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1 Mathematical Preliminaries

1.1 Governing Equations

Palace solves Maxwell’s equations in the frequeny domain (time-harmonic) us-
ing a finite element approximation. The non-dimensionalized (complex-valued)
equations are

∇× µ−1
r ∇×E+ iωσE− ω2ϵrE = 0, x ∈ Ω (1)

n×E = 0,x ∈ ΓPEC (2)

n× µ−1
r ∇×E = 0, x ∈ ΓPMC (3)

n× µ−1
r ∇×E+ γn×E = U inc, x ∈ ΓZ . (4)

The relative permittivity ϵr is a complex-valued quantity given by ϵr = ϵ
′

r (1− i tan δ).
In its current form, Palace only supports a real-valued magnetic permeability
µr = µ

′

r. The magnetic flux density is calculated as

B =
1

iω
∇×E. (5)

The magnetic flux density and the magnetic field H are related by the linear
constitutive relationship B = µH

The impedance boundaries are modeled using the Robin boundary condition
given in Eq. 4 with γ = iω/Zs where Zs is the surface impedance of the bound-
ary. There are other boundary conditions described in but for the moment, this
will be the starting point.

1.2 Finite Element Approximation

To arrive at the discrete form of equations, Eq. 1 is multiplied by a test function
ν and integrated by parts over the entire domain resulting in the following
equation. For clarity, the subscript r is dropped from µ and ϵ.∫

Ω

∇×
(
µ−1∇×E

)
· ν dΩ+

∫
Ω

iωσE · ν dΩ−
∫
Ω

ω2ϵE · ν dΩ = 0 (6)
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The first term on the LHS can be simplified using the following identity

∇ ·
[
(µ−1∇×E)× ν

]
= ∇× (µ−1∇×E) · ν − (µ−1∇×E) · (∇× ν). (7)

This results in∫
Ω

∇× (µ−1∇×E) · ν dΩ =

∫
Ω

∇ ·
[
(µ−1∇×E)× ν

]
dΩ

+

∫
Ω

(µ−1∇×E) · (∇× ν) dΩ

(8)

The first term on the RHS of Equation 8 can be further simplified using the
divergence theorem to arrive at the final form∫

Ω

∇× (µ−1∇×E) · ν dΩ =

∫
Ω

(µ−1∇×E) · (∇× ν) dΩ

+

∫
∂Ω

ν ·
[
n× (µ−1∇×E)

]
dΓ.

(9)

The natural boundary condition Eq. 3 is solved automatically resulting in a
further simplification∫

Ω

∇× (µ−1∇×E) · ν dΩ =

∫
Ω

(µ−1∇×E) · (∇× ν) dΩ. (10)

This is the weak formulation and the true solution is approximated as a
linear combination of a set of finite element basis functions ψi. For simplicity,
I’ll assume ψi = νi.

E ≈
∑
i

Eiνi (11)

Putting all the pieces together, we arrive at the following set of discrete equations∑
i

Ei

[∫
Ω

µ−1(∇× ν) · (∇× ν) dΩ+

∫
Ω

iωσνi · νj dΩ−
∫
Ω

ω2ϵνi · νj dΩ
]
= bi

(12)

where bi is the contribution of the boundary terms. This can now be assembled
in to a matrix vector product of the form Ax = b.

2 Implementation in Palace

The system matrix in Palace is represented as A = a0K + a1C + a2(MR + iMI)
where K, C and M are the stiffness, damping and the mass matrices. These

2



are defined as

K =

∫
Ω

µ−1(∇× ν) · (∇× ν) dΩ (13)

C =

∫
Ω

σνi · νj dΩ (14)

M =

∫
Ω

ϵνi · νj dΩ (15)

with a0 = 1, a1 = iω and a2 = −ω2. The mass matrix has both the real and
imaginary components due to the complex permittivity.

Now since A is complex valued it can be decomposed into its real part
AR = K−ω2MR and imaginary part AI = C−ω2MI resulting in the following
2× 2 matrix

A =

[
AR −AI

AI AR

]
(16)

Following the notation used in Palace, the system can be written as[
AR

AI

]
=

[
1 0
0 1

] [
K
0

]
+

[
0 −iω
iω 0

] [
C
0

]
+

[
−ω2 0
0 −ω2

] [
MR

MI

]
(17)

2.1 Proposed Changes

To model materials with dielectric loss, µ has to be a complex-valued parameter
µ = µR + iµI . The inverse of relative permeability is now given by

µ−1 =
1

|µ|2
(µR − iµI), where |µ|2 = (µ2

R + µ2
I). (18)

The resulting real and imaginary components of the stiffness matrices are

KR =
1

|µ|2

∫
Ω

µ−1
R (∇× ν) · (∇× ν) dΩ (19)

KI = − 1

|µ|2

∫
Ω

µ−1
I (∇× ν) · (∇× ν) dΩ. (20)

Consequently, the modified system matrix is now composed of AR = KR−ω2MR

and AI = KI + C − ω2MI .[
AR

AI

]
=

[
1 0
0 1

] [
KR

KI

]
+

[
0 −iω
iω 0

] [
C
0

]
+

[
−ω2 0
0 −ω2

] [
MR

MI

]
(21)

Furthermore, the preconditioner system matrix is real-valued so, the new
matrix is defined as

P = a0|KR + iKI |+ a1C + a2|MR + iMI |. (22)

The following modifications are proposed to the code:
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• To keep it consistent with existing framework for permittivity, the mag-
netic tangent loss will be defined using a new keyword LossTanMagnetic.

• Calculate mat_muinv_imag and mat_mu_abs from mat_muinv_real and
LossTanMagnetic

• Add the following new functions in GetStiffnessMatrix(K)

1. AddRealStiffnessCoefficients(1.0,mat_mu_real/mat_mu_abs**2)

2. AddImagStiffnessCoefficients(1.0,-mat_mu_inv/mat_mu_abs**2)

3. kr=AssembleOperator(), ki=AssembleOperator()

4. M=ComplexParOperator(kr,ki), M=ParOperator(kr)

2.2 To do

1. Handle BCs: Robin, Numerical wave port, Absorbing and radiation
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