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1 Mathematical Preliminaries

1.1 Governing Equations

Palace solves Maxwell’s equations in the frequeny domain (time-harmonic) us-
ing a finite element approximation. The non-dimensionalized (complex-valued)
equations are
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The relative permittivity €, is a complex-valued quantity given by €, = e;, (1 —itand).
In its current form, Palace only supports a real-valued magnetic permeability
tr = p,.. The magnetic flux density is calculated as

1
B=—VxE. (5)
w

The magnetic flux density and the magnetic field H are related by the linear
constitutive relationship B = yH

The impedance boundaries are modeled using the Robin boundary condition
given in Eq. 4 with v = iw/Z, where Z is the surface impedance of the bound-
ary. There are other boundary conditions described in but for the moment, this
will be the starting point.

1.2 Finite Element Approximation

To arrive at the discrete form of equations, Eq. 1 is multiplied by a test function
v and integrated by parts over the entire domain resulting in the following
equation. For clarity, the subscript r is dropped from g and e.
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The first term on the LHS can be simplified using the following identity

V (W 'VXE)xv]=Vx (@ 'VXxE) - v—(u'VxE)- (Vxv). (7)
This results in
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The first term on the RHS of Equation 8 can be further simplified using the
divergence theorem to arrive at the final form
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The natural boundary condition Eq. 3 is solved automatically resulting in a
further simplification
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This is the weak formulation and the true solution is approximated as a
linear combination of a set of finite element basis functions ;. For simplicity,
I’ll assume 9; = v;.

E~ ZEM» (11)

Putting all the pieces together, we arrive at the following set of discrete equations
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where b; is the contribution of the boundary terms. This can now be assembled
in to a matrix vector product of the form Ax = b.

2 Implementation in Palace

The system matrix in Palace is represented as A = agK + a;C + as(Mp +iMy)
where K, C and M are the stiffness, damping and the mass matrices. These



are defined as

K:/u_l(qu)~(V><l/) dQ (13)
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C = / ov; - v; dQ (14)
Q
M = / ev; - v dQ (15)
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with ap = 1, a; = iw and as = —w?. The mass matrix has both the real and

imaginary components due to the complex permittivity.
Now since A is complex valued it can be decomposed into its real part
ARr = K —w?Mp and imaginary part A; = C' —w?M] resulting in the following

2 X 2 matrix
. AR —A]
A B |:A] AR :| (16)

Following the notation used in Palace, the system can be written as
AR o 1 0 K 0 —w C —UJ2 0 MR
el 1 R e R R s R

2.1 Proposed Changes

To model materials with dielectric loss, p has to be a complex-valued parameter
1= pr +ipr. The inverse of relative permeability is now given by

1

= [ e i), where uf? = (ug + 13). (18)
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The resulting real and imaginary components of the stiffness matrices are

Klelg/Qu,gl(ny)-(vXu) dQ (19)
K[JP/Q,U,I_l(VXV)'(VXV) dQ. (20)

Consequently, the modified system matrix is now composed of Ar = Kp—w?Mpg
and Ar = K7 —|—C—w2M].

AR o 1 0 KR 0 —iw C —OJ2 0 MR
R 1 e 1 R R 4 R
Furthermore, the preconditioner system matrix is real-valued so, the new
matrix is defined as

P=a0|KR+Z'K[‘+CL10+(12|MR—|—Z'M[‘. (22)

The following modifications are proposed to the code:



e To keep it consistent with existing framework for permittivity, the mag-
netic tangent loss will be defined using a new keyword LossTanMagnetic.

e Calculate mat_muinv_imag and mat_mu_abs from mat_muinv_real and
LossTanMagnetic

e Add the following new functions in GetStiffnessMatrix (K)

1. AddRealStiffnessCoefficients(1.0,mat_mu_real/mat_mu_abs**2)
2. AddImagStiffnessCoefficients(1.0,-mat_mu_inv/mat_mu_abs**2)
3. kr=AssembleOperator (), ki=AssembleOperator ()

4. M=ComplexParQOperator (kr,ki), M=ParOperator (kr)

2.2 To do

1. Handle BCs: Robin, Numerical wave port, Absorbing and radiation



