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A B S T R A C T

The peridynamic stress formula proposed by Lehoucq and Silling (2008) is cumbersome to be implemented in
numerical computations. In this paper, we show that the peridynamic stress tensor has the exact mathematical
expression as that of the first Piola–Kirchhoff static Virial stress originated from the Irving–Kirkwood–Noll
formalism (Irving and Kirkwood, 1905; Noll, 1955) through the Hardy–Murdoch procedure (Hardy, 1982;
Murdoch, 1983), which offers a simple and clear expression for numerical calculations of peridynamic stress.

Several numerical verifications have been carried out to validate the accuracy of the proposed peridynamic
stress formula in predicting the stress states in the vicinity of the crack tip and other sources of stress
concentration. By evaluating the peridynamic stress in the prototype microelastic brittle (PMB) material model
of bond-based peridynamics, it is found that the PMB material model may exhibit nonlinear constitutive
behaviors at large deformations. The stress fields calculated through the proposed peridynamic stress formula
show good agreements with these calculated by using finite element methods, analytical solutions, as well as
experimental data, demonstrating the merit of the peridynamic stress formula in predicting stress states for
material failure problems.
1. Introduction

The peridynamics is a nonlocal continuum mechanics theory, which
was introduced by Silling (2000) in an attempt to model deformation in
the solids with discontinuities, such as cracks and fractures. The peri-
dynamic theory employs spatial–integral equations without the use of
spatial derivatives (Lehoucq and Silling, 2008; Silling, 2000; Silling and
Askari, 2005; Madenci and Oterkus, 2014; Bergel and Li, 2016; Tong
and Li, 2016), which is in contrast to the partial differential equations
used as the governing equations in the classical continuum mechanics,
providing a general framework for problems involving discontinuities
or singularities in the deformation. Therefore, the peridynamic theory
enables to address the spontaneous formation, propagation, branching
and coalescing of discontinuities such as cracks, without the need for
the special techniques of fracture mechanics (Ha and Bobaru, 2010,
2011; Hu et al., 2012; Fan and Li, 2017; Lai et al., 2018).

There are two types of peridynamic models: bond-based (Silling,
2000; Bergel and Li, 2016) and state-based (Silling et al., 2007; Silling
and Lehoucq, 2010). The bond-based formulation was first proposed by
Silling, in which the interaction between material particles in the con-
tinuum is described by a pairwise force function. Due to its simplicity
and clear physical interpretation, the bond-based peridynamic theory
has been employed in modeling of a wide range of material failure

∗ Corresponding author.
E-mail address: shaofan@berkeley.edu (S. Li).

problems, such as the fracture process of fiber-reinforced composite
materials (Zhou et al., 2017; Javili et al., 2019; Mikata, 2019), and
fracture mode of quasi-brittle materials (Yu et al., 2020), which may
have difficulties to do by using other numerical methods, such as finite
element methods.

Nevertheless, as a nonlocal continuum mechanics, the bond-based
peridynamics has difficulties to calculate stress. To resolve this is-
sue, Lehoucq and Silling (2008) and Silling and Lehoucq (2008) de-
fined a so-called peridynamic stress. However, this peridynamic stress
is cumbersome to be used, so that we cannot really use the bond-
based peridynamics for continua with general material constitutive
relations. In order to eliminate the limitations of the bond-based peri-
dynamics, Silling and his co-workers (Silling et al., 2007; Silling and
Lehoucq, 2010) then developed a state-based peridynamic formulation
by introducing the concept of peridynamic force states which contain
information about peridynamic interactions. While on the one hand,
the state-based peridynamics lost the advantages of the bond force
potential function, and its damage description becomes ad hoc and
inconsistent with its material constitutive relation. On the other hand,
the bond-based peridynamics does not have a usable stress tensor mea-
sure, and this becomes a practical issue for describing the constitutive
behaviors of a material in terms of a stress tensor as in continuum
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mechanics (Silling et al., 2007). Even though there have been attempts
to solve this problem, e.g. Behzadinasab and Foster (2020), the problem
remains as a main barrier for the bond-based peridynamics becoming
an engineering analysis and design tool.

In this paper, we reexamine the peridynamic stress proposed by,
Lehoucq and Silling (2008), and Silling and Lehoucq (2008), and we
hope to find a useful, computable, and simple formulation for the
peridynamic stress. According to Lehoucq and Silling (2008), Silling
and Lehoucq (2008), the peridynamic stress was defined as follows,

P𝐿𝑆 (𝐗) ∶=
1
2 ∫2 ∫

∞

0 ∫

∞

0
(𝑦+ 𝑧)2𝐟 (𝐗+ 𝑦𝐌,𝐗− 𝑧𝐌)⊗𝐌𝑑𝑧𝑑𝑦𝑑𝛺𝐌, (1)

where P𝐿𝑆 (𝐗) denotes the nonlocal peridynamic stress tensor at the
material particle 𝐗, and the subscript means that this is the Lehoucq–
Silling definition. In the expression of Eq. (1), 2 is the unit sphere,
𝑑𝛺𝐌 denotes a differential solid angle on 2 in the direction of any
unit vector 𝐌, and 𝐟 represents corresponding pairwise force density.

The derived peridynamic stress tensor which is obtained from the
peridynamic bond forces that geometrically pass through the material
point (Lehoucq and Silling, 2008; Silling and Lehoucq, 2008). Lehoucq
and Silling (2008), Silling and Lehoucq (2008), and Madenci and
Oterkus (2014) also suggested that if the motion, constitutive model,
and any non-homogeneities are sufficiently smooth, the peridynamic
stress tensor converges to a Piola–Kirchhoff stress tensor when the
horizon size converges to zero. However, although the peridynamic
stress tensor defined by Lehoucq and Silling (2008) and Silling and
Lehoucq (2008) enables to establish a closer connection between peri-
dynamics and the classical view of continuum mechanics, it is too
complicated and cumbersome to be evaluated, especially for the bond-
based peridynamic model in which the pairwise force density contains
all constitutive information about materials.

To address the issue, in this paper, we show that in peridynamic
particle formulation, which is a special case of the nonlocal contin-
uum, the peridynamic stress tensor has a mathematical expression
of a weighted static Virial stress developed by Irving and Kirkwood
(1950) and Hardy (1982). The outline of this paper is as follows. The
expression of peridynamic stress tensor and its derivation process are
described in Section 2. Several numerical examples are presented in
Section 3 to demonstrate the accuracy and effectiveness of the proposed
peridynamic stress formulation. Final remarks are drawn in Section 4.

2. Peridynamic stress tensor

In classical continuum mechanics, the equation of motion can be
expressed in a differential form with respect to the referential configu-
ration locally at a material particle 𝐗 and time 𝑡,

𝜌�̈�(𝐗, 𝑡) = ∇ ⋅ 𝐏(𝐗, 𝑡) + 𝐛(𝐗, 𝑡), (2)

where 𝜌 is the material density, �̈� is the acceleration vector field, 𝐏(𝐗, 𝑡)
is the local first Piola–Kirchhoff stress, the symbol ∇⋅ is the divergence
operator, and 𝐛(𝐗, 𝑡) is a prescribed body force density field. As a
nonlocal continuum model, the expression of peridynamics is written
in an integro-differential form without using spatial derivatives as the
stress divergence is replaced with an integer over the peridynamic bond
interactions within the family 𝑋 (Silling, 2000; Silling et al., 2007;
Silling and Lehoucq, 2010). Therefore, the peridynamic equation of
motion is (Lehoucq and Silling, 2008; Silling, 2000):

𝜌�̈�(𝐗, 𝑡) = ∫
𝐟 (𝐗′,𝐗, 𝑡)𝑑𝑉𝑋′ + 𝐛(𝐗, 𝑡), ∀𝐗 ∈ , (3)

where  ∈ R3, 𝐗 is the material particle in the referential configuration
of a region , 𝑑𝑉𝑋′ is the volume associated with material particle 𝐗′

in the referential configuration, and 𝑡 ≥ 0 is the time. Note that in
peridynamics the nonlocal effect is characterized by a neighborhood
support 𝑋 = {𝐗′ ∈  ∶ |𝐗 − 𝐗′

| < 𝛿} for the material point 𝐗, which
is also called as the horizon. 𝛿 is defined as the radius of the horizon,
2

which may be understood as the physical length scale of the nonlocal
interaction. In the integral in the above equation, 𝐟 denotes the pairwise
force density per unit volume square (force∕volume2), that 𝐗′ exerts on
𝐗. Conservation of linear and angular momenta requires that the force
density 𝐟 is antisymmetric with respect to the positions of 𝐗 and 𝐗′

(see Lehoucq and Silling, 2008; Silling and Lehoucq, 2008, 2010),

𝐟 (𝐗′,𝐗) ∶= 𝐭𝑠(𝐗′,𝐗) − 𝐭𝑠(𝐗,𝐗′) = −𝐟 (𝐗,𝐗′), (4)

where 𝐭𝑠(𝐗′,𝐗) represents the force state vector that material particle
𝐗′ exerts on the material particle 𝐗, in which the superscript ’𝑠’
indicates the force state.

Although Eq. (3) extends the balance equation of linear momentum
to nonlocal media, it loses some valuable properties that are associated
with the local balance law such as the divergence theorem. Noticing
such inadequacy, Lehoucq and Silling (2008), and Silling and Lehoucq
(2008) proposed the following nonlocal Peridynamic Stress Tensor,

P𝐿𝑆 (𝐗) ∶=
1
2 ∫2 ∫

∞

0 ∫

∞

0
(𝑦+ 𝑧)2𝐟 (𝐗+ 𝑦𝐌,𝐗− 𝑧𝐌)⊗𝐌𝑑𝑧𝑑𝑦𝑑𝛺𝐌, (5)

ehoucq and Silling (2008), and Silling and Lehoucq (2008) also
emonstrated a relationship between the nonlocal peridynamic stress
ensor P𝐿𝑆 and the pairwise force density 𝐟 , i.e.

⋅P𝐿𝑆 (𝐗) = ∫𝑋

𝐟 (𝐗′,𝐗)𝑑𝑉𝑋′ , (6)

s a consequence, the peridynamic equation of motion (see Eq. (3)) is
quivalent to the following partial differential equation:

�̈�(𝐗, 𝑡) = ∇ ⋅P𝐿𝑆 (𝐗, 𝑡) + 𝐛(𝐗, 𝑡), (7)

hich is formally identical to the equation of motion in the classical
heory (see Eq. (2)). The peridynamic stress tensor P𝐿𝑆 is the analogue
f the first Piola–Kirchhoff stress 𝐏. The proof can be found in Lehoucq
nd Silling (2008), and Silling and Lehoucq (2008), and readers may
lso find discussions, interpretations, and examples in Lehoucq and
illing (2008), and Silling and Lehoucq (2008).

By doing so, we are able to relate the local divergence to the
onlocal divergence (see Eq. (6)). Thus, roughly speaking, there is a
eneral equivalence between applying the local differential operator on
he nonlocal tensor and applying the nonlocal operator to local vector
lux. An immediate benefit of Eq. (6) is that we can link the divergence
f the peridynamic stress with the boundary nonlocal linear momentum
lux, i.e.


∇ ⋅P𝐿𝑆𝑑𝑉𝑋 = ∫𝜕

P𝐿𝑆 ⋅ 𝐍𝑑𝑆𝑋 , (8)

hich allows us to establish peridynamic-based Galerkin weak formu-
ations conveniently, and maybe even formulate peridynamic theories
f plates and shells.

By using Noll’s lemmas (Noll, 1955), such nonlocal integral theo-
ems have been late extended to a more general setting by Gunzburger
nd Lehoucq (2010) and Du et al. (2013). In the practice of modeling
nd simulation, however, the peridynamic stress defined in Eq. (5)
s too complicated and cumbersome to be evaluated. To resolve this
ssue, in the following, we present the main results of this work which
ignificantly simplifies the expression of the peridynamic stress.

emma 2.1 (Noll(1955)). Let 𝐟 (𝐗,𝐗′) be a vector function defined in the
nitial configuration and satisfy the following condition,

(𝐗,𝐗′) = −𝐟 (𝐗′,𝐗), (9)

here 𝐗,𝐗′ are continuous variables. If 𝐟 (𝐗′,𝐗) denotes the pairwise
orce density acting on 𝐗 from 𝐗′. Then we can define the nonlocal first
iola–Kirchhoff stress P𝑁𝑜𝑙𝑙(𝐗) as

𝑁𝑜𝑙𝑙(𝐗) ∶= −1 1
𝐟 (𝐗 + 𝛼𝐑,𝐗 − (1 − 𝛼)𝐑)⊗ 𝐑𝑑𝛼𝑑𝑉𝐑 , (10)
2 ∫R3 ∫0
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Fig. 1. Illustration of peridynamic particle sampling strategy.
which has the following property,

∇ ⋅P𝑁𝑜𝑙𝑙
|

|

|𝐗
= ∫𝐗

𝐟 (𝐗′,𝐗)𝑑𝑉𝐗′ . (11)

where 𝐗 ∈ 𝛺0.

This is a special case of the first Noll lemma (Noll, 1955). The
proof of the lemma can be found in Noll (1955), and Lehoucq and Von
Lilienfeld-Toal (2010). We think that the nonlocal first Piola–Kirchhoff
stress is the same or equivalent to the peridynamic stress proposed
by Lehoucq and Silling (2008), i.e.

P𝑁𝑜𝑙𝑙 = P𝐿𝑆 .

In the rest of the paper, we simply denote it as P without distinction.
The readers may find the relevant discussions, interpretations, and
examples of the peridynamic stress in Lehoucq and Silling (2008).

Theorem 2.1 (Alternative Form of Peridynamic Stress Tensor). Consider
the peridynamic force density that can be expressed as the following expres-
sion of the Irving–Kirkwood–Hardy formulation (Silling and Lehoucq, 2010;
Irving and Kirkwood, 1950; Hardy, 1982),

𝐟 (𝐗,𝐗′) =
𝑁𝑋
∑

𝐼=1

𝑁𝑋
∑

𝐽=1,𝐽≠𝐼
𝐭𝐼𝐽𝑤(𝐗𝐼 − 𝐗)𝛿((𝐗𝐽 − 𝐗𝐼 ) − (𝐗′ − 𝐗)), (12)

where 𝐗,𝐗′,𝐗𝐼 and 𝐗𝐽 are material particles in the referential configura-
tion, 𝐭𝐼𝐽 is the force (not the force state) acting on the particle 𝐗𝐼 from
the particle 𝐗𝐽 (see Fig. 1), 𝑁𝑋 is the total number of particles inside the
horizon 𝑋 , 𝛿(𝐗) is the Dirac delta function, and 𝑤(𝐗𝐼 − 𝐗) is a window
function or kernel function.

The nonlocal peridynamic stress defined by Noll (Noll, 1955)

P(𝐗) ∶= −1
2 ∫R3 ∫

1

0
𝐑⊗ 𝐟 (𝐗 + 𝛼𝐑,𝐗 − (1 − 𝛼)𝐑)⊗ 𝐑𝑑𝛼𝑑𝑉𝐑 , (13)

has the following exact analytical form,

P(𝐗) ∶= 1
2

𝑁𝑋
∑

𝐼=1

𝑁𝑋
∑

𝐽=1,𝐽≠𝐼
𝐭𝐼𝐽 ⊗ (𝐗𝐽 − 𝐗𝐼 )𝐵𝐼𝐽 (𝐗), 𝐗𝐼 ,𝐗𝐽 ∈ 𝑋 , (14)

where 𝐗 is the center point of the horizon 𝑋 and 𝐗 ∈ , 𝐭𝐼𝐽 =
𝐟 (𝐗𝐽 ,𝐗𝐼 )𝑉𝐼𝑉𝐽 is the force acting on the particle 𝐗𝐼 by the particle 𝐗𝐽 ,
where 𝐗𝐼 ,𝐗𝐽 ∈ 𝑋 , 𝑉𝐼 and 𝑉𝐽 represents the volume of material particle
𝐗𝐼 and 𝐗𝐽 , respectively, as shown in Fig. 1, and

𝐵𝐼𝐽 (𝐗) = ∫

1

0
𝑤(𝛼(𝐗𝐽 − 𝐗𝐼 ) + 𝐗𝐼 − 𝐗)𝑑𝛼 (15)

is the bond function.
3

Proof. Based on Noll’s lemma (Noll, 1955), we can write the peridy-
namic first Piola–Kirchhoff stress as,

P(𝐗) = −1
2 ∫2

𝑑𝛺𝑚 ∫

∞

0
𝑅2𝑑𝑅∫

1

0
𝐟 (𝐗 + 𝛼𝑅𝐌,𝐗 − (1 − 𝛼)𝑅𝐌)⊗𝐌𝑑𝛼

= −1
2 ∫R3

𝑑𝑉𝑅 ∫

1

0
𝐟 (𝐗 + 𝛼𝐑,𝐗 − (1 − 𝛼)𝐑)⊗ 𝐑𝑑𝛼 , ∀𝐗 ∈ . (16)

Considering the Hardy–Murdoch procedure (Hardy, 1982; Murdoch,
1983, 2007), we have the following peridynamic sampling formulation
(see Fig. 1)

𝐟 (𝐗′,𝐗) = −
𝑁𝑋
∑

𝐼=1

𝑁𝑋
∑

𝐽=1,𝐽≠𝐼
𝐭𝐼𝐽𝑤(𝐗𝐼 − 𝐗)𝛿((𝐗𝐽 − 𝐗𝐼 ) − (𝐗′ − 𝐗)), (17)

where the window function must satisfy the following conditions,

∫𝑋

𝑤(𝐲 − 𝐱)𝑑𝑉𝑦 = 1 , (18)

and

lim
𝑟→0

𝑤(𝑟) → 𝛿(𝑟) . (19)

The condition shown in Eq. (18) is the averaging requirement, and the
condition shown in Eq. (19) ensures that the Dirac comb sampling can
converge to a correct continuum form of the integrand in Eq. (4), i.e.

𝑁𝑋
∑

𝐼=1

𝑁𝑋
∑

𝐽=1,𝐽≠𝐼
𝐭𝐼𝐽𝑤(𝐗𝐼 −𝐗)𝛿((𝐗𝐽 −𝐗𝐼 ) − (𝐗′ −𝐗)) → 𝐟 (𝐗′,𝐗) = −𝐟 (𝐗,𝐗′) .

(20)

In peridynamic model, we often choose the following window func-
tions:

• Radial step function:

𝑤(𝑟) =

⎧

⎪

⎨

⎪

⎩

1
𝛺𝑋

, 𝑟 < 𝛿

0, otherwise
(21)

where 𝛺𝑋 = 𝑣𝑜𝑙(𝑋 ) = (4∕3)𝜋𝛿3 represents the volume of horizon
𝑋 , and 𝛿 is the radius of the horizon;

• Gaussian function;

𝑤(𝑟) = 1 exp(−(𝑟∕𝛿)2), (22)

𝛿3𝜋3∕2
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Fig. 2. Graphic illustration of the bond integration variable 𝐗𝑥𝛼 ∈ 𝑋 , where 𝐗𝑥𝛼 = 𝛼𝐗𝑥𝐽 + (1 − 𝛼)𝐗𝑥𝐼 .
• Cubic spline function:

𝑤(𝑟) = 8
𝜋𝛿3

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 − 3
2
(𝑟∕𝛿)2 + 3

4
(𝑟∕𝛿)3, 𝑟 < 1∕2

1
4
(2 − 𝑟∕𝛿)3, 1∕2 < 𝑟 < 1

0. otherwise

(23)

Letting

𝐗 = 𝐗 + 𝛼𝐑, and 𝐗′ = 𝐗 − (1 − 𝛼)𝐑,

and substituting them into Eq. (17), we then have

𝐟 (𝐗,𝐗′) = 𝐟 (𝐗 + 𝛼𝐑,𝐗 − (1 − 𝛼)𝐑)

=
𝑁𝑋
∑

𝐼=1

𝑁𝑋
∑

𝐽=1,𝐽≠𝐼
𝐭𝐼𝐽𝑤((𝐗𝐼 − 𝐗) − 𝛼𝐑)𝛿(𝐑 − (𝐗𝐼 − 𝐗𝐽 )), (24)

where 𝐗𝐼 ,𝐗𝐽 ∈ 𝑋 , and 𝐗𝐼 ≠ 𝐗𝐽 . Considering the following integra-
tion identities,

∫

∞

−∞
𝛿(𝜉 − 𝑥)𝑤(𝑥 − 𝜂)𝑑𝑥 = 𝑤(𝜉 − 𝜂), (25)

we first integrate

∫R3
𝛿(𝐑 − (𝐗𝐼 − 𝐗𝐽 ))𝑤((𝐗𝐼 − 𝐗) − 𝛼𝐑)𝐑𝑑𝑉𝑅

= (𝐗𝐼 − 𝐗𝐽 )𝑤
(

(𝐗𝐼 − 𝐗) − 𝛼(𝐗𝐼 − 𝐗𝐽 )
)

. (26)

Next, following Ref. Hardy (1982), we may define the second integral
as the so-called bond function, i.e.

𝐵𝐼𝐽 (𝐗) = ∫

1

0
𝑤(𝛼(𝐗𝐽 − 𝐗𝐼 ) + 𝐗𝐼 − 𝐗)𝑑𝛼. (27)

Thus, we have

P(𝐗) = 1
2
(

𝑁𝑋
∑

𝐼=1

𝑁𝑋
∑

𝐽=1,𝐽≠𝐼
𝐭𝐼𝐽 ⊗ (𝐗𝐽 − 𝐗𝐼 )

)

𝐵𝐼𝐽 (𝐗) , (28)

which is called the Hardy stress (see Hardy (1982), Zimmerman et al.
(2004)).

If we choose 𝑤(𝐱) as the spherical radial step function (see Eq. (21)),
one can see that

𝑤(𝛼(𝐗 − 𝐗 ) + 𝐗 − 𝐗) = 𝑤(𝛼(𝐗 − 𝐗) + (1 − 𝛼)(𝐗 − 𝐗)) .
4

𝐽 𝐼 𝐼 𝐽 𝐼
If 𝐗𝐼 ,𝐗𝐽 ∈ 𝑋 , we can see that

𝐗𝑥𝛼 ∶= 𝛼(𝐗𝐽 − 𝐗) + (1 − 𝛼)(𝐗𝐼 − 𝐗) ∈ 𝑋 .

This is because that

|𝛼(𝐗𝐽 − 𝐗) + (1 − 𝛼)(𝐗𝐼 − 𝐗)| ≤ |𝛼(𝐗𝐽 − 𝐗) + (1 − 𝛼)(𝐗𝐽 − 𝐗)| = |𝐗𝐽 − 𝐗| ≤ 𝛿

if |𝐗𝐽 − 𝐗| ≥ |𝐗𝐼 − 𝐗|, and vice vera

|𝛼(𝐗𝐽 − 𝐗) + (1 − 𝛼)(𝐗𝐼 − 𝐗)| ≤ |𝛼(𝐗𝐼 − 𝐗) + (1 − 𝛼)(𝐗𝐼 − 𝐗)| = |𝐗𝐼 − 𝐗| ≤ 𝛿

if |𝐗𝐽 − 𝐗| ≤ |𝐗𝐼 − 𝐗| as shown in Fig. 2. Thus, it is readily to show
that

𝐵𝐼𝐽 (𝐗) =
1
𝛺𝑋

, if 𝐗𝐼 ,𝐗𝐽 ∈ 𝑋

For this special case, the peridynamic stress has the following
expression,

P(𝐗) = 1
2𝛺𝑋

(

𝑁𝑋
∑

𝐼=1

𝑁𝑋
∑

𝐽=1,𝐽≠𝐼
𝐭𝐼𝐽 ⊗ (𝐗𝐽 − 𝐗𝐼 )

)

. (29)

The Eq. 29 affirms that the peridynamic stress is the first Piola–
Kirchhoff Virial stress.

In numerical calculations, we use the following formula to calculate
bond force,

𝐭𝐼𝐽 = 𝐭𝑠𝐼𝐽𝑉𝐼𝑉𝐽 (30)

where 𝑉𝐼 , 𝑉𝐽 are the volume for the particle I and J, and

𝐭𝑠(𝐗𝐼 ,𝐗𝐽 ) =
1
2
𝐟 (𝐗𝐼 ,𝐗𝐽 ) . (31)

Example 2.1. Considering 𝑤(𝐱) as the Gaussian function (see Eq. (22))

𝑤(𝑟) = 1
𝛿3(2𝜋)3∕2

exp(−1
2
(𝑟∕𝛿)2),

we then have

𝑤(𝛼𝐗𝐼𝐽 +𝐗𝐼−𝐗) = 1 exp
(

− 1 (𝛼2𝑋2 +2𝛼 cos 𝜃𝑋𝐼𝐽𝑋𝑥𝐼+𝑋2 )
)

,

𝛿3(2𝜋)3∕2 2𝛿2 𝐼𝐽 𝑥𝐼
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Fig. 3. Constitutive relation of material particles in the PMB material model.

where 𝐗𝐼𝐽 = 𝐗𝐽 −𝐗𝐼 , 𝑋𝐼𝐽 = |𝐗𝐼𝐽 |; 𝐗𝑥𝐼 = 𝐗𝐼 −𝐗 and 𝑋𝑥𝐼 = |𝐗𝑥𝐼 |, and

cos 𝜃 =
𝐗𝐼𝐽 ⋅ 𝐗𝑥𝐼
|𝐗𝐼𝐽 ||𝐗𝑥𝐼 |

.

Using the formula

∫
1

√

2𝜋
exp(−𝑥2)𝑑𝑥 = 𝛷(𝑥) + 𝐶,

where

𝛷(𝑥) = 1
2

(

1 + erf
( 𝑥
√

2

)

)

,

we then have the bond function 𝐵𝐼𝐽 (𝐗),

𝐵𝐼𝐽 (𝐗) = ∫

1

0
𝑤(𝛼𝐗𝐼𝐽 + 𝐗𝐼 − 𝐗)𝑑𝛼

= 1
𝛿3(2𝜋)3∕2

exp
( 1
2𝛿2

(

− sin2 𝜃2𝑋2
𝑥𝐼
)

)1
𝑏
𝛷
(

𝑎 + 𝑏𝛼
)

|

|

|

1

0

= 1
𝛿3(2𝜋)3∕2𝑏

exp
( 1
2𝛿2

(

− sin2 𝜃2𝑋2
𝑥𝐼
)

)(

𝛷
(

𝑎 + 𝑏
)

−𝛷(𝑎)
)

, (32)

where

𝑎 =
cos 𝜃𝑋𝑥𝐼

𝛿
, and 𝑏 =

𝑋𝐼𝐽
𝛿

.

Since all measures of stress are interrelated, the different description
of stress states at a given material particle within the framework of
peridynamics can be found. Define the nonlocal deformation gradient
𝐅 at material point 𝐗 as (see Silling et al., 2007; Silling and Lehoucq,
2010; Warren et al., 2009),

𝐅(𝐗) =
{

∫𝑋

𝑤(|𝐗′ − 𝐗|)(𝐱′ − 𝐱)⊗ (𝐗′ − 𝐗)𝑑𝑉𝑋′

}

⋅𝐊−1
𝑋 , (33)

where 𝐊 is the shape tensor of material particle 𝐗, i.e.

𝐊 = ∫𝑋

𝑤(|𝐗′ − 𝐗|)(𝐗′ − 𝐗)⊗ (𝐗′ − 𝐗)𝑑𝑉𝑋′ , (34)

and 𝐱 = 𝐮 + 𝐗 is the material point in the current configuration. Here
𝐮 is the displacement field, 𝐗′ − 𝐗 and 𝐱′ − 𝐱 are the relative position
of the material points 𝐗′ and 𝐗 in the referential configuration and in
the current configuration, respectively. If we let 𝐽 = 𝛺𝑥∕𝛺𝑋 , where 𝛺𝑥
is the horizon volume in the current configuration, we can write down
the peridynamic Virial stress or peridynamic Cauchy stress as

𝝇(𝐱) = 𝐽−1P𝐅𝑇 = 1
2𝛺

(

𝑁𝑋
∑

𝑁𝑋
∑

𝐭𝐼𝐽 ⊗ (𝐱𝐽 − 𝐱𝐼 )
)

, 𝐱𝐼 , 𝐱𝐽 ∈ 𝑥 (35)
5

𝑥 𝐼=1 𝐽=1,𝐽≠𝐼
Remark 2.1. 1. In general, the peridynamic first Piola–Kirchhoff virial
stress tensor,

P(𝐗) = 1
2𝛺𝑋

𝑁𝑋
∑

𝐼=1

𝑁𝑋
∑

𝐽=1,𝐽≠𝐼
𝐭𝐼𝐽 ⊗ (𝐗𝐽 − 𝐗𝐼 )(𝐵𝐼𝐽 (𝐗)𝛺𝑋 ) (36)

is a weighted static Virial stress.
2. For the force density form 𝐟 = 𝐟 (𝐗′,𝐗) in Eq. (3), it may

need a different generating function other than that was used in the
Hardy–Murdoch procedure. For instance, one can adopt the so-called
doubly-average stress procedure (Murdoch and Bedeaux, 1994; Admal
and Tadmor, 2010), in which

𝐟 (𝐗,𝐗′, 𝑡) ∼
𝑁𝑋
∑

𝐼=1

𝑁𝑋
∑

𝐽=1.𝐽≠𝐼
𝐭𝐼𝐽𝑤(𝐗𝐼 − 𝐗)𝑤(𝐗𝐽 − 𝐗′) .

However, the general conclusions of this paper will remain.
3. Amazingly, the result reveals the fact that the mesoscale peri-

dynamic stress tensor has exactly the same expression as that of the
microscale static Virial stress, except that it does not count for the con-
tribution from the kinetic energy. Moreover, the expression Eq. (36) is
so simple that it can be readily implemented in numerical calculations
without much trouble.

3. Numerical examples

In this section, we present several numerical examples to demon-
strate the accuracy and effectiveness of the proposed peridynamic stress
formula (see Eq. 29) in predicting the stress states of problems involv-
ing discontinuous deformations. In the peridynamic stress calculations,
the force 𝐭𝐼𝐽 = 𝐟 (𝐗𝐽 ,𝐗𝐼 )𝑉𝐼𝑉𝐽 shown in Eq. (29) is computed within the
framework of bond-based peridynamics, and the radial step function is
employed as the window function.

In the following, we will first give a brief review of bond-based peri-
dynamics. For the prototype micro-brittle (PMB) linear elastic model,
the peridynamic material potential is given as

𝜙(𝜼) = 1
2
𝑐(‖𝝃‖)𝑠2‖𝝃‖), (37)

where

𝑠 =
‖𝜼 + 𝝃‖ − ‖𝝃‖

‖𝝃‖
(38)

is the bond stretch, which is therefore the change of a bond in length
as it deforms. Here 𝝃 ∶= 𝐗′ − 𝐗 is the bond vector in undeformed
configuration, and 𝜼 ∶= 𝐮(𝐗′, 𝑡) − 𝐮(𝐗, 𝑡) is the relative displacement
between material particles 𝐗′ and 𝐗,and 𝑐(𝝃) is called the micromodu-
lus function which can be evaluated by equating the energy densities
of peridynamic and classical continuum theory.

The PMB model is a typical example of bond-based peridynamic
material models. In this model, each bond acts like a linear spring,
so that the pairwise force density in the bond is fully determined by
the deformation of that particular bond, and does not depend on what
happens in other bonds. Thus, the pairwise bond force density 𝐟 (𝐗′,𝐗)
acting on 𝐗 from 𝐗′ can be found as,

𝐟 (𝐗′,𝐗) = 𝐟 (𝜼, 𝝃) = 𝜕𝜙
𝜕𝜼

=

⎧

⎪

⎨

⎪

⎩

𝝃 + 𝜼
‖𝝃 + 𝜼‖

𝑐(𝝃)𝑠, ‖𝝃‖ ≤ 𝛿

0, ‖𝝃‖ > 𝛿
(39)

where 𝛿 is radius of the horizon. Note that the value of 𝑐(𝝃) is assumed
as a constant at the moment, .ie.

𝑐(𝝃) = 𝑐0 =

⎧

⎪

⎨

⎪

⎩

6𝐸
𝜋𝛿4(1 − 2𝜈)

, 3 − dimensional and plane strain conditions

6𝐸
𝜋ℎ𝛿3(1 − 𝜈)

, plane stress condition

(40)
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Fig. 4. Graphic illustration of a square column under uniaxial tension (unit=mm).
Fig. 5. The calculated stress–strain relation for the square column under uniaxial
tension with the PMB constitutive model.

Fig. 6. Graphic illustration of the plate with a circular hole loaded under uniaxial
tension.

where 𝐸 is the Young’s modulus, 𝜈 is the Poisson’s ratio, and ℎ is the
thickness of the plane. In the bond-based peridynamics, the particles
interact only through a pair-potential, which leads to an effective
Poisson’s ratio of 1∕4 in 3-dimensional and plane strain problems and
1∕3 in plane stress problems, for an isotropic and linear microelastic
material.

The simplest way to introduce failure into the linear microelastic
model in bond-based peridynamics is by allowing bonds to break when
the corresponding stretch 𝑠 of the bond exceeds its critical stretch
𝑠0. Thus, to model damage, the peridynamic force relation given in
Eq. (39) is modified by introducing the failure parameter 𝜇(𝝃, 𝑡) to
6

reflect bond breakage,

𝐟 (𝐗′,𝐗) =
⎧

⎪

⎨

⎪

⎩

𝝃 + 𝜼
‖𝝃 + 𝜼‖

𝜇(𝝃, 𝑡)𝑐(𝝃)𝑠 ‖𝝃‖ ≤ 𝛿,

0 ‖𝝃‖ > 𝛿.
(41)

The failure parameter 𝜇(𝝃, 𝑡) is a history-dependent scalar-valued func-
tion that takes on values of either 1 or 0, and is expressed as (Silling
and Askari, 2005),

𝜇(𝝃, 𝑡) =

{

1, if 𝑠(𝝃, 𝑡′) < 𝑠0 for all 0 < 𝑡′ < 𝑡,

0. otherwise,
(42)

where 𝑠0 is the critical stretch for bond failure, which is assumed as a
constant at the moment. It then leads to a notion of local damage at
material particle 𝐗, which is defined as,

𝜑(𝐗, 𝑡) = 1 −
∫𝑋

𝜇(𝐗′ − 𝐗, 𝑡)𝑑𝑉𝑋′

∫𝑋
𝑑𝑉𝑋′

(43)

It is worth noting that the linear microelastic material using Eq. (40)
and combined with the bond breakage criteria given by Eqs. (41) and
(42) is called the Prototype Micro-elastic Brittle (PMB) material model.
Its constitutive relation is shown in Fig. 3. The critical stretch 𝑠0 with
the PMB model can be related to the energy release rate as derived
in Silling and Askari (2005),

𝑠0 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

√

5𝐺0
9𝑘𝛿

three dimensions,
√

𝜋𝐺0
3𝑘𝛿

two dimensions,

(44)

where 𝐺0 is the critical energy release rate of the material, which is
related to its fracture toughness, and 𝑘 is the bulk modulus.

In the following simulations, for verification purpose, the calculated
peridynamic stress is compared with finite element analysis results,
analytical solutions, or experimental data. The finite element analysis
is carried out using Abaqus software. In peridynamic simulations, the
adaptive dynamic relaxation (ADR) (Kilic and Madenci, 2010) has been
employed for static and quasi-static problems. In order to eliminate
the surface effect, the boundary conditions are implemented through
fictitious layers as described by Macek and Silling (2007), which needs
to be at least at the size of the horizon 𝛿 to ensure that the imposed
boundary condition is accurately reflected in the real domain (Nguyen
and Oterkus, 2019).

3.1. Nonlinear constitutive behaviors of the PMB material model

In general, constitutive models can provide the stress–strain rela-
tions to describe the material responses to different loading condi-
tions (Zhang et al., 2017). In the bond-based peridynamics, the PMB
model is a mesoscale constitutive model, and it assumes that the bond
force and the bond stretch are always linearly proportional before bond
failure even at large deformations, as shown in Fig. 3. On the other
hand, Silling (2000) thinks that the macroscale constitutive relation
that corresponds to the PMB model is a linear elastic model, and the
correspondence between macroscale material constants and mesoscale
material constant is given in Eq. (37).
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Fig. 7. The normal stress 𝜎𝑥𝑥 for a plate with a hole under tension (a) bond-based peridynamic, (b) Abaqus results.
Fig. 8. The normal stress 𝜎𝑦𝑦 for a plate with a hole under tension (a) bond-based peridynamic, (b) Abaqus results.
Fig. 9. The shear stress 𝜎𝑥𝑦 for a plate with a hole under tension (a) bond-based peridynamic, (b) Abaqus results.
Since now we can precisely calculate the macroscale peridynamic
stress and strain, we can then find that exact macroscale stress–strain
relation that PMB model represents in continuum mechanics. To do
so, we calculated the stress–strain relation for a square column under
tensile loading along 𝐱 direction with the magnitude of 𝜎0 = 50 GPa
with 𝑐 = 2.225×1019𝑁∕𝑀6, which corresponds to 𝐸 = 200 GPa, 𝜈 = 1∕4
and 𝛿 = 1.5065 mm (see Fig. 4).

Fig. 5 shows the calculated stress–strain relation

S = S(E) → S = S (E ) (45)
7

11 11 11
based on the PMB material constitutive model. In Eq. (45), the stress
measure is the second Piola–Kirchhoff stress S that is defined as,

S = 𝐅−1P, (46)

while the strain measure is the Green–Lagrangian strain E that is
defined as,

E = 1
2
(𝐅𝑇𝐅 − 𝐈(2)), (47)

where 𝐅 is the nonlocal deformation gradient that is defined in Eq. (33).
As can be seen from Fig. 5, the stress–strain relation behaves lin-

early at small deformations, which is consistent with the linear elastic
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Fig. 10. (a) The normalized stresses 𝜎𝑥𝑥∕𝜎0 and 𝜎𝑦𝑦∕𝜎0 along the horizontal direction shown with a red line, and (b) The normalized stresses 𝜎𝑥𝑥∕𝜎0 and 𝜎𝑦𝑦∕𝜎0 along the vertical
direction.
Fig. 11. The normalized stresses 𝜎𝑥𝑦∕𝜎0 along the circular path with radius 𝑅 = 1.4𝑟
shown with a red circle.

model postulated by Silling (2000) based on the bond-force–bond-
stretch relation of the PMB model (see Fig. 3). At large deformations,
however, the PMB model may exhibit nonlinear constitutive behaviors
to demonstrate material geometric nonlinearity.

To explain this, we first let

𝜻 = 𝝃 + 𝜼, (48)

where 𝜻 = 𝐱𝑗 − 𝐱𝑖 is the relative position of material particles 𝑗 and 𝑖 in
the current configuration.

Considering the Cauchy–Born rule, we assume that in a horizon
centered at 𝑿, the following relation holds:

𝜻 = 𝑭 ⋅ 𝝃 (49)

where 𝑭 is the deformation gradient at 𝐗, which is a constant two-
point tensor in the entire horizon. Thus, Eq. (49) leads to the following
equations:

𝑭𝝃 = 𝝃 + 𝜼 →
𝜕𝜼
𝜕𝑭

= 𝑰 (2) ⊗ 𝝃 (50)

where

𝑰 (2) ⋅ 𝝃 = 𝛿𝑖𝑗𝜉𝑗𝑬𝑖 (51)

in which 𝑰 (2) is the unit second order tensor, and 𝛿𝑖𝑗 is the Kronecker
delta.
8

Now we define the averaged strain energy density as follows

𝑊 = 1
2𝛺𝑋 ∫ ∫

𝜙(𝜼, 𝝃)𝑑𝑉𝐗𝑑𝝃, (52)

where

𝜙 = 1
2
𝑐(‖𝝃‖)𝑠2‖𝝃‖, where 𝑠 =

‖𝜼 + 𝝃‖ − ‖𝝃‖
‖𝝃‖

. (53)

We can then derive the average first Piola–Kirchhoff stress tensor
P as,

P = 𝜕𝑊
𝜕𝐅

= 1
2𝛺𝑋 ∫ ∫

𝜕𝜙(𝜼, 𝝃)
𝜕‖𝜼‖

𝜕‖𝜼‖
𝜕𝜼

𝜕𝜼
𝜕𝑭

𝑑𝑉𝐗𝑑𝝃, (54)

where
𝜕𝜙
𝜕𝜼

= 𝐟 = 𝑐𝑠𝐧, where 𝐧 =
𝜼 + 𝝃

‖𝜼 + 𝝃‖
(55)

𝜕‖𝜼‖
𝜕𝜼

=
𝜼

‖𝜼‖
, (56)

and
𝜕𝜼
𝜕𝑭

= 𝑰 (2) ⊗ 𝝃 . (57)

Substituting Eq. (55), (56) and (57) into Eq. (54), we obtain the
expression of PK-I stress as follows,

P = 1
2 ∫

[

𝐟 ⊗ 𝝃
]

𝑑𝝃 , (58)

where

𝐟 = 1
𝛺𝑋 ∫

𝐟𝑑𝑉𝐗. (59)

Consider the following peridynamic force sampling formula,

𝐟 (𝐗′,𝐗) =
𝑁
∑

𝐼=1

𝑁
∑

𝐽=1,𝐽≠𝐼
𝐭𝐼𝐽𝑤(𝐗𝐼 − 𝐗)𝛿((𝐗𝐽 − 𝐗𝐼 ) − (𝐗′ − 𝐗)) , (60)

where 𝐭𝐼𝐽 = 𝐟𝐼𝐽𝑉𝐼𝑉𝐽 . By substituting the force sampling expression in
Eq. (60) into Eq. (57), we have

P(𝐗) = 1
2 ∫

[

𝐟 ⊗ 𝝃
]

𝑑𝝃

= 1
2 ∫

𝑁
∑

𝐼=1

𝑁
∑

𝐽=1,𝐽≠𝐼
𝑤(𝐗𝐼 − 𝐗)𝐭𝐼𝐽 ⊗ 𝝃𝛿((𝐗𝐽 − 𝐗𝐼 ) − (𝐗′ − 𝐗))𝑑𝝃 .(61)

We choose the radial step function as the sampling function, i.e.

𝑤(𝑟) =

{ 1
𝛺𝑋

, 𝑟 < 𝛿

0, otherwise
(62)

where 𝛺 = 𝑣𝑜𝑙( ) = (4∕3)𝜋𝛿3, and 𝛿 is the radius of the horizon.
𝑋 𝑋
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Fig. 12. The normalized stress field 𝜎𝑥𝑥∕𝜎0 near the hole of the plate.
Fig. 13. The normalized stress field 𝜎𝑦𝑦∕𝜎0 near the hole of the plate.

Fig. 14. The normalized stress field 𝜎𝑥𝑦∕𝜎0 near the hole of the plate.

Since 𝐗,𝐗𝐼 ∈ 𝑋 , 𝑤(𝐗𝐼 −𝐗) = 1∕𝛺𝑋 . We then have the mathemat-
ical expression of the first Piola–Kirchhoff stress,
9

P(𝐗) = 1
2𝛺𝑋 ∫

𝑁
∑

𝐼=1

𝑁
∑

𝐽=1,𝐽≠𝐼
𝐭𝐼𝐽 ⊗ 𝝃𝛿(𝝃𝐼𝐽 − 𝝃)𝑑𝝃

= 1
2𝛺𝑋

𝑁
∑

𝐼=1

𝑁
∑

𝐽=1,𝐽≠𝐼
𝐭𝐼𝐽 ⊗ 𝝃𝐼𝐽 (63)

where 𝝃 = 𝐗′ − 𝐗 and 𝝃𝐼𝐽 = 𝐗𝐽 − 𝐗𝐼

𝐭𝐼𝐽 = 𝑐(||𝝃𝐼𝐽 ||)
||𝜼𝐼𝐽 + 𝝃𝐼𝐽 || − ||𝝃𝐼𝐽 ||

||𝝃𝐼𝐽 ||
𝜼𝐼𝐽 + 𝝃𝐼𝐽

||𝜼𝐼𝐽 + 𝝃𝐼𝐽 ||
𝑉𝐼𝑉𝐽 (64)

and 𝜼𝐼𝐽 = 𝐮𝐽 − 𝐮𝐼 .

One can see that the PK-I stress in Eq. (62)is the exact same as the
nonlocal peridynamic stress in Eq. (29).

Moreover, we can then find the elastic tensor by calculating

C = 𝜕S
𝜕E

, (65)

where

E = 1
2
(𝐅𝑇𝐅 − 𝐈) (66)

is the Green–Lagrangian strain and S = 𝐅−1P is the second Piola–
Kirchhoff stress.

By chain rule, we have

C(𝜼) = 𝜕S
𝜕𝐅

𝜕𝐅
𝜕E

= 𝜕
𝜕𝐅

(𝐅−1P) 𝜕𝐅
𝜕E

= 𝜕𝐅−1

𝜕𝐅
P

𝜕𝐅
𝜕E

+ 𝐅−1 𝜕P
𝜕𝐅

𝜕𝐅
𝜕E

, (67)

where
𝜕𝐅−1

𝜕𝐅
= −𝐅−1 ⊗ 𝐅−1 and 𝜕𝐅

𝜕E
= 𝐅−𝑇 ⋅ I(4), (68)

and
𝜕P(𝐗)
𝜕𝐅

= 1
2𝛺𝑋 ∫ ∫

𝜕
𝜕𝐅

(
𝜕𝜙
𝜕𝐅

)𝑑𝑉𝐗𝑑𝝃 = 1
2 ∫

𝜕
𝜕𝐅

(𝐟 ⊗ 𝝃)𝑑𝝃

= 1
2 ∫

( 𝜕𝐟
𝜕𝐅

⊗ 𝝃)𝑑𝝃 = 1
2 ∫

( 𝜕𝐟
𝜕𝜼

𝜕𝜼
𝜕𝐅

⊗ 𝝃)𝑑𝝃

= 1
2 ∫

( 𝜕2𝜙
𝜕𝜼𝜕𝜼

⊗ 𝝃 ⊗ 𝝃
)

𝑑𝝃 . (69)

In the last line, we made a localized approximation by assuming that

𝐟 ≈ 1
𝑉𝑂 ∫𝑉𝑂

𝐟 (𝝃, 𝜼)𝑑𝑉𝑂 (70)

where 𝑉𝑂 is a small volume that only contains a tiny neighborhood of
the horizon center 𝐗 . Thus, most 𝐗′ ∈  almost do not change for
𝑂
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Fig. 15. (a) Graphic illustration of the plate with a circular hole under tensile displacement, (b) The PK-I stresses P𝑥𝑥 and P𝑦𝑦 along the horizontal direction shown with a red
line, (c) The PK-I stresses P𝑥𝑥 and P𝑦𝑦 along the vertical direction, and (d) The PK-I stresses P𝑥𝑦 and P𝑦𝑥 along the circular path with radius 𝑅 = 1.2𝑟.
any 𝐗 ∈ 𝑉𝑂. This is because 𝝃 = 𝐗′ − 𝐗 ≈ 𝐗′ − 𝐗𝑂. Therefore,

𝐟 ≈ 1
𝑉𝑂 ∫𝑉𝑂

𝐟 (𝝃, 𝜼)𝑑𝑉𝑂 ≈ 𝐟 (𝝃, 𝜼) .

Subsequently, we have

𝜕𝐟
𝜕𝜼

= 𝜕𝐟
𝜕𝜼

=
𝜕2𝜙
𝜕𝜼𝜕𝜼

= 𝑐(‖𝝃‖)
(

( 𝑠
‖𝜼 + 𝝃‖

)

𝐈 + (𝜼 + 𝝃)⊗ (𝜼 + 𝝃)
‖𝜼 + 𝝃‖3

)

. (71)

Considering

𝜼 = 0 → 𝑠 = 0, P = 0, and 𝜕𝐅
𝜕E

= I(4),

we then have

C(𝟎) = 1
2 ∫

( 𝜕2𝜙
𝜕𝜼𝜕𝜼

⊗ 𝝃 ⊗ 𝝃
)

𝑑𝝃

= 1
2 ∫

( 𝑐(‖𝝃‖)
‖𝝃‖3

𝝃 ⊗ 𝝃 ⊗ 𝝃 ⊗ 𝝃
)

𝑑𝝃. (72)

In three-dimensional cases, we have

∫
𝝃 ⊗ 𝝃 ⊗ 𝝃 ⊗ 𝝃

‖𝝃‖3
𝑑𝑉 =

(

∫

𝛿

0
𝑟3𝑑𝑟

)

∫
𝐧⊗ 𝐧⊗ 𝐧⊗ 𝐧𝑑𝜔

→
(

∫

𝛿

0
𝑟3𝑑𝑟

)(

∫𝑆2

𝑛𝑖𝑛𝑗𝑛𝑘𝑛𝑙𝑑𝜔
)

=
( 𝛿4 )( 4𝜋 )(

𝛿 𝛿 + 𝛿 𝛿 + 𝛿 𝛿
)

, (73)
10

4 15 𝑖𝑗 𝑘𝑙 𝑖𝑘 𝑗𝑙 𝑖𝑙 𝑗𝑘
where 𝛿 is the radius of the horizon, and 𝐧 is the unit vector in 𝜼
direction.

From Eqs. (69), (71) and (72), we can see that the mesoscale PMB
model may correspond to the nonlinear Saint-Venant–Kirchhoff consti-
tutive model, which is the simplest macroscale hyperelastic constitutive
model, i.e.

S = C ∶ E = 𝜆tr(E) + 2𝜇E , (74)

where

C = 𝜆𝐈⊗ 𝐈 + 2𝜇I(𝑠) . (75)

Assume that 𝑐(‖𝝃‖) = 𝑐0 = 𝑐𝑜𝑛𝑠𝑡. Then in three-dimensional space,
we can have the following equation of indicial notation,

𝐶𝑖𝑗𝑘𝑙 =
𝑐0𝜋𝛿4

30

(

𝛿𝑖𝑘𝛿𝑙𝑗 + 𝛿𝑖𝑙𝛿𝑘𝑗 + 𝛿𝑖𝑗𝛿𝑘𝑙
)

(76)

Again, we recover the peridynamics correspondence model as the
infinitesimal case, i.e.

𝑐0 =
6𝐸

𝜋𝛿4(1 − 2𝜈)
and 𝜈 = 1

4
. (77)

And it is straight forward to verify that under the plane stress condition,
we have

𝑐0 =
6𝐸
3

and 𝜈 = 1 . (78)

𝜋ℎ𝛿 (1 − 𝜈) 3
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Fig. 16. The PK-I stress fields near the hole of the plate (a) P𝑥𝑥, (b) P𝑦𝑦, (c) P𝑥𝑦, and (d) P𝑦𝑥.
where ℎ is the thickness of the planar plate. Now, we have proved
that the bond-based peridynamics PMB model that derived for the
infinitesimal deformation is in fact suitable for finite deformation as
well under the interpretation of Saint-Venant–Kirchhoff hyperelastic
material model.

3.2. A plate with a circular hole under tension

Fig. 6 shows the square plate with dimensions 𝐿 = 𝑊 = 50 mm,
and thickness ℎ = 1 mm, where a circular hole with the diameter of
𝑟 = 2.5 mm is located in the center. The Young’s modulus of the plate
is 𝐸 = 192 GPa. The plate is subjected to uniformly distributed tensile
loading along 𝑥 direction as 𝜎0 = 10 MPa.

The analytical solutions of stress components around a circular hole
in an elastic infinite medium under tension are give as,

𝜎𝜌𝜌 =
𝜎0
2
(1 − 𝑟2

𝜌2
) +

𝜎0
2
(1 − 𝑟2

𝜌2
)(1 − 3 𝑟

2

𝜌2
)𝑐𝑜𝑠2𝜑

𝜎𝜑𝜑 =
𝜎0
2
(1 + 𝑟2

𝜌2
) −

𝜎0
2
(1 + 3 𝑟

4

𝜌4
)𝑐𝑜𝑠2𝜑

𝜎𝜌𝜑 = 𝜎𝜑𝜌 = −
𝜎0
2
(1 − 𝑟2

𝜌2
)(1 + 3 𝑟

2

𝜌2
)𝑠𝑖𝑛2𝜑, (79)

where 𝜌 and 𝜑 are the polar coordinates measured form the center of
the circular hole (see Fig. 6). The tensor measured in a polar coordinate
system can be converted into that in a Cartesian coordinate system by
11
using tensor transformation laws that defined as,

𝝈′ = 𝐀𝝈𝐀𝑇 , (80)

where 𝝈′ and 𝝈 represents the stress tensor in the polar coordinate sys-
tem and the Cartesian system, respectively, and 𝐀 is the transformation
matrix, which is given as,

𝐀 =
(

𝑐𝑜𝑠𝜑 −𝑠𝑖𝑛𝜑
𝑠𝑖𝑛𝜑 𝑐𝑜𝑠𝜑

)

, (81)

for the plane stress condition.
In the bond-based peridynamic model, the plate is uniformly dis-

cretized into a little over 2.0 million particles in a square arrangement
with the grid spacing of 𝛥 = 0.033 mm and the horizon radius of 𝛿 =
3.015𝛥. In this example, the accuracy of calculated peridynamic stresses
is evaluated through comparison with the finite element analysis and
analytical solutions. In the finite element analysis, the plate with a
circular hole is meshed using 248448 bilinear plane stress quadrilateral
elements.

Figs. 7–9 present the comparison of bond-based peridynamic and
Abaqus predictions for the stress fields. We only display the region
near the central hole of the plate for a clearer comparison. As it
can be seen from the figures, the calculated stress distributions us-
ing the peridynamic stress formulation (see Eq. 29) within the bond-
based peridynamics agree well with that of finite element analysis that
implemented in Abaqus.
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Fig. 17. Graphic illustration of the plate with a central crack loaded under uniaxial
tension.

In order to better illustrate the accuracy of the derived peridynamic
stress tensor, the normal stress 𝜎𝑥𝑥, 𝜎𝑦𝑦 are plotted along the horizontal
(𝑦 = 0 mm) and vertical (𝑥 = 0 mm) directions of the plate, while the
shear stress 𝜎𝑥𝑦 is plotted along the circular path with radius 𝑅 = 1.4𝑟,
as displayed in Figs. 10(a) and (b), and Fig. 11, respectively. As it
can be seen from the figures, the calculated peridynamic stresses show
good agreements with finite element analysis results and analytical
solutions. While since the analytical solution is under the assumption
of a circular hole in an elastic infinite medium, there is a relatively
small deviation in peridynamic and Abaqus results relative to that of
analytical solutions, which arises from the finite dimensions of the
problem considered in numerical simulations. Meanwhile, as displayed
in Fig. 10, a stress concentration factor 𝜔 predicted by the bond-
based peridynamic theory and finite element analysis is 2.98 and 2.96,
respectively, which is consistent with the analytical result of 3.0.

In order to clearly illustrate the stress concentration captured by
the bond-based peridynamic stress formulation, we zoomed in the
region of vicinity of the hole in the plate, as shown in Figs. 12–14.
It clearly shows the stress concentration near the hole captured by the
bond-based peridynamic model.

3.3. A plate with a circular hole under tensile displacement

To capture the finite deformation, we applied a tensile displacement
on the top boundary of a square plate with a hole, as shown in
Fig. 15(a). The geometric parameters of the plate are same as those
of the first example, but the radius of the central hole increases to
𝑟 = 5.0 mm. The Young’s modulus of the plate decreases to 𝐸 = 192 MPa.
The bottom boundary is fixed, while the vertical displacement along
the top boundary is set as 𝑢𝑦 = 10.0 mm. In the peridynamic model,
the plate is discredited into about 0.2 million particles with the grid
spacing of 𝛥 = 0.1 mm and the horizon radius of 𝛿 = 3.015𝛥. In the
finite element analysis model, the plate is meshed using 25668 bilinear
plane stress quadrilateral elements.
12
Figs. 15(b) and (c) show the comparison of bond-based peridynamic
and Abaqus predictions for the PK-I stress P𝑥𝑥 and P𝑦𝑦 along the
horizontal (𝑦 = 0 mm) and vertical (𝑥 = 0 mm) direction, respectively,
while Fig. 15(d) displays the comparison results of the PK-I stress P𝑥𝑦
and P𝑦𝑥 along the circular path with radius 𝑅 = 1.2𝑟. The results show
that the calculated peridynamic PK-I stresses agree well with those of
finite element analysis although there is a small deviation near the hole
arising from the boundary effect, demonstrating the accuracy of the
obtained peridynamic PK-I stress formulation. Fig. 16(a)–(d) shows the
PK-I stress fields near the hole of the plate, which clearly illustrate the
stress concentration. In addition, as excepted, the initial circular hole
changes to an elliptical shape due to finite deformation.

3.4. A plate with a central crack under tension

Next, we will consider an example of a square plate with a pre-
existing crack at the center. As shown in Fig. 17, the geometric param-
eters and material properties are the same as in the first example of the
plate with a hole. The length of the crack is 𝑎 = 10 mm. While a tension
load of 𝜎0 = 10 MPa is applied on both the top and the bottom edges of
the plate. In the peridynamic model, the plate is discretized into about
0.72 million particles in a square arrangement with the grid spacing of
𝛥 = 0.059 mm and the horizon radius of 𝛿 = 3.015𝛥. The pre-existing
crack is introduced by breaking the bonds that cross the crack prior to
the simulations. A finite element analysis of the plate with a central
crack was also performed to establish a baseline for the numerical
results. In the finite element analysis model, the plate is meshed using
23686 bilinear plane stress quadrilateral elements leading to a total
24024 nodes.

Figs. 18–20 show the calculated stress fields in the region near
the central crack. The stress distributions calculated from the pro-
posed peridynamic formulation agree well with those in finite element
analysis. In order to have a better comparison, we also plotted the
peridynamic stresses along the horizontal (𝑦 = 0 mm) and vertical (𝑥 =
0 mm) directions, and compared with that from finite element analysis,
as shown in Figs. 21(a) and (b), respectively. Generally speaking, the
agreement between peridynamic and finite element analysis results is
good despite the small deviation near the crack tip arising from the
boundary effect.

In order to describe the stress field around the crack tip region,
we then calculated the stress intensity factor (SIF). The SIF was first
introduced by Irwin Irwin (1957) to predict the stress state near the tip
of a crack caused by a remote load. Since the fracture mode of a plate
with a central crack is crack opening, .ie. Mode I, the stress field around
crack tip under Mode I loading condition for linear elastic materials can
be written as (Irwin, 1957),

𝜎𝑥𝑥 =
𝐾𝐼

√

2𝜋𝑟
𝑐𝑜𝑠 𝜃

2
(1 − 𝑠𝑖𝑛 𝜃

2
𝑠𝑖𝑛 3𝜃

2
)

𝜎𝑦𝑦 =
𝐾𝐼

√

2𝜋𝑟
𝑐𝑜𝑠 𝜃

2
(1 + 𝑠𝑖𝑛 𝜃

2
𝑠𝑖𝑛 3𝜃

2
)

𝜎𝑥𝑦 =
𝐾𝐼

√

2𝜋𝑟
𝑠𝑖𝑛 𝜃

2
𝑐𝑜𝑠 𝜃

2
𝑐𝑜𝑠 3𝜃

2

𝜎𝑦𝑧 = 𝜎𝑥𝑧 = 0

𝜎𝑧𝑧 =

{

0, plane stress condition

𝜈(𝜎𝑥𝑥 + 𝜎𝑦𝑦), plane strain condition
(82)

where 𝑟 an 𝜃 are the coordinates in the local cylindrical coordinate sys-
tem at the crack tip (see Fig. 17). 𝐾𝐼 is the stress intensity factor under
Mode I loading condition, which can be computed by the following
theoretical equation (Rooke and Cartwright, 1976),

𝐾𝐼 = 𝑝
√

𝜋𝑎
[1 − 𝑎

𝐿 + 0.326( 2𝑎𝐿 )2
√

2𝑎

]

. (83)

1 − 𝐿
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Fig. 18. The normal stress 𝜎𝑥𝑥 for a plate with a central crack under tension (a) bond-based peridynamic, (b) Abaqus results.

Fig. 19. The normal stress 𝜎𝑦𝑦 for a plate with a central under tension (a) bond-based peridynamic, (b) Abaqus results.

Fig. 20. The shear stress 𝜎𝑥𝑦 for a plate with a central under tension (a) bond-based peridynamic, (b) Abaqus results.

Fig. 21. (a) The normalized stresses 𝜎𝑥𝑥∕𝜎0, 𝜎𝑦𝑦∕𝜎0 and 𝜎𝑥𝑦∕𝜎0 along the horizontal direction shown with a red line, and (b) the normalized stresses 𝜎𝑥𝑥∕𝜎0, 𝜎𝑦𝑦∕𝜎0 and 𝜎𝑥𝑦∕𝜎0
along the vertical direction.
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Fig. 22. (a) The normalized stress field 𝜎𝑥𝑥
√

2𝜋𝑎∕𝐾𝐼 in the vicinity of the crack tip, and (b) the angular variations of the normalized stress 𝜎𝑥𝑥
√

2𝜋𝑟∕𝐾𝐼 around the crack tip for
rings of different radii.
Fig. 23. (a) The normalized stress field 𝜎𝑦𝑦
√

2𝜋𝑎∕𝐾𝐼 in the vicinity of the crack tip, and (b) the angular variations of the normalized stress 𝜎𝑦𝑦
√

2𝜋𝑟∕𝐾𝐼 around the crack tip for
rings of different radii.
In the peridynamic model, we can obtain the 𝐾𝐼 by using displace-
ment extrapolation method proposed by Zhu and Oterkus (Zhu and
Oterkus, 2020),

𝐾𝐼 =
√

2𝜋 𝐺
1 + 𝑘

|𝛥𝑣|
√

𝑟
, (84)

where 𝐺 is the shear modulus, 𝑘 = 3−𝜈
1+𝜈 for plane stress condition and

𝑘 = 3 − 4𝜈 for plane strain condition, 𝛥𝑣 is the relative displacement
of one crack face with respect to the other, 𝑟 is the coordinate in the
local cylindrical coordinate system. In the displacement extrapolation
method, the |𝛥𝑣|

√

𝑟
is assumed to be a linear function for the material

point at the crack surface, .ie.

|𝛥𝑣|
√

𝑟
= 𝑎1 + 𝑎2 ⋅ 𝑟. (85)

The unknown constants 𝑎1 and 𝑎2 can be determined by the dis-
placements of the selected material particles at the crack surface.
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Since

lim
𝑟→0

|𝛥𝑣|
√

𝑟
= 𝑎1

at the crack tip, the stress intensity factor 𝐾𝐼 within peridynamic
framework can be computed as,

𝐾𝐼 =
√

2𝜋
𝐺𝑎1
1 + 𝑘

. (86)

According to the Eq. (86), the calculated normalized SIF 𝐾𝐼
𝑝
√

𝜋𝑎
from

bond-based peridynamics is 1.052, which agrees well with the analyt-
ical value of 1.021 (see Eq. (83)).

To enhance clarity, the normalized stress field 𝜎𝑥𝑥
√

2𝜋𝑎∕𝐾𝐼 ,
𝜎𝑦𝑦

√

2𝜋𝑎∕𝐾𝐼 , and 𝜎𝑥𝑦
√

2𝜋𝑎∕𝐾𝐼 in the vicinity of the crack-tip is pre-
sented in Fig. 22(a), Fig. 23(a), and Fig. 24(a), respectively. As it can
be seen from the figures, the peridynamic stress formulation is accurate
that can be employed to describe the regions of stress concentration
where crack initiation is likely to occur. To make a better comparison
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Fig. 24. (a) The normalized stress field 𝜎𝑥𝑦
√

2𝜋𝑎∕𝐾𝐼 in the vicinity of the crack tip, and (b) the angular variations of the normalized stress 𝜎𝑥𝑦
√

2𝜋𝑟∕𝐾𝐼 around the crack tip for
rings of different radii.
Fig. 25. The crack tip plastic zone obtained by linear elastic estimate and peridynamic analysis.
with linear elastic analysis, we also plotted the angular variations of the
normalized stress 𝜎𝑥𝑥

√

2𝜋𝑟∕𝐾𝐼 , 𝜎𝑦𝑦
√

2𝜋𝑟∕𝐾𝐼 , and 𝜎𝑥𝑦
√

2𝜋𝑟∕𝐾𝐼 , around
the crack tip for rings of different radii and compared with the solution
based on linear elastic fracture mechanics (see (82)), as shown in
Fig. 22(b), Fig. 23(b), and Fig. 24(b) respectively. The figures indicate
that the calculated peridynamic stresses show good agreements with
linear elastic results when the value of 𝑟 is greater than the size of
horizon. In contract, if the value of 𝑟 is smaller than that of horizon,
the estimated peridynamic stresses differ greatly from the linear elastic
solutions. While as shown in Fig. 22(b) and Fig. 23(b), although the
calculated peridynamic stresses 𝜎𝑥𝑥

√

2𝜋𝑟∕𝐾𝐼 and 𝜎𝑦𝑦
√

2𝜋𝑟∕𝐾𝐼 exhibit
the similar variation trend with those of the linear elastic analysis, there
15
are some deviations especially near the crack tip and behind the crack
front, which mainly arises from the boundary effect.

To compare with the peridynamic crack solution with the analytical
asymptotic solution at crack tip, we first calculate the Von Mises
effective stress 𝜎𝑒 at the crack tip, which is expressed as,

𝜎2𝑒 = 1
2
[(𝜎𝑥𝑥 − 𝜎𝑦𝑦)2 + (𝜎𝑦𝑦 − 𝜎𝑧𝑧)2 + (𝜎𝑧𝑧 − 𝜎𝑥𝑥)2] + 3(𝜎2𝑥𝑦 + 𝜎2𝑥𝑧 + 𝜎2𝑦𝑧), (87)

where 𝜎𝑖𝑗 is the stress components in the Cartesian coordinate system.
For a fixed 𝜎 , we can find the constant 𝜎 contour 𝑟(𝜃) by substituting
𝑒 𝑒
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Fig. 26. Graphic illustration of 2024-T4 aluminum alloy specimen with double edge
notches loaded under uniaxial tension (unit=mm).

Eq. (82) into Eq. (87),

𝑟(𝜃) =

⎧

⎪

⎨

⎪

⎩

1
4𝜋

(
𝐾𝐼

𝜎𝑒
)2[(1 + 𝑐𝑜𝑠𝜃) + 3

2
𝑠𝑖𝑛2𝜃], plane stress condition

1
4𝜋

(
𝐾𝐼

𝜎𝑒
)2[(1 − 2𝜈)2(1 + 𝑐𝑜𝑠𝜃) + 3

2
𝑠𝑖𝑛2𝜃], plane strain condition

(88)

which is usually referred as the plastic zone contour. This is because
for small scale yield the interior area of 𝑟(𝜃) contour may be viewed as
the plastic zone size or shape.

Fig. 25 displays the near-tip plastic zone shape and size estimated by
using bond-based peridynamics along with the solution of linear elastic
fracture mechanics, when the applied stress level

𝐾𝐼∕(𝜎𝑒
√

2𝜋𝑎) = 0.2 → 𝜎𝑒 =
𝐾𝐼

0.2
√

2𝜋𝑎
.

In Fig. 25, we plot the radial distance of any point in the contour of a
contact 𝜎𝑒 to the crack tip, i.e. 𝑟(𝜃), as the function of angle variation
𝜃, and we compare it with the solution of LEFM under plane stress
condition. For ease comparison, all the sizes are normalized. As shown
in Fig. 25, there are some discrepancies between the peridynamic
solution and the solution based on linear elastic fracture mechanics
(LEFM), especially behind the crack front. The boundary effect in
peridynamics may be the main reason for the discrepancy. Another
possible reason for the difference is that the plastic zone estimated
by LEFM is based on the assumption that the material is linear elastic
with infinitesimal deformation. While for the peridynamic PMB model,
as shown in previous section, it corresponds to a nonlinear elastic
constitutive behaviors at large deformations, which may deviate from
the results of LEFM, when the stress level becomes sufficiently large.
It may be also possible that this discrepancy is because the particle
density or resolution at the crack tip is not enough, and it is believed
that the bond-based peridynamic stress solution may be improved by
employing adaptive refinement (Breitenfeld et al., 2009) in the vicinity
of the crack tip.
16
3.5. Three-dimensional double edge notch specimen under tension

The last example is to evaluate 3-dimensional stress concentrations
around notches using derived bond-based peridynamic stress formu-
lation. Here, we considered an example of a homogeneous tensile
specimen with double edge notches in the middle section, as shown
in Fig. 26. In experimental studies (Pindera and Liu, 1992), strain
gages were placed at key locations near the notches, and information
on the strain/stress stated was obtained using miniature strip electric
resistance gages having a pitch between 2 and 3 mm. The specimen
is made of aluminum alloy 2024-T4 with 𝐸 = 73 GPa and 𝜈 = 0.32.
Due to the symmetry of the problem, only one-quarter of the specimen
is modeled in the peridynamic model. Fig. 26 shows the geometric
parameters of the specimen where a tension load 𝜎0 = 14.5 MPa
is applied on the top, and the bottom is placed on rollers. In the
peridynamic model. the geometry of the specimen is discretized using
about 1.5 million particles in a hexagonal arrangement with a horizon
size of 3.015 times the grid spacing of 0.5 mm. While in the finite
element analysis model, only an eighth of the specimen was modeled
using 24588 10-node tetrahedral elements by considering symmetry.

Figs. 27 and 28 show the calculated bond-based peridynamic stress
distributions along the face ahead of the notch (𝑦 = 0 mm, 𝑧 = 15 mm)
and along the base of the notch (𝑥 = 22.5 mm, 𝑦 = 0 mm), respectively,
and compared with that of finite element analysis, experimental data,
as well as non-ordinary state-based peridynamics (Breitenfeld et al.,
2014), to illustrate the accuracy of proposed peridynamic stress for-
mulation in dealing with 3-dimensional problems. Along the face of
the notch, as shown in Fig. 27, the numerical solutions and experimen-
tal data show excellent agreements, which suggest that the proposed
peridynamic stress formula enables to evaluate the stress concentration
at the notch within the framework of bond-based peridynamics. While
along the base of the notch, although the calculated peridynamic
stresses exhibit similar increasing trend from the outer edge to the
middle point with that of the experiment, the stress values are lower
than those measured in the experiment. There are several reasons for
the discrepancy. One possible reason is that the curvature is not entirely
smooth in the experiment, while the base of the notch is flat. Another
reason is that since the bond-based peridynamics is constrained with a
fixed Poisson’s ratio of 1∕4 for 3-dimensional conditions, it causes some
deviations in describing the material constitutive properties, thereby
causing the discrepancy in stresses. One possible way to improve the
bond-based peridynamic stress solutions is to capture the full curvature
employing adaptive refinement (Breitenfeld et al., 2009) around the
notch.

In order to show the stress concentration clearly, we zoomed in the
region around the notch, as shown in Figs. 29–31. The calculated peri-
dynamic stress distributions clearly show that the stress concentration
occurs around region of the notch. It means that the bond-based peri-
dynamics can be employed to capture regions of stress concentration
using the derived peridynamic stress formulation.

4. Conclusions

In the present work, we have shown that the peridynamic stress
is exactly the same as the first Piola–Kirchhoff Virial stress which
stems from Irving–Kirkwood–Noll formalism and the Hardy–Murdoch
procedure. The expression of the developed peridynamic stress formula
is much simpler than the formula provided by Lehoucq and Silling
(2008), and Silling and Lehoucq (2008), and it can be easily imple-
mented in numerical simulations. We then applied the peridynamic
stress formulation to simulate both 2-dimensional and 3-dimensional
problems considering singularity and discontinuities. The peridynamic
stress is evaluated within the bond-based peridynamics using PMB
material model. It is found that the PMB model may exhibit nonlinear

constitutive behaviors to demonstrate material geometric nonlinearity
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Fig. 27. The normalized stress field 𝜎𝑥𝑥∕𝜎0 and 𝜎𝑦𝑦∕𝜎0 along the face ahead of the notch, where the non-ordinary state-based peridynamic data is from Ref. Breitenfeld et al.
(2014).
Fig. 28. The normalized stress field 𝜎𝑦𝑦∕𝜎0 and 𝜎𝑧𝑧∕𝜎0 along the base of the notch, where the non-ordinary state-based peridynamic data is from Ref. Breitenfeld et al. (2014).
at large deformations. Emphasis is placed on evaluating the accu-
racy of the peridynamic stress in the region of stress concentrations,
involving the hole, the crack tip, and notches. The accuracy of the
peridynamic stress is verified by comparing with finite element anal-
ysis results, analytical solutions, and experimental data with good
agreements.

The developed peridynamic stress formulation provides the ability
to predict stress distributions within the framework of bond-based
peridynamics. As a consequence, the bond-based peridynamics can
describe the constitutive behaviors of a material in terms of a stress
17
tensor rather than just the bond force. Thus, the bond-based peridy-
namics is not only useful for simulating crack propagation, but also
can be employed to capture regions of stress concentrations during
discontinuous deformations.
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Fig. 29. The normalized stress field 𝜎𝑥𝑥∕𝜎0 in the vicinity of the notch.

Fig. 30. The normalized stress field 𝜎𝑦𝑦∕𝜎0 in the vicinity of the notch.

Fig. 31. The normalized stress field 𝜎𝑧𝑧∕𝜎0 in the vicinity of the notch.
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