Private Blobs RFC for customer
feedback

Abstract

This RFC outlines the implementation of private blobs in Vercel Blob Storage.
Private blobs provide secure, controlled access to stored content without public
URLs, allowing customers to manage access to their stored data.

Background

By default, blobs uploaded to Vercel Blob Storage are accessible via public URLs.
While these URLs include unguessable components, many use cases require
strictly private access with controlled distribution.

Common use cases for private blobs include:
e Temporary digital downloads (e.g., purchased ebooks)
o User-generated or user-uploaded content with restricted access
» Media file storage with controlled access

» Any website willing to control who has access to which blobs

Private Blob Implementation
1. Uploading Private Blobs

import put from '@vercel/blob'

const blob = await put('/useri123/document.pdf', content ac
cess: 'private'

console. log(blob

/7 {
// pathname: '/user123/document.pdf’,

Private Blobs RFC for customer feedback



// contentType: 'application/pdf',

// contentDisposition: 'attachment; filename="document.pd
flll

// }

Note: Private blobs don't generate public URLs and don't add random suffixes to
pathnames.

2. Accessing Private Blobs

There are three methods for accessing private blobs:

Method 1: Temporary URLs

Generate time-limited URLs for blob access, similar to S3 pre-signed URLs:

import { createPrivateBlobUrl } from '@vercel/blob';

const privateBlobUrl = createPrivateBlobUrl(
'/user123/document.pdf’,
{ expiresAt: new Date(Date.now() + 3600000) } // 1 hour exp
iry

),
// URL can be shared with authorized users

For directory-level access:

import { createPrivateBlobBaseUrl } from '@vercel/blob';
const privateBlobBaseUrl = createPrivateBlobBaseUrl(

'/user123/',
{ expiresAt: new Date(Date.now() + 3600000) }

¥

const fileUrl = "${privateBlobBaseUrl;document.pdf ;

Private Blobs RFC for customer feedback



Temporary URLs are validated and served directly by the Vercel Edge Network.

Method 2: Blob Token Authentication

Stream blobs through your application's serverless functions using the Vercel
Blob SDK:

import get from '@vercel/blob'

export default async function handler(req, res
const stream, blob } = await get('/useri123/document.pd
-F I

return new Response(stream
headers:
'content-type': blob.contentType

This method provides maximum control over blob access through your
application's authentication and authorization logic.

Method 3: Edge Middleware Authorization

Authorize blob access directly at the edge using Vercel Edge Middleware:

// middleware.ts
import NextResponse from 'next/server'
import createBlobAccess from '@vercel/blob'

export async function middleware(request
if (request.nextUrl.pathname.startswith('/api/blobs/'

const user = awalit auth(request

if (awalt isAuthorized(user, request.nextUrl.pathname
const response = NextResponse.next

Private Blobs RFC for customer feedback



response.headers.set('x-blob-access', createBlobAccess
request.nextUrl.pathname
return response

return new NextResponse(null status: 403

return NextResponse.next

This method combines edge performance with authorization capabilities, allowing
you to validate user permissions before serving private blobs.

Private Blobs RFC for customer feedback



