2024-10-30 13:45:29.755 | INFO | everyvoice.base_cli.helpers:save_configuration_to_log_dir:171 - Configuration { "contact": { "contact_name": "Marc Tessier", "contact_email": "Marc.Tessier@nrc.gc.ca" }, "model": { "encoder": { "layers": 4, "heads": 2, "input_dim": 256, "feedforward_dim": 1024, "conv_kernel_size": 9, "dropout": 0.2 }, "decoder": { "layers": 4, "heads": 2, "input_dim": 256, "feedforward_dim": 1024, "conv_kernel_size": 9, "dropout": 0.2 }, "variance_predictors": { "energy": { "loss": "mse", "n_layers": 5, "kernel_size": 3, "dropout": 0.5, "input_dim": 256, "n_bins": 256, "depthwise": true, "level": "phone" }, "duration": { "loss": "mse", "n_layers": 5, "kernel_size": 3, "dropout": 0.5, "input_dim": 256, "n_bins": 256, "depthwise": true }, "pitch": { "loss": "mse", "n_layers": 5, "kernel_size": 3, "dropout": 0.5, "input_dim": 256, "n_bins": 256, "depthwise": true, "level": "phone" } }, "target_text_representation_level": "characters", "learn_alignment": true, "max_length": 1000, "mel_loss": "mse", "use_postnet": true, "multilingual": false, "multispeaker": false }, "path_to_model_config_file": null, "training": { "batch_size": 16, "save_top_k_ckpts": 5, "ckpt_steps": null, "ckpt_epochs": 1, "val_check_interval": 500, "check_val_every_n_epoch": null, "max_epochs": 1000, "max_steps": 100000, "finetune_checkpoint": null, "training_filelist": "/gpfs/fs5/nrc/nrc-fs1/ict/others/u/tes001/TxT2SPEECH/LJSpeech-1.1/ap-513/preprocessed/training_filelist.psv", "validation_filelist": "/gpfs/fs5/nrc/nrc-fs1/ict/others/u/tes001/TxT2SPEECH/LJSpeech-1.1/ap-513/preprocessed/validation_filelist.psv", "filelist_loader": "everyvoice.utils.generic_dict_loader", "logger": { "name": "FeaturePredictionExperiment", "save_dir": "/gpfs/fs5/nrc/nrc-fs1/ict/others/u/tes001/TxT2SPEECH/LJSpeech-1.1/ap-513/logs_and_checkpoints", "sub_dir_callable": "everyvoice.utils.get_current_time", "version": "base" }, "val_data_workers": 0, "train_data_workers": 4, "use_weighted_sampler": false, "optimizer": { "learning_rate": 0.001, "eps": 1e-8, "weight_decay": 1e-6, "betas": [ 0.9, 0.999 ], "name": "noam", "warmup_steps": 1000 }, "vocoder_path": "/gpfs/fs5/nrc/nrc-fs1/ict/others/u/tes001/TxT2SPEECH/LJSpeech-1.1/ap-513/logs_and_checkpoints/VocoderExperiment/base/checkpoints/voc.ckpt", "mel_loss_weight": 1.0, "postnet_loss_weight": 1.0, "pitch_loss_weight": 0.1, "energy_loss_weight": 0.1, "duration_loss_weight": 0.1, "attn_ctc_loss_weight": 0.1, "attn_bin_loss_weight": 0.1, "attn_bin_loss_warmup_epochs": 100 }, "path_to_training_config_file": null, "preprocessing": { "dataset": "ap-513", "train_split": 0.9, "dataset_split_seed": 1234, "save_dir": "/gpfs/fs5/nrc/nrc-fs1/ict/others/u/tes001/TxT2SPEECH/LJSpeech-1.1/ap-513/preprocessed", "audio": { "min_audio_length": 0.4, "max_audio_length": 11.0, "max_wav_value": 32767.0, "input_sampling_rate": 22050, "output_sampling_rate": 22050, "alignment_sampling_rate": 22050, "target_bit_depth": 16, "n_fft": 1024, "fft_window_size": 1024, "fft_hop_size": 256, "f_min": 0, "f_max": 8000, "n_mels": 80, "spec_type": "mel-librosa", "vocoder_segment_size": 8192 }, "path_to_audio_config_file": null, "source_data": [ { "label": "dataset_0", "permissions_obtained": true, "data_dir": "/gpfs/fs5/nrc/nrc-fs1/ict/others/u/tes001/TxT2SPEECH/LJSpeech-1.1/wavs", "filelist": "/gpfs/fs5/nrc/nrc-fs1/ict/others/u/tes001/TxT2SPEECH/LJSpeech-1.1/ap-513/ap-513-filelist.psv", "filelist_loader": "everyvoice.utils.generic_dict_loader", "sox_effects": [ [ "channels", "1" ], [ "norm", "-3.0" ], [ "silence", "1", "0.1", "0.1%" ], [ "reverse" ], [ "silence", "1", "0.1", "0.1%" ], [ "reverse" ] ] } ] }, "path_to_preprocessing_config_file": "/gpfs/fs5/nrc/nrc-fs1/ict/others/u/tes001/TxT2SPEECH/LJSpeech-1.1/ap-513/config/everyvoice-shared-data.yaml", "text": { "symbols": { "silence": [ "" ], "punctuation": { "exclamations": [ "!", "¡" ], "question_symbols": [ "?", "¿" ], "quotemarks": [ "\"", "'", "“", "”", "«", "»" ], "big_breaks": [ ".", ":", ";" ], "small_breaks": [ ",", "-", "—" ], "ellipsis": [ "…" ] }, "ap-513_characters": [ "(", ")", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z", "â", "é" ], "ap-513_phones": [ "a", "b", "d", "e", "f", "h", "i", "j", "k", "l", "m", "n", "o", "p", "s", "t", "u", "v", "w", "z", "æ", "ð", "ŋ", "ɑ", "ɔ", "ɛ", "ɜ˞", "ɡ", "ɪ", "ɹ", "ʃ", "ʊ", "ʌ", "ʒ", "θ" ] }, "to_replace": {}, "cleaners": [ "everyvoice.utils.collapse_whitespace", "everyvoice.utils.strip_text", "everyvoice.utils.lower", "everyvoice.utils.nfc_normalize" ] }, "path_to_text_config_file": "/gpfs/fs5/nrc/nrc-fs1/ict/others/u/tes001/TxT2SPEECH/LJSpeech-1.1/ap-513/config/everyvoice-shared-text.yaml" } 2024-10-30 13:45:29.764 | INFO | everyvoice.base_cli.helpers:train_base_command:210 - Loading modules for training... 0%| | 0/4 [00:00 None: │ │ │ │ /gpfs/fs5/nrc/nrc-fs1/ict/others/u/tes001/miniforge3/envs/EveryVoice_dev.ap_ │ │ 513/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py:574 in │ │ _fit_impl │ │ │ │ 571 │ │ │ model_provided=True, │ │ 572 │ │ │ model_connected=self.lightning_module is not None, │ │ 573 │ │ ) │ │ ❱ 574 │ │ self._run(model, ckpt_path=ckpt_path) │ │ 575 │ │ │ │ 576 │ │ assert self.state.stopped │ │ 577 │ │ self.training = False │ │ │ │ /gpfs/fs5/nrc/nrc-fs1/ict/others/u/tes001/miniforge3/envs/EveryVoice_dev.ap_ │ │ 513/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py:981 in │ │ _run │ │ │ │ 978 │ │ # ---------------------------- │ │ 979 │ │ # RUN THE TRAINER │ │ 980 │ │ # ---------------------------- │ │ ❱ 981 │ │ results = self._run_stage() │ │ 982 │ │ │ │ 983 │ │ # ---------------------------- │ │ 984 │ │ # POST-Training CLEAN UP │ │ │ │ /gpfs/fs5/nrc/nrc-fs1/ict/others/u/tes001/miniforge3/envs/EveryVoice_dev.ap_ │ │ 513/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py:1023 │ │ in _run_stage │ │ │ │ 1020 │ │ │ return self.predict_loop.run() │ │ 1021 │ │ if self.training: │ │ 1022 │ │ │ with isolate_rng(): │ │ ❱ 1023 │ │ │ │ self._run_sanity_check() │ │ 1024 │ │ │ with torch.autograd.set_detect_anomaly(self._detect_anoma │ │ 1025 │ │ │ │ self.fit_loop.run() │ │ 1026 │ │ │ return None │ │ │ │ /gpfs/fs5/nrc/nrc-fs1/ict/others/u/tes001/miniforge3/envs/EveryVoice_dev.ap_ │ │ 513/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py:1052 │ │ in _run_sanity_check │ │ │ │ 1049 │ │ │ call._call_callback_hooks(self, "on_sanity_check_start") │ │ 1050 │ │ │ │ │ 1051 │ │ │ # run eval step │ │ ❱ 1052 │ │ │ val_loop.run() │ │ 1053 │ │ │ │ │ 1054 │ │ │ call._call_callback_hooks(self, "on_sanity_check_end") │ │ 1055 │ │ │ │ /gpfs/fs5/nrc/nrc-fs1/ict/others/u/tes001/miniforge3/envs/EveryVoice_dev.ap_ │ │ 513/lib/python3.10/site-packages/pytorch_lightning/loops/utilities.py:178 in │ │ _decorator │ │ │ │ 175 │ │ else: │ │ 176 │ │ │ context_manager = torch.no_grad │ │ 177 │ │ with context_manager(): │ │ ❱ 178 │ │ │ return loop_run(self, *args, **kwargs) │ │ 179 │ │ │ 180 │ return _decorator │ │ 181 │ │ │ │ /gpfs/fs5/nrc/nrc-fs1/ict/others/u/tes001/miniforge3/envs/EveryVoice_dev.ap_ │ │ 513/lib/python3.10/site-packages/pytorch_lightning/loops/evaluation_loop.py: │ │ 135 in run │ │ │ │ 132 │ │ │ │ previous_dataloader_idx = dataloader_idx │ │ 133 │ │ │ │ self.batch_progress.is_last_batch = data_fetcher.done │ │ 134 │ │ │ │ # run step hooks │ │ ❱ 135 │ │ │ │ self._evaluation_step(batch, batch_idx, dataloader_idx │ │ 136 │ │ │ except StopIteration: │ │ 137 │ │ │ │ # this needs to wrap the `*_step` call too (not just ` │ │ 138 │ │ │ │ break │ │ │ │ /gpfs/fs5/nrc/nrc-fs1/ict/others/u/tes001/miniforge3/envs/EveryVoice_dev.ap_ │ │ 513/lib/python3.10/site-packages/pytorch_lightning/loops/evaluation_loop.py: │ │ 396 in _evaluation_step │ │ │ │ 393 │ │ │ if not using_dataloader_iter │ │ 394 │ │ │ else (dataloader_iter,) │ │ 395 │ │ ) │ │ ❱ 396 │ │ output = call._call_strategy_hook(trainer, hook_name, *step_ar │ │ 397 │ │ │ │ 398 │ │ self.batch_progress.increment_processed() │ │ 399 │ │ │ │ /gpfs/fs5/nrc/nrc-fs1/ict/others/u/tes001/miniforge3/envs/EveryVoice_dev.ap_ │ │ 513/lib/python3.10/site-packages/pytorch_lightning/trainer/call.py:319 in │ │ _call_strategy_hook │ │ │ │ 316 │ │ return None │ │ 317 │ │ │ 318 │ with trainer.profiler.profile(f"[Strategy]{trainer.strategy.__clas │ │ ❱ 319 │ │ output = fn(*args, **kwargs) │ │ 320 │ │ │ 321 │ # restore current_fx when nested context │ │ 322 │ pl_module._current_fx_name = prev_fx_name │ │ │ │ /gpfs/fs5/nrc/nrc-fs1/ict/others/u/tes001/miniforge3/envs/EveryVoice_dev.ap_ │ │ 513/lib/python3.10/site-packages/pytorch_lightning/strategies/strategy.py:41 │ │ 0 in validation_step │ │ │ │ 407 │ │ assert self.model is not None │ │ 408 │ │ with self.precision_plugin.val_step_context(): │ │ 409 │ │ │ if self.model != self.lightning_module: │ │ ❱ 410 │ │ │ │ return self._forward_redirection(self.model, self.ligh │ │ 411 │ │ │ return self.lightning_module.validation_step(*args, **kwar │ │ 412 │ │ │ 413 │ def test_step(self, *args: Any, **kwargs: Any) -> STEP_OUTPUT: │ │ │ │ /gpfs/fs5/nrc/nrc-fs1/ict/others/u/tes001/miniforge3/envs/EveryVoice_dev.ap_ │ │ 513/lib/python3.10/site-packages/pytorch_lightning/strategies/strategy.py:64 │ │ 0 in __call__ │ │ │ │ 637 │ │ # Patch the original_module's forward so we can redirect the a │ │ 638 │ │ original_module.forward = wrapped_forward # type: ignore[meth │ │ 639 │ │ │ │ ❱ 640 │ │ wrapper_output = wrapper_module(*args, **kwargs) │ │ 641 │ │ self.on_after_outer_forward(wrapper_module, original_module) │ │ 642 │ │ return wrapper_output │ │ 643 │ │ │ │ /gpfs/fs5/nrc/nrc-fs1/ict/others/u/tes001/miniforge3/envs/EveryVoice_dev.ap_ │ │ 513/lib/python3.10/site-packages/torch/nn/modules/module.py:1518 in │ │ _wrapped_call_impl │ │ │ │ 1515 │ │ if self._compiled_call_impl is not None: │ │ 1516 │ │ │ return self._compiled_call_impl(*args, **kwargs) # type: │ │ 1517 │ │ else: │ │ ❱ 1518 │ │ │ return self._call_impl(*args, **kwargs) │ │ 1519 │ │ │ 1520 │ def _call_impl(self, *args, **kwargs): │ │ 1521 │ │ forward_call = (self._slow_forward if torch._C._get_tracing_s │ │ │ │ /gpfs/fs5/nrc/nrc-fs1/ict/others/u/tes001/miniforge3/envs/EveryVoice_dev.ap_ │ │ 513/lib/python3.10/site-packages/torch/nn/modules/module.py:1527 in │ │ _call_impl │ │ │ │ 1524 │ │ if not (self._backward_hooks or self._backward_pre_hooks or s │ │ 1525 │ │ │ │ or _global_backward_pre_hooks or _global_backward_hoo │ │ 1526 │ │ │ │ or _global_forward_hooks or _global_forward_pre_hooks │ │ ❱ 1527 │ │ │ return forward_call(*args, **kwargs) │ │ 1528 │ │ │ │ 1529 │ │ try: │ │ 1530 │ │ │ result = None │ │ │ │ /gpfs/fs5/nrc/nrc-fs1/ict/others/u/tes001/miniforge3/envs/EveryVoice_dev.ap_ │ │ 513/lib/python3.10/site-packages/torch/nn/parallel/distributed.py:1519 in │ │ forward │ │ │ │ 1516 │ │ │ output = ( │ │ 1517 │ │ │ │ self.module.forward(*inputs, **kwargs) │ │ 1518 │ │ │ │ if self._delay_all_reduce_all_params │ │ ❱ 1519 │ │ │ │ else self._run_ddp_forward(*inputs, **kwargs) │ │ 1520 │ │ │ ) │ │ 1521 │ │ │ return self._post_forward(output) │ │ 1522 │ │ │ │ /gpfs/fs5/nrc/nrc-fs1/ict/others/u/tes001/miniforge3/envs/EveryVoice_dev.ap_ │ │ 513/lib/python3.10/site-packages/torch/nn/parallel/distributed.py:1355 in │ │ _run_ddp_forward │ │ │ │ 1352 │ │ │ 1353 │ def _run_ddp_forward(self, *inputs, **kwargs): │ │ 1354 │ │ with self._inside_ddp_forward(): │ │ ❱ 1355 │ │ │ return self.module(*inputs, **kwargs) # type: ignore[ind │ │ 1356 │ │ │ 1357 │ def _clear_grad_buffer(self): │ │ 1358 │ │ # Making param.grad points to the grad buffers before backwar │ │ │ │ /gpfs/fs5/nrc/nrc-fs1/ict/others/u/tes001/miniforge3/envs/EveryVoice_dev.ap_ │ │ 513/lib/python3.10/site-packages/torch/nn/modules/module.py:1518 in │ │ _wrapped_call_impl │ │ │ │ 1515 │ │ if self._compiled_call_impl is not None: │ │ 1516 │ │ │ return self._compiled_call_impl(*args, **kwargs) # type: │ │ 1517 │ │ else: │ │ ❱ 1518 │ │ │ return self._call_impl(*args, **kwargs) │ │ 1519 │ │ │ 1520 │ def _call_impl(self, *args, **kwargs): │ │ 1521 │ │ forward_call = (self._slow_forward if torch._C._get_tracing_s │ │ │ │ /gpfs/fs5/nrc/nrc-fs1/ict/others/u/tes001/miniforge3/envs/EveryVoice_dev.ap_ │ │ 513/lib/python3.10/site-packages/torch/nn/modules/module.py:1527 in │ │ _call_impl │ │ │ │ 1524 │ │ if not (self._backward_hooks or self._backward_pre_hooks or s │ │ 1525 │ │ │ │ or _global_backward_pre_hooks or _global_backward_hoo │ │ 1526 │ │ │ │ or _global_forward_hooks or _global_forward_pre_hooks │ │ ❱ 1527 │ │ │ return forward_call(*args, **kwargs) │ │ 1528 │ │ │ │ 1529 │ │ try: │ │ 1530 │ │ │ result = None │ │ │ │ /gpfs/fs5/nrc/nrc-fs1/ict/others/u/tes001/miniforge3/envs/EveryVoice_dev.ap_ │ │ 513/lib/python3.10/site-packages/pytorch_lightning/strategies/strategy.py:63 │ │ 3 in wrapped_forward │ │ │ │ 630 │ │ │ original_module.forward = original_forward # type: ignore │ │ 631 │ │ │ # Call the actual method e.g. `.training_step(...)` │ │ 632 │ │ │ method = getattr(original_module, method_name) │ │ ❱ 633 │ │ │ out = method(*_args, **_kwargs) │ │ 634 │ │ │ self.on_after_inner_forward(wrapper_module, original_modul │ │ 635 │ │ │ return out │ │ 636 │ │ │ │ /gpfs/fs5/nrc/nrc-fs1/ict/others/u/tes001/TxT2SPEECH/EveryVoice_dev.ap_513/e │ │ veryvoice/model/feature_prediction/FastSpeech2_lightning/fs2/model.py:408 in │ │ validation_step │ │ │ │ 405 │ │ │ 406 │ def validation_step(self, batch, batch_idx): │ │ 407 │ │ if self.global_step == 0: │ │ ❱ 408 │ │ │ self._validation_global_step_0(batch, batch_idx) │ │ 409 │ │ │ │ 410 │ │ output = self(batch) │ │ 411 │ │ if batch_idx == 0: │ │ │ │ /gpfs/fs5/nrc/nrc-fs1/ict/others/u/tes001/TxT2SPEECH/EveryVoice_dev.ap_513/e │ │ veryvoice/model/feature_prediction/FastSpeech2_lightning/fs2/model.py:323 in │ │ _validation_global_step_0 │ │ │ │ 320 │ │ │ vocoder_model, vocoder_config = load_hifigan_from_checkpoi │ │ 321 │ │ │ │ vocoder_ckpt, input_.device │ │ 322 │ │ │ ) │ │ ❱ 323 │ │ │ wav, sr = synthesize_data(input_, vocoder_model, vocoder_c │ │ 324 │ │ │ │ │ 325 │ │ │ self.logger.experiment.add_audio( │ │ 326 │ │ │ │ f"copy-synthesis/wav_{batch['basename'][0]}", │ │ │ │ /gpfs/fs5/nrc/nrc-fs1/ict/others/u/tes001/TxT2SPEECH/EveryVoice_dev.ap_513/e │ │ veryvoice/model/vocoder/HiFiGAN_iSTFT_lightning/hfgl/utils.py:82 in │ │ synthesize_data │ │ │ │ 79 │ │ wavs = inverse_spectral_transform(mag * torch.exp(phase * 1j)) │ │ 80 │ else: │ │ 81 │ │ with torch.no_grad(): │ │ ❱ 82 │ │ │ wavs = model.generator(data) │ │ 83 │ return ( │ │ 84 │ │ wavs.cpu(), │ │ 85 │ │ config.preprocessing.audio.output_sampling_rate, │ │ │ │ /gpfs/fs5/nrc/nrc-fs1/ict/others/u/tes001/miniforge3/envs/EveryVoice_dev.ap_ │ │ 513/lib/python3.10/site-packages/torch/nn/modules/module.py:1518 in │ │ _wrapped_call_impl │ │ │ │ 1515 │ │ if self._compiled_call_impl is not None: │ │ 1516 │ │ │ return self._compiled_call_impl(*args, **kwargs) # type: │ │ 1517 │ │ else: │ │ ❱ 1518 │ │ │ return self._call_impl(*args, **kwargs) │ │ 1519 │ │ │ 1520 │ def _call_impl(self, *args, **kwargs): │ │ 1521 │ │ forward_call = (self._slow_forward if torch._C._get_tracing_s │ │ │ │ /gpfs/fs5/nrc/nrc-fs1/ict/others/u/tes001/miniforge3/envs/EveryVoice_dev.ap_ │ │ 513/lib/python3.10/site-packages/torch/nn/modules/module.py:1527 in │ │ _call_impl │ │ │ │ 1524 │ │ if not (self._backward_hooks or self._backward_pre_hooks or s │ │ 1525 │ │ │ │ or _global_backward_pre_hooks or _global_backward_hoo │ │ 1526 │ │ │ │ or _global_forward_hooks or _global_forward_pre_hooks │ │ ❱ 1527 │ │ │ return forward_call(*args, **kwargs) │ │ 1528 │ │ │ │ 1529 │ │ try: │ │ 1530 │ │ │ result = None │ │ │ │ /gpfs/fs5/nrc/nrc-fs1/ict/others/u/tes001/TxT2SPEECH/EveryVoice_dev.ap_513/e │ │ veryvoice/model/vocoder/HiFiGAN_iSTFT_lightning/hfgl/model.py:230 in forward │ │ │ │ 227 │ │ self.conv_post.apply(init_weights) │ │ 228 │ │ │ 229 │ def forward(self, x): │ │ ❱ 230 │ │ x = self.conv_pre(x) │ │ 231 │ │ for i in range(self.num_upsamples): │ │ 232 │ │ │ x = self.config.model.activation_function(x) │ │ 233 │ │ │ x = self.ups[i](x) │ │ │ │ /gpfs/fs5/nrc/nrc-fs1/ict/others/u/tes001/miniforge3/envs/EveryVoice_dev.ap_ │ │ 513/lib/python3.10/site-packages/torch/nn/modules/module.py:1518 in │ │ _wrapped_call_impl │ │ │ │ 1515 │ │ if self._compiled_call_impl is not None: │ │ 1516 │ │ │ return self._compiled_call_impl(*args, **kwargs) # type: │ │ 1517 │ │ else: │ │ ❱ 1518 │ │ │ return self._call_impl(*args, **kwargs) │ │ 1519 │ │ │ 1520 │ def _call_impl(self, *args, **kwargs): │ │ 1521 │ │ forward_call = (self._slow_forward if torch._C._get_tracing_s │ │ │ │ /gpfs/fs5/nrc/nrc-fs1/ict/others/u/tes001/miniforge3/envs/EveryVoice_dev.ap_ │ │ 513/lib/python3.10/site-packages/torch/nn/modules/module.py:1527 in │ │ _call_impl │ │ │ │ 1524 │ │ if not (self._backward_hooks or self._backward_pre_hooks or s │ │ 1525 │ │ │ │ or _global_backward_pre_hooks or _global_backward_hoo │ │ 1526 │ │ │ │ or _global_forward_hooks or _global_forward_pre_hooks │ │ ❱ 1527 │ │ │ return forward_call(*args, **kwargs) │ │ 1528 │ │ │ │ 1529 │ │ try: │ │ 1530 │ │ │ result = None │ │ │ │ /gpfs/fs5/nrc/nrc-fs1/ict/others/u/tes001/miniforge3/envs/EveryVoice_dev.ap_ │ │ 513/lib/python3.10/site-packages/torch/nn/modules/conv.py:310 in forward │ │ │ │ 307 │ │ │ │ │ │ self.padding, self.dilation, self.groups) │ │ 308 │ │ │ 309 │ def forward(self, input: Tensor) -> Tensor: │ │ ❱ 310 │ │ return self._conv_forward(input, self.weight, self.bias) │ │ 311 │ │ 312 │ │ 313 class Conv2d(_ConvNd): │ │ │ │ /gpfs/fs5/nrc/nrc-fs1/ict/others/u/tes001/miniforge3/envs/EveryVoice_dev.ap_ │ │ 513/lib/python3.10/site-packages/torch/nn/modules/conv.py:306 in │ │ _conv_forward │ │ │ │ 303 │ │ │ return F.conv1d(F.pad(input, self._reversed_padding_repea │ │ 304 │ │ │ │ │ │ │ weight, bias, self.stride, │ │ 305 │ │ │ │ │ │ │ _single(0), self.dilation, self.groups) │ │ ❱ 306 │ │ return F.conv1d(input, weight, bias, self.stride, │ │ 307 │ │ │ │ │ │ self.padding, self.dilation, self.groups) │ │ 308 │ │ │ 309 │ def forward(self, input: Tensor) -> Tensor: │ ╰──────────────────────────────────────────────────────────────────────────────╯ RuntimeError: Given groups=1, weight of size [512, 80, 7], expected input[1, 696, 80] to have 80 channels, but got 696 channels instead Loading EveryVoice modules: 100%|██████████| 4/4 [00:13<00:00, 3.35s/it] srun: error: ib14gpu-002: task 0: Exited with exit code 1