EVAL-AD4052-ARDZ

Evaluating the AD4050/AD4052 Compact,
Low Power, 12-Bit/16-Bit, 2 MSPS Easy

Drive SAR ADCs

ANALOG
DEVICES

https://analog.com
file:///mnt/wsl/data/repos/ad4052/_build/html/
file:///mnt/wsl/data/repos/ad4052/_build/html/
file:///mnt/wsl/data/repos/ad4052/_build/html/

Table of contents

EVAL-AD4050/AD4052-ARDZ
Overview
Features
Evaluation board kit contents
Equipment needed
Hardware
User Guides
Evaluating the device
Hardware setup
Flashing the firmware
no-0S

Precision-converters-firmware

Linux
Quick start
Evaluation board hardware
Evaluation board software
Developers
Drivers
Projects
Linux devicetrees
HDL reference design
Software & Bindings
Help and Support

HDL Design

AD4052-ARDZ HDL project
Overview
Supported boards
Supported devices
Supported carriers
Block design

CPU/Memory interconnects addresses

I2C connections
SPI connections
GPIOs
Interrupts
Building the HDL project
Resources
Hardware related
HDL related
Software related
More information
Support

Linux llO Driver

AD4052
Supported Devices
Evaluation Boards
Source Code

© 00 00 00 0 N N N N o o oo o oo oo BB DM W

10
11
11
11
11
11
12
13
13
13
14
14
14
14
14
15
15
15

16
17
17
17

Status

Files

Devicetree
External clock
Sampling trigger
ADC node

Usage
Kernel configuration
Driver testing

Oversampling

Sample rate for burst and monitor mode
Sample rate for buffer reading with PWM trigger

Auto suspend
Monitor mode
Data acquisition
Debug mode

no-0S Driver&Project

AD405x no-OS Example Project STM32

Supported Evaluation Boards

Overview

Applications

No-OS Build Setup

No-OS Supported Examples
Basic example
11O example

No-OS Supported Platforms
STM32 Platform

Project Options

AD405x no-OS Driver

Supported Devices

Overview

AD405X Device Configuration

Driver Initialization
SPI

GPIO Configuration

Channel Configuration

Soft Reset

AD405X Driver Initialization Example
SPI

17
17
18
18
18
18
18
18
19
20
20
20
21
21
22
22

24
25
25
25
25
25
25
25
25
25
26
26
27
27
27
27
27
27
27
28
28
28

EVAL-AD4050/AD4052-ARDZ

The @ EVAL-AD4050-ARDZ and [@ EVAL-AD4052-ARDZ
evaluation boards enable quick and easy evaluation of the
performance and features of the [@ AD4050 or the

3 AD4052, respectively. The AD4050 and AD4052 are
compact, low power, 12-bit or 16-bit (respectively) Easy Drive
successive approximation register (SAR) analog-to-digital
converters (ADCs).

The evaluations board are designed to conform to the
Arduino Uno Shield mechanical and electrical standard.

Overview

This section provides a general overview on the evaluation board, all supported carriers, firmware and software.

The following carriers are supported, followed by the target firmware:
Carrier no-OS Linux
NUCLEO-H503RB v

NUCLEO-H563Z1 v

Cora Z7S

DE10-Nano

SDP-K1 [1] v

[1] The SDP-K1 uses the Precision-converters-firmware or the [closed-source project instead of a no-OS

project.

Features

* Full featured evaluation boards for the @ AD4050 and @ AD4052 with a USB power solution.

* Single differential channel and common-mode input available through SMA connectors.

* PC software (ACE plugin/IlO Oscilloscope) for control and data analysis of the time and frequency

domains.

* Compatible with other Arduino form factor controller boards.

Evaluation board kit contents

* EVAL-AD4050-ARDZ/EVAL-AD4052-ARDZ evaluation board.

Equipment needed

* Host PC.
* One of the supported carriers.

* Precision signal source with SMA cable.

EVAL-AD4050/AD4052-ARDZ

https://www.analog.com/EVAL-AD4050-ARDZ
https://www.analog.com/EVAL-AD4050-ARDZ
https://www.analog.com/EVAL-AD4052-ARDZ
https://www.analog.com/EVAL-AD4052-ARDZ
https://www.analog.com/AD4050
https://www.analog.com/AD4050
https://www.analog.com/AD4052
https://www.analog.com/AD4052
https://analogdevicesinc.github.io/precision-converters-firmware/index.html
https://analogdevicesinc.github.io/precision-converters-firmware/index.html
https://www.analog.com/media/en/technical-documentation/user-guides/eval-ad4050-ad4052-ug-2222.pdf#unique_6
https://www.analog.com/media/en/technical-documentation/user-guides/eval-ad4050-ad4052-ug-2222.pdf#unique_6
https://www.analog.com/AD4050
https://www.analog.com/AD4050
https://www.analog.com/AD4052
https://www.analog.com/AD4052
https://analogdevicesinc.github.io/documentation/software/iio-oscilloscope/index.html#iio-oscilloscope
https://analogdevicesinc.github.io/documentation/software/iio-oscilloscope/index.html#iio-oscilloscope

Hardware
The evaluation board is connected to the Arduino Uno compatible headers of the carrier.
When powering from the carrier, ensure the JP2 jumper is to the +5V position and power on the carrier board.

When powering from an external power supply, ensure the JP2 jumper is set to the VIN position, power on the
carrier board, and provide power to VIN (according to the carrier board user guide).

For more information about hardware specifications, see the [EVAL-AD4050-ARDZ/ [EVAL-AD4052-ARDZ
evaluation board pages, in particular, the user guide and design support files.

User Guides

This chapter is aimed to everyone using the evaluation board. It provides instructions on bringing-up the
evaluation board with pre-built binaries for supported carries, and how to interact with it.

Evaluating the device

(/‘ Note)

This section describes how to evaluate the device using the open-source drivers, for the SDP-K1's closed-
source platform, see [@QUG-2222.

The first step is on evaluating the device is choosing one of the following carriers and firmware, and downloading
the pre-built files:

Carrier no-0S Linux
NUCLEO-H503RB download

NUCLEO-H563Z1 download

Cora Z7S download
DE10-Nano download
SDP-K1 download

(o Tp

For Linux, the latest Kuiper relase may contain the provided files already, in this case, you shall use those
instead.

~— |

Hardware setup

(/‘ Note

— 1

LThese steps occurs prior to flashing the firmware for no-OS and after flashing it for Linux.

To set up the hardware, complete the following steps:

* Disconnect both the evaluation board and the carrier from all power sources.

* Connect the evaluation board to the carrier using the Arduino Uno compatible headers (there is only one
position where all pins are connected).

analog.com 5

https://www.analog.com/EVAL-AD4050-ARDZ
https://www.analog.com/EVAL-AD4050-ARDZ
https://www.analog.com/EVAL-AD4052-ARDZ
https://www.analog.com/EVAL-AD4052-ARDZ
https://www.analog.com/media/en/technical-documentation/user-guides/eval-ad4050-ad4052-ug-2222.pdf
https://www.analog.com/media/en/technical-documentation/user-guides/eval-ad4050-ad4052-ug-2222.pdf

* Check jumpers and powering on instructions specific for the carrier.
* When powering the evaluation board from the carrier, follow:

° Set JP2 jumper on the evaluation board to the +5V position. This position connects the evaluation
board power management circuitry to the +5 V pin on the Arduino Uno power header

° Connect the carrier to a PC with a USB cable, the evaluation board DS1 LED should turn on, as
others LEDs on the catrrier.

* When powering the evaluation board from an external power supply, follow:

° Set JP2 jumper on the evaluation board to the VIN position. This position connects the evaluation
board power management circuitry to the VIN pin on the Arduino Uno power header.

° Power on the carrier via the external power supply option (in general, via a DC jack), the evaluation
board DS1 LED should turn on, as others LEDs on the carrier.

° Connect the carrier to a PC with a USB cable.

Flashing the firmware

no-OS
These steps are done after the hardware setup, with the board powered on and connected to a PC.

Unpack the downloaded file to a folder and flash one of the example projects (.elf files) to the STM32 board using
the STM32 Cube IDE or copy over into the USB driver hosted by the STM32 board.

See AD405x no-OS Example Project STM32 for the description of each example.

Precision-converters-firmware
These steps are done after the hardware setup, with the board powered on and connected to a PC.

Unpack the downloaded file to a folder and flash the .elf file to the STM32 board using the STM32 Cube IDE or
copy over into the USB driver hosted by the STM32 board.

Linux

These steps are done before the hardware setup, with the board powered off.
For both CorazZ7S and DE10-Nano, prepare a SD Card with Kuiper.

Then, patch the SD Card with the downloaded files:

* CoraZ7s (Zynq)
* DE10-Nano (Cycloneb)

Insert the flashed SD Card on the carrier powered off and follow the hardware setup steps.

Quick start

Connect a precision signal source or signal generator to the analog input Subminiature Version A (SMA)
connectors to drive the AD4050/AD4052 inputs into their specified operating ranges.

6 EVAL-AD4050/AD4052-ARDZ

https://analogdevicesinc.github.io/no-OS/projects/ad405x.html
https://analogdevicesinc.github.io/no-OS/projects/ad405x.html
https://analogdevicesinc.github.io/documentation/linux/kuiper/sdcard/index.html#kuiper-sdcard
https://analogdevicesinc.github.io/documentation/linux/kuiper/sdcard/index.html#kuiper-sdcard
https://analogdevicesinc.github.io/documentation/linux/kuiper/index.html#kuiper-fpga-xilinx
https://analogdevicesinc.github.io/documentation/linux/kuiper/index.html#kuiper-fpga-xilinx
https://analogdevicesinc.github.io/documentation/linux/kuiper/index.html#kuiper-fpga-intel
https://analogdevicesinc.github.io/documentation/linux/kuiper/index.html#kuiper-fpga-intel

IIf no signal generator is available, a jumper cable between
the VREF and VCM test points can be used to bias the
AD4050/ AD4052 analog inputs to VREF. This is preferred
over connecting the amplifier inputs to GND, because the
amplifier VEE rails are connected to GND by default.

ANALOG

DEVICES

Biasing the EVAL-AD4052-ARDZ Inputs Without
Signal Generator Hardware for Software
Validation

Evaluation board hardware

Follow @ UG-2222, Evaluation Board Hardware section.

Evaluation board software

For no-OS basic examples, the evaluation board is interfaced through any serial software such as minicom,
picocom and putty (see AD405x no-OS Example Project STM32, Basic Example section).

Using no-0OS tinyllO example, precision-converters-firmare or Linux, the interface is done through Libiio

For no-OS tinyllO and precision-converters-firmware, execute on the host PC:

[~$ iio info -u serial:/dev/ttyACMO,115200,8nl

And for Linux, on the carrier Linux shell:

[~$ iio_info

Or from the host, with a Ethernet cable connected to the carrier:

[~$ iio info -u ip:192.168.2.1

(the IP address depends on your local network and carrier settings).

You can also use 110 Oscilloscope on to obtain waveforms using a GUI.

Developers
This chapter summarizes all source code and related documentation of the evaluation board.

To work with the source code, you should have prior knowledge on software development and HDL design (for
the FPGA). We provide pointers to introductory guides, although their scope is limited to topics that particularly
relate to our codebase and do not replace the full documentation of the tools used.

Drivers

The drivers source code are available at:

Firmware Source code Documentation
no-0S @ drivers/adc/ad405x doc
Linux @ drivers/iio/adc/ad4052.c doc

analog.com 7

file:///mnt/wsl/data/repos/ad4052/_build/html/_images/signal-bias.png
file:///mnt/wsl/data/repos/ad4052/_build/html/_images/signal-bias.png
https://www.analog.com/media/en/technical-documentation/user-guides/eval-ad4050-ad4052-ug-2222.pdf
https://www.analog.com/media/en/technical-documentation/user-guides/eval-ad4050-ad4052-ug-2222.pdf
https://analogdevicesinc.github.io/no-OS/projects/ad405x.html
https://analogdevicesinc.github.io/no-OS/projects/ad405x.html
https://analogdevicesinc.github.io/documentation/software/libiio/index.html#libiio
https://analogdevicesinc.github.io/documentation/software/libiio/index.html#libiio
https://analogdevicesinc.github.io/documentation/software/iio-oscilloscope/index.html#iio-oscilloscope
https://analogdevicesinc.github.io/documentation/software/iio-oscilloscope/index.html#iio-oscilloscope
https://github.com/analogdevicesinc/no-OS/tree/main/drivers/adc/ad405x
https://github.com/analogdevicesinc/no-OS/tree/main/drivers/adc/ad405x
https://github.com/analogdevicesinc/linux/tree/staging/ad4052/drivers/iio/adc/ad4052.c
https://github.com/analogdevicesinc/linux/tree/staging/ad4052/drivers/iio/adc/ad4052.c

The no-OS driver is divided into a core driver and a tinyllO layer to be used with Libiio. The Linux driver is always
exposed via the Linux Industrial I/O Subsystem.

To get started with no-OS drivers, checkout no-OS drivers guide, and for Linux drivers the Kernel and devicetrees
page.

Projects

The source code for baremetal projects can be found at:

Carrier Firmware Project Documentation
NUCLEO-H503RB no-OS @ projects/ad405x docs
NUCLEO-H563ZI no-OS @ projects/ad405x docs

SDP-K1 precision-converters-firmware 4 projects/ad405x_iio docs

Coraz7S Linux - -

DE10-Nano Linux - -

For the no-OS project, the basic examples use only the core driver, while the iio example uses the tinyllO layer to
expose the device to Libiio.

The precision-converters-firmware project also expose the device to Libiio, differentiating only on the target
carrier.

Since the Linux driver exposes the device via the Linux Industrial I/O Subsystem, no project is required to
leverage the device on Linux targets (CoraZz7S and DE10-Nano).

Follow no-OS projects and precision-converters-firmware projects to comprehend the project structure for each.

Linux devicetrees

For the carriers targeting Linux, the devicetrees are available at:
Carrier Devicetree
Cora Z7S @ zyng-coraz7s-ad4052.dts

DE10-Nano -

HDL reference design
The DE10-Nano and Cora Z7s use the FPGA to instantiate the controllers to interface the evaluation board.
The source code is available at € projects/ad4052_ardz and documented at AD4052-ARDZ HDL project.

Get start with the HDL reference design reading the User Guide.

Software & Bindings

Using any IO or TinyllO driver layer, the device can be interacted through Libiio, language bindings on top of
libiio and the 110 Oscilloscope GUI.

For the Python language a class abstraction of the device is available at adi/ad405x.py (class doc), with an
example at € examples/ad4052_example.py

8 EVAL-AD4050/AD4052-ARDZ

https://analogdevicesinc.github.io/documentation/software/libiio/index.html#libiio
https://analogdevicesinc.github.io/documentation/software/libiio/index.html#libiio
https://analogdevicesinc.github.io/documentation/linux/drivers/iio/index.html#iio
https://analogdevicesinc.github.io/documentation/linux/drivers/iio/index.html#iio
https://analogdevicesinc.github.io/no-OS/drivers_guide.html
https://analogdevicesinc.github.io/no-OS/drivers_guide.html
https://analogdevicesinc.github.io/documentation/linux/kernel/index.html#linux-kernel
https://analogdevicesinc.github.io/documentation/linux/kernel/index.html#linux-kernel
https://github.com/analogdevicesinc/no-OS/tree/ad405x/projects/ad405x
https://github.com/analogdevicesinc/no-OS/tree/ad405x/projects/ad405x
https://github.com/analogdevicesinc/no-OS/tree/ad405x/projects/ad405x
https://github.com/analogdevicesinc/no-OS/tree/ad405x/projects/ad405x
https://github.com/analogdevicesinc/precision-converters-firmware/tree/main/projects/ad405x_iio
https://github.com/analogdevicesinc/precision-converters-firmware/tree/main/projects/ad405x_iio
https://analogdevicesinc.github.io/precision-converters-firmware/source/projects/ad405x_iio/ad405x_iio.html
https://analogdevicesinc.github.io/precision-converters-firmware/source/projects/ad405x_iio/ad405x_iio.html
https://analogdevicesinc.github.io/documentation/software/libiio/index.html#libiio
https://analogdevicesinc.github.io/documentation/software/libiio/index.html#libiio
https://analogdevicesinc.github.io/documentation/software/libiio/index.html#libiio
https://analogdevicesinc.github.io/documentation/software/libiio/index.html#libiio
https://analogdevicesinc.github.io/documentation/linux/drivers/iio/index.html#iio
https://analogdevicesinc.github.io/documentation/linux/drivers/iio/index.html#iio
https://wiki.analog.com/resources/no-os/build
https://analogdevicesinc.github.io/precision-converters-firmware/source/build/project_build.html
https://analogdevicesinc.github.io/precision-converters-firmware/source/build/project_build.html
https://github.com/analogdevicesinc/linux/tree/staging/ad4052/arch/arm/boot/dts/xilinx/zynq-coraz7s-ad4052.dts
https://github.com/analogdevicesinc/linux/tree/staging/ad4052/arch/arm/boot/dts/xilinx/zynq-coraz7s-ad4052.dts
https://github.com/analogdevicesinc/hdl/tree/ad4052/projects/ad4052_ardz
https://github.com/analogdevicesinc/hdl/tree/ad4052/projects/ad4052_ardz
https://analogdevicesinc.github.io/hdl/projects/ad4052_ardz/index.html#ad4052-ardz
https://analogdevicesinc.github.io/hdl/projects/ad4052_ardz/index.html#ad4052-ardz
https://analogdevicesinc.github.io/hdl/user_guide/index.html#user-guide
https://analogdevicesinc.github.io/hdl/user_guide/index.html#user-guide
https://analogdevicesinc.github.io/documentation/software/libiio/index.html#libiio
https://analogdevicesinc.github.io/documentation/software/libiio/index.html#libiio
https://analogdevicesinc.github.io/documentation/software/iio-oscilloscope/index.html#iio-oscilloscope
https://analogdevicesinc.github.io/documentation/software/iio-oscilloscope/index.html#iio-oscilloscope
https://github.com/analogdevicesinc/pyadi-iio/tree/main/adi/ad405x.py
https://github.com/analogdevicesinc/pyadi-iio/tree/main/adi/ad405x.py
https://analogdevicesinc.github.io/pyadi-iio/devices/adi.ad405x.html
https://analogdevicesinc.github.io/pyadi-iio/devices/adi.ad405x.html
https://github.com/analogdevicesinc/pyadi-iio/tree/main/examples/ad4052_example.py
https://github.com/analogdevicesinc/pyadi-iio/tree/main/examples/ad4052_example.py

Help and Support

For questions and more information, please visit the [® EngineerZone Support Community.

Electrostatic charges as high as 4000V readily accumulate on the human body or test equipment and
can discharge without detection. Although the boards feature ESD protection circuitry, permanent
ATTENTION damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper
gg:e:‘\\/:[m:gmnous ESD precautions are recommended to avoid performance degradation or loss of functionality. This

ELECTROSTATIC includes removing static charge on external equipment, cables, or antennas before connecting to the
SENSITIVE DEVICES o

! All the products described on this page include ESD (electrostatic discharge) sensitive devices.

analog.com 9

https://ez.analog.com/reference-designs
https://ez.analog.com/reference-designs

HDL Design

AD4052-ARDZ HDL project

Overview

The HDL reference design for the @ AD4050, @ AD4052, @ AD4056, and @ AD4058 . They are versatile, 16-
bit/12-bit, successive approximation register (SAR) analog-to-digital converters (ADCs) that enable low-power,
high-density data acquisition solutions without sacrificing precision. These ADCs offer a unique balance of
performance and power efficiency, plus innovative features for seamlessly switching between high-resolution and
low-power modes tailored to the immediate needs of the system.

The @ AD4050/ @ AD4052/ @ AD4056/ @ AD4058 are ideal for battery-powered, compact data acquisition and
edge sensing applications.

The @ EVAL-AD4050-ARDZ/ @ EVAL-AD4052-ARDZ evaluation boards enable quick and easy evaluation of the
performance and features of the @ AD4050 or the @ AD4052, respectively. The AD4050 and AD4052 are
compact, low power, 12-bit or 16-bit (respectively) Easy Drive successive approximation register (SAR) analog-to-
digital converters (ADCs).

This project has a SPI Engine instance to control and acquire data from the precision ADC. This instance
provides support for capturing continuous samples at the maximum sample rate.

Supported boards

* @ EVAL-AD4050-ARDZ
* @ EVAL-AD4052-ARDZ

Supported devices

* @ AD4050
* @ AD4052
* @ AD4056
* @ AD4058

Supported carriers

* Cora Z7-07S Arduino shield connector

* DE10-Nano Arduino shield connector

Block design

The data path and clock domains are depicted in the below diagram:

analog.com 11

https://www.analog.com/AD4050
https://www.analog.com/AD4050
https://www.analog.com/AD4052
https://www.analog.com/AD4052
https://www.analog.com/AD4056
https://www.analog.com/AD4056
https://www.analog.com/AD4058
https://www.analog.com/AD4058
https://www.analog.com/AD4050
https://www.analog.com/AD4050
https://www.analog.com/AD4052
https://www.analog.com/AD4052
https://www.analog.com/AD4056
https://www.analog.com/AD4056
https://www.analog.com/AD4058
https://www.analog.com/AD4058
https://www.analog.com/EVAL-AD4050-ARDZ
https://www.analog.com/EVAL-AD4050-ARDZ
https://www.analog.com/EVAL-AD4052-ARDZ
https://www.analog.com/EVAL-AD4052-ARDZ
https://www.analog.com/AD4050
https://www.analog.com/AD4050
https://www.analog.com/AD4052
https://www.analog.com/AD4052
https://analogdevicesinc.github.io/hdl/library/spi_engine/index.html#spi-engine
https://analogdevicesinc.github.io/hdl/library/spi_engine/index.html#spi-engine
https://www.analog.com/EVAL-AD4050-ARDZ
https://www.analog.com/EVAL-AD4050-ARDZ
https://www.analog.com/EVAL-AD4052-ARDZ
https://www.analog.com/EVAL-AD4052-ARDZ
https://www.analog.com/AD4050
https://www.analog.com/AD4050
https://www.analog.com/AD4052
https://www.analog.com/AD4052
https://www.analog.com/AD4056
https://www.analog.com/AD4056
https://www.analog.com/AD4058
https://www.analog.com/AD4058
https://www.xilinx.com/products/boards-and-kits/1-1qlaz7n.html
https://www.intel.com/content/www/us/en/developer/topic-technology/edge-5g/hardware/fpga-de10-nano.html

[] Receive path

[T
4

1
»
»
»
[
»

@ - CoraZ7s
5|2 2 _
ARM (Zynq) 2| 2|£|5|2| |5 | DEL1O-Nano
Zynqg SoC FlElolE]>]
o GPO o
: = o
s SPI ENGINE FRAMEWORK GP1 o
Lo =
(Y ¥ =
. -~ trigger 8
. 1O §4Ib 22/b _ offload_ctrl AXI
: é:) « El « OFFLOAD |« REGMAP g
. g
= o — T
2 § i i CS n (.:F)
E > a s0_ctrl s1_ctrl J SDO 10
S | < INTER. = —{EXECUTION(? ST
2 SCLK 25MHz .| ©
L} v m
L= <
: - CNV
" eeeemeeeeeeeeeiaeaas -+ SPI_CLK (Cora/DE10) T
X R R R LT P P PP : + = 180/150 MHz '
; L L AxipwMm E
' SYS_CLK AN CLREE | | GEN :
} =L00MHz ———— D :

CPU/Memory interconnects addresses

The addresses are dependent on the architecture of the FPGA, having an offset added to the base address from
HDL (see more at HDL Architecture).

Cora Z7S

Instance Address

spi_adc_axi_regmap 0x44A0_0000

spi_adc_dmac 0x44A3_0000
axi_iic_eeprom 0x44A4_0000
spi_clkgen 0x44A7_0000
adc_trigger_gen 0x44B0_0000
DE10-Nano

12 AD4052-ARDZ HDL project

file:///mnt/wsl/data/repos/ad4052/_build/html/_images/ad4052_hdl.svg
file:///mnt/wsl/data/repos/ad4052/_build/html/_images/ad4052_hdl.svg
https://analogdevicesinc.github.io/hdl/user_guide/architecture.html#architecture
https://analogdevicesinc.github.io/hdl/user_guide/architecture.html#architecture

Instance Address

axi_dmac_0 0x0002_0000
axi_spi_engine_0 0x0003_0000
pwm_trigger 0x0004_0000

spi_clk_pll_reconfig 0x0005_0000

I2C connections
Cora Z7s

12C type 12C manager instance Alias Address Device Address 12C subordinate
PS axi_iic_eeprom axi_iic_eeprom_io 0x44A4 0000 0x52 EEPROM

DE10-Nano

12C type 12C manager instance Alias Address Device Address 12C subordinate
PS i2cl sys_hps_i2cl — 0x52 —

Device address considering the EEPROM address pins A0=0, Al=1, A2=0.

SPI connections

SPI type SPI manager instance SPI subordinate CS
PL axi_spi_engine ad4052 0
GPIOs

The Software GPIO number is calculated as follows:

* Cora Z7S: the offset is 54

GPIO signal Direction HDL GPIO EMIO Software GPIO
(from FPGA view) Zynq-7000

adc_cnv OUTPUT 34 88

adc_gp1l INOUT 33 87

adc_gp0 INOUT 32 86

* DE10-Nano: the offset is 32

GPIO signal Direction HDL GPIO EMIO Software GPIO
(from FPGA view) DE10-Nano
adc_cnv OUTPUT 34 2

analog.com 13

GPIO signal Direction HDL GPIO EMIO Software GPIO

(from FPGA view) DE10-Nano
adc_gpl INPUT 33 1
adc_gpO0 INPUT 32 0

Interrupts

Below are the Programmable Logic interrupts used in this project.

Instance name HDL Linux Zynq Actual Zynq
axi_adc_dma 13 57 89
spi_adc_axi_regmap 12 56 88
axi_iic_eeprom 11 55 87

Instance name HDL Linux DE10-Nano Actual DE10-Nano
axi_dmac_0 4 44 76

axi_spi_engine_ 0 3 43 75

Building the HDL project

The design is built upon ADI's generic HDL reference design framework. ADI distributes the bit/elf files of these
projects as part of the ADI Kuiper Linux. If you want to build the sources, ADI makes them available on the
@ HDL repository. To get the source you must clone the HDL repository, and then build the project as follows:

Linux/Cygwin/WSL

~$ cd hdl/projects/ad4052 ardz/coraz7s
~/hdl/projects/ad4052 ardz/coraz7s$ make

~$ cd hdl/projects/ad4052 ardz/del®nano
~/hdl/projects/ad4052 ardz/del®nano$ make

A more comprehensive build guide can be found in the Build an HDL project user guide.

Resources

Hardware related

* Product datasheets:
° @ AD4050
° @ AD4052

HDL related

* @ AD4052-ARDZ HDL project source code

14 AD4052-ARDZ HDL project

https://wiki.analog.com/resources/tools-software/linux-software/kuiper-linux
https://github.com/analogdevicesinc/hdl/tree/main/
https://github.com/analogdevicesinc/hdl/tree/main/
https://git-scm.com/book/en/v2/Git-Basics-Getting-a-Git-Repository
https://analogdevicesinc.github.io/hdl/user_guide/build_hdl.html#build-hdl
https://analogdevicesinc.github.io/hdl/user_guide/build_hdl.html#build-hdl
https://www.analog.com/AD4050
https://www.analog.com/AD4050
https://www.analog.com/AD4052
https://www.analog.com/AD4052
https://github.com/analogdevicesinc/hdl/tree/main/projects/ad4052-ardz
https://github.com/analogdevicesinc/hdl/tree/main/projects/ad4052-ardz

IP name Source code link Documentation link
AXI_PWM_GEN @ library/axi_pwm_gen here
AXI_CLKGEN @ library/axi_dmac * here
AXI_DMAC @ library/axi_dmac here
AXI_HDMI_TX Q library/axi_hdmi_tx ** here
AX|_SYSID @ library/axi_sysid here
AXI_SPI_ENGINE @ library/spi_engine/axi_spi_engine here
SPI_ENGINE_EXECUTION Qlibrary/spi_engir,]e/ here
- - spi_engine_execution
SPI_ENGINE_INTERCONNECT Q).Iibrary/sp.i_engine/ here
- - spi_engine_interconnect
SPI_ENGINE_OFFLOAD Q"brary/sm—engim/ here
- - spi_engine_offload
SYSID_ROM @ library/sysid_rom here
(/‘ Legend

* * instantiated only for Cora Z7S

* *x jnstantiated only for DE10-Nano

* SPI Engine Framework documentation

Software related

* @ AD4052 Linux driver ad4052.c

More information

* ADI HDL User guide

Support

Analog Devices, Inc. will provide limited online support for anyone using the € reference design with ADI

components via the B EngineerZone FPGA reference designs forum.

For questions regarding the ADI Linux device drivers, device trees, etc. from our € Linux GitHub repository, the

team will offer support on the B EngineerZone Linux software drivers forum.

For questions concerning the ADI No-OS drivers, from our € No-OS GitHub repository, the team will offer

support on the [EngineerZone microcontroller No-OS drivers forum.

It should be noted, that the older the tools’ versions and release branches are, the lower the chances to receive

support from ADI engineers.

analog.com

https://github.com/analogdevicesinc/hdl/tree/main/library/axi_pwm_gen
https://github.com/analogdevicesinc/hdl/tree/main/library/axi_pwm_gen
https://analogdevicesinc.github.io/hdl/library/axi_pwm_gen/index.html#axi-pwm-gen
https://analogdevicesinc.github.io/hdl/library/axi_pwm_gen/index.html#axi-pwm-gen
https://github.com/analogdevicesinc/hdl/tree/main/library/axi_clkgen
https://github.com/analogdevicesinc/hdl/tree/main/library/axi_clkgen
https://analogdevicesinc.github.io/hdl/library/axi_clkgen/index.html#axi-clkgen
https://analogdevicesinc.github.io/hdl/library/axi_clkgen/index.html#axi-clkgen
https://github.com/analogdevicesinc/hdl/tree/main/library/axi_dmac
https://github.com/analogdevicesinc/hdl/tree/main/library/axi_dmac
https://analogdevicesinc.github.io/hdl/library/axi_dmac/index.html#axi-dmac
https://analogdevicesinc.github.io/hdl/library/axi_dmac/index.html#axi-dmac
https://github.com/analogdevicesinc/hdl/tree/main/library/axi_hdmi_tx
https://github.com/analogdevicesinc/hdl/tree/main/library/axi_hdmi_tx
https://analogdevicesinc.github.io/hdl/library/axi_hdmi_tx/index.html#axi-hdmi-tx
https://analogdevicesinc.github.io/hdl/library/axi_hdmi_tx/index.html#axi-hdmi-tx
https://github.com/analogdevicesinc/hdl/tree/main/library/axi_sysid
https://github.com/analogdevicesinc/hdl/tree/main/library/axi_sysid
https://analogdevicesinc.github.io/hdl/library/axi_sysid/index.html#axi-sysid
https://analogdevicesinc.github.io/hdl/library/axi_sysid/index.html#axi-sysid
https://github.com/analogdevicesinc/hdl/tree/main/library/spi_engine/axi_spi_engine
https://github.com/analogdevicesinc/hdl/tree/main/library/spi_engine/axi_spi_engine
https://analogdevicesinc.github.io/hdl/library/spi_engine/axi_spi_engine.html#spi-engine-axi
https://analogdevicesinc.github.io/hdl/library/spi_engine/axi_spi_engine.html#spi-engine-axi
https://github.com/analogdevicesinc/hdl/tree/main/library/spi_engine/spi_engine_execution
https://github.com/analogdevicesinc/hdl/tree/main/library/spi_engine/spi_engine_execution
https://github.com/analogdevicesinc/hdl/tree/main/library/spi_engine/spi_engine_execution
https://analogdevicesinc.github.io/hdl/library/spi_engine/spi_engine_execution.html#spi-engine-execution
https://analogdevicesinc.github.io/hdl/library/spi_engine/spi_engine_execution.html#spi-engine-execution
https://github.com/analogdevicesinc/hdl/tree/main/library/spi_engine/spi_engine_interconnect
https://github.com/analogdevicesinc/hdl/tree/main/library/spi_engine/spi_engine_interconnect
https://github.com/analogdevicesinc/hdl/tree/main/library/spi_engine/spi_engine_interconnect
https://analogdevicesinc.github.io/hdl/library/spi_engine/spi_engine_interconnect.html#spi-engine-interconnect
https://analogdevicesinc.github.io/hdl/library/spi_engine/spi_engine_interconnect.html#spi-engine-interconnect
https://github.com/analogdevicesinc/hdl/tree/main/library/spi_engine/spi_engine_offload
https://github.com/analogdevicesinc/hdl/tree/main/library/spi_engine/spi_engine_offload
https://github.com/analogdevicesinc/hdl/tree/main/library/spi_engine/spi_engine_offload
https://analogdevicesinc.github.io/hdl/library/spi_engine/spi_engine_offload.html#spi-engine-offload
https://analogdevicesinc.github.io/hdl/library/spi_engine/spi_engine_offload.html#spi-engine-offload
https://github.com/analogdevicesinc/hdl/tree/main/library/sysid_rom
https://github.com/analogdevicesinc/hdl/tree/main/library/sysid_rom
https://analogdevicesinc.github.io/hdl/library/axi_sysid/index.html#axi-sysid
https://analogdevicesinc.github.io/hdl/library/axi_sysid/index.html#axi-sysid
https://analogdevicesinc.github.io/hdl/library/spi_engine/index.html#spi-engine
https://analogdevicesinc.github.io/hdl/library/spi_engine/index.html#spi-engine
https://github.com/analogdevicesinc/linux/tree/main/drivers/iio/adc/ad4052.c
https://github.com/analogdevicesinc/linux/tree/main/drivers/iio/adc/ad4052.c
https://analogdevicesinc.github.io/hdl/user_guide/index.html#user-guide
https://analogdevicesinc.github.io/hdl/user_guide/index.html#user-guide
https://www.analog.com/en/index.html
https://github.com/analogdevicesinc/hdl/
https://github.com/analogdevicesinc/hdl/
https://www.analog.com/en/index.html
https://ez.analog.com/fpga
https://ez.analog.com/fpga
https://www.analog.com/en/index.html
https://github.com/analogdevicesinc/linux/
https://github.com/analogdevicesinc/linux/
https://ez.analog.com/linux-software-drivers
https://ez.analog.com/linux-software-drivers
https://www.analog.com/en/index.html
https://github.com/analogdevicesinc/no-OS/
https://github.com/analogdevicesinc/no-OS/
https://ez.analog.com/microcontroller-no-os-drivers
https://ez.analog.com/microcontroller-no-os-drivers
https://www.analog.com/en/index.html

Linux 11O Driver

AD4052

The @ AD4050, @ AD4052, [@ AD4056, and [AD4058 . are versatile, 16-bit/12-bit, successive approximation
register (SAR) analog-to-digital converters (ADCs) that enable low-power, high-density data acquisition solutions
without sacrificing precision. These ADCs offer a unique balance of performance and power efficiency, plus
innovative features for seamlessly switching between high-resolution and low-power modes tailored to the
immediate needs of the system.

The @ AD4050/ [AD4052/ @ AD4056/ [@ AD4058 are ideal for battery-powered, compact data acquisition and
edge sensing applications.

The @ EVAL-AD4050-ARDZ/[@ EVAL-AD4052-ARDZ evaluation boards enable quick and easy evaluation of the
performance and features of the [@ AD4050 or the [@ AD4052, respectively. The AD4050 and AD4052 are
compact, low power, 12-bit or 16-bit (respectively) Easy Drive successive approximation register (SAR) analog-to-
digital converters (ADCS).

Supported Devices

* @ AD4050
* @ AD4052
* @ AD4056
* @ AD4058

Evaluation Boards

* @ EVAL-AD4050-ARDZ
* @ EVAL-AD4052-ARDZ

Source Code

Status
Source Mainlined?
Qgit [No]
Files
Function File
driver @ ad4052.c
devicetree @ ad4052.dts

devicetree bindings doc € ad4052.yam|

analog.com 17

https://www.analog.com/AD4050
https://www.analog.com/AD4050
https://www.analog.com/AD4052
https://www.analog.com/AD4052
https://www.analog.com/AD4056
https://www.analog.com/AD4056
https://www.analog.com/AD4058
https://www.analog.com/AD4058
https://www.analog.com/AD4050
https://www.analog.com/AD4050
https://www.analog.com/AD4052
https://www.analog.com/AD4052
https://www.analog.com/AD4056
https://www.analog.com/AD4056
https://www.analog.com/AD4058
https://www.analog.com/AD4058
https://www.analog.com/EVAL-AD4050-ARDZ
https://www.analog.com/EVAL-AD4050-ARDZ
https://www.analog.com/EVAL-AD4052-ARDZ
https://www.analog.com/EVAL-AD4052-ARDZ
https://www.analog.com/AD4050
https://www.analog.com/AD4050
https://www.analog.com/AD4052
https://www.analog.com/AD4052
https://www.analog.com/AD4050
https://www.analog.com/AD4050
https://www.analog.com/AD4052
https://www.analog.com/AD4052
https://www.analog.com/AD4056
https://www.analog.com/AD4056
https://www.analog.com/AD4058
https://www.analog.com/AD4058
https://www.analog.com/EVAL-AD4050-ARDZ
https://www.analog.com/EVAL-AD4050-ARDZ
https://www.analog.com/EVAL-AD4052-ARDZ
https://www.analog.com/EVAL-AD4052-ARDZ
https://github.com/analogdevicesinc/linux/tree/main/drivers/iio/adc/ad4052.c
https://github.com/analogdevicesinc/linux/tree/main/drivers/iio/adc/ad4052.c
https://github.com/analogdevicesinc/linux/tree/staging/ad4052/drivers/iio/adc/ad4052.c
https://github.com/analogdevicesinc/linux/tree/staging/ad4052/drivers/iio/adc/ad4052.c
https://github.com/analogdevicesinc/linux/tree/staging/ad4052/arch/arm/boot/dts/xilinx/zynq-coraz7s-ad4052.dts
https://github.com/analogdevicesinc/linux/tree/staging/ad4052/arch/arm/boot/dts/xilinx/zynq-coraz7s-ad4052.dts
https://github.com/analogdevicesinc/linux/tree/staging/ad4052/Documentation/devicetree/bindings/iio/adc/adi,ad4052.yaml
https://github.com/analogdevicesinc/linux/tree/staging/ad4052/Documentation/devicetree/bindings/iio/adc/adi,ad4052.yaml

Devicetree

External clock

Reference clock used for sampling timing. May be the same clock as the SPI Controller driver.

r N
clocks {
ref clk: ext-clk {
#clock-cells = <0x0>;
compatible = "fixed-clock";
clock-frequency = <150000000>;
clock-output-names = "ref clk";

+;
+;

A J

Sampling trigger

This PWM generator is used to start the sampling procedure.

adc_trigger: axi-pwm-gen@ {
compatible = "adi,axi-pwmgen";
reg = <0x44b00000 0x1000>;
label = "ad4052 cnv";
#pwm-cells = <2>;
clocks = <&cnv_ext_clk>;

ADC node
The AD4052 is a SPI-compatible ADC so it should be under a SPI controller.

(A
6 Important

The spi-max-frequency must be a multiple of a 25MHz clock and the dmas handle should use a 64-bit wide

data bus.
\ J
e N
&spiq
ad4052: ad4052@0 {

compatible = "adi,ad4052";

reg = <0>;

spi-max-frequency = <25000000>;

clocks = <&spi clk>;

dmas = <&rx_dma 0>;

dma-names = "rx";

pwm-names = "cnv";

pwms = <&adc_trigger 0 0>,

cnv-gpios = <&gpio® 88 GPIO ACTIVE HIGH>;
gpl-gpios = <&gpioO® 87 GPIO ACTIVE HIGH>;
gp0-gpios = <&gpioO® 86 GPIO ACTIVE HIGH>;
}
}
\ J
Usage

Kernel configuration

This device depends on a PWM based trigger used to start the sampling procedure. The first step is to enable the
support for AXI_PWMGEN.

Symbol: PWM_AXI PWMGEN [=y]

Type : tristate

Prompt: Analog Devices AXI PWM generator
Location:

18 AD4052

-> Device Drivers
-> Pulse-Width Modulation (PWM) Support (PWM [=y])
Defined at drivers/pwm/Kconfig:78
Depends on: PWM [=y] && HAS IOMEM [=y]
Selected by [y]:
- KERNEL ALL ADI DRIVERS [=y]

Another required component is the SPI controller. The AD4052 has a specific set of SPI timing requirements that
are supported by the SPI Engine IP.

r N
Symbol: SPI AXI SPI ENGINE [=y]
Type : tristate
Prompt: Analog Devices AXI SPI Engine controller
Location:
-> Device Drivers
-> SPI support (SPI [=y])
Defined at drivers/spi/Kconfig:112
Depends on: SPI [=y] && SPI _MASTER [=y] && HAS IOMEM [=y]
Selected by [y]:
- KERNEL ALL ADI DRIVERS [=y]
\ J

And finally, enable support for the AD4630 device family.

e N
Symbol: AD4052 [=y]
Type : tristate
Prompt: Analog Device AD4052 ADC Driver
Location:
-> Device Drivers
-> Industrial I/0 support (IIO [=y])
-> Analog to digital converters
Defined at drivers/iio/adc/Kconfig:47
Depends on: II0 [=y] && SPI [=y] && PWM [=y] && GPIOLIB [=y]
Selects: II0O BUFFER [=y] && IIO BUFFER DMA [=y] && II0O BUFFER DMAENGINE [=y]
N J

Driver testing
This device can be found under /sys/bus/iio/devices/

One way to check if the device and driver are present is using iio_info:

s N
$iio _info
iio:deviceO: ad4052 (buffer capable)
1 channels found:
voltage0®: (input, index: 0, format: le:s16/32>>0)
2 channel-specific attributes found:
attr 0: raw value: 12167
attr 1: sampling frequency value: 1000000
1 device-specific attributes found:
attr 0: waiting for supplier value: 0
3 buffer-specific attributes found:
attr 0: data available value: 0
attr 1: direction value: in
attr 2: length_align bytes value: 8
1 debug attributes found:
debug attr ©0: direct reg access value: 0x10
No trigger on this device
\ J

You can go to the device folder using:

[$cd $(grep -rw /sys/bus/iio/devices/*/name -e "ad4052" -1 | xargs dirname)

(/’ Note

the steps for the 24-bit burst averaging mode.

In the folder there are several files that can set specific device attributes:

As specified in the devicetree section, the device supports multiple functional modes. This example describes J

(>/sys/bus/iio/devices/iio:device0$ 1s -1

analog.com 19

https://analogdevicesinc.github.io/hdl/library/spi_engine/index.html#spi-engine
https://analogdevicesinc.github.io/hdl/library/spi_engine/index.html#spi-engine

total 0

drwxr-xr-x 2
drwxr-xr-x 2
-r--r--r--1
drwxr-xr-x 2
-rw-r--r-- 1
-rw-r--r-- 1
-rw-r--r-- 1
-r--r--r--1
-r--r--r-- 1
Trwxrwxrwx 1
drwxr-xr-x 2
drwxr-xr-x 2
Trwxrwxrwx 1
-rw-r--r-- 1
-r--r--r--1

root
root
root
root
root
root
root
root
root
root
root
root
root
root
root

root
root
root
root
root
root
root
root
root
root
root
root
root
root
root

Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov

buffer

buffer®

dev

events

in_voltage oversampling ratio

in voltage raw

in voltage sampling frequency

in voltage sampling frequency available

name

of node -> ../../../../../../../../Tirmware/devicetree/base/fy
power

scan _elements

subsystem -> ../../../../../../../../bus/iio
uevent

waiting for supplier

Oversampling

The AD4052 device family has support for a burst averaging mode that's exposed as the oversampling attribute.
Writing value 0 or 1 returns the device to sample mode.

Display current oversampling value:

$ cat in_voltage oversampling ratio

64

Change the sample averaging count:

Vs

2048
-

$ echo 2048 > in_voltage oversampling ratio
$ cat in_voltage oversampling ratio

P
6 Important

(.

Please note that averaging on low sampling rates will timeout if the default buffer wait time is not modified.

For single shot readings, it will also timeout in 1 second.

Sample rate for burst and monitor mode

Leveraging the device internal clock, the sample rate for burst and monitor mode can be configured.

Display all available sample rates:

$cd /sys/bus/iio/devices/iio\:device0® ; pwd

/sys/bus/iio/devices/iio:device0

$ cat in_voltage sampling frequency available
2000000 1000000 300000 100000 33300 10000 3000 500 333 250 200 166 140 125 111

Set the desired sample rate:

$ echo 1000000 > in voltage sampling frequency

$ cat in voltage sampling frequency

1000000

Sample rate for buffer reading with PWM trigger

Set the desired period of the PWM trigger to set the sampling frequency of bufferred reading.

$ cd /sys/bus/iio/devices/iio\:device®/buffer ; pwd
/sys/bus/iio/devices/iio\:device0/buffer

$ echo 1000000 > sampling frequency

$ cat sampling frequency

1000000

20

AD4052

ga-axi@0/spi

Auto suspend

The device enters sleep mode (low power) when no acquisition is being made. Display the current runtime status:

$ cat /sys/bus/spi/devices/spi0.0/power/runtime status
suspend

O Caution
The power management methods are coupled to the spi device and not the iio device.

There is a timeout of 1 second before the power management puts the device in sleep mode. This is to avoid
putting the device to sleep when sampling single shot readings without a buffer.

Monitor mode

The driver yield a 11O Event for the device threshold interrupt in device monitor mode. The event is triggered for
either direction (rising or falling the max/min threshold values). Configure the device threshold and hysteresis
values:

$cd /sys/bus/iio/devices/iio\:device0® ; pwd
/sys/bus/iio/devices/iio:device0

$ echo 1000 > events/thresh rising value

$ echo -1000 > events/thresh falling value

$ echo 125 > events/thresh_rising_hysteresis
$ echo 125 > events/thresh_falling hysteresis

Enable monitor mode:

[$echo 1 > events/thresh either en :

At monitor mode, since the device is contiguously sampling, the device is active:

s N
$ cat /sys/bus/spi/devices/spi0.0/power/runtime status
active

\ J

Threshold events will increment the interrupt count:

e N\
$ cat /proc/interrupts
CPUO
46" 3 GIC-0 90 Edge ad4052
. J

The driver puts the device in monitor mode after every device access, until disabling the threshold event with:

[$echo 0 > events/thresh either en]

O Caution
The device is locked from any other access until the monitor mode is disabled.

The user is responsible to catching IIO Event and clearing the device status register.

$ echo 0 > events/thresh_either_en

$ echo 0x41 > direct reg access

$ cat direct reg access

0x88

$ echo 0x41 0x02 > direct reg access
$ cat direct reg access

0x80

analog.com 21

Data acquisition

The data acquisition is performed using a buffer system:

$cd /sys/bus/iio/devices/iio\:device0 ; pwd
/sys/bus/iio/devices/iio:device0

$ 1s buffer

data available enable 1length 1length align bytes watermark
$ 1s scan_elements

in voltageO® en 1in voltage® index in voltage® type

Every buffer implementation features a set of files:

* buffer : length Get/set the number of sample sets that may be held by the buffer.

* buffer : enable Enables/disables the buffer. This file should be written last, after length and selection of
scan elements

* scan_elements : in_voltage0_en enable/disables the channel output so the data won't be buffered for
that specific channel.

Enable and read 400 samples:

s ~
$echo 1 > scan_elements/in voltageO en
$ echo 400 > buffer/length
$ echo 1 > buffer/enable
$ hexdump -n 400 /dev/iio\:device0
0000000 Oeaf 0000 Oead 0000 OebO 0000 Oead 0000
0000010 Oead 0000 Oea7 0000 0e9d 0000 0e9c 0000
0000020 0e97 0000 0e93 0000 0e84 0000 0e80 0000
0000030 0e7f 0000 Oe7e 0000 Oe7c 0000 Oe7d 0000
0000040 0e7c 0000 0e79 0000 0e75 0000 Oe6bc 0000
0000050 0e64 0000 0e63 0000 0e5f 0000 0e51 0000
0000060 Oedc 0000 Oedf 0000 Oedd 0000 Oedb 0000
0000070 0ed4d 0000 Oedb 0000 Gedc 0000 0ed2 0000
0000080 0e39 0000 0e36 0000 0e33 0000 0e31l 0000
0000090 0e24 0000 Oelc 0000 0el9 0000 Oela 0000
0000020 Oeld 0000 Oela 0000 Oel6 0000 0el9 0000
00000b0 0el5 0000 OeOc 0000 0ed7 0000 0ed3 0000
00000cO 0ed3 0000 0eO6 0000 0ed5 0000 0ed4 0000
00000d0 0ed3 0000 Odff 0000 0df0 0000 Odea 0000
00000e0 0ded 0000 0de5 0000 0ddd 0000 06dd9 0000
000000 0dd7 0000 06dd3 0000 0dd2 0000 06ddl 0000
0000100 06dcd 0000 6ddl 0000 0dc8 0000 O6dcl 0000
0000110 0dbe 0000 06dbb 0000 06dbc 0000 0daa 0000
0000120 0da5 0000 0da3 0000 0da2 0000 O0d9f 0000
0000130 0da® 0000 6dal 0000 0da2 0000 06d9d 0000
0000140 0d91 0000 0d8e 0000 0d89 0000 0d8a 0000
0000150 0d7a 0000 0d74 0000 0d6f 0000 06d70 0000
0000160 0d6b 0000 0d6f 0000 0d70 00O 0d73 0000
0000170 0d6c 0000 0d63 0000 0d5f 0000 0d59 0000
0000180 0d58 0000 0d4e 0000 0d46 0000 0d42 0000
0000190
$ echo 0 > buffer/enable

\ J

Debug mode
You can write and read the ADC registers using debugfs. Here we will read and write the scratchpad register:

First go to the device debug folder:

~$ cd /sys/kernel/debug/iio/iio\:device0® ; pwd
/sys/kernel/debug/iio/iio:device0

Read the OxA register:

$ echo OxA > direct reg access
$ cat direct reg access
0x0

22 AD4052

Write and verify the value:

$ echo OxA Ox5F > direct reg access
$ cat direct reg access
Ox5F

analog.com

23

no-OS Driver&Project

AD405x no-OS Example Project STM32

Supported Evaluation Boards
EVAL-AD4050-ARDZ EVAL-AD4052-ARDZ

Overview
Applications

No-OS Build Setup

Please see: https://wiki.analog.com/resources/no-os/build

For the .ioc, copy the desired carrier target file from the carrier folder to the project directory.

No-OS Supported Examples

Basic example
This example prints sample data out to the uart.

Here is an example on how see the sample data of the basic example:

minicom -b 115200 -D /dev/ttyACMO -C ./serial.dat

make run

cat ./serial.dat | grep ADC | cut -d ' ' -f 2 > ./plot.dat

echo "set terminal svg; set output './o.svg';plot './plot.dat' with lines" | gnuplot

1O example

This project is a I1IOD demo for AD405X device. The project launches a IIOD server on the board so that the user
may connect to it via an 110 client.

At a host, use IO utilities, for example:

[iioinfo -u serial:/dev/ttyACMO,115200,8nl1]

Using 110-Oscilloscope, the user can configure the ADC and view the measured data on a plot.
If you are not familiar with ADI 110 Application, please take a look at: 110 No-OS
If you are not familiar with ADI 110-Oscilloscope Client, please take a look at: [1O Oscilloscope

The no-OS 110 Application together with the No-OS 110 AD405X driver take care of all the back-end logic needed
to setup the 11O server.

The read buffer is used for storing the burst data which shall be retrieved by any LibllO client.

No-OS Supported Platforms

STM32 Platform

Used hardware:

* STM32 NUCELO-H503RB
* STM32 NUCELO-H563ZI

analog.com 25

https://www.analog.com/EVAL-AD4050-ARDZ
https://www.analog.com/EVAL-AD4052-ARDZ
https://wiki.analog.com/resources/no-os/build
https://wiki.analog.com/resources/tools-software/no-os-software/iio
https://wiki.analog.com/resources/tools-software/linux-software/iio_oscilloscope
https://www.st.com/en/evaluation-tools/nucleo-h503rb.html
https://www.st.com/en/evaluation-tools/nucleo-h563zi.html

* ST debugger
Prerequisites

* export STM32CUBEMX=<path/to/stm32cubemx>
* export STM32CUBEIDE=<path/to/stm32cubeide>
* firmware for the target platform (download on stm32cubemx beforehand)

* nucleo-*.ioc file in the project folder
Build and flash

* Copy the target carrier configuration from the carrier folder e.g. cp carrier/nucleo-h503rb.ioc .

* make run

Project Options

* Use basic interactive example that prints samples to uart:
./Makefile

BASIC_EXAMPLE =y
II0_EXAMPLE = n

* Specify the AD405X part and instance ID in use:
./Makefile:

DEV_TYPE = AD4052

« Specify the carrier in use:
IMakefile:

CARRIER = NUCLEO_H503RB

26 AD405x no-0S Example Project STM32

AD405x no-OS Driver

Supported Devices
AD4052 AD4058

Overview

The AD4052/AD4058 are low power, compact 16-bit successive approximation register (SAR) analog-to-digital
converters (ADC) designed for battery powered precision measurement and monitoring applications. The
AD4052/AD4058 feature set supports event-driven programming for dynamic tradeoff between system power and
precision. Using a patented, power efficient window comparator, the AD4052 autonomously monitors signals
while the host sleeps. The programmable averaging filter enables on-demand high resolution measurements for
optimizing precision for the power consumed.

The AD4052 includes AFE control signals to minimize the complexity of host timers. The control signals automate
the power cycling of the AFE relative to ADC sampling to reduce system power while minimizing settling error
artifacts. The Easy Drive analog inputs enables compact and low power signal conditioning circuitry by reducing
the dependence on high-speed ADC driver amplifiers. The small 3.4 pF sampling capacitors result in low dynamic
and average input current, broadening compatibility with low power amplifiers or direct sensor interfacing. The
AD4052 wide common mode input range supports both differential and single-ended input signals.

The AD4052 family features a 4-wire SPI with a dedicated CNV input. Cyclic redundancy check (CRC) is
available on all interface read and write operations and internal memory to ensure reliable device configuration
and operation.

AD405X Device Configuration

Driver Initialization

SPI

In order to be able to use the device, you will have to provide the support for the communication protocol (SPI) as
well as 3 external GPIOs for the CNV pin and two general-purpose input/output pins (GP0O and GP1).

The first API to be called is ad405x_init. Make sure that it returns 0, which means that the driver was initialized
correctly.

GPIO Configuration

The device has two general purpose output pins, GP0O and GP1. These pins can be configured as threshold
events, data ready, among other status signals. In the driver files the ad405x_set_gp_mode can be found and
used to choose the specific signal for the GPIOs.

If GPO is set as DRDY, the device will assert the pin on the CONV assertion, and the ADC driver will wait the pin
to desert before issuing the ADC data acquisition. During initialization, GP1 is used to track the DEV_RDY state,
and no further behaviour is defined at the driver level.

Channel Configuration
Channel data can be fetched with ad405x_get_adc.

The channel data format can be set using ad405x_set_data_format

analog.com 27

https://www.analog.com/AD4052
https://www.analog.com/AD4058

Channel operation mode can also be configured using ad405x_set_operating_mode.

Soft Reset

The device can be soft reset by using ad405x_soft_reset.

AD405X Driver Initialization Example

SPI

p
struct ad405x_dev *ad405x;

.device id = SPI DEVICE ID,

.max_speed hz = 100000,

.mode = NO_OS_SPI MODE 0,

.chip select = GPIO CS PIN,

.bit order = NO 0S SPI BIT ORDER MSB FIRST,
.platform ops = SPI OPS,

.extra = &ad405x spi _extra ip

.port = GPIO CNV_PORT,
.number = GPI0 CNV_ PIN,
.platform ops = GPIO OPS,
.extra = &gpio_init

.port = GPIO GPIOO PORT,
.number = GPIO GPIOO PIN,
.platform_ops = GPIO OPS,
.extra = &gpio_init

.port = GPIO _GPIO1 PORT,
.number = GPIO GPIO1 PIN,
.platform ops = GPIO OPS,
.extra = &gpio_init

Y

struct ad405x_init param ad405x ip = {
.comm_type = AD405X COMM,
.comm _init.spi init = ad405x spi ip,
.dev_type = AD405X DEV TYPE,
.gpio_cnv = &gpio _cnv_param,
.gpio_gpioO = &gpio gpioO param,
.gpio_gpiol = &gpio gpiol param

Y
ret = ad405x_init(&ad405x, &ad405x ip);
if (ret)

goto error;

const struct no os spi init param ad405x spi ip = {

const struct no os gpio init param gpio cnv_param

const struct no os gpio init param gpio gpio@ param

const struct no os gpio init param gpio gpiol param

28

AD405x no-OS Driver

	EVAL-AD4050/AD4052-ARDZ
	Overview
	Features
	Evaluation board kit contents
	Equipment needed
	Hardware

	User Guides
	Evaluating the device
	Hardware setup
	Flashing the firmware
	no-OS
	Precision-converters-firmware
	Linux

	Quick start
	Evaluation board hardware
	Evaluation board software

	Developers
	Drivers
	Projects
	Linux devicetrees
	HDL reference design
	Software & Bindings

	Help and Support

	HDL Design
	AD4052-ARDZ HDL project
	Overview
	Supported boards
	Supported devices
	Supported carriers
	Block design
	CPU/Memory interconnects addresses
	I2C connections
	SPI connections
	GPIOs
	Interrupts

	Building the HDL project
	Resources
	Hardware related
	HDL related
	Software related

	More information
	Support

	Linux IIO Driver
	AD4052
	Supported Devices
	Evaluation Boards
	Source Code
	Status
	Files
	Devicetree
	External clock
	Sampling trigger
	ADC node

	Usage
	Kernel configuration
	Driver testing
	Oversampling
	Sample rate for burst and monitor mode
	Sample rate for buffer reading with PWM trigger
	Auto suspend
	Monitor mode
	Data acquisition
	Debug mode

	no-OS Driver&Project
	AD405x no-OS Example Project STM32
	Supported Evaluation Boards
	Overview
	Applications
	No-OS Build Setup
	No-OS Supported Examples
	Basic example
	IIO example

	No-OS Supported Platforms
	STM32 Platform

	Project Options

	AD405x no-OS Driver
	Supported Devices
	Overview
	AD405X Device Configuration
	Driver Initialization
	SPI

	GPIO Configuration
	Channel Configuration
	Soft Reset
	AD405X Driver Initialization Example
	SPI

