w SHERLOCK

Security Review For

Public contest prepared for: Mento
Lead Security Expert: 0x73696d616f
Date Audited: October 24 - October 31, 2024

]

Introduction

This upgrade adds a GoodDollar-specific exchange provider that implements the Bancor
formula and allows GoodDollar expansions from reserve rewards. Effectively, it allows
the GoodDollar team to relaunch the GoodDollar UBI token on top of Mento’s asset
issuance and redemption engine with an isolated reserve that can collect protocol
rewards and expand the supply of GoodDollar.

Scope

Repository: mento-protocol/mento-core

Branch: develop

Audited Commit: 8722c6da3bb8alé1996ca0b8fc2a4d0847b0916c
Final Commit: 20fc515c055dcf44f68cO0bbbb3dec223bebébea2a

For the detailed scope, see the contest details.

Findings
Each issue has an assigned severity:

e Medium issues are security vulnerabilities that may not be directly exploitable or
may require certain conditions in order to be exploited. All major issues should be
addressed.

« High issues are directly exploitable security vulnerabilities that need to be fixed.

Issues found

High Medium

0 5

Issues not fixed or acknowledged

High Medium

0 0]

Security experts who found valid issues

0x73696d616f Ollam OxcOffEE
Robert onthehunt

Issue M-1: User to sell the last supply will
make the exchange contribution forever
stuck

Source: https://github.com/sherlock-audit/2024-10-mento-update-judging/issues/17

The protocol has acknowledged this issue.

Found by
Ox73696d616f

Summary

BancorExchangeProvider::_getScaledAmountOut() decreases the amount out when the
token in is the supply token by the exit contribution, that is, scaledAmountQOut=(scaledAmo
untOut* (MAX_WEIGHT-exchange.exitContribution))/MAX_WEIGHT;.

Whenever the last supply of the token is withdrawn, it will get all the reserve and store it
in scaledAmountOut, and then apply the exit contribution, leaving these funds forever
stuck, as there is O supply to redeem it.

Root Cause

In BancorExchangeProvider: 345, the exchange contribution is applied regardless of there
being supply left to redeem it.

Internal pre-conditions

1. All supply must be withdrawn from the exchange.

External pre-conditions

None.

Attack Path

1. Users call Broker: : swapIn(), that calls GoodDollarExchangeProvider: : swapIn(),
which is the exchange contract that holds the token and reserve balances, selling
supply tokens until the supply becomes 0.

Impact

The last exit contribution will be forever stuck. This amount is unbounded and may be
very significant.

PoC
Add the following test to BancorExchangeProvider.t.sol:

function test_POC_swapIn_whenTokenInIsToken_shouldSwapIn() public {
BancorExchangeProvider bancorExchangeProvider =

< 1initializeBancorExchangeProvider() ;
uint256 amountIn = 300_000 * 1el8;

bytes32 exchangeld = bancorExchangeProvider.createExchange (poolExchangel) ;

vm.startPrank (brokerAddress) ;
uint256 amountOut = bancorExchangeProvider.swapIn(exchangeId, address(token),

< address(reserveToken), amountIn);

(, , uint256 tokenSupplyAfter, uint256 reserveBalanceAfter, ,) =
— bancorExchangeProvider.exchanges (exchangeId) ;

assertEq(amountOut, 59400e18);
assertEq(reserveBalanceAfter, 600e18);
assertEq(tokenSupplyAfter, 0);

vm.expectRevert ("ERR_INVALID_SUPPLY");
bancorExchangeProvider.swapIn(exchangeId, address(token), address(reserveToken),

< 1lel8);
+

Mitigation

The specific mitigation depends on the design.

Issue M-2: GoodDollarExchangeProvider: :
mintFromExpansion() will change the price
due to a rounding error in the new ratio

Source: https://github.com/sherlock-audit/2024-10-mento-update-judging/issues/21

Found by
Ox73696d616f

Summary

GoodDollarExchangeProvider::mintFromExpansion() mints supply tokens while keeping
the current price constant. To achieve this, a certain formula is used, but in the process it
scales the reserveRatioScalar*exchange.reserveRatio to 1e8 precision (the precision of e
xchange .reserveRatio) down from 1e18.

However, the calculation of the new amount of tokens to mint is based on the full ratio
with 1€18, which will mint more tokens than it should and change the price, breaking the
readme.

Notel: there is also a slight price change in GoodDollarExchangeProvider::mintFrominter
est() due to using mul and then div, as mul divides by 1e18 unnecessarily in this case.

Note2: GoodDollarExchangeProvider::updateRatioForReward() also has precision loss as
it calculates the ratio using the formula and then scales it down, changing the price.

Root Cause

In GoodDollarExchangeProvider: 147, newRatio is calculated with full 1e18 precision and
used to calculate the amount of tokens to mint, but exchanges [exchangeId] .reserveRati
o is stored with the downscaled value, newRatio/1e10, causing an error and price change.

This happens because the price is reserve/ (supply*reserveRatio). As supply is increased
by a calculation that uses the full precision newRatio, but reserveRatio is stored with less
precision (1e8), the price will change due to this call.

Internal pre-conditions

None.

External pre-conditions

None.

Attack Path

. GoodDollarExchangeProvider: :mintFromExpansion() is called and a rounding error
happens in the calculation of newRatio.

Impact

The current price is modified due to the expansion which goes against the readme:

What properties/invariants do you want to hold even if breaking them has a
low/unknown impact?

Bancor formula invariant. Price = Reserve / Supply * reserveRatio

PoC
Add the following test to GoodDollarExchangeProvider.t.sol:

function test_POC_mintFromExpansion_priceChangeFix() public {
uint256 priceBefore = exchangeProvider.currentPrice(exchangeld);
vm.prank (expansionControllerAddress) ;
exchangeProvider.mintFromExpansion(exchangeId, reserveRatioScalar);
uint256 priceAfter = exchangeProvider.currentPrice(exchangeld) ;
assertEq(priceBefore, priceAfter, "Price should remain exactly equal');

If the code is used as is, it fails. but if it is fixed by dividing and multiplying by 1e10,
eliminating the rounding error, the price matches exactly (exact fix show below).

Mitigation

Divide and multiply newRatio by 1e10 to eliminate the rounding error, keeping the price
unchanged.

function mintFromExpansion(
bytes32 exchangeld,
uint256 reserveRatioScalar

) external onlyExpansionController whenNotPaused returns (uint256 amountToMint) {
require(reserveRatioScalar > 0, "Reserve ratio scalar must be greater than 0");
PoolExchange memory exchange = getPoolExchange (exchangeld) ;

UD60x18 scaledRatio = wrap(uint256(exchange.reserveRatio) * 1e10);

UD60x18 newRatio = wrap(unwrap(scaledRatio.mul (wrap(reserveRatioScalar))) / 1lel0

< * 1el0);

}

Discussion

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/mento-protocol/mento-core/pull/548

Issue M-3: Malicious user may frontrun Goo
dDollarExpansionController: :mintUBIFro
mReserveBalance () to make protocol funds
stuck

Source: https://github.com/sherlock-audit/2024-10-mento-update-judging/issues/33

The protocol has acknowledged this issue.

Found by
0x73696d616f

Summary

GoodDollarExpansionController::mintUBIFromReserveBalance() or
GoodDollarExpansionController::mintUBIFromInterest() transfer funds to the reserve and
mint $G to the distribution helper. However,
GoodDollarExchangeProvider::mintFrominterest() mints O tokens whenever the supply is
0. An attacker can buy all $G from the exchange to trigger this.

Root Cause

In GoodDollarExpansionController: :142 and GoodDollarExpansionController: :161, amoun
tMinted is not checked for a null value.

Internal pre-conditions

None.

External pre-conditions

None.

Attack Path

1. Attacker calls Bancor: : swapIn() or Bancor: :swapOut (), buying all $G in the
exchange, making PoolExchange . tokenSupply null.

2. GoodDollarExpansionController: :mintUBIFromReserveBalance () or GoodDollarExpan
sionController: :mintUBIFromInterest () is called, adding reserve asset funds
without minting $G.

Impact

Funds are added to the reserve without the corresponding amount of $G being minted.

PoC

GoodDollarExpansionController: :mintUBIFromInterest () and GoodDollarExpansionContr
oller: :mintUBIFromReserveBalance () do not check if amountToMint is null:

function mintUBIFromInterest(bytes32 exchangeld, uint256 reservelnterest) external {
require(reservelnterest > 0, "Reserve interest must be greater than 0");
IBancorExchangeProvider.PoolExchange memory exchange =
< IBancorExchangeProvider (address(goodDollarExchangeProvider))
.getPoolExchange (exchangeld) ;

uint256 amountToMint = goodDollarExchangeProvider .mintFromInterest (exchangeld,
<» reservelnterest);

require (IERC20 (exchange.reserveAsset) . transferFrom(msg. sender, reserve,
< reservelnterest), "Transfer failed"); //@audit safeTransferFrom. //Q@audit lost
— 1if reserve asset is also a stable asset

IGoodDollar (exchange.tokenAddress) .mint (address(distributionHelper),
< amountToMint) ;

// Ignored, because contracts only interacts with trusted contracts and tokens
// slither-disable-next-line reentrancy-events
emit InterestUBIMinted (exchangeId, amountToMint) ;

}

function mintUBIFromReserveBalance (bytes32 exchangeld) external returns (uint256
< amountMinted) {
IBancorExchangeProvider.PoolExchange memory exchange =
< IBancorExchangeProvider (address(goodDollarExchangeProvider))
.getPoolExchange (exchangeld) ;

uint256 contractReserveBalance = IERC20(exchange.reserveAsset) .balanceOf (reserve);
uint256 additionalReserveBalance = contractReserveBalance -
—» exchange.reserveBalance;
if (additionalReserveBalance > 0) {
amountMinted = goodDollarExchangeProvider.mintFromInterest (exchangeld,
«» additionalReserveBalance) ;

IGoodDollar (exchange.tokenAddress) .mint (address(distributionHelper),
— amountMinted) ;

// Ignored, because contracts only interacts with trusted contracts and tokens
// slither-disable-next-line reentrancy-events
emit InterestUBIMinted(exchangeld, amountMinted) ;

GoodDollarExchangeProvider: :mintFromInterest () returns O if exchange.tokenSupply is O.

function mintFromInterest (
bytes32 exchangeld,
uint256 reservelnterest
) external onlyExpansionController whenNotPaused returns (uint256 amountToMint) {

PoolExchange memory exchange = getPoolExchange (exchangeld);

uint256 reserveinterestScaled = reservelnterest *
<~ tokenPrecisionMultipliers[exchange.reserveAsset];
uint256 amountToMintScaled = unwrap(
wrap(reserveinterestScaled) .mul (wrap (exchange.tokenSupply)) .div(wrap(exchange.r

- eserveBalance))
)3
amountToMint = amountToMintScaled /
< tokenPrecisionMultipliers[exchange.tokenAddress];

exchanges [exchangeId] .tokenSupply += amountToMintScaled;
exchanges [exchangeId] .reserveBalance += reserveinterestScaled;

return amountToMint;

}

Mitigation

Revert if the amountToMint from the GoodDollarExchangeProvider: :mintFromInterest ()
call is null. The same should also be done for GoodDollarExpansionController: :mintUBIFr
omExpansion() amountMinted from the GoodDollarExchangeProvider.mintFromExpansion ()

call.

10

Issue M-4: TradingLimits: :update() incor-
rectly only rounds up when deltaFlowUni
ts becomes 0, which will silently increase
trading limits

Source: https://github.com/sherlock-audit/2024-10-mento-update-judging/issues/45

The protocol has acknowledged this issue.

Found by
0x73696d616f

Summary

TradingLimits::update() divides the traded funds by the decimals of the token, int256
_deltaFlowUnits = _deltaFlow / int256((10 ** uint256(decimals)));. Inatokenwith18decimals,
forexample,swappingl.999...el18tokenswillleadtoa_deltaFlowUnitsof justl’ taking a
major error. This can be exploited to swap up to twice the trading limit, if tokens are
swapped 2 by 2 and the state is updated only by 1 each time. Overall, even without
malicious intent, the limits will always be bypassed due to the rounding.

Root Cause

In TradingLimits: 135, it only rounds up whenever deltaFlowUnits becomes O, but the
error is just as big if it becomes 1 from 2, effectively not providing enough protection.

Internal pre-conditions

None.

External pre-conditions

None.

Attack Path

1. User calls Broker: : swapIn/Out () with amounts in and out that produce rounding
errors (almost always).

1

Impact

The trading limits may be severely bypassed with malicious intent (by double the
amount) or by a smaller but still significant amount organically.

PoC

TradinglLimits: :update() only rounds up when deltaFlowUnits becomes O.

function update(
ITradinglimits.State memory self,
ITradinglimits.Config memory config,
int256 _deltaFlow,
uint8 decimals
) internal view returns (ITradinglLimits.State memory) {
int256 _deltaFlowUnits = _deltaFlow / int256((10 ** uint256(decimals)));
require(_deltaFlowUnits <= MAX_INT48, "dFlow too large");

int48 deltaFlowUnits = int48(_deltaFlowUnits);

if (deltaFlowUnits == 0) {
deltaFlowUnits = _deltaFlow > 0 ? int48(1) : int48(-1);

Mitigation
The correct fix is:

int256 _deltaFlowUnits = (_deltaFlow - 1) / int256((10 ** uint256(decimals))) + 1;

12

Issue M-5: _getReserveRatioScalar() will
give a lesser value than expected

Source: https://github.com/sherlock-audit/2024-10-mento-update-judging/issues/50

Found by
0x73696d616f, OxcOffEE, Ollam, Robert, onthehunt

Summary

numberOfExpansions = (block.timestamp - config.lastExpansion) / config.expansionFreq
uency

The calculation divides it by the expansionFrequency, but this will cause significant
rounding issues.

If the expansionFrequency is 1 day (as specified in the docs), time may pass without
anybody calling the function and the following scenario will be present.

Let's say 30 hours since last expansion and someone decides then to call it, it will be
rounded due to the division to be 1 day, producing a smaller value than the hours that've
passed.

Root Cause

The root cause is the potential of rounding down numberOfExpansions, which will give a
significantly smaller value, depending on how big will be remainder of the division. (6 for
30 hours, 3 for 27 hours, etc)

Internal pre-conditions

mintUBIFromExpansion() need to be callable.

External pre-conditions

No response

Attack Path

1. Alice calls mintUBIFromExpansion() to create an expansion

13

2. 30 hours pass and nobody calls the function, Bob sees that he can call mnintUBIFrom
Expansion()

3. Due to the rounding down of the calculation, it will a value equivalent of 24 hours
passing.

Impact

The protocol will expand slower than intended, thus less $G will be minted, which will
become significant overtime.

PoC

No response

Mitigation

No response

Discussion

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/mento-protocol/mento-core/pull/553

14

Disclaimers

Sherlock does not provide guarantees nor warranties relating to the security of the
project.

Usage of all smart contract software is at the respective users’ sole risk and is the users’
responsibility.

15

