Claude Q) Fixing issue with excluding unwanted areas in text extraction v

multi_column

@ read the issue this user has raised about the code included and his proposal to fix it. Could
you elaborate what the issue is and clarify how to fix the problem. I'm unable to fully grasp
what and where the fixes are to be applied.

If you need any clarifications please ask before doing your job

<github_issue>

Originally opened this as a discussion, but after getting into the code, it appears to be an
issue that impacts the extraction of not only tables but also images with text on them.

The problem is that bboxes that are supposed to be avoided (images and tables) during text
box detection are still finding themselves within the final joint text bboxes. This results in
the text of the table being extracted in-place as raw text, and the formatted table being
shifted to the bottom of the merged text bbox.

Here are a PDF file presenting a simple mock case, the markdown that PyMuPDF4LLM
outputs, and the expected output. table_sample.pdf table_sample.md table_expected.md
The issue is happening in column_boxes(): The rects passed in the avoid param can get re-
included because we're not checking the intersection of the new block (temp) with them at
these calls: check = can_extend(temp, nbb, nblocks, vert_bboxes) # Lines [417, 427]
multi_column.py Including the img_bboxes in the checks does seem to fix the issue at this
point.

Afterwards, the call to join_rects_phase3() # Line [440] multi_column.py re-includes the
excluded rects once again because it merges without checking whether it intersects with an
avoidable rect:

Lines [245 - 250] multi_column.py:
temp = prect® | prectl
test = set(
[tuple(b) for b in prects + new_rects if b.intersects(temp)]

)
if test == set((tuple(prect®), tuple(prectl))):
prect® |= prectl

Discussed in #168

Originally posted by Meaveryway October 13, 2024 Hello there,

Thanks for the wonderful work! this outperforms even most commercial solutions out there!
I have a question regarding tables extraction: when extracting a PDF page that has a table
to markdown, it seems that the table's raw text is first extracted and put in place of the
table, then the formatted table at the bottom of the page.

Is this the desired output? Why?

Author

Meaveryway commented 9 hours ago

edited

This function seems to be returning the opposite of what's intended (because of the

negation).

Lines [103 - 108] multi_column.py
def intersects_bboxes(bb, bboxes):
"""Return True if a bbox touches bb, else return False."""
for bbox in bboxes:
if not (bb & bbox).is_valid:
return True
return False

intersects_bboxes(Rect(®, @, 10, 10), [Rect(5, 5, 20, 20)]) --> False

Thank you for providing the context. I understand the issue better now. Let me elaborate
on the problem and suggest how to fix it:

The main issue is that the column_boxes() function is not properly avoiding areas that
should be excluded (like images and tables) when detecting and joining text boxes. This
results in text from tables being extracted as raw text and placed in-line, while the
formatted table is shifted to the bottom of the merged text box.
There are two main areas where this problem occurs:
1.Inthe can_extend() function: The function is not checking if the new extended box
(temp) intersects with the areas that should be avoided (img_bboxes).

2.Inthe join_rects_phase3() function: This function is merging rectangles without
checking if the merged rectangle intersects with areas that should be avoided.

Additionally, there's an issue with the intersects_bboxes() function, which is returning

Here's how we can fix these issues:

1. Modify the can_extend() function: Update the function to include a check against

img_bboxes :
python

def can_extend(temp, bb, bboxlist, vert_bboxes, img_bboxes):
"""Determines whether rectangle 'temp’' can be extended by ‘bb"
without intersecting any of the rectangles contained in 'bboxlist’,

‘vert_bboxes', or 'img_bboxes'.
Items of bboxlist may be None if they have been removed.

Returns:

True if 'temp' has no intersections with items of 'bboxlist®, 'vert_bboxes', or "ir

if intersects_bboxes(temp, vert_bboxes) or intersects_bboxes(temp, img_bboxes):

return False

for b in bboxlist:
if b is None or b == bb or (temp & b).is_empty:
continue

return False

return True

< ——]
2. Modify the join_rects_phase3() function: Update the function to check against

img_bboxes before merging:
python

def join_rects_phase3(bboxes, path_rects, img_bboxes):
prects = bboxes[:]

new_rects = []

while prects:
precto = prects[0]
repeat = True
while repeat:
repeat = False
for i in range(len(prects) - 1, 0, -1):
prectl = prects[i]

if prectl.x@ > prect@.xl or prectl.xl < prect@.x@:

continue

if in_bbox(prect®, path_rects) != in_bbox(prectl, path_rects):
continue

temp = prect® | prectl

if intersects_bboxes(temp, img_bboxes):
continue
test = set(
[tuple(b) for b in prects + new_rects if b.intersects(temp)]
)
if test == set((tuple(prect®), tuple(prectl))):
prect® |= prectl
del prects[i]
repeat = True
new_rects.append(precto)
del prects[0]

3.Fixthe intersects_bboxes() function: Remove the negation to correct the logic:

python

def intersects_bboxes(bb, bboxes):
"""Return True if a bbox touches bb, else return False."""
for bbox in bboxes:
if (bb & bbox).is_valid:
return True

return False

4. Update the calls to these functions in column_boxes() : Make sure to pass img_bboxes

tothe can_extend() and join_rects_phase3() functions:

python

check = can_extend(temp, nbb, nblocks, vert_bboxes, img_bboxes)

nblocks = join_rects_phase3(nblocks, path_rects, img_bboxes)

These changes should prevent the text extraction process from including areas that

maintain the structure of tables and prevent their content from being extracted as raw
text and placed inline.

® Claude does not have the ability to run the code it generates yet.
[Copy O Retry

Claude can make mistakes. Please double-check responses.

Subscribe to Pro for 5x more usage with Claude 3.5 Sonnet. Subscribe to Pro

Reply to Claude... ¢ ©

Claude 3.5 Sonnet

