pp. 389–404. doi: 10.5194/os-7-389-2011.

[129] B. N. Lawrence et al. “Storing and manipulating environmental big data with JASMIN”.

In: 2013 IEEE International Conference on Big Data. Oct. 2013, pp. 68–75. doi: 10.

1109/BigData.2013.6691556.

[130] Computational And Information Systems Laboratory. CMIP Analysis Platform. en.

Publisher: UCAR/NCAR. 2016. url: https://www2.cisl.ucar.edu/resources/

cmip-analysis-platform (visited on 07/31/2020).

[131] Unidata — NetCDF. url: https://www.unidata.ucar.edu/software/netcdf/

(visited on 07/29/2020).

[132] Charles S. Zender. “Analysis of self-describing gridded geoscience data with netCDF

Operators (NCO)”. en. In: Environmental Modelling & Software 23.10 (Oct. 2008),

pp. 1338–1342. issn: 1364-8152. doi: 10.1016/j.envsoft.2008.03.004. url: http:

229

https://doi.org/10.1002/cnm.1128
https://onlinelibrary.wiley.com/doi/abs/10.1002/cnm.1128
https://doi.org/10.1109/HPCS.2017.17
https://doi.org/10.5194/gmdd-8-10539-2015
https://www.realclearenergy.org/articles/2019/02/01/energy_and_the_information_infrastructure_part_4_data_is_the_new_oil_blowing_past_the_zettabyte_era_110389.html
https://www.realclearenergy.org/articles/2019/02/01/energy_and_the_information_infrastructure_part_4_data_is_the_new_oil_blowing_past_the_zettabyte_era_110389.html
https://www.realclearenergy.org/articles/2019/02/01/energy_and_the_information_infrastructure_part_4_data_is_the_new_oil_blowing_past_the_zettabyte_era_110389.html
https://eos.org/opinions/earth-system-modeling-must-become-more-energy-efficient
https://eos.org/opinions/earth-system-modeling-must-become-more-energy-efficient
https://doi.org/10.5194/os-7-389-2011
https://doi.org/10.1109/BigData.2013.6691556
https://doi.org/10.1109/BigData.2013.6691556
https://www2.cisl.ucar.edu/resources/cmip-analysis-platform
https://www2.cisl.ucar.edu/resources/cmip-analysis-platform
https://www.unidata.ucar.edu/software/netcdf/
https://doi.org/10.1016/j.envsoft.2008.03.004
http://www.sciencedirect.com/science/article/pii/S1364815208000431
http://www.sciencedirect.com/science/article/pii/S1364815208000431

//www.sciencedirect.com/science/article/pii/S1364815208000431 (visited on

08/03/2020).

[133] The NCAR Command Language (Version 6.6.2) [Software]. Boulder, Colorado, 2019.

url: http://dx.doi.org/10.5065/D6WD3XH5 (visited on 08/03/2020).

[134] Pangeo — Pangeo documentation. url: https://pangeo.io/ (visited on 07/29/2020).

[135] Tina Erica Odaka et al. “The Pangeo Ecosystem: Interactive Computing Tools for the

Geosciences: Benchmarking on HPC”. en. In: Tools and Techniques for High Perfor-

mance Computing. Ed. by Guido Juckeland and Sunita Chandrasekaran. Communica-

tions in Computer and Information Science. Cham: Springer International Publishing,

2020, pp. 190–204. isbn: 978-3-030-44728-1. doi: 10.1007/978-3-030-44728-1_12.

[136] Venkatramani Balaji et al. “Requirements for a global data infrastructure in support

of CMIP6”. en. In: Geoscientific Model Development 11.9 (Sept. 2018), pp. 3659–3680.

issn: 1991-9603. doi: 10.5194/gmd-11-3659-2018. url: https://gmd.copernicus.

org/articles/11/3659/2018/ (visited on 07/31/2020).

[137] Niall H. Robinson, Joe Hamman, and Ryan Abernathey. “Seven Principles for Effective

Scientific Big-DataSystems”. In: arXiv:1908.03356 [cs] (June 2020). arXiv: 1908.03356.

url: http://arxiv.org/abs/1908.03356 (visited on 07/31/2020).

[138] Martina Stockhause et al. “Data Distribution Centre Support for the IPCC Sixth Assess-

ment”. en. In: Data Science Journal 18.1 (June 2019). Number: 1 Publisher: Ubiquity

Press, p. 20. issn: 1683-1470. doi: 10.5334/dsj-2019-020. url: http://datascience.

codata.org/articles/10.5334/dsj-2019-020/print/ (visited on 07/31/2020).

[139] W. T. Barnes, S. J. Bradshaw, and N. M. Viall. “Understanding Heating in Active Region

Cores through Machine Learning. I. Numerical Modeling and Predicted Observables”.

en. In: The Astrophysical Journal 880.1 (July 2019). Publisher: American Astronomical

Society, p. 56. issn: 0004-637X. doi: 10.3847/1538-4357/ab290c. url: https://doi.

org/10.3847%2F1538-4357%2Fab290c (visited on 07/31/2020).

[140] Dask Development Team. Dask: Library for dynamic task scheduling. 2016. url: https:

//dask.org.

[141] Stephan Hoyer and Joseph J. Hamman. “xarray: N-D labeled Arrays and Datasets in

Python”. en. In: Journal of Open Research Software 5 (Apr. 2017), p. 10. issn: 2049-

9647. doi: 10.5334/jors.148. url: http://openresearchsoftware.metajnl.com/

articles/10.5334/jors.148/ (visited on 07/29/2020).

[142] Met Office. Iris: A powerful, format-agnostic, and community-driven Python package for

analysing and visualising Earth science data. v3.6. Exeter, Devon, 2010. doi: 10.5281/

zenodo.7948293. url: http://scitools.org.uk/.

230

http://www.sciencedirect.com/science/article/pii/S1364815208000431
http://www.sciencedirect.com/science/article/pii/S1364815208000431
http://www.sciencedirect.com/science/article/pii/S1364815208000431
http://dx.doi.org/10.5065/D6WD3XH5
https://pangeo.io/
https://doi.org/10.1007/978-3-030-44728-1_12
https://doi.org/10.5194/gmd-11-3659-2018
https://gmd.copernicus.org/articles/11/3659/2018/
https://gmd.copernicus.org/articles/11/3659/2018/
http://arxiv.org/abs/1908.03356
https://doi.org/10.5334/dsj-2019-020
http://datascience.codata.org/articles/10.5334/dsj-2019-020/print/
http://datascience.codata.org/articles/10.5334/dsj-2019-020/print/
https://doi.org/10.3847/1538-4357/ab290c
https://doi.org/10.3847%2F1538-4357%2Fab290c
https://doi.org/10.3847%2F1538-4357%2Fab290c
https://dask.org
https://dask.org
https://doi.org/10.5334/jors.148
http://openresearchsoftware.metajnl.com/articles/10.5334/jors.148/
http://openresearchsoftware.metajnl.com/articles/10.5334/jors.148/
https://doi.org/10.5281/zenodo.7948293
https://doi.org/10.5281/zenodo.7948293
http://scitools.org.uk/

[143] Wes McKinney et al. “Data structures for statistical computing in python”. In: Pro-

ceedings of the 9th Python in Science Conference. Vol. 445. Austin, TX, 2010, pp. 51–

56.

231

Appendices

232

Appendix A

Chapter Appendices

233

A.1 Appendix to Chapter 4

A.1.1 Analysis of Point Clouds

Here we analyse how point clouds can considered in the language of meshes and finite elements.

Definition A.1.1 (Point Cloud). A point cloud is a set of N points {Xi}N−1
i=0 ∈ Rn where each

point has values (be they scalar, vector or tensor) associated with it.

Definition A.1.2 (Vertex-Only Mesh). Consider an arbitrary meshed domain Ω ⊂ Rn with

geometric dimension n and some topological dimension dimension ≤ n as typically employed

in the finite element method (see for example [16]). A vertex-only mesh is a disconnected mesh

Ωv ⊆ Ω with topological dimension zero (its cells are vertices) and geometric dimension n.

Why is this useful? A vertex-only mesh provides a method of describing the locations of the

points in a point cloud {Xi} as mesh cells. We can define then a function space on the mesh:

functions in this function space then associate values with each point.

Functions on Vertex-Only Meshes

Let

Ωv ⊆ Ω ⊂ Rn (A.1.1)

be a vertex-only mesh immersed in a parent mesh Ω with N vertices {Xi}N−1
i=0 .

Only one function space need be defined on a vertex-only mesh since the topological dimen-

sion limits the available degrees of freedom. An appropriate function space has no continuity

constraints and should take a single value at each cell. A Polynomial degree 0 Discontinuous

Galerkin (“P0DG”) function space provides these properties. Therefore let

V = P0DG(Ωv) : Ωv → Rm (A.1.2)

For completeness, both the scalar and vector valued function space cases are analysed in

this section. As the analysis will demonstrate, each component of a vector function space like

this can be treated as the equivalent scalar function space. Future analysis need not, therefore,

deal with the vector valued function case and its more cumbersome bookkeeping.

Integration Sums Point Evaluations

Since these functions are only defined at vertices, integration necessarily yields the sum of point

evaluations within the integration domain

∫
Ωv

v(x)dx =
N−1∑
i=0

v(Xi) ∀v ∈ V : Ωv → Rm. (A.1.3)

0Department of Mathematics, Imperial College London

234

Notes on the Choice of Function Space and Integration Behaviour

As with other finite element function spaces, functions on a vertex-only mesh are defined by

a union of restrictions to each cell: here, vertices. Each restriction, f̂ , can, in this case, be

described as a polynomial on a local ‘reference’ coordinate K. The local reference coordinate

K is an arbitrary zero dimensional coordinate, and the only possible polynomial is f̂(K) = c

for c ∈ R. This coincides with the definition of P0DG on meshes of higher dimension, so it

makes sense to use that name. In higher dimensions, the value of c depends on the choice of

dual basis functional: there are an infinite number of possibilities with popular choices being

ϕ∗(f̂) =
∫
K
f̂dxK and ϕ∗(f̂) = f̂(X) with X being at the centre of the reference cell K.

In zero dimensions both of these reduce to the value of the function f̂ on the reference

vertex K: for the integration case, Lebesgue integration of a single point over its domain (itself

a point) is the value of f̂ at the point (see the below point about choice of measure). For the

cell centre case, the cell has no extent so its centre is the value at the point itself. The function

space on the vertex-only mesh could equivalently be called P0CG or CG0 (‘Polynomial degree

0 Continuous Galerkin’ or just ‘Continuous Galerkin 0’), but this is less natural: it has no

analogy in higher dimensions and any concept of ‘continuity’ is moot due to the cells being

disconnected.

In zero dimensions there is no Lebesgue measure for performing integration. Nevertheless

integration over a vertex-only mesh is desirable in order to characterise elements of the dual

space as integrals (see for example the use of vertex-only meshes for point forcing). The natural

choice for integrating over a vertex only mesh are Dirac measures dδXi
at each vertex Xi:∫

Ωv

f(x)dδXi
= f(Xi). (A.1.4)

More generally one can define a discrete measure for integrating over a vertex-only mesh as a

weighted sum of Dirac measures. Weightings of 1 are natural because (a) there is no reason to

prefer one vertex over another and (b) different weights can be achieved by taking a Euclidean

inner product of the integrand with a weights function defined on the vertex-only mesh.

Non-Differentiability

Given that the domain Ωv is disconnected and has topological dimension zero a derivative is

difficult to define. For most imaginable purposes therefore,

∇v is undefined ∀ v ∈ V : Ωv → R. (A.1.5)

235

Global Basis Functions

Functions in V can be expressed as a sum of D = N ×m global vector valued basis functions

also in V

v(x) =
D−1∑
i=0

viϕi(x) =
N−1∑
i=0

m−1∑
k=0

vikϕik(x) (A.1.6)

where

span({ϕi}D−1
i=0) = V (A.1.7)

and

ϕik(x) =

ek if x = Xi,

0 otherwise.
(A.1.8)

where ek is the kth cartesian unit vector (k = 0, . . . ,m− 1).

For scalar valued functions where D = N this simplifies to

v(x) =
N−1∑
i=0

viϕi(x)

span({ϕi}N−1
i=0) = V

ϕi(x) =

1 if x = Xi,

0 otherwise.

(A.1.9)

Note that if the function is scalar valued then for a given vertex x = Xi we yield an

appropriate equivalent coefficient vi

v(x) = v(Xi) = vi. (A.1.10)

If the function is vector valued then the same result is obtained for each dimension k =

0, . . . ,m− 1

v(x) · ek = v(Xi) · ek = vik. (A.1.11)

Integrating Global Basis Functions

When integrating a a global basis function from equation A.1.8 it is useful to note that the

Kronecker delta makes an appearance

∫
Ωv

ϕi(x) =
D−1∑
j=0

ϕi(Xj) =
N−1∑
j=0

m−1∑
k=0

ϕik(Xj) =
N−1∑
j=0

m−1∑
k=0

δijek =
m−1∑
k=0

ek ∀ i = 0, . . . , D − 1.

(A.1.12)

236

For scalar valued functions this simplifies to

∫
Ωv

ϕi(x) =
D−1∑
j=0

ϕi(Xj) =
N−1∑
j=0

ϕi(Xj) =
N−1∑
j=0

δij = 1 ∀ i = 0, . . . , D − 1. (A.1.13)

L2 Inner Product Equal to l2

Given u, v ∈ V : Ωv → R, it follows from equations A.1.8, A.1.3 and A.1.13 that the L2 inner

product is equal to the l2 inner product of each function.

⟨u, v⟩L2 =

∫
Ωv

u(x)v(x)dx

=

∫
Ωv

N−1∑
i=0

uiϕi(x)
N−1∑
j=0

vjϕj(x)dx

=
N−1∑
i=0

N−1∑
j=0

uivj

∫
Ωv

ϕi(x)ϕj(x)dx (by linearity of integration)

=
N−1∑
i=0

N−1∑
j=0

uivj

N−1∑
k=0

δikδjkdx (from equation A.1.13)

=
N−1∑
i=0

uivi = ⟨u, v⟩l2

(A.1.14)

For real vector valued functions u,v ∈ V : Ωv → Rm, it similarly follows from equations A.1.8,

A.1.3 and A.1.12, that the L2 inner product is equal to the l2 inner products for the k
th vector

237

component (k = 0, . . . ,m− 1) of each function.

⟨u,v⟩L2 =

∫
Ωv

〈
u(x),v(x)

〉
l2
dx

=

∫
Ωv

〈D−1∑
i=0

uiϕi(x),
D−1∑
j=0

vjϕj(x)

〉
l2

dx

=

∫
Ωv

〈N−1∑
i=0

m−1∑
k=0

uikϕik(x),
N−1∑
j=0

m−1∑
l=0

vjlϕjl(x)

〉
l2

dx

=
N−1∑
i=0

m−1∑
k=0

N−1∑
j=0

m−1∑
l=0

uikvjl

∫
Ωv

〈
ϕik(x),ϕjl(x)

〉
l2
dx (by linearity of integration

and ⟨·, ·⟩l2)

=
N−1∑
i=0

m−1∑
k=0

N−1∑
j=0

m−1∑
l=0

N−1∑
p=0

uikvjl
〈
ϕik(Xp),ϕjl(Xp)

〉
l2

(from equation A.1.12)

=
N−1∑
i=0

m−1∑
k=0

N−1∑
j=0

m−1∑
l=0

N−1∑
p=0

uikvjl
〈
δipek, δjpel

〉
l2

(also from equation A.1.12)

=
N−1∑
i=0

m−1∑
k=0

N−1∑
j=0

m−1∑
l=0

N−1∑
p=0

uikvjlδipδklδjp (by evaluating ⟨·, ·⟩l2)

=
N−1∑
i=0

m−1∑
k=0

uikvik = ⟨uk, vk⟩l2 k = 0, . . . ,m− 1.

(A.1.15)

A word on complex basis functions, i.e. u, v : Ωv → Cm, our L2 inner product is still the l2

inner product, with the complex conjugate of one set of basis function coefficients∫
Ωv

〈
u(x), v̄(x)

〉
l2
dx = ⟨uk, v̄k⟩l2 k = 0, . . . ,m− 1. (A.1.16)

This analysis focuses on real valued functions.

Mass Matrix is Identity

It is useful to consider equation A.1.14 more closely in the context of the finite element method.

If v is treated as some trial function for which we are seeking a solution with the finite element

method and u an arbitrary test function then the mass matrix M , yielded by the L2 inner

238

product, is seen to be the identity matrix.

u, v ∈ V : Ωv → R or u, v ∈ W : Ω→ R

⟨u, v⟩ =
∫
Ωv

u(x)v(x)dx

=
N−1∑
i=0

N−1∑
j=0

uivj

∫
Ωv

ϕi(x)ϕj(x)dx︸ ︷︷ ︸
M

(≡ uTMv once the integral is discretised)

=
N−1∑
i=0

N−1∑
j=0

uivj

N−1∑
k=0

δikδjkdx (≡ uTIIv)

=
N−1∑
i=0

N−1∑
j=0

uivj

N−1∑
k=0

δijdx (≡ uTIv)

=
N−1∑
i=0

uivi = ⟨u, v⟩l2 (≡ uTv).

(A.1.17)

The same result is found when considering vector valued functions since the same integral

similarly reduces to sums of Kronecker deltas. Note this is only valid for real valued functions.

It is usual for a P0DG function space to yield a diagonal mass matrix where the values at

each diagonal entry Mii are the length/area/volume (in 1D/2D/3D) of the cell with globally

numbered basis function ϕi. Since integration performs point evaluation we implicitly state

that the “size” of each cell has unit length/area/volume (in 1D/2D/3D).

Ciarlet Triple Formulation of Point Evaluation Functions on a Vertex-Only Mesh

A local finite element on a vertex-only mesh can be formulated as a Ciarlet triple [34]

(K,P ,N). (A.1.18)

For any given vertex Xi ∈ Ωv we define a local coordinate X̃0 ∈ Rn as an arbitrary vertex cell.1

Therefore

K = X̃0. (A.1.19)

P is a local vector valued function space (with value dimension m) of degree zero polynomials

(constants)

f ∈ P where P : X̃0 → Rm. (A.1.20)

1Here we only consider real valued functions.

239

The set of k + 1 local linear functional nodes which form a basis for P∗

f ∗ ∈ P∗ where P∗ : P → R

span(N) = P∗

N = {ϕ∗
i }ki=0

(A.1.21)

are split by dimension l = 0, . . . ,m − 1 with corresponding unit vectors el and and are given

by

let ϕ∗
i = ϕ∗

jl

where 0 ≤ i ≤ k, 0 ≤ j ≤ k + 1

m
− 1, and 0 ≤ l ≤ m− 1,

then ϕ∗
jl(f) = f(X̃j) · el = fl(X̃j)

(A.1.22)

Since there is only one local point X̃j = X̃0 there are only as many nodes as dimensions m

k = m− 1 =⇒ (k + 1)/m− 1 = 0 =⇒ N = {ϕ∗
0i}m−1

i=0 . (A.1.23)

From the definition of the nodal basis in [34] we can now recover our corresponding local basis

functions for each dimension l = 0, . . . ,m− 1

span({ϕi}ki=0) = P
let ϕi = ϕjl

where 0 ≤ i ≤ k, 0 ≤ j ≤ k + 1

m
− 1 and 0 ≤ l ≤ m− 1,

then the nodal basis definition is ϕ∗
pl(ϕjl) = δpj ∀ l

(A.1.24)

which gives a single basis function for each dimension l = 0, . . . ,m− 1

ϕ∗
pl(ϕjl) = ϕjl(X̃p) · el = δpj

X̃p = X̃0 locally =⇒ p = 0

ϕ∗
0l(ϕjl) = ϕjl(X̃0) · el = δ0j =⇒ j = 0

ϕjl(x̃) = el

(A.1.25)

which is the usual global basis function given in equation A.1.8 restricted locally to have domain

x̃ = X̃0 (j = 0). If P is a space of scalar valued functions (m = 1) then no dimension splitting

is required and the analysis simplifies to give one node and one basis function within the finite

240

element
f ∈ P where P : X̃0 → R

f ∗ ∈ P∗ where P∗ : P → R

ϕ∗
i (f) = f(X̃i)

X̃i = X̃0 =⇒ i = 0

N = {ϕ∗
0}

ϕ∗
0(ϕj) = ϕj(X̃0) = δ0j =⇒ j = 0

ϕj = ϕ0 = 1.

(A.1.26)

This element has been added to FIAT [37] and UFL [6] by introducing vertex cells X̃ and,

in FIAT, by defining an appropriate tabulation. The equivalent vector element is generated

automatically by creating a scalar basis for each vector dimension which, as shown in this

analysis, yields the correct result.

When extended to the entire domain we get

(Ki,Pi,Ni) i = 0, . . . , N − 1 (A.1.27)

for each vertex cell Ki = Xi ∈ Ωv. The discontinuous global finite element function space is

then P0DG (Polynomial degree 0 Discontinuous Galerkin) with vertex cells defined as

P0DG(Ωv) = V = {f : f |Xi
∈ Pi, ∀Xi ∈ Ωv}.2 (A.1.28)

As usual

V ∗ = span({Ni}N−1
i=0). (A.1.29)

Cofunctions in L2 are Self-Dual

The Reisz representation theorem is outlined in 1.4. As stated there, the mass matrix is the

inner product matrix for the L2 inner product. Since it is identity (equivalently, the L2 inner

product is equivalent to the l2 inner product) then the cofunction to a given function is its

transpose. For complex valued functions the cofunction is the conjugate-transpose.

Interpolation is L2 Galerkin Projection

If we allow the whole domain to take on the value of some particular function then we find that

dual evaluation interpolation, defined in Sect. 3.2 and L2 Galerkin Projection, defined in Sect.

3.3, are equivalent.

Let fv ∈ P0DG(Ωv) be a scalar point evaluation function

fv(x) = IP0DG(Ωv)(; f(x)) (A.1.30)

2Adapted from lecture 2 of [1].

241

where f is function on the parent mesh f ∈ FS(Ω). The necessary dual basis functions for dual

evaluation interpolation are outlined in Sect. 4.4.

fv(x) =

f(x) if x = X̃i,

0 otherwise

=
N−1∑
i=0

(fv)iϕi(x)

=
N−1∑
i=0

f(Xi)ϕi(x)

(A.1.31)

using equation A.1.14 we see that this is an L2 Galerkin projection of f into V = P0DG(Ωv)

⟨v, f⟩L2 = ⟨v, f⟩l2 =
N−1∑
i=0

v(Xi)f(Xi) = ⟨v, fv⟩L2 . (A.1.32)

fv is also the global interpolation of f into V = P0DG(Ωv)

[
IP0DG(Ωv)(f)

]
(x) =

D−1∑
i=0

ϕ∗
i (f)ϕi(x)

=
N−1∑
i=0

f(Xi)ϕi(x) by extending equation A.1.22 to the whole

domain with A.1.29 and noting that there is one

basis function per cell on a vertex-only mesh

= fv.

(A.1.33)

If fv is a vector valued point evaluation function for some function f , the same analysis

holds when considering each vector component (fv)k = fv · ek individually: The L2 inner

product is equal to the l2 inner product for (see equation A.1.15) and there is still only one

basis function per cell.

Equivalence with Dirac Deltas

Let Ωv have N vertices {xi}N−1
i=0 .

∫
Ωv

IP0DG(Ωv)(; f(x))dx =
N−1∑
i=0

f(xi) =
N−1∑
i=0

δxi
(; f(x)) =

N−1∑
i=0

∫
Ω

f(x)δ(x− xi)dx (A.1.34)

242

where δ(x) is a dirac delta distribution

∫
Ω

δ(x)dx =

1 if x = 0,

0 otherwise
(A.1.35)

and each δxi
is a dirac delta linear functional which performs point evaluation at each xi

δxi
: V → R where δxi

(; f) = xi, ∀ f ∈ V. (A.1.36)

Note that δxi
cannot be represented in L2. To get entirely expected behaviour when taking

derivatives with respect to f , for example when formulating a functional to minimise then

performing mesh refinement, we require f ∈ H1 in 1 dimension or f ∈ H2 for higher dimensions.

A.1.2 Details of the DMSwarm vertex-only mesh implementation

With reference to Lange et al. [47] we create a new mesh topology associated with the DMSwarm

(a new VertexOnlyMeshTopology class). We instantiate a vertex-only mesh in Firedrake with

a new VertexOnlyMesh constructor which associates this topology with geometric information,

returning the usual MeshGeometry type used to represent Firedrake meshes.

At present, the VertexOnlyMesh constructor requires both a ‘parent’ mesh and list of co-

ordinates at which to create vertices. We firstly store the list of coordinates of each vertex on

the DMSwarm as a DMSwarm ‘field’3. DMSwarm fields associate some piece of data with each

entity (each vertex) in the DMSwarm (see the DMSwarm documentation in the PETSc manual

for more information).

A full list of the DMSwarm fields used for Firedrake vertex-only meshes at the time of

writing can be found in Sect. A.3.2.

A.1.3 PyOP2 Details for Interpolating onto a Vertex-Only Mesh

In step (c) of Sect. 4.5.3, we need to ensure that we only compute the kernel produced by TSFC

where we have some X̂i (i.e. once per vertex-only mesh cell Xi) and provide the appropriate

global basis functions and basis function coefficients of u(x) on the parent mesh cell. PyOP2 has

three key data structures which are relevant here: Maps, Sets and Dats. Sets are equivalent to

their mathematical counterparts: they are sets of entities, typically globally defined for a whole

mesh such as mesh vertices or global basis function coefficients. Maps are mappings between

Sets which can be used to control kernel execution. Imagine one has two Sets of entities A and

3One could consider this a pollution of the mesh topology with geometric information. However, all Firedrake
meshes (of type MeshGeometry) require a mesh topology at creation whilst creation of a VertexOnlyMeshTopol-
ogy class from a DMSwarm does not require this field or any of the subsequently mentioned DMSwarm fields.
We can therefore consider this as an ‘adding on’ of extra information through a convenient feature of the
implementation.

243

B between which we have constructed a Map m. For each entity a ∈ A, the Map m will provide

us the associated subset of entities b ∈ B. If we make the Set A our iteration set, PyOP2 will

run the TSFC kernel once for each entity a ∈ A: we can then use m to get associated values

b ∈ B which we provide to the kernel. These are laid out in detail in Rathgeber et al. [15].

We create a Map from the Set of vertex-only mesh vertices4 to the Set of parent mesh

nodes which we store on the vertex-only mesh. The latter correspond to the global basis

functions and basis function coefficients of u(x) on each parent mesh cell. Upon vertex-only

mesh construction in Firedrake, we expose a Map from vertex-only mesh cell number to parent

cell number using the previously identified Firedrake cell number for each Xi ∈ Ωv. Firedrake’s

implementation of finite element function spaces, FunctionSpace, and their Functionmembers

always expose a Map from mesh cell to associated nodes. When performing the interpolation

in Firedrake, we therefore compose the two Maps using functionality that was specially written

for this application but which has since been absorbed into PyOP2 itself.5

PyOP2 Dats are used to store data defined over an entire mesh such as the values of a

Function in a FunctionSpace. Returning to step (b), we rely on the existing dual-evaluation

interpolation functionality which packs the kernel output into the Dat of the previously created

Function. We get a kernel output for each member of the iteration set of our Map, here

the cells Xi ∈ Ωv, each of which is written to the appropriate location in the Dat. Here the

previously created Function is in P0DG(Ωv): whilst the TSFC kernel produced values that can

be considered as still being on the parent mesh, they are point evaluations of the correct shape

and value so can be assigned directly to the corresponding vertex-only mesh cell Xi. PyOP2

provides structures for storing data that kernels produce (Dats) and for providing mappings

between lists to dictate kernel execution (Maps). Details of these can be found in Rathgeber

et al. [15]. To execute over each cell of the vertex-only mesh, but run on the correct cell of the

parent mesh, a PyOP2 Map from vertex-only mesh cell number to parent mesh cell number is

created6 and is stored on the vertex-only mesh.

A.1.4 Runtime Tabulation with a FInAT QuadratureElement

Quadrature rules in FInAT use a FInAT AbstractPointSet to represent the points in the

quadrature rule. This, along with the Q identity tensor, is produced by FInAT when requesting

the dual_basis of the QuadratureElement (see Sect. 3.7). For runtime tabulation, we can

use the UnknownPointSet created for this purpose (previously described in Sect. 3.8): we

instantiate it with a GEM Variable representing a single point of shape (1, dim(K)) where

dim(K) is the topological dimension of the reference cell. When TSFC compiles the kernel this

4the cell Set, available upon construction for all meshes
5In the case of extruded meshes, described in [48], a the vertex-only mesh has Maps from its cell Set to the

parent mesh base cell number and extrusion height. We use these together to build the Map from vertex-only
mesh cells to the nodes on the extruded parent mesh.

6In the case of extruded meshes, described in [48], a mapping from vertex-only mesh cell to base mesh cell
and extrusion height is also required.

244

is left as a kernel argument which we can supply.

245

A.2 Appendix to Chapter 5

A.2.1 Finite Dimensional Gateaux Deriviative Example

In finite element function spaces we have a known set of global basis functions which allows

us to write these derivatives as a finite-dimensional tensor operator multiplied by a linear

perturbation. If, for example, U := RU and V := RV we have

u =


u0
...

uU−1

 ∈ RU (A.2.1)

and

f(u) =


f0(u)
...

fV−1(u)

 ∈ RV . (A.2.2)

The Gateaux derivative is then (with reference back to the notation introduced in equation

5.2.10)

dfu(u;u
′) =


∂f0
∂u0

∣∣
u

. . . ∂f0
∂uU−1

∣∣
u

...
. . .

...
∂fV −1

∂u0

∣∣
u

. . . ∂fV −1

∂uU−1

∣∣
u


︸ ︷︷ ︸

∈RV ×RU

·


u′0
...

u′U−1


︸ ︷︷ ︸

∈RU

∈ RV (A.2.3)

:=
df

du

∣∣∣∣
u

· u′ (A.2.4)

where RV ×RU is the Cartesian product of the two spaces. We now see that, in the above finite

dimensional vector spaces, dfi
duj

∣∣
u
is the commonly used definition of the Jacobian matrix [Jf]ij

applied to u′j.

Given that we typically deal with discretised equations where our Gateaux derivative is a

finite dimensional tensor, it is useful to introduce some compact notation. Each element of our

rank-1 tensor (i.e. a vector) is

dfu(u;u
′)i =

U−1∑
j=0

∂fi
∂uj

∣∣∣∣
u

u′j (A.2.5)

:=
∂fi
∂uj

∣∣∣∣
u

u′j (A.2.6)

:=

[
df

du

∣∣∣∣
u

]
ij

u′j (A.2.7)

where we have used the convention in equations A.2.6 and A.2.7 of summing over repeated

246

indices. In equation A.2.7 df
du

∣∣
u
is our ordinary Gateaux derivative which we have discretised

and supplied a direction u′j. Since we have a function of a single argument, it is equal to to the

partial Gateaux derivative ∂fu(u;u
′)i :− [∂f

∂u

∣∣
u
· u′]i.

A.2.2 Gateaux Derivative Chain Rule Example

This example demonstrates how each term in the chain rule can be broken down into simple

uncoupled calculations which can then be substituted back together.

We start with

J(v) =

∫
v2 dx ∈ R (A.2.8)

and let

[J ◦ f](u) =
∫
f(u)2 dx ∈ R (A.2.9)

where

f(u) = 2u3 ∈ V. (A.2.10)

We want
d[J ◦ f]

du

∣∣∣∣
u

· u′ (A.2.11)

which we will find using equation 5.2.27. We substitute

v = f |u (A.2.12)

such that

J(v) =

∫
v2 dx (A.2.13)

and find the left-most term in our chain rule

d[J ◦ f]
du

∣∣∣∣
u

· u′ =
(
dJ

dv
· v′
)∣∣∣∣

v=f |u

=

(∫
2v dx · v′

)∣∣∣∣
v=f |u

=

∫
2f |u dx · v′|v=f |u

(A.2.14)

where we have used the linearity of the derivatives applied to integrals (which itself could be

a step in the chain rule but here is skipped over!). We now find v′ at v = f |u, the right-most

term in our chain rule:

v′|v=f |u =
df

du

∣∣∣∣
u

· u′

= 6u2 · u′.
(A.2.15)

247

Substituting everything back we get

d[J ◦ f]
du

∣∣∣∣
u

· u′ =
∫

2f |u dx · 6u2 · u′. (A.2.16)

The expression for f |u is specifically not substituted in here since we are not trying to get

a big unifying expression for d[J◦f]
du

∣∣∣∣
u

· u′: we assume that we have already calculated f |u for

some particular value of u and are propagating it through the chain rule from right to left. If

we wanted to add another term to the chain rule such that we calculate

d[J ◦ f ◦ h]
dx

∣∣∣∣
x

· x′ = dJ

dv

∣∣∣∣
v=f |u

· df
du

∣∣∣∣
u=h|x

· dh
dx

∣∣∣∣
x

· x′︸ ︷︷ ︸
u′|u=h|x︸ ︷︷ ︸

v′|v=f |u

(A.2.17)

where

h : X → U (A.2.18)

for some particular x ∈ X we would need to start by finding

u = h|x (A.2.19)

then propagate that information from the right of equation A.2.17 to the left by first calculating

u′|u=h|x =
dh

dx

∣∣∣∣
x

· x′ (A.2.20)

then calculating

v′|v=f |u =

(
df

du
· u′
)∣∣∣∣

u=h|x

= (6u2 · u′)|u=h|x .

(A.2.21)

In the notation of equations 5.2.26 and 5.2.34 this is the same as working from inner expressions

to outer. It is this propagation of information from the right to the left (or inner to outer) that

forms the basis of the forward or tangent-linear mode of Algorithmic/Automatic Differentiation

(AD).

We could work from left to right but we would need to have access to pre-calculated values

of v = f |u and u = h|x at each step. This is the basis of the reverse or adjoint mode7 of

AD where such values are saved from a pre-calculated running of whatever it is one wishes to

differentiate (here [J ◦ f ◦ h]).
The term ‘tangent-linear’ is used since we take a derivative at a chosen point x: To take a

7sometimes called cotangent linear mode.

248

simple example, the derivative of the nonlinear function f(x) = x3 is another nonlinear function
df
dx
(x) = 3x2. If I evaluate this at some point (such as x = 1) I get a value for the derivative at

that point (df
dx

∣∣
1
= 3) which is the gradient of a tangent to the original function at that point.

In the multidimensional or gateaux derivative (without giving a direction x′) cases this is the

same as saying my gradient operator, here d[J◦f◦h]
dx

, is a linear operator when I evaluate it at a

chosen point (i.e. do d[J◦f◦h]
dx

∣∣
x
).

A.2.3 The Adjoint Approach with the Alternative Adjoint Defini-

tion

In each case we need to look at our intermediate Jacobians evaluated at given points:

dJv(v; •) : V → R for given v ∈ V, (A.2.22)

∂fu(u, g; •) : U → V for given u ∈ U, g ∈ G, (A.2.23)

∂fg(u, g; •) : G→ V for given u ∈ U, g ∈ G, (A.2.24)

dhm(m; •) :M → U for given m ∈M, (A.2.25)

dkm(m; •) :M → G for given m ∈M. (A.2.26)

The •† adjoints of these (taken with respect to a particular inner product) are

dJ†
v(v; •) : R→ V for given v ∈ V, (A.2.27)

∂f †
u(u, g; •) : V → U for given u ∈ U, g ∈ G, (A.2.28)

∂f †
g (u, g; •) : V → G for given u ∈ U, g ∈ G, (A.2.29)

dh†m(m; •) : U →M for given m ∈M, (A.2.30)

dk†m(m; •) : G→M for given m ∈M. (A.2.31)

and similarly use these in the •† adjoints of our ‘hat’ operators

ĵ†(; •) = I(; •) : R→ R ∀ j ∈ R (A.2.32)

v̂†(; •) = ∂J†
v

(
v; ĵ†(; •)

)
: R→ V for given v ∈ V, (A.2.33)

û†(; •) = ∂f †
u

(
u, g; v̂|†v=f |u,g(; •)

)
: R→ U for given u ∈ U, g ∈ G, (A.2.34)

ĝ†(; •) = ∂f †
g

(
u, g; v̂|†v=f |u,g(; •)

)
: R→ G for given u ∈ U, g ∈ G, (A.2.35)

m̂†(; •) = dh†m

(
m; û|†u=h|m,g=k|m(; •)

)
+ dk†m

(
m; ĝ|†u=h|m,g=k|m(; •)

)
: R→M for given m ∈M.

(A.2.36)

The full •† adjoint Jacobian for our example is m̂†(; •). Supplying any of these with a direction

vector j′ ∈ R gives a •† adjoint Jacobian vector product. As in the other derivation, to recover

249

the Jacobian operator for our example we supply a seed of j′ = 1 to m̂† and take the •† adjoint
of m̂†(; 1): i.e. [

m̂†(; j′ = 1)
]† · • = d[J ◦ f ◦ (h, k)]m(m; •) (A.2.37)

and, again, were J : V → X and we had a complete basis for X then, by operating on each

basis vector in turn, we would be able to recover the complete •† adjoint-Jacobian.

Our operations still break down conveniently giving an adjoint variable each time

j̄ = I(; j̄) ∈ R (A.2.38)

v̄ = ∂J†
v(v; j̄) ∈ V for given v ∈ V, (A.2.39)

ū = ∂f †
u(u, g; v̄) ∈ U for given u ∈ U, g ∈ G, (A.2.40)

ḡ = ∂f †
g (u, g; v̄) ∈ G for given u ∈ U, g ∈ G, (A.2.41)

m̄ = dh†m(m; ū) + dk†m(m; ḡ) (= m̂†(; j̄)) ∈M for given m ∈M. (A.2.42)

These are the same as those in the main derivation but, in each case, have been transformed

by Riesz representer for the particular inner product that gives the •† adjoint here. Alongside
equations A.2.27 to A.2.31 these form a DAG which is shown pictorially in figure A.1.

In our alternative notation the •† adjoints of the intermediate Jacobians are

dJ

dv

∣∣∣∣†
v

· • : R→ V for given v ∈ V, (A.2.43)

∂f

∂u

∣∣∣∣†
u,g

· • : V → U for given u ∈ U, g ∈ G, (A.2.44)

∂f

∂g

∣∣∣∣†
u,g

· • : V → G for given u ∈ U, g ∈ G, (A.2.45)

dh

dm

∣∣∣∣†
m

· • : U →M for given m ∈M, (A.2.46)

dk

dm

∣∣∣∣†
m

· • : G→M for given m ∈M. (A.2.47)

250

𝐽

𝑓𝑑𝐽!
" 𝑣̅

𝑢'

𝑚)
∈ 𝑉

∈ 𝑈

Forward,	Tangent	Linear	and	Downstream Direction

∈ 𝑀
𝑗
∈ ℝ

𝑔̅
∈ 𝐺

Reverse,	Adjoint	and	Upstream Direction

𝐼𝑗
∈ ℝ

𝜕𝑓#
"

𝜕𝑓$
"

𝑑ℎ%
"

+

𝑑𝑘%
"

ℎ

𝑘

Figure A.1: Directed Acyclic Graph (DAG) for the operations given in equations A.2.27 to
A.2.31; linked by the intermediate output variables in equations A.2.38 to A.2.42. Functions
are in large boxes with input and output variables directly connected. In practice the initial
identity operation is skipped. The blocks associated with each operation in pyadjoint which
annotate each operation and allow derivatives to be calculated (see section 5.4) are shown as
thick boxes. The vector spaces that variables are members of are shown below each set in
red. This DAG is very similar to the original example and TLM DAGs (figures 5.1 and 5.2
respectively) but with arrow directions reversed. Once again we see that for each variable we
have a corresponding adjoint variable. Operations are now Jacobian evaluations although not
all the blocks have arrows pointing towards them which makes implementing this difficult. How
this is fixed is discussed and fixed in section A.2.5.

251

The •† adjoints of our ‘hat’ operators are

ĵ†(; •) = I∗(; •) = I(; •) : R→ R ∀ j ∈ R (A.2.48)

v̂†(; •) = ∂J

∂v

∣∣∣∣†
v

· ĵ†(; •) : R→ V for given v ∈ V, (A.2.49)

û†(; •) = ∂f

∂u

∣∣∣∣†
u,g

· v̂|†v=f |u,g(; •) : R→ U for given u ∈ U, g ∈ G, (A.2.50)

ĝ†(; •) = ∂f

∂g

∣∣∣∣†
u,g

· v̂|†v=f |u,g(; •) : R→ G for given u ∈ U, g ∈ G, (A.2.51)

m̂†(; •) = dh

dm

∣∣∣∣†
m

· û|†u=h|m,g=k|m(; •) +
dk

dm

∣∣∣∣†
m

· ĝ|†u=h|m,g=k|m(; •) : R→M for given m ∈M,

(A.2.52)

we get the full Jacobian for example by

[
m̂†(; j′ = 1)

]† · • = d[J ◦ f ◦ (h, k)]
dm

∣∣∣∣
m

· •, (A.2.53)

and the intermediate vectors (adjoint variables) for downstream-most seed j̄ (which we use to

calculate the full Jacobian) are

j̄ = I(; j̄) ∈ R (A.2.54)

v̄ =
∂J

∂v

∣∣∣∣†
v

· j̄ ∈ V for given v ∈ V, (A.2.55)

ū =
∂f

∂u

∣∣∣∣†
u,g

· v̄ ∈ U for given u ∈ U, g ∈ G, (A.2.56)

ḡ =
∂f

∂g

∣∣∣∣†
u,g

· v̄ ∈ G for given u ∈ U, g ∈ G, (A.2.57)

m̄ =
dh

dm

∣∣∣∣†
m

· ū+ dk

dm

∣∣∣∣†
m

· ḡ (= m̂†(; j̄)) ∈M for given m ∈M. (A.2.58)

A.2.4 Discretisations of TLM and Adjoint Action

This can be read as continuing from the end of section 5.4.2. If our block f had a sec-

ond output variable x ∈ X (i.e. f(u, g) ∈ X × V is a matrix valued function) then the

evaluate_tlm_component method involving ẋ ∈ X for finite dimensional vector spaces would

252

be

(ẋl, v̇z)(uk, gj; u̇k, ġj) =

dim(U)∑
k=1

dim(G)∑
j=1

∂fu(uk, gj;u
′
k = u̇k)lz + ∂fg(uk, gj; g

′
k = ġj)lz (A.2.59)

:=

dim(U)∑
k=1

dim(G)∑
j=1

[
∂f

∂u

∣∣∣∣
u,g

]
lzkj

· u̇k +
[
∂f

∂u

∣∣∣∣
u,g

]
lzkj

· ġj (A.2.60)

where (ẋl, v̇z) are entries in the matrix formed by X ×V . For adjoint-inputs v̄ ∈ V and x̄ ∈ X,

the evaluate_adj_component method would give be

ū∗1l(; •) =
dim(V)∑
k=1

dim(X)∑
j=1

v̄∗
(
; ∂fu(u, g; •)kl

)
1k

+ x̄∗
(
; ∂fu(u, g; •)jl

)
1j

for given u ∈ U, g ∈ G

(A.2.61)

:=

dim(V)∑
k=1

dim(X)∑
j=1

v̄∗1k ·
[
∂f

∂u

∣∣∣∣
u,g

]
kl

· •+ x̄∗1j ·
[
∂f

∂u

∣∣∣∣
u,g

]
jl

· • (A.2.62)

and

ḡ∗1l(; •) =
dim(V)∑
k=1

dim(X)∑
j=1

v̄∗
(
∂fg(u, g; •)kl

)
1k

+ x̄∗
(
∂fg(u, g; •)jl

)
1j

for given u ∈ U, g ∈ G

(A.2.63)

:=

dim(V)∑
k=1

dim(X)∑
j=1

v̄∗1k ·
[
∂f

∂g

∣∣∣∣
u,g

]
kl

· •+ x̄∗1j ·
[
∂f

∂g

∣∣∣∣
u,g

]
jl

· •. (A.2.64)

A.2.5 Adjoint Mode Subtlety

When executing a program we sometimes have loops where we write to a variable multiple

times - these are so-called program variables. This is incompatible with a Directed Acyclic

Graph (DAG) since this would introduce cycles. In order to fully tape a program we need to be

able to recreate all variables, including those which have been overwritten. We hence introduce

the concept of forward block variables which, when recording or re-running a tape, can only be

written to once but can be read multiple times. Each time a program variable is written to it

creates a new forward block variable. It is the tape therefore, not the original program, which

is a DAG.

As mentioned previously TLM variables are block variables, more specifically they are for-

ward block variables: they are also written to exactly once, in this case by a block which

annotates our program, but can be read multiple times by downstream blocks. Each block has

a well defined way of creating a TLM variable which is clearly given by the multivariate chain

rule:

253

1. Initialise the TLM variable to zero,

2. pick a forward block variable argument (pictorially, an arrow pointing into the block),

3. take the block’s Jacobian with respect to that argument,

4. apply the Jacobian to the argument’s corresponding TLM variable (which is guaranteed

to have already been calculated upstream),

5. add the result to the TLM variable and

6. return to step 2 until all arguments have been used.

In the adjoint mode we traverse our tape from downstream to up: i.e. we reverse all the

arrows in the tape’s DAG. We therefore introduce the concept of reverse block variables which

have the opposite properties of forward block variables: they can be written to multiple times

but can only be read once. Adjoint variables are reverse block variables. Since we are using the

same DAG, just in reverse, we associate reverse block variables with forward block variables:

in pyadjoint this is a BlockVariable type.

In adjoint mode, at the level of a block, pyadjoint

1. finds the partial derivative Jacobian of its operation with respect to a particular forward

block variable argument

2. takes an adjoint variable received from downstream8 and,

3. takes the adjoint of the partial derivative Jacobian and applies it to the adjoint variable.

A new adjoint variable is created by summing together the outputs of this process for the

relevant blocks (see, for example, the creation of m̄∗ in 5.3.87).

This works from the point of view of creating a working AD tool, but the summation

notably does not happen at block level, instead it relies on some global knowledge of the need

to perform a sum. If we wish to consider the tape as being composed purely of blocks, an

interesting question to ask is whether we can describe the creation of adjoint variables at the

level of a block.

We can do this by limiting each forward or reverse block variable in the DAG of the tape

to having a single arrow leaving it. Each block’s adjoint variable is then found by performing

the three steps above. To ensure each block variable only has a single arrow leaving it we need

to introduce a hidden operation which distributes the forward block variables. In our example

DAG this is an assignment operation which occurs after our variable m but before operations

h and k

stack(m) =

(
m

m

)
=

(
m0

m1

)
. (A.2.65)

8At this point the downstream adjoint variable could be deleted: this is not done in pyadjoint at present but is
an open issue as a potential enhancement. See https://github.com/dolfin-adjoint/pyadjoint/issues/84.

254

https://github.com/dolfin-adjoint/pyadjoint/issues/84.

Now our DAG is defined to be

J : V → R i.e. J(v) ∈ R, (A.2.66)

f : U ×G→ V i.e. f(u, g) ∈ V, (A.2.67)

h :M → U i.e. h(m0) ∈ U, (A.2.68)

k :M → G i.e. k(m1) ∈ G, (A.2.69)

stack :M →M ×M i.e. stack(m) ∈M ×M, (A.2.70)

where

j = J |v (A.2.71)

v = f |(u,g) (A.2.72)

u = h|m0 (A.2.73)

g = k|m1 (A.2.74)(
m0

m1

)
= stack|m. (A.2.75)

This is shown pictorially in figure A.2.

Each of m0 and m1 has an associated adjoint covector variable given by

m̄∗
0 = ∂h∗m0

(m0; ū
∗) (A.2.76)

m̄∗
1 = ∂k∗m1

(m1; ḡ
∗). (A.2.77)

The Gateaux derivative of stack with respect to m is

dstackm :M × M︸︷︷︸
linear

→M ×M (A.2.78)

where

dstackm(m;m′) :=
∂

∂m

[(
m

m

)] ∣∣∣∣∣
m

·m′ (A.2.79)

=

(
1

1

)
·m′ ∈M ×M. (A.2.80)

The ‘Jacobian’ linear operator is

dstackm(m; •) =
(
1

1

)
· • :M →M ×M for given m ∈M. (A.2.81)

255

𝐽 𝑓

ℎ

𝑣

𝑢

𝑢&

𝑣̅
∈ 𝑉

∈ 𝑈

Forward,	Tangent	Linear	and	Downstream Direction

𝑢̇

𝑣̇

𝑗

𝑗
∈ ℝ

𝚥̇̇

𝑘𝑔

𝑔̅
∈ 𝐺

𝑔̇

Reverse,	Adjoint	and	Upstream Direction

𝑚

𝑚3

𝑚̇

∈ 𝑀

stack

𝑚!

𝑚3!
∈ 𝑀

𝑚̇!

𝑚"

𝑚3"
∈ 𝑀

𝑚̇"

∈ 𝑀×𝑀

Figure A.2: Directed Acyclic Graph (DAG) for the operations given in equations A.2.66 to
A.2.70 linked by the intermediate output variables in equations A.2.71 to A.2.75. Functions
are in large boxes with input and output variables directly connected. Associated Tangent
Linear Mode (TLM) variables are shown with dots above, whilst adjoint mode variables (in
primal form) have bars above. The vector spaces that variables are members of are shown
below each set in red.

256

For the TLM mode we supply this with ṁ and get two copies of ṁ out(
ṁ0

ṁ1

)
= dstackm(m; ṁ) =

(
1

1

)
·m =

(
ṁ

ṁ

)
∈M ×M for given m ∈M (A.2.82)

which shows us that the TLM mode calculations are the same and continue to share the form

of the DAG for the original calculation. For completeness the TLM DAG is shown in figure

A.3.

𝑑stack!

𝑘

ℎ

𝑓𝐽

𝑑𝐽"
𝑑𝑓#
+
𝑑𝑓"

𝑑ℎ!

𝑣̇

𝑢̇

∈ 𝑉

∈ 𝑈

Forward,	Tangent	Linear	and	Downstream Direction

𝚥̇̇

∈ ℝ

𝑑𝑘!𝑔̇
∈ 𝐺

Reverse,	Adjoint	and	Upstream Direction

𝐼 𝑚̇𝑚̇
∈ 𝑀

𝑚̇$

∈ 𝑀

𝑚̇%
∈ 𝑀

∈ 𝑀×𝑀

∈ 𝑀

Figure A.3: Directed Acyclic Graph (DAG) for the tangent linear mode of AD applied to the
operations given in equations A.2.66 to A.2.70 updated from figure 5.3 to include the new stack
operation. Functions are in large boxes with input and output variables directly connected. In
practice the initial identity operation is skipped. The blocks associated with each operation in
pyadjoint which annotate each operation and allow derivatives to be calculated (see section 5.4)
are shown as thick boxes. The vector spaces that variables are members of are shown below
each set in red.

For the adjoint mode we have

dstack∗m(m; •) = • ·
(
1

1

)
: (M ×M)∗ →M∗ for given m ∈M (A.2.83)

where

(M ×M)∗ =M∗ ×M∗. (A.2.84)

The covector this operates on is(
m̄0

m̄1

)∗

=
(
m̄∗

0 m̄∗
1

)
∈ (M ×M)∗ for given m ∈M. (A.2.85)

257

which gives our adjoint variable covector m̄∗

m̄∗ = dstack∗m(m;
(
m̄∗

0 m̄∗
1

)
) =

(
m̄∗

0 m̄∗
1

)
·
(
1

1

)
= m̄∗

0 + m̄∗
1 ∈M∗ (A.2.86)

which is our expression for m̄∗ in equation 5.3.87.

The stack operation hasn’t got a block in pyadjoint. Nevertheless imagining its existence

shows us what to do with adjoint variables at the block level: for each forward block variable

argument a block has we add our adjoint variable to the associated reverse block variable.

The updated adjoint mode DAG for approach (2) is shown in figure A.4: notice h and k

blocks now have single inputs and no longer overlap with an addition operation. Instead it can

be seen that the addition takes place in dstack∗m.

𝐽

𝑓𝑑𝐽!∗ 𝑣̅∗

𝑢'∗

∈ 𝑉∗

∈ 𝑈∗

Forward,	Tangent	Linear	and	Downstream Direction

𝑗
∗

∈ ℝ

𝑔̅∗

∈ 𝐺∗

Reverse,	Adjoint	and	Upstream Direction

𝐼𝑗
∗

∈ ℝ

𝜕𝑓#∗

𝜕𝑓$∗

ℎ

𝑑ℎ%∗

𝑘

𝑑𝑘%∗ 𝑚4&∗

∈ 𝑀∗

𝑚4'∗

∈ 𝑀∗

𝑑stack%∗
(+)

𝑚4∗

∈ 𝑀∗

Figure A.4: Directed Acyclic Graph (DAG) for the adjoint mode of AD (via approach (2)
outlined in section 5.3.2) applied to the operations given in equations A.2.66 to A.2.70 updated
from figure 5.3 to include the new stack operation. Functions are in large boxes with input and
output variables directly connected. In practice the initial identity operation is skipped. The
blocks associated with each operation in pyadjoint which annotate each operation and allow
derivatives to be calculated (see section 5.4) are shown as thick boxes. The vector spaces that
variables are members of are shown below each set in red.

258

A.3 Appendix to Chapter 7

A.3.1 Calculating L1 distances from Barycentric Coordinates

This section draws on text and diagrams in the API documentation I wrote for the FIAT library

where this was implemented.

0 1
𝑥$

𝑋&! = −0.5

𝛼! = 0.5
𝛽! = −0.5

0.5 0

𝑋&" = 1.25

𝛼" = −0.25
𝛽" = 1.25

0.25

𝑥$!

𝑥$"

0 1
0

1
𝑋&! = (1, 1)

1

𝑋&" = (0.5, −0.5)

0.5
𝑋&# = (−0.25, −0.5)

0.75

𝛼! = −1.0
𝛽! = 1.0
𝛾! = 1.0

𝛼" = 1.0
𝛽" = 0.5
𝛾" = −0.5

𝛼# = 1.75
𝛽" = −0.25
𝛾" = −0.5

(a)

(b)

Figure A.5: Barycentric coordinates and L1 distances on a reference interval (a) and triangle
(b).

The L1 distances of points from the reference cell, in the reference cell (local) coordinates

system, are calculated with the help of Barycentric coordinates. These exist specifically to

identify the relationship of point locations relative to simplices so that one can tell whether a

point is inside or outside the simplex.

Simplices in 1D, 2D and 3D are the interval, the triangle, and the tetrahedron. In Fire-

drake, the reference interval has vertices (0, 1) and a scalar reference coordinate x̂. The two

corresponding Barycentric coordinates α and β are defined in terms of the vertices P0 = 0 and

P1 = 1 as

x̂ = αP0 + βP1 where (A.3.1)

α + β = 1. (A.3.2)

The solution is

α = 1− x̂ (A.3.3)

β = x̂. (A.3.4)

259

If both α and β are positive, the point is inside the reference interval. If either are negative for

some x̂, we are outside the interval and the L1 distance9 to the interval is the absolute value of

the negative Barycentric coordinate.

The reference triangle has vector coordinates x̂ and vertices

P0 = (0, 0), (A.3.5)

P1 = (1, 0) and (A.3.6)

P2 = (0, 1) (A.3.7)

(see Fig. A.5 (b)). There are now 3 Barycentric coordinates defined as

(x̂0, x̂1) = α× P0 + β × P1 + γ ∗ P2 where (A.3.8)

α + β + γ = 1.0 (A.3.9)

which has solution

α = 1− x̂0 − x̂1 (A.3.10)

β = x̂0 and (A.3.11)

γ = x̂1. (A.3.12)

Once again, if any of these are negative for an x̂, the point is outside the cell. This time the

absolute sum of any negative Barycentric coordinates is the L1 distance.

This is also true for the reference tetrahedron with vertex coordinates

P0 = (0, 0, 0), (A.3.13)

P1 = (1, 0, 0), (A.3.14)

P2 = (0, 1, 0) and (A.3.15)

P3 = (0, 0, 1). (A.3.16)

where we have four Barycentric coordinates defined as

α = 1− x̂0 − x̂1 − x̂2 (A.3.17)

β = x̂0, (A.3.18)

γ = x̂1, and (A.3.19)

δ = x̂2. (A.3.20)

Once again, the absolute sum of any negative Barycentric coordinates is the L1 distance.

For these three simplices we can now calculate the L1 distance with a common method on

9which is identical to the l2 or Euclidean distance

260

the base UFCSimplex FIAT class, from which all Firedrake simplices are subclassed. Given

some point coordinate in the form (x̂0, ...x̂dim−1) I have implemented10 the following:

1 def distance_to_point_l1(point)

2 # bary = [alpha, beta, gamma, delta, ...]

3 bary = [1.0 - sum(point)] + list(point)

4 # remove positive Barycentric coordinates. This doubles

5 # any negative Barycentric coordinates

6 no_pos_bary_double = bary-abs(bary)

7 no_pos_bary = 0.5 * no_pos_bary_double

8 # calculate L1 distance

9 l1_dist = abs(sum(no_pos_bary))

10 return l1_dist

Line 2 gives a Python list of the Barycentric coordinates, the first of which, α, always contains

the sum term. To calculate the L1 distance we could branch (for example with an if statement)

to identify and sum the negative Barycentric coordinates. However, we need to be able to

calculate this with a symbolic point in order to generate code. This cannot be done if the code

has branches. Instead we calculate it algebraically, as shown in the code.

For example, if we have a point (−1,−1) on the reference triangle. The L1 distance from

the triangle is 2.0. The Barycentric coordinates, from equations A.3.11 to A.3.12 are

bary = [alpha, beta, gamma]

bary = [3, -1, -1]

Now we find the L1 distance:

abs(bary) = [3, 1, 1]

no_pos_bary_double = bary-abs(bary) # [0, -2, -2]

no_pos_bary = 0.5 * no_pos_bary_double # [0 -1, -1]

sum(no_pos_bary) = -2.0

l1_dist = abs(sum(no_pos_bary)) # 2.0

Firedrake also supports quadrilaterals and hexahedra which are not simplices but are built

as Cartesian products of the reference interval. In these cases, one calculates the L1 distance

from the reference interval for each dimension of x̂, then sums the results. For example, the

reference quadrilateral has vertices

P0 = (0, 0), (A.3.21)

P1 = (1, 0), (A.3.22)

P2 = (0, 1) and (A.3.23)

P3 = (1, 1) (A.3.24)

10though less verbosely than presented here

261

and is made up of the cartesian product of two reference intervals (0, 1). This is the cell

upon which a quadrilateral tensor product element can be made: see Fig. 3.2. The point

x̂ = (1.5,−1.0) is 1.5 away from the cell as measured in L1. x̂0 = 1.5 is 0.5 away from the

reference interval whilst x̂1 = −1.0 is 1.0 away from the reference interval. Their sum, 1.5, is

the L1 distance.

A.3.2 Summary of DMSwarm ‘Fields’ at Time of Writing

In all, each point has the following pieces of information attached, each of which is embedded

in a DMSwarm field:

• DMSwarmPIC_coor: the Cartesian coordinates of the point,

• parentcellnum: the parent-mesh cell number within the local mesh partition (each rank’s

partition has its own cell numbering) as identified by Firedrake,

• refcoord: within the identified parent-mesh cell, the point’s location after transformation

to the reference cell local coordinate system,

• DMSwarm_rank: the MPI rank where the identified parent-mesh cell can be found (for

cells at boundaries between partitions, this is the unique non-halo rank),

• DMSwarm_cellid: similar to parentcellnum, but using PETSc’s DMPlex numbering as

identified by DMSwarmSetPointCoordinates when creating the DMSwarm,

• globalindex: the global index (a unique coordinate identifier),

• inputrank: the input rank and

• inputindex: the input index.

To support parent-meshes which are semi-structured Firedrake ‘extruded meshes’ [48], we also

store

• parentcellbasenum: the base-cell number corresponding to the given parentcellnum

and

• parentcellextrusionheight: the extrusion height relative to the base cell number.

262

A.4 Appendix to Chapter 8

99 u_bot_old = Function(V_bot)

100 u_top_old = Function(V_top)

101 penalty_weight = 10.0 # Chosen experimentally to move the solutions together

102

103 for i in range(5000):

104 # Helmholtz problem on the top mesh

105 u_top = Function(V_top)

106 v = TestFunction(V_top)

107 f_top = Function(V_top)

108 x, y = SpatialCoordinate(m_top)

109 f_top.interpolate((1 + 8 * pi * pi) * cos(x * pi * 2) * cos(y * pi * 2))

110 # Couple poisson to helmholtz with interpolate (will do nothing on

111 # first iteration)

112 u_bot_in_V_top = Function(V_top).interpolate(u_bot, allow_missing_dofs=True)

113 # penalty moves our solutions together on the interface

114 penalty = inner(u_bot_in_V_top - u_top, v) * ds(3)

115 # surface term must be included on the interface, where it is nonzero

116 surface_term = inner(grad(u_top), FacetNormal(m_top)) * v * ds(3)

117 F = (

118 (inner(grad(u_top), grad(v)) + inner(u_top, v)) * dx

119 - inner(f_top, v) * dx - surface_term - penalty_weight * penalty

120)

121 solve(F == 0, u_top)

122

123 # Poisson problem on the bottom mesh

124 u_bot = Function(V_bot)

125 v = TestFunction(V_bot)

126 # Couple helmholtz to poisson with interpolate

127 u_top_in_V_bot = Function(V_bot).interpolate(u_top, allow_missing_dofs=True)

128 # penalty moves our solutions together on the interfaces

129 penalty = inner(u_top_in_V_bot - u_bot, v) * ds(4)

130 # surface term must be included on the interface, where it is nonzero

131 surface_term = inner(grad(u_bot), FacetNormal(m_bot)) * v * ds(4)

132 # We hold our solution to zero on the other boundaries

133 bc = DirichletBC(V_bot, 0, [1, 2, 3])

134 F = (

135 (inner(grad(u_bot), grad(v)) - f_bot * v) * dx

136 - surface_term - penalty_weight * penalty

137)

138 solve(F == 0, u_bot, bc)

139

140 # Check for convergence

141 if np.allclose(u_bot.dat.data_ro, u_bot_old.dat.data_ro) and np.allclose(

142 u_top.dat.data_ro, u_top_old.dat.data_ro

143):

144 break

145 u_bot_old = u_bot.copy(deepcopy=True)

146 u_top_old = u_top.copy(deepcopy=True)

Listing 19: Two-way coupling of a Helmholtz problem to a Poisson problem. This code should
be read as following directly on from the code in Listing 17. The weak_penalty_bc expression
introduced to the variational forms of each problem is 8.4.16.

263

1 from firedrake import *

2 from mpi4py import MPI

3 import numpy as np

4

5 comm = MPI.COMM_WORLD

6 if comm.size < 2:

7 raise RuntimeError("This example requires at least two MPI ranks")

8

9 # (1) Here are some data points distributed across two MPI ranks

10 if comm.rank == 0:

11 data_coords = np.array([[0.0, 0.0], [0.0, 0.5], [0.0, 1.0], [0.5, 0.0],

12 [0.5, 0.5], [0.5, 1.0], [1.0, 0.0], [1.0, 0.5]])

13 data_vals = np.array([2.0, 2.0, 3.0, 1.0, 5.0, 6.0, -1.0, -2.0])

14 elif comm.rank == 1:

15 data_coords = np.array([[1.0, 1.0]])

16 data_vals = np.array([0.0])

17 else:

18 data_coords = np.array([]).reshape(0, 2)

19 data_vals = np.array([])

20

21 # (2) A mesh which has vertices at the data coordinates.

22 omega_data = UnitSquareMesh(2, 2, comm=comm)

23

24 # (3) Create a vertex-only mesh with the data coordinates

25 omega_v = VertexOnlyMesh(omega_data, data_coords, redundant=False)

26

27 # (4) Input the data, using the input_ordering property for parallel safety

28 P0DG_input_ordering = FunctionSpace(omega_v.input_ordering, "DG", 0)

29 f_v_input_ordering = Function(P0DG_input_ordering)

30 f_v_input_ordering.dat.data_wo[:] = data_vals # This is now safe to do

31 P0DG = FunctionSpace(omega_v, "DG", 0)

32 f_v = interpolate(f_v_input_ordering, P0DG)

33

34 # (5) Create a function space on m which has point evaluation nodes at

35 # the mesh vertices and interpolate from f_v with a permutation matrix

36 V = FunctionSpace(omega_data, "CG", 1)

37 I = Interpolator(TestFunction(V), P0DG)

38 # NOTE: we need our inputs and outputs to be cofunctions, since we use

39 # transpose interpolation as the inverse. If we choose l2 as our innter product

40 # for the riesz representation we retain the values of the cofunction

41 # coefficients as the function coefficients.

42 f_v_star = f_v.riesz_representation(riesz_map="l2")

43 f_data_star = Cofunction(V.dual())

44 I.interpolate(f_v_star, transpose=True, output=f_data_star)

45 f_data = f_data_star.riesz_representation(riesz_map="l2")

46

47 # (6) Optionally interpolate to a different mesh and function space

48 m2 = UnitSquareMesh(3, 3, quadrilateral=True)

49 V2 = FunctionSpace(m2, "CG", 2)

50 f2 = interpolate(f_data, V2)

Listing 20: Generic external point data input, as described in Sect. 8.4.2. Note that on
line 42 the Riesz representation could also be 'L2' since P0DG(Ωv) is ‘self-dual’ in the L2

inner product, i.e. cofunction basis coefficients are the transpose-conjugate of function basis
coefficients and I am using real-valued basis functions.

264

1 from firedrake import *

2 import numpy as np

3

4 omega = UnitSquareMesh(40, 40)

5 U = FunctionSpace(omega, "CG", 1)

6

7 # Create line (0, 0), (1, 1) mesh with 10 cells

8 cells = np.asarray(

9 [[0, 1], [1, 2], [2, 3], [3, 4], [4, 5], [5, 6], [6, 7], [7, 8], [8, 9], [9, 10]]

10)

11 vertex_coords = np.asarray(

12 [

13 [0.0, 0.0],

14 [0.1, 0.1],

15 [0.2, 0.2],

16 [0.3, 0.3],

17 [0.4, 0.4],

18 [0.5, 0.5],

19 [0.6, 0.6],

20 [0.7, 0.7],

21 [0.8, 0.8],

22 [0.9, 0.9],

23 [1.0, 1.0],

24]

25)

26 tdim = 1 # topological dimension

27 gdim = 2 # geometric dimension

28 dmplex = mesh.plex_from_cell_list(tdim, cells, vertex_coords, omega.comm)

29 line = mesh.Mesh(dmplex, dim=gdim)

30

31 # RHS line forcing cofunction with 41 point evaluation nodes

32 P4CG = FunctionSpace(line, "CG", 4)

33 x, y = SpatialCoordinate(line)

34 f_l = Function(P4CG).interpolate(x * y)

35 I = Interpolator(TestFunction(U), P4CG)

36 v_l = TestFunction(P4CG)

37 L_l = assemble(f_l * v_l * dx)

38 L = Cofunction(U.dual())

39 I.interpolate(L_l, output=L, transpose=True)

40

41 # LHS Bilinear form

42 u = TrialFunction(U)

43 v = TestFunction(U)

44 a = inner(grad(u), grad(v)) * dx

45 # We hold our solution to zero on x=0 and y=0

46 bc = DirichletBC(U, 0, [1, 3])

47 u_sol = Function(U) # solution will be stored here

48 solve(a == L, u_sol, bc)

Listing 21: Forcing a Poisson problem with point sources at point-evaluation node locations on
a line mesh. The mathematical description is in Sect. 8.4.3, with the particular problem in Eq.
8.4.30. For results see Fig. 8.10.

265

	Introduction
	Introduction
	Abstraction

	Fields as finite element functions
	Firedrake, UFL and Domain Specific Languages
	UFL and Domain Specific Languages
	Firedrake
	Other Finite Element Method DSLs and Libraries

	Hilbert Spaces, Dual Spaces, the Riesz Representation Theorem and Multilinear Forms
	Hilbert Spaces
	Dual Spaces
	The Riesz Representation Theorem
	Using Multilinear Forms to Find the Riesz Representer

	Dual Spaces in UFL
	Motivation and Existing Work
	Summary of Contributions
	Representing Covectors as Cofunctions
	UFL Symbolic Equivalents
	Firedrake Data Carrying Equivalents

	UFL Forms and Assembly
	Multilinear Forms in UFL
	Assembly

	Getting Data into Finite Element Functions: FInAT Dual Evaluation Interpolation
	Motivation
	Dual Evaluation Interpolation
	Local Interpolation
	Global Interpolation
	An example of Local Dual Evaluation

	Galerkin Projection
	Existing Dual Basis and Interpolation Implementations
	Firedrake Dual Evaluation
	FInAT

	A primer on tensors in UFL and GEM
	Summary of Contributions
	Existing FIAT Dual evaluation
	FInAT Dual Evaluation
	Tensor Finite Elements and Delta Elimination
	Tensor Product Finite Elements
	Future Improvements

	A New Abstraction for Point Evaluation: Interpolation onto Vertex-Only Meshes
	Motivation
	Existing Work
	Point data as finite element functions
	Point evaluation as dual evaluation interpolation
	Firedrake implementation
	Vertex-only mesh
	Making a finite element function space on a vertex-only mesh
	Point evaluation operation

	Demonstration
	Solving a Point Forced PDE

	Future Work
	Summary of Contributions

	Applying Automatic Differentiation to Interpolation
	Introduction
	Gateaux Derivatives
	Chain Rule

	Automatic Differentiation
	Tangent Linear Approach
	Adjoint Approach
	Higher Derivatives

	Dolfin-Adjoint and Pyadjoint
	Discretisation and the Impact on Covectors and Adjoints
	Tangent Linear Model and Adjoint Action
	Hessian Action

	Differentiating Dual Evaluation: Interpolate Block Annotation
	Tangent Linear and Adjoint Action
	Hessian Action

	Summary of Contributions

	Consistent Point Data Assimilation
	Introduction
	Review of Data Assimilation Approaches

	Unknown conductivity Experiment
	Posterior consistency

	Data Assimilation in Ice Shelf and Ice Sheet Literature
	Future Work
	Concluding Remarks
	Summary of Contributions

	Parallel Safe, Unlosable Point Data
	Introduction
	Motivation
	Existing Capability outside Firedrake
	Cell Location Algorithm: Avoiding Point Loss
	Redistributing Point Coordinates: the `Voting Algorithm'
	Redistributing Point Data
	The Input-Ordering Vertex-Only Mesh
	Redistribution as Interpolation
	Implementation

	Other Parallel Considerations
	Constructing Halos

	Future Work
	Summary of Contributions

	Arbitrary, Parallel Safe, Differentiable, Mesh to Mesh Interpolation
	Motivation
	Existing Capability Outside Firedrake
	Mathematics and Firedrake Implementation
	Discussion and Demonstrations
	Model Coupling
	Generic External Field Point-Evaluation Data Input
	Line, Plane and Volume Sources and Sinks

	Future Work
	Summary of Contributions

	Symbolic Interpolation
	Motivation
	Existing Capability Outside Firedrake
	Multilinear Forms as Linear Operations Between Hilbert Spaces
	Dual Evaluation Interpolation as a Form

	Using the interp Form in UFL and Firedrake
	Demonstration Code

	Future Work
	Summary of Contributions

	Conclusion
	Conclusion
	Future work
	More Applications
	Moving Points
	Moving Mesh to Mesh Interpolation
	Alternative Implementation
	Querying Geoscientific Model Outputs

	Bibliography
	Appendices
	Chapter Appendices
	Appendix to Chapter 4
	Analysis of Point Clouds
	Details of the DMSwarm vertex-only mesh implementation
	PyOP2 Details for Interpolating onto a Vertex-Only Mesh
	Runtime Tabulation with a FInAT python|QuadratureElement|

	Appendix to Chapter 5
	Finite Dimensional Gateaux Deriviative Example
	Gateaux Derivative Chain Rule Example
	The Adjoint Approach with the Alternative Adjoint Definition
	Discretisations of TLM and Adjoint Action
	Adjoint Mode Subtlety

	Appendix to Chapter 7
	Calculating L1 distances from Barycentric Coordinates
	Summary of DMSwarm `Fields' at Time of Writing

	Appendix to Chapter 8

