
NIM Metrics: Visualization

Related projects
● opendatahub-io/odh-model-controller
● opendatahub-io/odh-dashboard

Prerequisites
● oc
● jq
● curl
● RHOAI instance running the development image of odh-model-controller (see PR)
● A running NIM serving

Currently we use AI-Dev04. Make sure you’re logged in from your terminal using oc.

Assumptions
The following serving metadata is assumed, if your environment differs, make sure to update the
various commands as you go.

● Data Science project name: tomer-test-2
● Serving name: nim-deploy
● Model served: llama3-8b-instruct

Verify backend graph objects
We currently have 10 graph types, 4 pre-existing and 6 new. For every Data Science project, the
backend creates a ConfigMap encapsulating the graph objects suitable for the running serving.

In our case, we should expect the following existing graph types: REQUEST_COUNT,
MEAN_LATENCY, CPU_USAGE, and MEMORY_USAGE. As well as the following new graph
types: KV_CACHE, CURRENT_REQUESTS, TOKENS_COUNT, TIME_TO_FIRST_TOKEN,
TIME_PER_OUTPUT_TOKEN, and REQUEST_OUTCOMES.

Use the following command to get the object implementation and note the queries encapsulated
within it, change the type to check another graph object:

oc get configmap -n tomer-test-2 nim-deploy-metrics-dashboard \

https://github.com/opendatahub-io/odh-model-controller
https://github.com/opendatahub-io/odh-dashboard
https://github.com/opendatahub-io/odh-model-controller/pull/334
https://console-openshift-console.apps.ai-dev04.kni.syseng.devcluster.openshift.com/dashboards


-o jsonpath='{.data.metrics}' | \

jq '.config[] | select(.type=="TOKENS_COUNT")'

{

"title": "Tokens count",

"type": "TOKENS_COUNT",

"queries": [

{

"title": "Total prompts token",

"query": "round(rate(prompt_tokens_total{namespace='tomer-test-2',

pod=~'nim-deploy-predictor-.*'}[1m]))"

},

{

"title": "Total generation token",

"query":

"round(rate(generation_tokens_total{namespace='tomer-test-2',

pod=~'nim-deploy-predictor-.*'}[1m]))"

}

]

}

Verify queries data
If you need to verify the queries have current data, in OpenShift’s dashboard, go into Observe
-> Metrics, and run the query in question. Make sure to update the graph time frame based on
traffic, for some metrics:



Enable NIM metrics

Currently, NIM metrics are disabled in the RHOAI dashboard; it will be enabled as part of the
ongoing work effort. See NVPE-18. To enable it locally on your station. Save the following diff
file, and apply it:

enable_nim_graphs.diff

git apply enable_nim_graphs.diff

Create serving traffic
From a separate terminal, forward traffic from your local station port 4321 to the serving port 80.
If port 4321 is occupied on your station, you can select a different port, just remember to update
the commands accordingly:

oc port-forward -n tomer-test-2 svc/nim-deploy-predictor-00001-private

4321:80

https://issues.redhat.com/browse/NVPE-18
https://drive.google.com/file/d/168rWdDuQ8ti5wvg2D8FPCNzOuGUqXZtd/view?usp=drive_link


Once the traffic is forwarded, you can run commands against your local station, and the traffic
will be forwarded to the cluster.

Get available models

curl -s http://localhost:4321/v1/models | jq

Chat with the model

curl -H "Content-Type: application/json"

http://localhost:4321/v1/chat/completions -sd \

'{

"model": "meta/llama3-8b-instruct",

"messages": [

{"role":"user","content":"What is Red Hat OpenShift AI?"},

{"role": "user", "content": "What is NVIDIA NIM?"}

],

"temperature": 0.5,

"top_p": 1,

"max_tokens": 1024,

"stream": false

}' | jq

Create load
Use the following command to send multiple parallel chat requests to the model, this will
generate load that will be reflected in the metrics data. The following command will generate
120 requests, change this value to fit your needs:

for i in {1..120}; do curl -H "Content-Type: application/json"

http://localhost:4321/v1/chat/completions -sd \

'{

"model": "meta/llama3-8b-instruct",

"messages": [

{"role":"user","content":"What is Red Hat OpenShift AI?"},

{"role": "user", "content": "What is NVIDIA NIM?"}

],

"temperature": 0.5,



"top_p": 1,

"max_tokens": 1024,

"stream": false

}' 2>&1 > /dev/null &; done

Connect from local frontend
You can run odh-dashboard against a remote backend, i.e. the RHOAI instance you’re
connected to with the development version of odh-model-controller (AI-Dev04). Run the
following command to create a local server against the remote cluster:

(npm run build && cd frontend && OC_PROJECT=redhat-ods-applications

ODH_APP=rhods-dashboard npm run start:dev:ext)

Go to the nim-deploy inside the project tomer-test-2, press the NIM tab. There you should see
the graphs.


