
EVAL-AD4052-ARDZ
Evaluating the AD4050/AD4052 Compact,
Low Power, 12-Bit/16-Bit, 2 MSPS Easy
Drive SAR ADCs

https://analog.com
file:///mnt/wsl/data/repos/ad4052/_build/html/
file:///mnt/wsl/data/repos/ad4052/_build/html/
file:///mnt/wsl/data/repos/ad4052/_build/html/


Table of contents

3EVAL-AD4050/AD4052-ARDZ

4Overview

4Features

4Evaluation board kit contents

4Equipment needed

5Hardware

5User Guides

5Evaluating the device

5Hardware setup

6Flashing the firmware

6no-OS

6Precision-converters-firmware

6Linux

6Quick start

7Evaluation board hardware

7Evaluation board software

7Developers

7Drivers

8Projects

8Linux devicetrees

8HDL reference design

8Software & Bindings

9Help and Support

HDL Design

10AD4052-ARDZ HDL project

11Overview

11Supported boards

11Supported devices

11Supported carriers

11Block design

12CPU/Memory interconnects addresses

13I2C connections

13SPI connections

13GPIOs

14Interrupts

14Building the HDL project

14Resources

14Hardware related

14HDL related

15Software related

15More information

15Support

Linux IIO Driver

16AD4052

17Supported Devices

17Evaluation Boards

17Source Code



17Status

17Files

18Devicetree

18External clock

18Sampling trigger

18ADC node

18Usage

18Kernel configuration

19Driver testing

20Oversampling

20Sample rate for burst and monitor mode

20Sample rate for buffer reading with PWM trigger

21Auto suspend

21Monitor mode

22Data acquisition

22Debug mode

no-OS Driver&Project

24AD405x no-OS Example Project STM32

25Supported Evaluation Boards

25Overview

25Applications

25No-OS Build Setup

25No-OS Supported Examples

25Basic example

25IIO example

25No-OS Supported Platforms

25STM32 Platform

26Project Options

26AD405x no-OS Driver

27Supported Devices

27Overview

27AD405X Device Configuration

27Driver Initialization

27SPI

27GPIO Configuration

27Channel Configuration

28Soft Reset

28AD405X Driver Initialization Example

28SPI



[1]

EVAL-AD4050/AD4052-ARDZ
The  and 

evaluation boards enable quick and easy evaluation of the

performance and features of the  or the 

, respectively. The AD4050 and AD4052 are

compact, low power, 12-bit or 16-bit (respectively) Easy Drive

successive approximation register (SAR) analog-to-digital

converters (ADCs).

The evaluations board are designed to conform to the

Arduino Uno Shield mechanical and electrical standard.

Overview

This section provides a general overview on the evaluation board, all supported carriers, firmware and software.

The following carriers are supported, followed by the target firmware:

The SDP-K1 uses the Precision-converters-firmware or the  project instead of a no-OS

project.

Features

Full featured evaluation boards for the  and  with a USB power solution.

Single differential channel and common-mode input available through SMA connectors.

PC software (ACE plugin/IIO Oscilloscope) for control and data analysis of the time and frequency

domains.

Compatible with other Arduino form factor controller boards.

Evaluation board kit contents

EVAL-AD4050-ARDZ/EVAL-AD4052-ARDZ evaluation board.

Equipment needed

Host PC.

One of the supported carriers.

Precision signal source with SMA cable.

#
EVAL-AD4050-ARDZ EVAL-AD4052-ARDZ

AD4050

AD4052

#

Carrier no-OS Linux

NUCLEO-H503RB ✓

NUCLEO-H563ZI ✓

Cora Z7S ✓

DE10-Nano ✓

SDP-K1 [1] ✓

closed-source

#

• AD4050 AD4052

• 

• 

• 

#

• 

#

• 

• 

• 

4 EVAL-AD4050/AD4052-ARDZ

https://www.analog.com/EVAL-AD4050-ARDZ
https://www.analog.com/EVAL-AD4050-ARDZ
https://www.analog.com/EVAL-AD4052-ARDZ
https://www.analog.com/EVAL-AD4052-ARDZ
https://www.analog.com/AD4050
https://www.analog.com/AD4050
https://www.analog.com/AD4052
https://www.analog.com/AD4052
https://analogdevicesinc.github.io/precision-converters-firmware/index.html
https://analogdevicesinc.github.io/precision-converters-firmware/index.html
https://www.analog.com/media/en/technical-documentation/user-guides/eval-ad4050-ad4052-ug-2222.pdf#unique_6
https://www.analog.com/media/en/technical-documentation/user-guides/eval-ad4050-ad4052-ug-2222.pdf#unique_6
https://www.analog.com/AD4050
https://www.analog.com/AD4050
https://www.analog.com/AD4052
https://www.analog.com/AD4052
https://analogdevicesinc.github.io/documentation/software/iio-oscilloscope/index.html#iio-oscilloscope
https://analogdevicesinc.github.io/documentation/software/iio-oscilloscope/index.html#iio-oscilloscope


Hardware

The evaluation board is connected to the Arduino Uno compatible headers of the carrier.

When powering from the carrier, ensure the JP2 jumper is to the +5V position and power on the carrier board.

When powering from an external power supply, ensure the JP2 jumper is set to the VIN position, power on the

carrier board, and provide power to VIN (according to the carrier board user guide).

For more information about hardware specifications, see the /

evaluation board pages, in particular, the user guide and design support files.

User Guides

This chapter is aimed to everyone using the evaluation board. It provides instructions on bringing-up the

evaluation board with pre-built binaries for supported carries, and how to interact with it.

Evaluating the device

The first step is on evaluating the device is choosing one of the following carriers and firmware, and downloading

the pre-built files:

Hardware setup

To set up the hardware, complete the following steps:

Disconnect both the evaluation board and the carrier from all power sources.

Connect the evaluation board to the carrier using the Arduino Uno compatible headers (there is only one

position where all pins are connected).

#

EVAL-AD4050-ARDZ EVAL-AD4052-ARDZ

#

#

This section describes how to evaluate the device using the open-source drivers, for the SDP-K1’s closed-

source platform, see .

Note

UG-2222

Carrier no-OS Linux

NUCLEO-H503RB download

NUCLEO-H563ZI download

Cora Z7S download

DE10-Nano download

SDP-K1 download

For Linux, the latest Kuiper relase may contain the provided files already, in this case, you shall use those

instead.

Tip

#

These steps occurs prior to flashing the firmware for no-OS and after flashing it for Linux.

Note

• 

• 

analog.com 5

https://www.analog.com/EVAL-AD4050-ARDZ
https://www.analog.com/EVAL-AD4050-ARDZ
https://www.analog.com/EVAL-AD4052-ARDZ
https://www.analog.com/EVAL-AD4052-ARDZ
https://www.analog.com/media/en/technical-documentation/user-guides/eval-ad4050-ad4052-ug-2222.pdf
https://www.analog.com/media/en/technical-documentation/user-guides/eval-ad4050-ad4052-ug-2222.pdf


Check jumpers and powering on instructions specific for the carrier.

When powering the evaluation board from the carrier, follow:

Set JP2 jumper on the evaluation board to the +5V position. This position connects the evaluation

board power management circuitry to the +5 V pin on the Arduino Uno power header

Connect the carrier to a PC with a USB cable, the evaluation board DS1 LED should turn on, as

others LEDs on the carrier.

When powering the evaluation board from an external power supply, follow:

Set JP2 jumper on the evaluation board to the VIN position. This position connects the evaluation

board power management circuitry to the VIN pin on the Arduino Uno power header.

Power on the carrier via the external power supply option (in general, via a DC jack), the evaluation

board DS1 LED should turn on, as others LEDs on the carrier.

Connect the carrier to a PC with a USB cable.

Flashing the firmware

no-OS

These steps are done after the hardware setup, with the board powered on and connected to a PC.

Unpack the downloaded file to a folder and flash one of the example projects (.elf files) to the STM32 board using

the STM32 Cube IDE or copy over into the USB driver hosted by the STM32 board.

See AD405x no-OS Example Project STM32 for the description of each example.

Precision-converters-firmware

These steps are done after the hardware setup, with the board powered on and connected to a PC.

Unpack the downloaded file to a folder and flash the .elf file to the STM32 board using the STM32 Cube IDE or

copy over into the USB driver hosted by the STM32 board.

Linux

These steps are done before the hardware setup, with the board powered off.

For both CoraZ7S and DE10-Nano, prepare a SD Card with Kuiper.

Then, patch the SD Card with the downloaded files:

CoraZ7S (Zynq)

DE10-Nano (Cyclone5)

Insert the flashed SD Card on the carrier powered off and follow the hardware setup steps.

Quick start

Connect a precision signal source or signal generator to the analog input Subminiature Version A (SMA)

connectors to drive the AD4050/AD4052 inputs into their specified operating ranges.

• 

• 

◦ 

◦ 

• 

◦ 

◦ 

◦ 

#

#

#

#

• 

• 

#

6 EVAL-AD4050/AD4052-ARDZ

https://analogdevicesinc.github.io/no-OS/projects/ad405x.html
https://analogdevicesinc.github.io/no-OS/projects/ad405x.html
https://analogdevicesinc.github.io/documentation/linux/kuiper/sdcard/index.html#kuiper-sdcard
https://analogdevicesinc.github.io/documentation/linux/kuiper/sdcard/index.html#kuiper-sdcard
https://analogdevicesinc.github.io/documentation/linux/kuiper/index.html#kuiper-fpga-xilinx
https://analogdevicesinc.github.io/documentation/linux/kuiper/index.html#kuiper-fpga-xilinx
https://analogdevicesinc.github.io/documentation/linux/kuiper/index.html#kuiper-fpga-intel
https://analogdevicesinc.github.io/documentation/linux/kuiper/index.html#kuiper-fpga-intel


Biasing the EVAL-AD4052-ARDZ Inputs Without

Signal Generator Hardware for Software

Validation

IIf no signal generator is available, a jumper cable between

the VREF and VCM test points can be used to bias the

AD4050/ AD4052 analog inputs to VREF. This is preferred

over connecting the amplifier inputs to GND, because the

amplifier VEE rails are connected to GND by default.

Evaluation board hardware

Follow , Evaluation Board Hardware section.

Evaluation board software

For no-OS basic examples, the evaluation board is interfaced through any serial software such as minicom,

picocom and putty (see AD405x no-OS Example Project STM32, Basic Example section).

Using no-OS tinyIIO example, precision-converters-firmare or Linux, the interface is done through Libiio

For no-OS tinyIIO and precision-converters-firmware, execute on the host PC:

iio_info -u serial:/dev/ttyACM0,115200,8n1

And for Linux, on the carrier Linux shell:

iio_info

Or from the host, with a Ethernet cable connected to the carrier:

iio_info -u ip:192.168.2.1

(the IP address depends on your local network and carrier settings).

You can also use IIO Oscilloscope on to obtain waveforms using a GUI.

Developers

This chapter summarizes all source code and related documentation of the evaluation board.

To work with the source code, you should have prior knowledge on software development and HDL design (for

the FPGA). We provide pointers to introductory guides, although their scope is limited to topics that particularly

relate to our codebase and do not replace the full documentation of the tools used.

Drivers

The drivers source code are available at:

#

#

UG-2222

#

~$

~$

~$

#

#

Firmware Source code Documentation

no-OS doc

Linux doc

drivers/adc/ad405x

drivers/iio/adc/ad4052.c

analog.com 7

file:///mnt/wsl/data/repos/ad4052/_build/html/_images/signal-bias.png
file:///mnt/wsl/data/repos/ad4052/_build/html/_images/signal-bias.png
https://www.analog.com/media/en/technical-documentation/user-guides/eval-ad4050-ad4052-ug-2222.pdf
https://www.analog.com/media/en/technical-documentation/user-guides/eval-ad4050-ad4052-ug-2222.pdf
https://analogdevicesinc.github.io/no-OS/projects/ad405x.html
https://analogdevicesinc.github.io/no-OS/projects/ad405x.html
https://analogdevicesinc.github.io/documentation/software/libiio/index.html#libiio
https://analogdevicesinc.github.io/documentation/software/libiio/index.html#libiio
https://analogdevicesinc.github.io/documentation/software/iio-oscilloscope/index.html#iio-oscilloscope
https://analogdevicesinc.github.io/documentation/software/iio-oscilloscope/index.html#iio-oscilloscope
https://github.com/analogdevicesinc/no-OS/tree/main/drivers/adc/ad405x
https://github.com/analogdevicesinc/no-OS/tree/main/drivers/adc/ad405x
https://github.com/analogdevicesinc/linux/tree/staging/ad4052/drivers/iio/adc/ad4052.c
https://github.com/analogdevicesinc/linux/tree/staging/ad4052/drivers/iio/adc/ad4052.c


The no-OS driver is divided into a core driver and a tinyIIO layer to be used with Libiio. The Linux driver is always

exposed via the Linux Industrial I/O Subsystem.

To get started with no-OS drivers, checkout no-OS drivers guide, and for Linux drivers the Kernel and devicetrees

page.

Projects

The source code for baremetal projects can be found at:

For the no-OS project, the basic examples use only the core driver, while the iio example uses the tinyIIO layer to

expose the device to Libiio.

The precision-converters-firmware project also expose the device to Libiio, differentiating only on the target

carrier.

Since the Linux driver exposes the device via the Linux Industrial I/O Subsystem, no project is required to

leverage the device on Linux targets (CoraZ7S and DE10-Nano).

Follow no-OS projects and precision-converters-firmware projects to comprehend the project structure for each.

Linux devicetrees

For the carriers targeting Linux, the devicetrees are available at:

HDL reference design

The DE10-Nano and Cora Z7s use the FPGA to instantiate the controllers to interface the evaluation board.

The source code is available at  and documented at AD4052-ARDZ HDL project.

Get start with the HDL reference design reading the User Guide.

Software & Bindings

Using any IIO or TinyIIO driver layer, the device can be interacted through Libiio, language bindings on top of

libiio and the IIO Oscilloscope GUI.

For the Python language a class abstraction of the device is available at  (class doc), with an

example at 

#

Carrier Firmware Project Documentation

NUCLEO-H503RB no-OS docs

NUCLEO-H563ZI no-OS docs

SDP-K1 precision-converters-firmware docs

CoraZ7S Linux - -

DE10-Nano Linux - -

projects/ad405x

projects/ad405x

projects/ad405x_iio

#

Carrier Devicetree

Cora Z7S

DE10-Nano -

zynq-coraz7s-ad4052.dts

#

projects/ad4052_ardz

#

adi/ad405x.py

examples/ad4052_example.py

8 EVAL-AD4050/AD4052-ARDZ

https://analogdevicesinc.github.io/documentation/software/libiio/index.html#libiio
https://analogdevicesinc.github.io/documentation/software/libiio/index.html#libiio
https://analogdevicesinc.github.io/documentation/linux/drivers/iio/index.html#iio
https://analogdevicesinc.github.io/documentation/linux/drivers/iio/index.html#iio
https://analogdevicesinc.github.io/no-OS/drivers_guide.html
https://analogdevicesinc.github.io/no-OS/drivers_guide.html
https://analogdevicesinc.github.io/documentation/linux/kernel/index.html#linux-kernel
https://analogdevicesinc.github.io/documentation/linux/kernel/index.html#linux-kernel
https://github.com/analogdevicesinc/no-OS/tree/ad405x/projects/ad405x
https://github.com/analogdevicesinc/no-OS/tree/ad405x/projects/ad405x
https://github.com/analogdevicesinc/no-OS/tree/ad405x/projects/ad405x
https://github.com/analogdevicesinc/no-OS/tree/ad405x/projects/ad405x
https://github.com/analogdevicesinc/precision-converters-firmware/tree/main/projects/ad405x_iio
https://github.com/analogdevicesinc/precision-converters-firmware/tree/main/projects/ad405x_iio
https://analogdevicesinc.github.io/precision-converters-firmware/source/projects/ad405x_iio/ad405x_iio.html
https://analogdevicesinc.github.io/precision-converters-firmware/source/projects/ad405x_iio/ad405x_iio.html
https://analogdevicesinc.github.io/documentation/software/libiio/index.html#libiio
https://analogdevicesinc.github.io/documentation/software/libiio/index.html#libiio
https://analogdevicesinc.github.io/documentation/software/libiio/index.html#libiio
https://analogdevicesinc.github.io/documentation/software/libiio/index.html#libiio
https://analogdevicesinc.github.io/documentation/linux/drivers/iio/index.html#iio
https://analogdevicesinc.github.io/documentation/linux/drivers/iio/index.html#iio
https://wiki.analog.com/resources/no-os/build
https://analogdevicesinc.github.io/precision-converters-firmware/source/build/project_build.html
https://analogdevicesinc.github.io/precision-converters-firmware/source/build/project_build.html
https://github.com/analogdevicesinc/linux/tree/staging/ad4052/arch/arm/boot/dts/xilinx/zynq-coraz7s-ad4052.dts
https://github.com/analogdevicesinc/linux/tree/staging/ad4052/arch/arm/boot/dts/xilinx/zynq-coraz7s-ad4052.dts
https://github.com/analogdevicesinc/hdl/tree/ad4052/projects/ad4052_ardz
https://github.com/analogdevicesinc/hdl/tree/ad4052/projects/ad4052_ardz
https://analogdevicesinc.github.io/hdl/projects/ad4052_ardz/index.html#ad4052-ardz
https://analogdevicesinc.github.io/hdl/projects/ad4052_ardz/index.html#ad4052-ardz
https://analogdevicesinc.github.io/hdl/user_guide/index.html#user-guide
https://analogdevicesinc.github.io/hdl/user_guide/index.html#user-guide
https://analogdevicesinc.github.io/documentation/software/libiio/index.html#libiio
https://analogdevicesinc.github.io/documentation/software/libiio/index.html#libiio
https://analogdevicesinc.github.io/documentation/software/iio-oscilloscope/index.html#iio-oscilloscope
https://analogdevicesinc.github.io/documentation/software/iio-oscilloscope/index.html#iio-oscilloscope
https://github.com/analogdevicesinc/pyadi-iio/tree/main/adi/ad405x.py
https://github.com/analogdevicesinc/pyadi-iio/tree/main/adi/ad405x.py
https://analogdevicesinc.github.io/pyadi-iio/devices/adi.ad405x.html
https://analogdevicesinc.github.io/pyadi-iio/devices/adi.ad405x.html
https://github.com/analogdevicesinc/pyadi-iio/tree/main/examples/ad4052_example.py
https://github.com/analogdevicesinc/pyadi-iio/tree/main/examples/ad4052_example.py


Help and Support

For questions and more information, please visit the .

All  the  products  described  on  this  page  include  ESD (electrostatic  discharge)  sensitive  devices.

Electrostatic charges as high as 4000V readily accumulate on the human body or test equipment and

can discharge without detection.  Although the boards feature ESD protection circuitry,  permanent

damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper

ESD precautions are recommended to avoid performance degradation or loss of functionality. This

includes removing static charge on external equipment, cables, or antennas before connecting to the

device. 

#

EngineerZone Support Community

analog.com 9

https://ez.analog.com/reference-designs
https://ez.analog.com/reference-designs


HDL Design



AD4052-ARDZ HDL project

Overview

The HDL reference design for the , , , and  . They are versatile, 16-

bit/12-bit, successive approximation register (SAR) analog-to-digital converters (ADCs) that enable low-power,

high-density data acquisition solutions without sacrificing precision. These ADCs offer a unique balance of

performance and power efficiency, plus innovative features for seamlessly switching between high-resolution and

low-power modes tailored to the immediate needs of the system.

The / / /  are ideal for battery-powered, compact data acquisition and

edge sensing applications.

The /  evaluation boards enable quick and easy evaluation of the

performance and features of the  or the , respectively. The AD4050 and AD4052 are

compact, low power, 12-bit or 16-bit (respectively) Easy Drive successive approximation register (SAR) analog-to-

digital converters (ADCs).

This project has a SPI Engine instance to control and acquire data from the precision ADC. This instance

provides support for capturing continuous samples at the maximum sample rate.

Supported boards

Supported devices

Supported carriers

Cora Z7-07S Arduino shield connector

DE10-Nano Arduino shield connector

Block design

The data path and clock domains are depicted in the below diagram:

#

#

AD4050 AD4052 AD4056 AD4058

AD4050 AD4052 AD4056 AD4058

EVAL-AD4050-ARDZ EVAL-AD4052-ARDZ

AD4050 AD4052

#

• EVAL-AD4050-ARDZ

• EVAL-AD4052-ARDZ

#

• AD4050

• AD4052

• AD4056

• AD4058

#

• 

• 

#

analog.com 11

https://www.analog.com/AD4050
https://www.analog.com/AD4050
https://www.analog.com/AD4052
https://www.analog.com/AD4052
https://www.analog.com/AD4056
https://www.analog.com/AD4056
https://www.analog.com/AD4058
https://www.analog.com/AD4058
https://www.analog.com/AD4050
https://www.analog.com/AD4050
https://www.analog.com/AD4052
https://www.analog.com/AD4052
https://www.analog.com/AD4056
https://www.analog.com/AD4056
https://www.analog.com/AD4058
https://www.analog.com/AD4058
https://www.analog.com/EVAL-AD4050-ARDZ
https://www.analog.com/EVAL-AD4050-ARDZ
https://www.analog.com/EVAL-AD4052-ARDZ
https://www.analog.com/EVAL-AD4052-ARDZ
https://www.analog.com/AD4050
https://www.analog.com/AD4050
https://www.analog.com/AD4052
https://www.analog.com/AD4052
https://analogdevicesinc.github.io/hdl/library/spi_engine/index.html#spi-engine
https://analogdevicesinc.github.io/hdl/library/spi_engine/index.html#spi-engine
https://www.analog.com/EVAL-AD4050-ARDZ
https://www.analog.com/EVAL-AD4050-ARDZ
https://www.analog.com/EVAL-AD4052-ARDZ
https://www.analog.com/EVAL-AD4052-ARDZ
https://www.analog.com/AD4050
https://www.analog.com/AD4050
https://www.analog.com/AD4052
https://www.analog.com/AD4052
https://www.analog.com/AD4056
https://www.analog.com/AD4056
https://www.analog.com/AD4058
https://www.analog.com/AD4058
https://www.xilinx.com/products/boards-and-kits/1-1qlaz7n.html
https://www.intel.com/content/www/us/en/developer/topic-technology/edge-5g/hardware/fpga-de10-nano.html


CPU/Memory interconnects addresses

The addresses are dependent on the architecture of the FPGA, having an offset added to the base address from

HDL (see more at HDL Architecture).

E
th

e
rn

e
t

U
A

R
T

D
D

R
x

S
P

I

I2

In
te

rr
u

p
ts

T
im

e
r

Receive path

M
E

M
O

R
Y

IN
T

E
R

C
O

N
N

E
C

T

Cora Z7s
DE10-Nano

A
R

D
U

IN
O

S
H

IE
L

D
C

O
N

N
E

C
T

O
R

A
D

40
52

_D
M

A

SYS_CLK
=100MHz

SPI_CLK (Cora/DE10)
= 180/150 MHz

ARM (Zynq)
Zynq SoC

SPI ENGINE FRAMEWORK

CS

SDI
SCLK 25MHz

AXI
REGMAP

INTER-
CONNECT

EXECUTION

OFFLOAD

SDI

AXI CLKGEN
AXI PWM
GEN

GP1

CNV

64b 32b
trigger

s0_ctrl s1_ctrl

offload_ctrl

m_ctrl
SDO

GP0

#

Cora Z7S

Instance Address

spi_adc_axi_regmap 0x44A0_0000

spi_adc_dmac 0x44A3_0000

axi_iic_eeprom 0x44A4_0000

spi_clkgen 0x44A7_0000

adc_trigger_gen 0x44B0_0000

#

DE10-Nano #

12 AD4052-ARDZ HDL project

file:///mnt/wsl/data/repos/ad4052/_build/html/_images/ad4052_hdl.svg
file:///mnt/wsl/data/repos/ad4052/_build/html/_images/ad4052_hdl.svg
https://analogdevicesinc.github.io/hdl/user_guide/architecture.html#architecture
https://analogdevicesinc.github.io/hdl/user_guide/architecture.html#architecture


I2C connections

Device address considering the EEPROM address pins A0=0 , A1=1 , A2=0 .

SPI connections

GPIOs

The Software GPIO number is calculated as follows:

Cora Z7S: the offset is 54

DE10-Nano: the offset is 32

Instance Address

axi_dmac_0 0x0002_0000

axi_spi_engine_0 0x0003_0000

pwm_trigger 0x0004_0000

spi_clk_pll_reconfig 0x0005_0000

#

Cora Z7s

I2C type I2C manager instance Alias Address Device Address I2C subordinate

PS axi_iic_eeprom axi_iic_eeprom_io 0x44A4_0000 0x52 EEPROM

#

DE10-Nano

I2C type I2C manager instance Alias Address Device Address I2C subordinate

PS i2c1 sys_hps_i2c1 — 0x52 —

#

#

SPI type SPI manager instance SPI subordinate CS

PL axi_spi_engine ad4052 0

#

• 

GPIO signal Direction HDL GPIO EMIO Software GPIO

(from FPGA view) Zynq-7000

adc_cnv OUTPUT 34 88

adc_gp1 INOUT 33 87

adc_gp0 INOUT 32 86

• 

GPIO signal Direction HDL GPIO EMIO Software GPIO

(from FPGA view) DE10-Nano

adc_cnv OUTPUT 34 2

analog.com 13



Interrupts

Below are the Programmable Logic interrupts used in this project.

Building the HDL project

The design is built upon ADI’s generic HDL reference design framework. ADI distributes the bit/elf files of these

projects as part of the ADI Kuiper Linux. If you want to build the sources, ADI makes them available on the 

. To get the source you must clone the HDL repository, and then build the project as follows:

Linux/Cygwin/WSL

cd hdl/projects/ad4052_ardz/coraz7s
make

cd hdl/projects/ad4052_ardz/de10nano
make

A more comprehensive build guide can be found in the Build an HDL project user guide.

Resources

Hardware related

Product datasheets:

HDL related

GPIO signal Direction HDL GPIO EMIO Software GPIO

(from FPGA view) DE10-Nano

adc_gp1 INPUT 33 1

adc_gp0 INPUT 32 0

#

Instance name HDL Linux Zynq Actual Zynq

axi_adc_dma 13 57 89

spi_adc_axi_regmap 12 56 88

axi_iic_eeprom 11 55 87

Instance name HDL Linux DE10-Nano Actual DE10-Nano

axi_dmac_0 4 44 76

axi_spi_engine_0 3 43 75

#

HDL repository

~$
~/hdl/projects/ad4052_ardz/coraz7s$

~$
~/hdl/projects/ad4052_ardz/de10nano$

#

#

• 

◦ AD4050

◦ AD4052

#

• AD4052-ARDZ HDL project source code

14 AD4052-ARDZ HDL project

https://wiki.analog.com/resources/tools-software/linux-software/kuiper-linux
https://github.com/analogdevicesinc/hdl/tree/main/
https://github.com/analogdevicesinc/hdl/tree/main/
https://git-scm.com/book/en/v2/Git-Basics-Getting-a-Git-Repository
https://analogdevicesinc.github.io/hdl/user_guide/build_hdl.html#build-hdl
https://analogdevicesinc.github.io/hdl/user_guide/build_hdl.html#build-hdl
https://www.analog.com/AD4050
https://www.analog.com/AD4050
https://www.analog.com/AD4052
https://www.analog.com/AD4052
https://github.com/analogdevicesinc/hdl/tree/main/projects/ad4052-ardz
https://github.com/analogdevicesinc/hdl/tree/main/projects/ad4052-ardz


SPI Engine Framework documentation

Software related

More information

ADI HDL User guide

Support

Analog Devices, Inc. will provide limited online support for anyone using the  with ADI

components via the  FPGA reference designs forum.

For questions regarding the ADI Linux device drivers, device trees, etc. from our , the

team will offer support on the  Linux software drivers forum.

For questions concerning the ADI No-OS drivers, from our , the team will offer

support on the  microcontroller No-OS drivers forum.

It should be noted, that the older the tools’ versions and release branches are, the lower the chances to receive

support from ADI engineers.

IP name Source code link Documentation link

AXI_PWM_GEN here

AXI_CLKGEN  * here

AXI_DMAC here

AXI_HDMI_TX  ** here

AXI_SYSID here

AXI_SPI_ENGINE here

SPI_ENGINE_EXECUTION here

SPI_ENGINE_INTERCONNECT here

SPI_ENGINE_OFFLOAD here

SYSID_ROM here

library/axi_pwm_gen

library/axi_dmac

library/axi_dmac

library/axi_hdmi_tx

library/axi_sysid

library/spi_engine/axi_spi_engine

library/spi_engine/

spi_engine_execution

library/spi_engine/

spi_engine_interconnect

library/spi_engine/

spi_engine_offload

library/sysid_rom

*  instantiated only for Cora Z7S

**  instantiated only for DE10-Nano

Legend

• 

• 

• 

#

• AD4052 Linux driver ad4052.c

#

• 

#

reference design

EngineerZone

Linux GitHub repository

EngineerZone

No-OS GitHub repository

EngineerZone

analog.com 15

https://github.com/analogdevicesinc/hdl/tree/main/library/axi_pwm_gen
https://github.com/analogdevicesinc/hdl/tree/main/library/axi_pwm_gen
https://analogdevicesinc.github.io/hdl/library/axi_pwm_gen/index.html#axi-pwm-gen
https://analogdevicesinc.github.io/hdl/library/axi_pwm_gen/index.html#axi-pwm-gen
https://github.com/analogdevicesinc/hdl/tree/main/library/axi_clkgen
https://github.com/analogdevicesinc/hdl/tree/main/library/axi_clkgen
https://analogdevicesinc.github.io/hdl/library/axi_clkgen/index.html#axi-clkgen
https://analogdevicesinc.github.io/hdl/library/axi_clkgen/index.html#axi-clkgen
https://github.com/analogdevicesinc/hdl/tree/main/library/axi_dmac
https://github.com/analogdevicesinc/hdl/tree/main/library/axi_dmac
https://analogdevicesinc.github.io/hdl/library/axi_dmac/index.html#axi-dmac
https://analogdevicesinc.github.io/hdl/library/axi_dmac/index.html#axi-dmac
https://github.com/analogdevicesinc/hdl/tree/main/library/axi_hdmi_tx
https://github.com/analogdevicesinc/hdl/tree/main/library/axi_hdmi_tx
https://analogdevicesinc.github.io/hdl/library/axi_hdmi_tx/index.html#axi-hdmi-tx
https://analogdevicesinc.github.io/hdl/library/axi_hdmi_tx/index.html#axi-hdmi-tx
https://github.com/analogdevicesinc/hdl/tree/main/library/axi_sysid
https://github.com/analogdevicesinc/hdl/tree/main/library/axi_sysid
https://analogdevicesinc.github.io/hdl/library/axi_sysid/index.html#axi-sysid
https://analogdevicesinc.github.io/hdl/library/axi_sysid/index.html#axi-sysid
https://github.com/analogdevicesinc/hdl/tree/main/library/spi_engine/axi_spi_engine
https://github.com/analogdevicesinc/hdl/tree/main/library/spi_engine/axi_spi_engine
https://analogdevicesinc.github.io/hdl/library/spi_engine/axi_spi_engine.html#spi-engine-axi
https://analogdevicesinc.github.io/hdl/library/spi_engine/axi_spi_engine.html#spi-engine-axi
https://github.com/analogdevicesinc/hdl/tree/main/library/spi_engine/spi_engine_execution
https://github.com/analogdevicesinc/hdl/tree/main/library/spi_engine/spi_engine_execution
https://github.com/analogdevicesinc/hdl/tree/main/library/spi_engine/spi_engine_execution
https://analogdevicesinc.github.io/hdl/library/spi_engine/spi_engine_execution.html#spi-engine-execution
https://analogdevicesinc.github.io/hdl/library/spi_engine/spi_engine_execution.html#spi-engine-execution
https://github.com/analogdevicesinc/hdl/tree/main/library/spi_engine/spi_engine_interconnect
https://github.com/analogdevicesinc/hdl/tree/main/library/spi_engine/spi_engine_interconnect
https://github.com/analogdevicesinc/hdl/tree/main/library/spi_engine/spi_engine_interconnect
https://analogdevicesinc.github.io/hdl/library/spi_engine/spi_engine_interconnect.html#spi-engine-interconnect
https://analogdevicesinc.github.io/hdl/library/spi_engine/spi_engine_interconnect.html#spi-engine-interconnect
https://github.com/analogdevicesinc/hdl/tree/main/library/spi_engine/spi_engine_offload
https://github.com/analogdevicesinc/hdl/tree/main/library/spi_engine/spi_engine_offload
https://github.com/analogdevicesinc/hdl/tree/main/library/spi_engine/spi_engine_offload
https://analogdevicesinc.github.io/hdl/library/spi_engine/spi_engine_offload.html#spi-engine-offload
https://analogdevicesinc.github.io/hdl/library/spi_engine/spi_engine_offload.html#spi-engine-offload
https://github.com/analogdevicesinc/hdl/tree/main/library/sysid_rom
https://github.com/analogdevicesinc/hdl/tree/main/library/sysid_rom
https://analogdevicesinc.github.io/hdl/library/axi_sysid/index.html#axi-sysid
https://analogdevicesinc.github.io/hdl/library/axi_sysid/index.html#axi-sysid
https://analogdevicesinc.github.io/hdl/library/spi_engine/index.html#spi-engine
https://analogdevicesinc.github.io/hdl/library/spi_engine/index.html#spi-engine
https://github.com/analogdevicesinc/linux/tree/main/drivers/iio/adc/ad4052.c
https://github.com/analogdevicesinc/linux/tree/main/drivers/iio/adc/ad4052.c
https://analogdevicesinc.github.io/hdl/user_guide/index.html#user-guide
https://analogdevicesinc.github.io/hdl/user_guide/index.html#user-guide
https://www.analog.com/en/index.html
https://github.com/analogdevicesinc/hdl/
https://github.com/analogdevicesinc/hdl/
https://www.analog.com/en/index.html
https://ez.analog.com/fpga
https://ez.analog.com/fpga
https://www.analog.com/en/index.html
https://github.com/analogdevicesinc/linux/
https://github.com/analogdevicesinc/linux/
https://ez.analog.com/linux-software-drivers
https://ez.analog.com/linux-software-drivers
https://www.analog.com/en/index.html
https://github.com/analogdevicesinc/no-OS/
https://github.com/analogdevicesinc/no-OS/
https://ez.analog.com/microcontroller-no-os-drivers
https://ez.analog.com/microcontroller-no-os-drivers
https://www.analog.com/en/index.html


Linux IIO Driver



AD4052
The , , , and  . are versatile, 16-bit/12-bit, successive approximation

register (SAR) analog-to-digital converters (ADCs) that enable low-power, high-density data acquisition solutions

without sacrificing precision. These ADCs offer a unique balance of performance and power efficiency, plus

innovative features for seamlessly switching between high-resolution and low-power modes tailored to the

immediate needs of the system.

The / / /  are ideal for battery-powered, compact data acquisition and

edge sensing applications.

The /  evaluation boards enable quick and easy evaluation of the

performance and features of the  or the , respectively. The AD4050 and AD4052 are

compact, low power, 12-bit or 16-bit (respectively) Easy Drive successive approximation register (SAR) analog-to-

digital converters (ADCs).

Supported Devices

Evaluation Boards

Source Code

Status

Files

#
AD4050 AD4052 AD4056 AD4058

AD4050 AD4052 AD4056 AD4058

EVAL-AD4050-ARDZ EVAL-AD4052-ARDZ

AD4050 AD4052

#

• AD4050

• AD4052

• AD4056

• AD4058

#

• EVAL-AD4050-ARDZ

• EVAL-AD4052-ARDZ

#

#

Source Mainlined?

[No]git

#

Function File

driver

devicetree

devicetree bindings doc

ad4052.c

ad4052.dts

ad4052.yaml

analog.com 17

https://www.analog.com/AD4050
https://www.analog.com/AD4050
https://www.analog.com/AD4052
https://www.analog.com/AD4052
https://www.analog.com/AD4056
https://www.analog.com/AD4056
https://www.analog.com/AD4058
https://www.analog.com/AD4058
https://www.analog.com/AD4050
https://www.analog.com/AD4050
https://www.analog.com/AD4052
https://www.analog.com/AD4052
https://www.analog.com/AD4056
https://www.analog.com/AD4056
https://www.analog.com/AD4058
https://www.analog.com/AD4058
https://www.analog.com/EVAL-AD4050-ARDZ
https://www.analog.com/EVAL-AD4050-ARDZ
https://www.analog.com/EVAL-AD4052-ARDZ
https://www.analog.com/EVAL-AD4052-ARDZ
https://www.analog.com/AD4050
https://www.analog.com/AD4050
https://www.analog.com/AD4052
https://www.analog.com/AD4052
https://www.analog.com/AD4050
https://www.analog.com/AD4050
https://www.analog.com/AD4052
https://www.analog.com/AD4052
https://www.analog.com/AD4056
https://www.analog.com/AD4056
https://www.analog.com/AD4058
https://www.analog.com/AD4058
https://www.analog.com/EVAL-AD4050-ARDZ
https://www.analog.com/EVAL-AD4050-ARDZ
https://www.analog.com/EVAL-AD4052-ARDZ
https://www.analog.com/EVAL-AD4052-ARDZ
https://github.com/analogdevicesinc/linux/tree/main/drivers/iio/adc/ad4052.c
https://github.com/analogdevicesinc/linux/tree/main/drivers/iio/adc/ad4052.c
https://github.com/analogdevicesinc/linux/tree/staging/ad4052/drivers/iio/adc/ad4052.c
https://github.com/analogdevicesinc/linux/tree/staging/ad4052/drivers/iio/adc/ad4052.c
https://github.com/analogdevicesinc/linux/tree/staging/ad4052/arch/arm/boot/dts/xilinx/zynq-coraz7s-ad4052.dts
https://github.com/analogdevicesinc/linux/tree/staging/ad4052/arch/arm/boot/dts/xilinx/zynq-coraz7s-ad4052.dts
https://github.com/analogdevicesinc/linux/tree/staging/ad4052/Documentation/devicetree/bindings/iio/adc/adi,ad4052.yaml
https://github.com/analogdevicesinc/linux/tree/staging/ad4052/Documentation/devicetree/bindings/iio/adc/adi,ad4052.yaml


Devicetree

External clock

Reference clock used for sampling timing. May be the same clock as the SPI Controller driver.

clocks {
ref_clk: ext-clk {

#clock-cells = <0x0>;
compatible = "fixed-clock";
clock-frequency = <150000000>;
clock-output-names = "ref_clk";

};
};

Sampling trigger

This PWM generator is used to start the sampling procedure.

adc_trigger: axi-pwm-gen@ {
compatible = "adi,axi-pwmgen";
reg = <0x44b00000 0x1000>;
label = "ad4052_cnv";
#pwm-cells = <2>;
clocks = <&cnv_ext_clk>;

};

ADC node

The AD4052 is a SPI-compatible ADC so it should be under a SPI controller.

&spi{
ad4052: ad4052@0 {

compatible = "adi,ad4052";
reg = <0>;
spi-max-frequency = <25000000>;
clocks = <&spi_clk>;
dmas = <&rx_dma 0>;
dma-names = "rx";
pwm-names = "cnv";
pwms = <&adc_trigger 0 0>,
cnv-gpios = <&gpio0 88 GPIO_ACTIVE_HIGH>;
gp1-gpios = <&gpio0 87 GPIO_ACTIVE_HIGH>;
gp0-gpios = <&gpio0 86 GPIO_ACTIVE_HIGH>;

};
};

Usage

Kernel configuration

This device depends on a PWM based trigger used to start the sampling procedure. The first step is to enable the

support for AXI_PWMGEN.

Symbol: PWM_AXI_PWMGEN [=y]
Type : tristate
Prompt: Analog Devices AXI PWM generator

Location:

#

#

#

#

The spi-max-frequency  must be a multiple of a 25MHz clock and the dmas  handle should use a 64-bit wide

data bus.

Important

#

#

18 AD4052



-> Device Drivers
-> Pulse-Width Modulation (PWM) Support (PWM [=y])

Defined at drivers/pwm/Kconfig:78
Depends on: PWM [=y] && HAS_IOMEM [=y]
Selected by [y]:
- KERNEL_ALL_ADI_DRIVERS [=y]

Another required component is the SPI controller. The AD4052 has a specific set of SPI timing requirements that

are supported by the SPI Engine IP.

Symbol: SPI_AXI_SPI_ENGINE [=y]
Type : tristate
Prompt: Analog Devices AXI SPI Engine controller
Location:
-> Device Drivers
-> SPI support (SPI [=y])

Defined at drivers/spi/Kconfig:112
Depends on: SPI [=y] && SPI_MASTER [=y] && HAS_IOMEM [=y]
Selected by [y]:
- KERNEL_ALL_ADI_DRIVERS [=y]

And finally, enable support for the AD4630 device family.

Symbol: AD4052 [=y]
Type : tristate
Prompt: Analog Device AD4052 ADC Driver
Location:
-> Device Drivers
-> Industrial I/O support (IIO [=y])
-> Analog to digital converters

Defined at drivers/iio/adc/Kconfig:47
Depends on: IIO [=y] && SPI [=y] && PWM [=y] && GPIOLIB [=y]
Selects: IIO_BUFFER [=y] && IIO_BUFFER_DMA [=y] && IIO_BUFFER_DMAENGINE [=y]

Driver testing

This device can be found under /sys/bus/iio/devices/

One way to check if the device and driver are present is using iio_info:

iio_info

You can go to the device folder using:

cd $(grep -rw /sys/bus/iio/devices/*/name -e "ad4052" -l | xargs dirname)

In the folder there are several files that can set specific device attributes:

ls -l

#

$
    iio:device0: ad4052 (buffer capable)
            1 channels found:
                    voltage0:  (input, index: 0, format: le:s16/32>>0)
                    2 channel-specific attributes found:
                            attr  0: raw value: 12167
                            attr  1: sampling_frequency value: 1000000
            1 device-specific attributes found:
                            attr  0: waiting_for_supplier value: 0
            3 buffer-specific attributes found:
                            attr  0: data_available value: 0
                            attr  1: direction value: in
                            attr  2: length_align_bytes value: 8
            1 debug attributes found:
                            debug attr  0: direct_reg_access value: 0x10
            No trigger on this device

$

As specified in the devicetree section, the device supports multiple functional modes. This example describes

the steps for the 24-bit burst averaging mode.

Note

/sys/bus/iio/devices/iio:device0$

analog.com 19

https://analogdevicesinc.github.io/hdl/library/spi_engine/index.html#spi-engine
https://analogdevicesinc.github.io/hdl/library/spi_engine/index.html#spi-engine


Oversampling

The AD4052 device family has support for a burst averaging mode that’s exposed as the oversampling attribute.

Writing value 0 or 1 returns the device to sample mode.

Display current oversampling value:

cat in_voltage_oversampling_ratio

Change the sample averaging count:

echo 2048 > in_voltage_oversampling_ratio
cat in_voltage_oversampling_ratio

Sample rate for burst and monitor mode

Leveraging the device internal clock, the sample rate for burst and monitor mode can be configured.

Display all available sample rates:

cd /sys/bus/iio/devices/iio\:device0 ; pwd

cat in_voltage_sampling_frequency_available

Set the desired sample rate:

echo 1000000 > in_voltage_sampling_frequency
cat in_voltage_sampling_frequency

Sample rate for buffer reading with PWM trigger

Set the desired period of the PWM trigger to set the sampling frequency of bufferred reading.

cd /sys/bus/iio/devices/iio\:device0/buffer ; pwd

echo 1000000 > sampling_frequency
cat sampling_frequency

total 0
drwxr-xr-x 2 root root    0 Nov 16 21:27 buffer
drwxr-xr-x 2 root root    0 Nov 16 21:27 buffer0
-r--r--r-- 1 root root 4096 Nov 16 21:27 dev
drwxr-xr-x 2 root root    0 Nov 16 21:27 events
-rw-r--r-- 1 root root 4096 Nov 16 21:27 in_voltage_oversampling_ratio
-rw-r--r-- 1 root root 4096 Nov 16 21:27 in_voltage_raw
-rw-r--r-- 1 root root 4096 Nov 16 21:27 in_voltage_sampling_frequency
-r--r--r-- 1 root root 4096 Nov 16 21:27 in_voltage_sampling_frequency_available
-r--r--r-- 1 root root 4096 Nov 16 21:27 name
lrwxrwxrwx 1 root root    0 Nov 16 21:27 of_node -> ../../../../../../../../firmware/devicetree/base/fpga-axi@0/spi@44a00000/ad4052@0
drwxr-xr-x 2 root root    0 Nov 16 21:27 power
drwxr-xr-x 2 root root    0 Nov 16 21:27 scan_elements
lrwxrwxrwx 1 root root    0 Nov 16 21:27 subsystem -> ../../../../../../../../bus/iio
-rw-r--r-- 1 root root 4096 Nov 16 21:27 uevent
-r--r--r-- 1 root root 4096 Nov 16 21:27 waiting_for_supplier

#

$
64

$
$
2048

Please note that averaging on low sampling rates will timeout if the default buffer wait time is not modified.

For single shot readings, it will also timeout in 1 second.

Important

#

$
/sys/bus/iio/devices/iio:device0
$
2000000 1000000 300000 100000 33300 10000 3000 500 333 250 200 166 140 125 111

$
$
1000000

#

$
/sys/bus/iio/devices/iio\:device0/buffer
$
$
1000000

20 AD4052



Auto suspend

The device enters sleep mode (low power) when no acquisition is being made. Display the current runtime status:

cat /sys/bus/spi/devices/spi0.0/power/runtime_status

There is a timeout of 1 second before the power management puts the device in sleep mode. This is to avoid

putting the device to sleep when sampling single shot readings without a buffer.

Monitor mode

The driver yield a IIO Event for the device threshold interrupt in device monitor mode. The event is triggered for

either direction (rising or falling the max/min threshold values). Configure the device threshold and hysteresis

values:

cd /sys/bus/iio/devices/iio\:device0 ; pwd

echo 1000 > events/thresh_rising_value
echo -1000 > events/thresh_falling_value
echo 125 > events/thresh_rising_hysteresis
echo 125 > events/thresh_falling_hysteresis

Enable monitor mode:

echo 1 > events/thresh_either_en

At monitor mode, since the device is contiguously sampling, the device is active:

cat /sys/bus/spi/devices/spi0.0/power/runtime_status

Threshold events will increment the interrupt count:

cat /proc/interrupts

The driver puts the device in monitor mode after every device access, until disabling the threshold event with:

echo 0 > events/thresh_either_en

The user is responsible to catching IIO Event and clearing the device status register.

echo 0 > events/thresh_either_en
echo 0x41 > direct_reg_access
cat direct_reg_access

echo 0x41 0x02 > direct_reg_access
cat direct_reg_access

#

$
suspend

The power management methods are coupled to the spi device and not the iio device.

Caution

#

$
/sys/bus/iio/devices/iio:device0
$
$
$
$

$

$
active

$
           CPU0
 ...
 46:          3 GIC-0  90 Edge      ad4052

$

The device is locked from any other access until the monitor mode is disabled.

Caution

$
$
$
0x88
$
$
0x80

analog.com 21



Data acquisition

The data acquisition is performed using a buffer system:

cd /sys/bus/iio/devices/iio\:device0 ; pwd

ls buffer

ls scan_elements

Every buffer implementation features a set of files:

buffer : length Get/set the number of sample sets that may be held by the buffer.

buffer : enable Enables/disables the buffer. This file should be written last, after length and selection of

scan elements

scan_elements : in_voltage0_en enable/disables the channel output so the data won’t be buffered for

that specific channel.

Enable and read 400 samples:

echo 1 > scan_elements/in_voltage0_en
echo 400 > buffer/length
echo 1 > buffer/enable
hexdump -n 400 /dev/iio\:device0

echo 0 > buffer/enable

Debug mode

You can write and read the ADC registers using debugfs. Here we will read and write the scratchpad register:

First go to the device debug folder:

cd /sys/kernel/debug/iio/iio\:device0 ; pwd

Read the 0xA register:

echo 0xA > direct_reg_access
cat direct_reg_access

#

$
/sys/bus/iio/devices/iio:device0
$
data_available  enable  length  length_align_bytes  watermark
$
in_voltage0_en  in_voltage0_index  in_voltage0_type

• 

• 

• 

$
$
$
$
0000000 0eaf 0000 0ead 0000 0eb0 0000 0ead 0000
0000010 0ead 0000 0ea7 0000 0e9d 0000 0e9c 0000
0000020 0e97 0000 0e93 0000 0e84 0000 0e80 0000
0000030 0e7f 0000 0e7e 0000 0e7c 0000 0e7d 0000
0000040 0e7c 0000 0e79 0000 0e75 0000 0e6c 0000
0000050 0e64 0000 0e63 0000 0e5f 0000 0e51 0000
0000060 0e4c 0000 0e4f 0000 0e4d 0000 0e4b 0000
0000070 0e4d 0000 0e4b 0000 0e4c 0000 0e42 0000
0000080 0e39 0000 0e36 0000 0e33 0000 0e31 0000
0000090 0e24 0000 0e1c 0000 0e19 0000 0e1a 0000
00000a0 0e1d 0000 0e1a 0000 0e16 0000 0e19 0000
00000b0 0e15 0000 0e0c 0000 0e07 0000 0e03 0000
00000c0 0e03 0000 0e06 0000 0e05 0000 0e04 0000
00000d0 0e03 0000 0dff 0000 0df0 0000 0dea 0000
00000e0 0ded 0000 0de5 0000 0ddd 0000 0dd9 0000
00000f0 0dd7 0000 0dd3 0000 0dd2 0000 0dd1 0000
0000100 0dcd 0000 0dd1 0000 0dc8 0000 0dc1 0000
0000110 0dbe 0000 0dbb 0000 0dbc 0000 0daa 0000
0000120 0da5 0000 0da3 0000 0da2 0000 0d9f 0000
0000130 0da0 0000 0da1 0000 0da2 0000 0d9d 0000
0000140 0d91 0000 0d8e 0000 0d89 0000 0d8a 0000
0000150 0d7a 0000 0d74 0000 0d6f 0000 0d70 0000
0000160 0d6b 0000 0d6f 0000 0d70 0000 0d73 0000
0000170 0d6c 0000 0d63 0000 0d5f 0000 0d59 0000
0000180 0d58 0000 0d4e 0000 0d46 0000 0d42 0000
0000190
$

#

~$
/sys/kernel/debug/iio/iio:device0

$
$
0x0

22 AD4052



Write and verify the value:

echo 0xA 0x5F > direct_reg_access
cat direct_reg_access

$
$
0x5F

analog.com 23



no-OS Driver&Project



AD405x no-OS Example Project STM32

Supported Evaluation Boards

EVAL-AD4050-ARDZ EVAL-AD4052-ARDZ

Overview

Applications

No-OS Build Setup

Please see: https://wiki.analog.com/resources/no-os/build

For the .ioc , copy the desired carrier target file from the carrier folder to the project directory.

No-OS Supported Examples

Basic example

This example prints sample data out to the uart.

Here is an example on how see the sample data of the basic example:

minicom -b 115200 -D /dev/ttyACM0 -C ./serial.dat
make run
cat ./serial.dat | grep ADC | cut -d ' ' -f 2 > ./plot.dat
echo "set terminal svg; set output './o.svg';plot './plot.dat' with lines" | gnuplot

IIO example

This project is a IIOD demo for AD405X device. The project launches a IIOD server on the board so that the user

may connect to it via an IIO client.

At a host, use IIO utilities, for example:

iio_info -u serial:/dev/ttyACM0,115200,8n1

Using IIO-Oscilloscope, the user can configure the ADC and view the measured data on a plot.

If you are not familiar with ADI IIO Application, please take a look at: IIO No-OS

If you are not familiar with ADI IIO-Oscilloscope Client, please take a look at: IIO Oscilloscope

The no-OS IIO Application together with the No-OS IIO AD405X driver take care of all the back-end logic needed

to setup the IIO server.

The read buffer is used for storing the burst data which shall be retrieved by any LibIIO client.

No-OS Supported Platforms

STM32 Platform

Used hardware:

STM32 NUCELO-H503RB

STM32 NUCELO-H563ZI

#

#

#

#

#

#

#

#

#

#

• 

• 

analog.com 25

https://www.analog.com/EVAL-AD4050-ARDZ
https://www.analog.com/EVAL-AD4052-ARDZ
https://wiki.analog.com/resources/no-os/build
https://wiki.analog.com/resources/tools-software/no-os-software/iio
https://wiki.analog.com/resources/tools-software/linux-software/iio_oscilloscope
https://www.st.com/en/evaluation-tools/nucleo-h503rb.html
https://www.st.com/en/evaluation-tools/nucleo-h563zi.html


ST debugger

Prerequisites

export STM32CUBEMX=<path/to/stm32cubemx>

export STM32CUBEIDE=<path/to/stm32cubeide>

firmware for the target platform (download on stm32cubemx beforehand)

nucleo-*.ioc file in the project folder

Build and flash

Copy the target carrier configuration from the carrier folder e.g. cp carrier/nucleo-h503rb.ioc .

make run

Project Options

Use basic interactive example that prints samples to uart:

./Makefile

BASIC_EXAMPLE = y

IIO_EXAMPLE = n

Specify the AD405X part and instance ID in use:

./Makefile:

DEV_TYPE = AD4052

Specify the carrier in use:

./Makefile:

CARRIER = NUCLEO_H503RB

• 

• 

• 

• 

• 

• 

• 

#

• 

• 

• 

26 AD405x no-OS Example Project STM32



AD405x no-OS Driver

Supported Devices

AD4052 AD4058

Overview

The AD4052/AD4058 are low power, compact 16-bit successive approximation register (SAR) analog-to-digital

converters (ADC) designed for battery powered precision measurement and monitoring applications. The

AD4052/AD4058 feature set supports event-driven programming for dynamic tradeoff between system power and

precision. Using a patented, power efficient window comparator, the AD4052 autonomously monitors signals

while the host sleeps. The programmable averaging filter enables on-demand high resolution measurements for

optimizing precision for the power consumed.

The AD4052 includes AFE control signals to minimize the complexity of host timers. The control signals automate

the power cycling of the AFE relative to ADC sampling to reduce system power while minimizing settling error

artifacts. The Easy Drive analog inputs enables compact and low power signal conditioning circuitry by reducing

the dependence on high-speed ADC driver amplifiers. The small 3.4 pF sampling capacitors result in low dynamic

and average input current, broadening compatibility with low power amplifiers or direct sensor interfacing. The

AD4052 wide common mode input range supports both differential and single-ended input signals.

The AD4052 family features a 4-wire SPI with a dedicated CNV input. Cyclic redundancy check (CRC) is

available on all interface read and write operations and internal memory to ensure reliable device configuration

and operation.

AD405X Device Configuration

Driver Initialization

SPI

In order to be able to use the device, you will have to provide the support for the communication protocol (SPI) as

well as 3 external GPIOs for the CNV pin and two general-purpose input/output pins (GP0 and GP1).

The first API to be called is ad405x_init. Make sure that it returns 0, which means that the driver was initialized

correctly.

GPIO Configuration

The device has two general purpose output pins, GP0 and GP1. These pins can be configured as threshold

events, data ready, among other status signals. In the driver files the ad405x_set_gp_mode can be found and

used to choose the specific signal for the GPIOs.

If GP0 is set as DRDY, the device will assert the pin on the CONV assertion, and the ADC driver will wait the pin

to desert before issuing the ADC data acquisition. During initialization, GP1 is used to track the DEV_RDY state,

and no further behaviour is defined at the driver level.

Channel Configuration

Channel data can be fetched with ad405x_get_adc.

The channel data format can be set using ad405x_set_data_format

#

#

#

#

#

#

#

#

analog.com 27

https://www.analog.com/AD4052
https://www.analog.com/AD4058


Channel operation mode can also be configured using ad405x_set_operating_mode.

Soft Reset

The device can be soft reset by using ad405x_soft_reset.

AD405X Driver Initialization Example

SPI

struct ad405x_dev *ad405x;
const struct no_os_spi_init_param ad405x_spi_ip = {

.device_id = SPI_DEVICE_ID,

.max_speed_hz = 100000,

.mode = NO_OS_SPI_MODE_0,

.chip_select = GPIO_CS_PIN,

.bit_order = NO_OS_SPI_BIT_ORDER_MSB_FIRST,

.platform_ops = SPI_OPS,

.extra = &ad405x_spi_extra_ip
};
const struct no_os_gpio_init_param gpio_cnv_param = {

.port = GPIO_CNV_PORT,

.number = GPIO_CNV_PIN,

.platform_ops = GPIO_OPS,

.extra = &gpio_init
};
const struct no_os_gpio_init_param gpio_gpio0_param = {

.port = GPIO_GPIO0_PORT,

.number = GPIO_GPIO0_PIN,

.platform_ops = GPIO_OPS,

.extra = &gpio_init
};
const struct no_os_gpio_init_param gpio_gpio1_param = {

.port = GPIO_GPIO1_PORT,

.number = GPIO_GPIO1_PIN,

.platform_ops = GPIO_OPS,

.extra = &gpio_init
};
struct ad405x_init_param ad405x_ip = {

.comm_type = AD405X_COMM,

.comm_init.spi_init = ad405x_spi_ip,

.dev_type = AD405X_DEV_TYPE,

.gpio_cnv = &gpio_cnv_param,

.gpio_gpio0 = &gpio_gpio0_param,

.gpio_gpio1 = &gpio_gpio1_param
};
ret = ad405x_init(&ad405x, &ad405x_ip);
if (ret)

goto error;

#

#

#

28 AD405x no-OS Driver


	EVAL-AD4050/AD4052-ARDZ
	Overview
	Features
	Evaluation board kit contents
	Equipment needed
	Hardware

	User Guides
	Evaluating the device
	Hardware setup
	Flashing the firmware
	no-OS
	Precision-converters-firmware
	Linux

	Quick start
	Evaluation board hardware
	Evaluation board software


	Developers
	Drivers
	Projects
	Linux devicetrees
	HDL reference design
	Software & Bindings

	Help and Support

	HDL Design
	AD4052-ARDZ HDL project
	Overview
	Supported boards
	Supported devices
	Supported carriers
	Block design
	CPU/Memory interconnects addresses
	I2C connections
	SPI connections
	GPIOs
	Interrupts

	Building the HDL project
	Resources
	Hardware related
	HDL related
	Software related

	More information
	Support


	Linux IIO Driver
	AD4052
	Supported Devices
	Evaluation Boards
	Source Code
	Status
	Files
	Devicetree
	External clock
	Sampling trigger
	ADC node

	Usage
	Kernel configuration
	Driver testing
	Oversampling
	Sample rate for burst and monitor mode
	Sample rate for buffer reading with PWM trigger
	Auto suspend
	Monitor mode
	Data acquisition
	Debug mode




	no-OS Driver&Project
	AD405x no-OS Example Project STM32
	Supported Evaluation Boards
	Overview
	Applications
	No-OS Build Setup
	No-OS Supported Examples
	Basic example
	IIO example

	No-OS Supported Platforms
	STM32 Platform

	Project Options

	AD405x no-OS Driver
	Supported Devices
	Overview
	AD405X Device Configuration
	Driver Initialization
	SPI

	GPIO Configuration
	Channel Configuration
	Soft Reset
	AD405X Driver Initialization Example
	SPI




