
56 Air-mass meters BOSCH

Hot-film air-mass meter, Type HFM 5

Measurement of air-mass throughflow up to 1000 kg/h

- Compact design.
- Low weight.
- Rapid response.
- Low power input.
- Return-flow detection.

Application

In order to comply with the vehicle emission limits demanded by law, it is necessary to maintain a given air/fuel ratio exactly.

This requires sensors which precisely register the actual air-mass flow and output a corresponding electrical signal to the open and closed-loop control electronics.

Design

The micromechanical sensor element is located in the plug-in sensor's flow passage. This plug-in sensor is suitable for incorporating in the air filter or, using a measurement venturi, in the air-intake passages. There are different sizes of measurement venturi available depending upon the air throughflow. The micromechanical measuring system uses a hybrid circuit, and by evaluating the measuring data is able to detect when return flow takes place during air-flow pulsation.

Operating principle

The heated sensor element in the air-mass meter dissipates heat to the incoming air. The higher the air flow, the more heat is dissipated. The resulting temperature differential is a measure for the air mass flowing past the sensor.

An electronic hybrid circuit evaluates this measuring data so that the air-flow quantity can be measured precisely, and its direction of flow.

Only part of the air-mass flow is registered by the sensor element. The total air mass flowing through the measuring tube is determined by means of calibration, known as the characteristic-curve definition.

Technical data / range

Nominal supply voltage U_N	14 V
Supply-voltage range U_V	817 V
Output voltage U _A	05 V
Input current I _V	< 0.1 A
Permissible vibration acceleration	≤ 150 ms ⁻²
Time constant τ_{63} 1)	≤ 15 ms
Time constant $ au_{\Delta}^{2}$)	≤ 30 ms
Temperature range	–40+120 °С ³)

Part number	0 280 217 123	0 280 218 019	0 280 217 531	0 280 218 008	0 281 002 421
Measuring range Q_r	_n 8370 kg/h	10480 kg/h	12640 kg/h	12850 kg/h	151000 kg/h
Accuracy 4)	≤ 3%	≤ 3%	≤ 3%	≤ 3%	≤ 3%
Fitting length L_{E}	22 mm	22 mm	22 mm	16 mm	22 mm
Fitting length L_A	20 mm	20 mm	20 mm	16 mm	20 mm
Installation length L	96 mm	96 mm	130 mm	100 mm	130 mm
Connection diam. D	60 mm	70 mm	80 mm	86/84 mm ⁶)	92 mm
Venturi ID	50 mm	62 mm	71 mm	78 mm	82 mm
Pressure drop at					
nominal air mass 5)) < 20 hPa	< 15 hPa	< 15 hPa	< 15 hPa	< 15 hPa
Temperature sensor	Yes	Yes	Yes	No	Yes
Version	1	2	3	4	5

- 1) In case of sudden increase of the air-mass flow from 10 kg · h⁻¹ auf 0,7 $Q_{m \, nominal}$, time required to reach 63% of the final value of the air-mass signal.
- ²) Period of time in case of a throughflow jump of the air mass $|\Delta m/m| \le 5\%$.
- $^{3})$ For a short period up to +130 $^{\circ}\text{C}.$
- 4) $|\Delta Q_{\rm m}/Q_{\rm m}|$: The measurement deviation $\Delta Q_{\rm m}$ from the exact value, referred to the measured value $Q_{\rm m}$.
- 5) Measured between input and output
- 6) Inflow/outflow end

Accessories for connector

Plug housing	Contact pins	Individual gaskets	For conductor cross-section
1 928 403 836	1 987 280 103	1 987 280 106	0.51 mm ²
	1 987 280 105	1 987 280 107	1.52.5 mm ²
			1 = 1

Note: Each 5-pole plug requires 1 plug housing, 5 contact pins, and 5 individual gaskets. For automotive applications, original AMP crimping tools must be used.

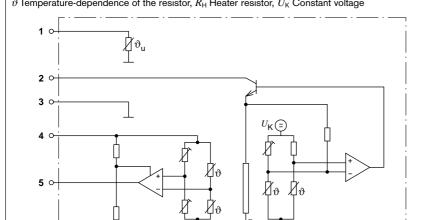
Application

In internal-combustion engines, this sensor is used for measuring the air-mass flow so that the injected fuel quantity can be adapted to the presently required power, to the air pressure, and to the air temperature.

Explanation of symbols

 Q_{m} Air-mass flow rate ΔQ_{m} Absolute accuracy $\Delta Q_{\mathrm{m}}/Q_{\mathrm{m}}$ Relative accuracy

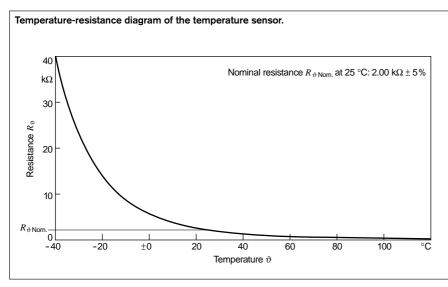
 au_{Δ} Time until measuring error is

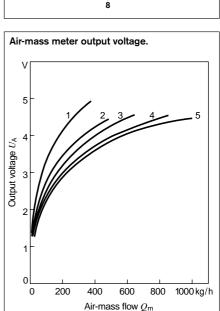

≤5%

 au_{63} Time until measured-value change 63%

Function diagram with connector-pin assignment.

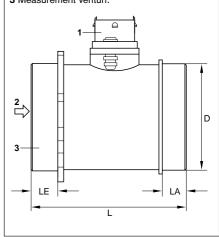
- 1 Additional temperature sensor $\vartheta_{\rm u}$ (not on version 4, Part number 0 280 218 008),
- 2 Supply voltage $U_{\rm V}$, 3 Signal ground, 4 Reference voltage 5 V, 5 Measurement signal $U_{\rm A}$. ϑ Temperature-dependence of the resistor, $R_{\rm H}$ Heater resistor, $U_{\rm K}$ Constant voltage


HFM 5 plug-in sensor design. 1 Measuring-passage cover, 2 Sensor, 3 Mounting plate, 4 Hybrid-circuit cover, 5 Hybrid, 6 Plug-in sensor, 7 O-ring, 8 Auxiliary temperature sensor.


Output voltage $U_A = f(Q_m)$ of the air-mass meter

Culput relange of the miles in the control of the c							
Part number	0 280 217 123	0 280 218 019	0 280 217 531	0 280 218 008	0 280 002 421		
Characteristic curve 1		2	3	4	5		
$Q_{\rm m}$ /kg/h	U_{A}/V	U_{A}/V	$U_{A} \! / V$	$U_{A}\!/V$	U_{A}/V		
8	1.4837	1.2390	_	_	_		
10	1.5819	1.3644	1.2695	-	-		
15	1.7898	1.5241	1.4060	1.3395	1.2315		
30	2.2739	1.8748	1.7100	1.6251	1.4758		
60	2.8868	2.3710	2.1563	2.0109	1.8310		
120	3.6255	2.9998	2.7522	2.5564	2.3074		
250	4.4727	3.7494	3.5070	3.2655	2.9212		
370	4.9406	4.1695	3.9393	3.6717	3.2874		
480	-	4.4578	4.2349	3.9490	3.5461		
640	_	_	4.5669	4.2600	3.8432		
850	_	_	_	4.5727	4.1499		
1000	_	_	_	_	4.3312		

|--|

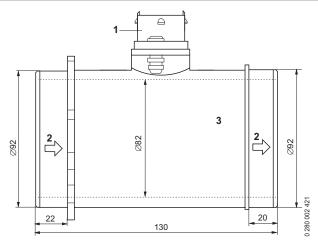

Temperature ϑ	°C	-40	-30	-20	-10	±0	10	20	30	40
Resistance R_{ϑ}	kΩ	39.26	22.96	13.85	8.609	5.499	3.604	2.420	1.662	1.166
Temperature ϑ	°C	50	60	70	80	90	100	110	120	130
Resistance R_{ϑ}	Ω	835	609	452	340	261	202	159	127	102

Dimensions overview of the HFM 5.

1 Plug-in sensor, 2 Throughflow direction, 3 Measurement venturi.

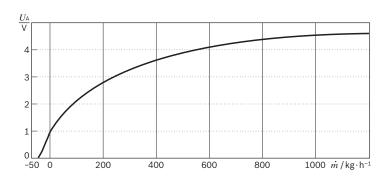
Part number 0 281 002 421

With ambient-temperature sensor.


Technical data

Measuring range $\dot{m}_{\rm N}$ -50 ... 1200 kg/h

Illustration



Dimension drawing

- 1 Plug-in sensor
- 2 Flow direction
- 3 Measurement tube

Air-mass characteristic curve at ambient temperature

Accessories		Part number
Compact connector	5-pin	1 928 403 836
Contact pins	for Ø 0.51.0 mm ² ; Contents: 100 x	1 928 498 056
Contact pins	for Ø 1.52.5 mm ² ; Contents: 100 x	1 928 498 057
Single-wire seals	for \emptyset 0.51.0 mm ² ; Contents: 10 x	1 928 300 599
Single-wire seals	for Ø 0.51.0 mm ² ; Contents: 10 x	1 928 300 600

 $Accessories \ are \ not \ included \ in \ the \ scope \ of \ delivery \ of \ the \ sensor \ and \ are \ therefore \ to \ be \ ordered \ separately \ as \ required.$