
Documentation User
Guide
How to contribute to the documentation
repository

https://analog.com
file:///tmp/guide/_build/html/
file:///tmp/guide/_build/html/
file:///tmp/guide/_build/html/

Table of contents

2Creating new pages

3Content templates and guidelines

3Evaluation Boards

3Base page structure

3Simplify the base structure

4Structure Rationale

4Documentation structure

5Use case for the structure

5Adding content

6Importing from DokuWiki

7Documentation guidelines

8Templates

8Forking and publishing

9Preparing your origin

9Fork

9Copy

10Branch

10Preparing your environment

11Adding content

11Pushing and triggering the CI

11Resuming work at a later time

12Understanding git lfs

Creating new pages
The first step on adding new content is to understand the Documentation structure. Then, proceed with Adding

content.

Content templates and guidelines

Templates and guidelines for specific types of content are available:

Evaluation Boards

Evaluation boards pages compile all content related to an evaluation board, from the hardware overview,

features, kit contents, hardware, user guides, developer guides, and source code.

A top-level template is available at (rendered). Please pay

attention to the comments only visible on the source code, and remove them as you follow the template.

Base page structure

Evaluation boards pages are divided into five main sections:

Overview

User Guide

Developer Overview

Developer Guide

Help and Support

The evaluation board begins with an overview of the board, similar to the first paragraph at .

The Overview section provides key points about the evaluation board to help the user understand it and choose

the ideal solution (baremetal or Linux?, hard core or FPGA-based?, etc.).

Then, cover key features, evaluation board kit contents, required equipment, hardware overview (all generic to all

carriers).

The “User Guide” section contains guides aimed at users, including those without deep technical knowledge.

Start with the most plug-and-play solution, gradually diving deeper into technical aspects. If something is too

technical, save it for the “Developer Overview” or “Developer Guide” sections.

The “Developer Overview” section should provide all technical details that a developer may want to know and

summarize and link all source code and documentation available. It’s essential to leverage the Git role and In

organization reference. Avoid using full URL paths, as they make consistency checks difficult.

Similar to the “User Guide” section, the “Developer Guide” section contains guides but aimed at developers! Here

is where you can really dive deep into the details and complex parts. However, make sure not to duplicate content

already present on other pages, especially external ones. For example, the no-OS drivers’ source repository

already contains a page explaining the driver details. These developer guides should focus on intricate details of

using the evaluation board with the solutions.

Finally, the last section “Help and Support” contains generic information and links, but you can still add help/

support information related to your particular evaluation board.

Simplify the base structure

Some evaluation boards are simpler than others, and may not require splitting content into subpages.

#

#

#

docs/contributing/template/example/eval.rst

#

•

•

•

•

•

analog.com

#

analog.com 3

https://github.com/analogdevicesinc/documentation/tree/main/docs/contributing/template/example/eval.rst
https://github.com/analogdevicesinc/documentation/tree/main/docs/contributing/template/example/eval.rst
https://www.analog.com//
https://www.analog.com//
https://analogdevicesinc.github.io/doctools/docs_guidelines.html#role-git
https://analogdevicesinc.github.io/doctools/docs_guidelines.html#role-git
https://analogdevicesinc.github.io/doctools/docs_guidelines.html#in-org-ref
https://analogdevicesinc.github.io/doctools/docs_guidelines.html#in-org-ref
https://analogdevicesinc.github.io/doctools/docs_guidelines.html#in-org-ref
https://analogdevicesinc.github.io/doctools/docs_guidelines.html#in-org-ref

If the evaluation board in question does not contain or need a developer guide, then the “Developer Guides”

section can be removed, and the “Developer Overview” renamed simply to “Developers” with pointers to the

source code.

Additionally, if there is only one carrier and user guide, the user guide can be integrated into the main page,

replacing the carrier-agnostic paragraphs with the carrier-specific details.

An example of this structure is eval-adxl355-pmdz. A more complex example is eval-ad4052-ardz.

Structure Rationale

This structure aims at minimizing content repetition, clearly defining the boundaries between “Plug&Play”

solutions and highly-technical developer resources, and ensuring consistent linking to the source code and

related documentation.

It also enables generating custom documentations with only the pertinent content for the evaluation board, such

as using Doctools’ Custom Doc with the following YAML file:

project: "EVAL-AD4052-ARDZ"
description: "Evaluating the AD4050/AD4052 Compact, Low Power, 12-Bit/16-Bit, 2 MSPS Easy Drive SAR ADCs"

include:
- documentation/eval/user-guide/adc/ad4052-ardz
- documentation/linux/drivers/iio-adc/ad4052
- hdl/projects/ad4052_ardz
- no-OS/drivers/ad405x.rst
- no-OS/projects/ad405x.rst

entry-point:
- caption:
files:
- documentation/eval/user-guide/adc/ad4052-ardz/index.rst

- caption: HDL Design
files:
- hdl/projects/ad4052_ardz/index.rst

- caption: Linux IIO Driver
files:
- documentation/linux/drivers/iio-adc/ad4052/index.rst

- caption: no-OS Driver&Project
files:
- no-OS/projects/ad405x.rst
- no-OS/drivers/ad405x.rst

Produces a concise and resourceful user guide.

Documentation structure

 repository hosts any type of content that is not version controlled with a particular source code, or in other

words, “don’t deserve their own repository”.

Due to this, there are multiple topics, for example, there is information from Linux drivers to Evaluation boards

user guides.

As an analogy, if this documentation were a encyclopedia, each topic would be a volume.

To create each “volume”, two toctrees replicate the structure of the context top level.

For example, while in we have:

.. toctree::
:caption: Linux Kernel & Software
:maxdepth: 2
:glob:

 linux/*/index

At the specific context toctree () we have:

#

#

This

docs/index.rst#L24

docs/linux/index.rst#L9

4 Creating new pages

https://analogdevicesinc.github.io/doctools/cli.html#custom-doc
https://analogdevicesinc.github.io/doctools/cli.html#custom-doc
https://github.com/analogdevicesinc/documentation/tree/main/
https://github.com/analogdevicesinc/documentation/tree/main/
https://analogdevicesinc.github.io/documentation/linux/drivers/index.html#linux-drivers
https://analogdevicesinc.github.io/documentation/linux/drivers/index.html#linux-drivers
https://analogdevicesinc.github.io/documentation/eval/user-guide/index.html#eval-user-guides
https://analogdevicesinc.github.io/documentation/eval/user-guide/index.html#eval-user-guides
https://analogdevicesinc.github.io/documentation/eval/user-guide/index.html#eval-user-guides
https://analogdevicesinc.github.io/documentation/eval/user-guide/index.html#eval-user-guides
https://www.sphinx-doc.org/en/master/usage/restructuredtext/directives.html#directive-toctree
https://github.com/analogdevicesinc/documentation/tree/main/docs/index.rst#L24
https://github.com/analogdevicesinc/documentation/tree/main/docs/index.rst#L24
https://github.com/analogdevicesinc/documentation/tree/main/docs/linux/index.rst#L9
https://github.com/analogdevicesinc/documentation/tree/main/docs/linux/index.rst#L9

.. toctree::
:glob:

 */index

Glob is used to match any document that matches the pattern and avoids simple but annoying merge conflicts of

contributors adding pages to the same toctree at the same time.

Use case for the structure

This structure enables to concatenate other documentations (“volumes”) to this one, allowing to generate an

aggregated monolithic output, for example.

Suppose we have a repository called my-repo with the following toctree:

.. toctree::
:glob:

 */index

To add to this doc, we only need to append to docs/index.rst as:

.. toctree::
:glob:

 my-repo/*/index

And copy my-repo/docs as documentation/docs/my-repo (mostly).

Adding content

The documentation is highly hierarchical and contextual, that means a page about “Peeling Blue Bananas” should

be located at fruits/banana/blue/peeling.rst and not eval/tutorial-peeling_blue_bananas.rst .

The title should also be kept short, since it directly inherits the context from the hierarchical structure, so it’s

preferred:

Peeling blue bananas
=====================

Over:

Fruits tutorials: peeling blue bananas
======================================

At the toctree , the title shall be overwritten to reduce the title length on the sidebar further:

Blue bananas
============

.. toctree::

 Peeling <peeling>
 Recipes <recipes>

#

Notice the usage of the :glob: options. It is particular useful to avoid merge conflict scenarios.

Tip

#

analog.com 5

Having that in mind, proceed with creating the directories, toc-entries, and files for your content:

cd ~/documentation/docs ; pwd

mkdir my_topic
Add "My Topic" to the main index
vi index.rst
Create topic/volume index
vi my_topic/index.rst
Create more content
vi my_topic/page0.rst my_topic/page1.rst
Add/create images
cp ~/some-image.svg my_topic/

Edit my_topic/index.rst, adding a title and some content.

Build the doc and see the changes:

make html

Even better than having to run make html at every edit, you can leverage Why was Author Mode renamed to

Serve? to have a live-updating instance of the doc, you just need to save the file and the build will be triggered

automatically.

Importing from DokuWiki

To import content from dokuwiki, a script is available to help on this task: DokuWiki to Sphinx (bash.sh).

It requires you have pandoc and sed installed:

sudo apt install pandoc sed

It will try its best to reduce the amount of manual work necessary, still, please review the content carefully.

For images, ensure to click on the image on wiki.analog.com to ensure you download the original and not the

compressed image.

Always prioritize vector images (.svg).

Finally, content yet not imported, keep/use the Dokuwiki role. And for deprecated content, add the qualifier

+deprecated , for example:

:dokuwiki+deprecated:`Old content <resources/old/content>`

The reason for this is that with this differentiation we can easily track yet to import pages and deprecated content

with:

grep --exclude-dir=_build -rnw :dokuwiki:

grep --exclude-dir=_build -rnw :dokuwiki+deprecated:

Don’t overthink the location of the content, it can be easily moved later. Just try to keep it contextual and

hierarchical.

Tip

$
~/documentation/docs
$
$
$
$
$
$
$
$
$
...

~/documentation/docs$

Sphinx only rebuilds modified files, so toctree changes may look like they are not “applying” to the

documentation. Just rebuild the whole doc with make clean html if the output is confusing.

Tip

#

~/documentation/docs$
software/libiio/internals.rst:58:like :dokuwiki:`GNU Radio ...
software/libiio/index.rst:270::dokuwiki:`here <resources/t ...
...
~/documentation/docs$

6 Creating new pages

https://analogdevicesinc.github.io/doctools/cli.html#author-mode
https://analogdevicesinc.github.io/doctools/cli.html#author-mode
https://analogdevicesinc.github.io/doctools/cli.html#author-mode
https://analogdevicesinc.github.io/doctools/cli.html#author-mode
https://gist.github.com/gastmaier/9d9c8281dc3c8551991a857cdb2692cc
https://analogdevicesinc.github.io/doctools/docs_guidelines.html#role-dokuwiki
https://analogdevicesinc.github.io/doctools/docs_guidelines.html#role-dokuwiki

software/libiio/index.rst:54:* :dokuwiki+deprecated:`Beac ...
...

analog.com 7

Documentation guidelines
This documentation is built with Sphinx and all source code is available at the path .

To contribute to it, first read Forking and publishing, read the guidelines (both the general and the additional

guidelines below) and also Creating new pages.

When you are satisfied with your contribution, open a pull request with the changes to .

Templates

Any page can be used as a template.

In particular, for evaluation board user-guide, use the ADRV9009 & ADRV9008 pages as a template.

For (future) template pages with :orphan: on the first line, remove it. This marker is used to hide the templates

from the TOC tree.

Also, instructions using the comment syntax may be present on the page and also need to be removed. Those

comments have the format:

..
I'm a comment

#
docs

this repository

#

8 Documentation guidelines

https://www.sphinx-doc.org
https://github.com/analogdevicesinc/documentation/tree/main/docs
https://github.com/analogdevicesinc/documentation/tree/main/docs
https://analogdevicesinc.github.io/doctools/docs_guidelines.html#docs-guidelines
https://analogdevicesinc.github.io/doctools/docs_guidelines.html#docs-guidelines
https://github.com/analogdevicesinc/documentation/tree/main/
https://github.com/analogdevicesinc/documentation/tree/main/
https://analogdevicesinc.github.io/documentation/eval/user-guide/adrv9009/index.html#adrv9009
https://analogdevicesinc.github.io/documentation/eval/user-guide/adrv9009/index.html#adrv9009
https://www.sphinx-doc.org/en/master/usage/restructuredtext/directives.html#directive-toctree

Forking and publishing
The steps below are a walk-through to contribute to repository, It ensures that GitHub Actions and GitHub

Pages are enabled, so you can run continuous integration and see the pages live at <your_user>.github.io/

documentation, and git-lfs artifacts are properly synced.

Preparing your origin

There is three options to host your work, for users:

Fork: that want to use the GitHub flow (recommended).

Copy: that want to work privately first.

Branch: with write access to analogdevicesinc organization.

Fork

Ensure git-lfs is installed with:

sudo apt install git-lfs -y

Fork the analogdevicesinc/documentation repo on your account.

Enable the workflows on the forked repo at github.com/<your_user>/documentation/actions by clicking the

green button

“I understand my workflows, go ahead and enable them”.

Clone the repository:

git clone https://github.com/<your_user>/documentation \
--depth=10 -- documentation

cd documentation

Copy

Ensure git-lfs is installed with:

sudo apt install git-lfs -y

Clone mainland:

git clone https://github.com/analogdevicesinc/documentation \
--depth=10 -- documentation

cd documentation

Setup both origins, for example, call analogdevicesinc public and your copy private at the .git/config, similar

to:

[core]
repositoryformatversion = 0
filemode = true
bare = false
logallrefupdates = true

[remote "public"]
url = https://github.com/analogdevicesinc/documentation.git

#
this

Using the Python virtual environment (venv) is recommended, but if you wish to not use it, skip steps in green.

Note

#

•

•

•

#

~$

~$

#

~$

~$

analog.com 9

https://github.com/analogdevicesinc/documentation/tree/main/
https://github.com/analogdevicesinc/documentation/tree/main/
https://git-lfs.com/

fetch = +refs/heads/*:refs/remotes/public/*
[remote "private"]

url = https://github.com/<your_user>/documentation.git
fetch = +refs/heads/*:refs/remotes/private/*

[branch "main"]
Set your private copy as upstream
remote = private
merge = refs/heads/main

Push the working branch to your copy.

git push private main:main

Fetch from analogdevicesinc and push to your copy the large files binaries:

git lfs fetch --all public
git lfs push --all private

Branch

If you have write permission to the repository, you shall add your work to a branch at mainland, then just:

Ensure git-lfs is installed with:

sudo apt install git-lfs -y

Clone the repository

git clone https://github.com/analogdevicesinc/documentation \
--depth=10 \
-- documentation

cd documentation

Create and checkout a branch

git checkout -b <your_branch>

Preparing your environment

Clone and build the doc for the first time (working directory: repo root):

Ensure pip is up-to-date:

pip install pip --upgrade

Setup the virtual env at the repo root path:

python -m venv ./venv

Activate the virtual env:

source ./venv/scripts/activate

Install the requirements:

(cd docs ; pip install -r requirements.txt --upgrade)

Build the doc (output at docs/_build/html):

(cd docs ; make html)

~/documentation$

~/documentation$
~/documentation$

#

~$

~$

~/documentation$

#

~/documentation$

~/documentation$

~/documentation$

~/documentation$

10 Forking and publishing

Adding content

Add a new topic and pages (working directory: docs).

On index.rst, add a new topic:

.. toctree::
:caption: My new topic
:maxdepth: 2

my_topic/index

Or add to an existing, for example, in eval/index.rst.

Create a new folder and file matching the entry from last step:

mkdir my_topic; touch my_topic/index.rst

Edit my_topic/index.rst, adding a title and some content.

Build the doc and see the changes.

Commit the changes.

For a extensive guide on adding content see Creating new pages.

Pushing and triggering the CI

The CI (.github/workflows/top-level.yml) builds the doc and pushes to the gihub-pages branch and is triggered

on push to main and on pull request (every time):

On pull request, the build doc target is run, which builds the doc and stores it as an artifact.

On push to main, the build doc and deploy targets are run, the latter commits the doc artifact to the gh-

pages branch.

Enable GitHub Pages to have the public website configure GitHub Pages at github.com/<your_user>/

documentation/settings/pages:

Set Source as “deploy from branch”

Set the branch as “gh-pages”

Resuming work at a later time

Reactivate the virtual environment with:

source ./venv/scripts/activate

Ensure the tools are up to data from time to time with:

(cd docs ; pip install -r requirements.txt --upgrade)

#

Don’t overthink the location at this point, it can be easily moved later.

Tip

~/documentation/docs$

#

•

•

You can see the runs at github.com/<your_user>/documentation/actions.

Tip

•

•

#

~/documentation$

~/documentation$

analog.com 11

Edit, build, commit, push as usual.

Understanding git lfs

Since git lfs is not that common in the wild, it may be tricky to get the hang of it.

First of all, the basics: lfs replaces binaries files with pointers, and stores the binaries outside the git repository, in

an external server.

When you do git clone/pull , by default lfs will also download the binaries at the “smudge” step. You can

change this behaviour by setting globally git lfs install --skip-smudge or temporally with

GIT_LFS_SKIP_SMUDGE=1 environment variable.

If during a clone or pull you obtain the error:

Encountered n file(s) that should have been pointers

That simply means that someone pushed files to remote that should have been pointers (defined in the

.gitattributes file). And to fix is simple:

git add --renomalize .
git commit -m "Convert binary files to pointers"
git push

And advise the committer to ensure he has git lfs enabled with git lfs install .

#

~$
~$
~$

12 Forking and publishing

	Creating new pages
	Content templates and guidelines
	Evaluation Boards
	Base page structure
	Simplify the base structure
	Structure Rationale

	Documentation structure

	Use case for the structure
	Adding content

	Importing from DokuWiki

	Documentation guidelines
	Templates

	Forking and publishing
	Preparing your origin
	Fork
	Copy
	Branch

	Preparing your environment
	Adding content
	Pushing and triggering the CI
	Resuming work at a later time
	Understanding git lfs

