PSA Certified
Crypto API 1.3 PQC Extension

Document number: AES 0119

Release Quality: Beta
Issue Number: 0
Confidentiality: Non-confidential
Date of Issue: 06/02/2025
Copyright © 2024 Arm Limited and/or its affiliates
DRAFT

This is an extension to the PSA Certified Crypto APl [PSA-CRYPT] specification.

This is a DRAFT release: the proposed changes and interfaces are in development, and published for
review and discussion.

Abstract

This document is part of the PSA Certified API specifications. It defines an extension to the Crypto API, to
introduce support for Post-Quantum Cryptography (PQC) algorithms.

Contents

About this document

Release information
License

References

Terms and abbreviations

Conventions
Typographical conventions
Numbers

Current status and anticipated changes

Feedback
1 Introduction
1.1 About Platform Security Architecture
1.2 About the Crypto API PQC Extension
1.3 Objectives for the PQC Extension
1.3.1 Background
1.3.2 Selection of algorithms

2 API Reference

21
211
2.1.2

2.2
221
222

23
231
2.3.2

24
241
24.2

25
251

AES 0119

Additional Hash algorithms
SHA-256-based hash algorithms
SHAKE-based hash algorithms

Module Lattice-based key encapsulation
Module Lattice-based key-encapsulation keys
Module Lattice-based key-encapsulation algorithm

Module Lattice-based signatures
Module Lattice-based signature keys
Module Lattice-based signature algorithms

Stateless Hash-based signatures
Stateless Hash-based signature keys
Stateless Hash-based signature algorithms

Leighton-Micali Signatures
Leighton-Micali Signature keys

Copyright © 2024 Arm Limited and/or its affiliates

1.3 PQC Extension Beta (Issue 0) [DRAFT] Non-confidential

11
11
11

11
11
12

14

14
14
14

15
15
17

18
18
21

27
27
32

38
39

Page i

2.5.2 Leighton-Micali Signature algorithms

2.6 eXtended Merkle Signature Scheme
2.6.1 XMSS and XMSSMT keys
2.6.2 XMSS and XMSSMT algorithms

A Example header file
A1l psa/crypto.h

B Algorithm and key type encoding

B.1 Algorithm encoding
B.1.1 Hash algorithm encoding
B.1.2 Asymmetric signature algorithm encoding
B.1.3 Key-encapsulation algorithm encoding

B.2 Key encoding
B.2.1 Non-parameterized asymmetric key encoding
B.2.2 SLH-DSA key encoding

C Example macro implementations

C1 Algorithm macros
C.1.1 Updated macros
C.1.2 New macros

C2 Key type macros

D Changes to the API

D.1 Document change history
D.1.1 Betarelease

Index of API elements

AES 0119 Copyright © 2024 Arm Limited and/or its affiliates
1.3 PQC Extension Beta (Issue 0) [DRAFT] Non-confidential

40

40
41
42

44
44

46

46
46
46
47

47
47
48
49

49
49
49

50

52

52
52

53

Page ii

About this document

Release information
The change history table lists the changes that have been made to this document.

Table 1 Document revision history

Date Version Confidentiality Change

?? Beta O Non-confidential Initial release of the 1.3 PQC Extension
specification

The detailed changes in each release are described in Dacument change history on page 52.

AES 0119 Copyright © 2024 Arm Limited and/or its affiliates Page iii
1.3 PQC Extension Beta (Issue 0) [DRAFT] Non-confidential

TODO items

The following items are marked up as TODO in the document source:

AES 0119 Copyright © 2024 Arm Limited and/or its affiliates Page iv
1.3 PQC Extension Beta (Issue 0) [DRAFT] Non-confidential

PSA Certified Crypto API

Copyright © 2024 Arm Limited and/or its affiliates. The copyright statement reflects the fact that some
draft issues of this document have been released, to a limited circulation.

License
Text and illustrations

Text and illustrations in this work are licensed under Attribution-ShareAlike 4.0 International (CC BY-SA 4.0). To view a copy of
the license, visit creativecommons.org/licenses/by-sa/4.0.

Grant of patent license. Subject to the terms and conditions of this license (both the CC BY-SA 4.0 Public License and this Patent
License), each Licensor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as
stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Licensed
Material, where such license applies only to those patent claims licensable by such Licensor that are necessarily infringed by their
contribution(s) alone or by combination of their contribution(s) with the Licensed Material to which such contribution(s) was
submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the
Licensed Material or a contribution incorporated within the Licensed Material constitutes direct or contributory patent
infringement, then any licenses granted to You under this license for that Licensed Material shall terminate as of the date such
litigation is filed.

The Arm trademarks featured here are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or
elsewhere. All rights reserved. Please visit arm.com/company/policies/trademarks for more information about Arm’s trademarks.

About the license

The language in the additional patent license is largely identical to that in section 3 of the Apache License, Version 2.0 (Apache
2.0), with two exceptions:

1. Changes are made related to the defined terms, to align those defined terms with the terminology in CC BY-SA 4.0 rather
than Apache 2.0 (for example, changing “Work” to “Licensed Material”).

2. The scope of the defensive termination clause is changed from “any patent licenses granted to You” to “any licenses
granted to You”. This change is intended to help maintain a healthy ecosystem by providing additional protection to the
community against patent litigation claims.

To view the full text of the Apache 2.0 license, visit apache.org/licenses/LICENSE-2.0.
Source code

Source code samples in this work are licensed under the Apache License, Version 2.0 (the “License”); you may not use such
samples except.in compliance with the License. You may obtain a copy of the License at apache.org/licenses/LICENSE-2.0.

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an “AS IS”
BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and limitations under the License.

AES 0119 Copyright © 2024 Arm Limited and/or its affiliates Page v
1.3 PQC Extension Beta (Issue 0) [DRAFT] Non-confidential

https://creativecommons.org/licenses/by-sa/4.0
https://arm.com/company/policies/trademarks
https://apache.org/licenses/LICENSE-2.0
https://apache.org/licenses/LICENSE-2.0

References

This document refers to the following documents.

Ref

[PSA-CRYPT]
[FIPS180-4]

[FIPS202]

[FIPS203]

[FIPS204]

[FIPS205]

[LAMPS-
MLKEM]

[LAMPS-MLDSA]

[LAMPS-
SLHDSA]

[NIST-PQC]

[SP800-208]

[RFC8391]

[RFC8554]

AES 0119

Document
Number

IHI 0086

Table 2 Documents referenced by this document

Title

PSA Certified Crypto API. arm-software.github.io/psa-api/crypto

NIST, FIPS Publication 180-4: Secure Hash Standard (SHS),
August 2015. doi.org/10.6028/NIST.FIPS.180-4

NIST, FIPS Publication 202: SHA-3 Standard: Permutation-Based
Hash and Extendable-Output Functions, August 2015.
doi.org/10.6028/NIST.FIPS.202

NIST, FIPS Publication 203: Module-Lattice-Based
Key-Encapsulation Mechanism Standard, August 2024.
doi.org/10.6028/NIST.FIPS.203

NIST, FIPS Publication 204: Module-Lattice-Based Digital
Signature Standard, August 2024,
doi.org/10.6028/NIST.FIPS.204

NIST, FIPS Publication 205: Stateless Hash-Based Digital
Signature Standard, August 2024,
doi.org/10.6028/NIST.FIPS.205

IETF, Internet X.509 Public Key Infrastructure - Algorithm
Identifiers for Module-Lattice-Based Key-Encapsulation
Mechanism (ML-KEM), November 2024 (Draft 06).
datatracker.ietf.org/doc/draft-ietf-lamps-kyber-certificates

IETF, Internet X.509 Public Key Infrastructure: Algorithm
Identifiers for ML-DSA, November 2024 (Draft 05).
datatracker.ietf.org/doc/draft-ietf-lamps-dilithium-certificates

IETF, Internet X.509 Public Key Infrastructure: Algorithm
Identifiers for SLH-DSA, November 2024 (Draft 03).
datatracker.ietf.org/doc/draft-ietf-lamps-x509-slhdsa

NIST, Post-Quantum Cryptography, PQC Project page.
nist.gov/pqcrypto

NIST, NIST Special Publication 800-208: Recommendation for
Stateful Hash-Based Signature Schemes, October 2020.
doi.org/10.6028/NIST.SP.800-208

IRTF, XMSS: eXtended Merkle Signature Scheme, May 2018.
tools.ietf.org/html/rfc8391

IRTF, Leighton-Micali Hash-Based Signatures, April 2019.
tools.ietf.org/html/rfc8554

continues on next page

Copyright © 2024 Arm Limited and/or its affiliates Page vi
1.3 PQC Extension Beta (Issue 0) [DRAFT]

Non-confidential

https://arm-software.github.io/psa-api/crypto
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.FIPS.203
https://doi.org/10.6028/NIST.FIPS.204
https://doi.org/10.6028/NIST.FIPS.205
https://datatracker.ietf.org/doc/draft-ietf-lamps-kyber-certificates
https://datatracker.ietf.org/doc/draft-ietf-lamps-dilithium-certificates
https://datatracker.ietf.org/doc/draft-ietf-lamps-x509-slhdsa
https://nist.gov/pqcrypto
https://doi.org/10.6028/NIST.SP.800-208
https://tools.ietf.org/html/rfc8391
https://tools.ietf.org/html/rfc8554

Ref Document

Table 2 - continued from previous page

Title

Number

[CFRG-LMS]

[LAMPS-SHBS]

IRTF, Additional Parameter sets for HSS/LMS Hash-Based
Signatures, October 2024 (Draft 17).
datatracker.ietf.org/doc/draft-fluhrer-Ims-more-parm-sets

IETF, Use of the HSS and XMSS Hash-Based Signature Algorithms
in Internet X.509 Public Key Infrastructure, December 2024
(Draft 13). datatracker.ietf.org/doc/draft-ietf-lamps-x509-shbs

Terms and abbreviations
This document uses the following terms and abbreviations.

Term

AEAD
Algorithm

API
Asymmetric

Authenticated
Encryption with
Associated Data
(AEAD)

Byte
Cipher

Cryptoprocessor

Hash
HMAC

IMPLEMENTATION DEFINED

AES 0119

1.3 PQC Extension Beta (Issue 0) [DRAFT]

Table 3 Terms and abbreviations
Meaning

See Authenticated Encryption with Associated Data.

A finite sequence of steps to perform a particular operation.

In this specification, an algorithm is a cipher or a related function. Other texts
call this a cryptographic mechanism.

Application Programming Interface.
See Public-key cryptography.

A type of encryption that provides confidentiality and authenticity of data
using symmetric keys.

In this specification, a unit of storage comprising eight bits, also called an
octet.

An-algorithm used for encryption or decryption with a symmetric key.

The component that performs cryptographic operations. A cryptoprocessor
might contain a keystore and countermeasures against a range of physical and
timing attacks.

A cryptographic hash function, or the value returned by such a function.
A type of MAC that uses a cryptographic key with a hash function.

Behavior that is not defined by the architecture, but is defined and
documented by individual implementations.

continues on next page

Copyright © 2024 Arm Limited and/or its affiliates
Non-confidential

Page vii

https://datatracker.ietf.org/doc/draft-fluhrer-lms-more-parm-sets
https://datatracker.ietf.org/doc/draft-ietf-lamps-x509-shbs

Term

Initialization vector (IV)

\%
KDF
Key agreement

Key Derivation
Function (KDF)

Key identifier

Table 3 - continued from previous page

Meaning

An additional input that is not part of the message. It is used to prevent an
attacker from making any correlation between cipher text and plain text.

This specification uses the term for such initial inputs in all contexts. For
example, the initial counter in CTR mode is called the IV.

See Initialization vector.
See Key Derivation Function.
An algorithm for two or more parties to establish a common secret key.

Key Derivation Function. An algorithmfor deriving keys from secret material.

A reference to a cryptographic key. Key identifiers in the Crypto APl are
32-bit integers.

Key policy Key metadata that describes and restricts what a key can be used for.

Key size The size of a key as defined by common conventions for each key type. For
keys that are built from several numbers of strings, this is the size of a
particular one of these numbers or strings.

This specification expresses key sizes in bits.

Key type Key metadata that describes the structure and content of a key.

Keystore A hardware or software component that protects, stores, and manages
cryptographic keys.

Lifetime Key metadata that describes when a key is destroyed.

MAC See Message Authentication Code.

Message A short piece of information used to authenticate a message. It is created and

Authentication Code verified using a symmetric key.

(MAC)

Message digest A hash of a message. Used to determine if a message has been tampered.

An /APl which splits a single cryptographic operation into a sequence of
separate steps.

Multi-part operation

Non-extractable key A key with a key policy that prevents it from being read by ordinary means.

Nonce Used as an input for certain AEAD algorithms. Nonces must not be reused

with the same key because this can break a cryptographic protocol.
Persistent key A key that is stored in protected non-volatile memory.

Post-Quantum A cryptographic scheme that relies on mathematical problems that do not

Cryptography (PQC) have efficient algorithms for either classical or quantum computing.
PQC See Post-Quantum Cryptography.
PSA Platform Security Architecture
continues on next page
AES 0119 Copyright © 2024 Arm Limited and/or its affiliates Page viii

1.3 PQC Extension Beta (Issue 0) [DRAFT] Non-confidential

Table 3 - continued from previous page

Term Meaning

Public-key A type of cryptographic system that uses key pairs. A keypair consists of a

cryptography (secret) private key and a public key (not secret). A public-key cryptographic
algorithm can be used for key distribution and for digital signatures.

Salt Used as an input for certain algorithms, such as key derivations.

Signature The output of a digital signature scheme that uses an asymmetric keypair.
Used to establish who produced a message.

Single-part function An API that implements the cryptographic operation in a single function call.

SPECIFICATION DEFINED Behavior that is defined by this specification.

Symmetric A type of cryptographic algorithm that uses a single key. A symmetric key can

be used with a block cipher or a stream cipher.

Volatile key A key that has a short lifespan and is guaranteed not to exist after a restart of
an application instance.

Conventions

Typographical conventions
The typographical conventions are:

italic Introduces special terminology, and denotes citations.

monospace Used for assembler syntax descriptions, pseudocode, and source code examples.
Also used in the main text for instruction mnemonics and for references to other items
appearing in assembler syntax descriptions, pseudocode, and source code examples.
SMALL CAPITALS
Used for some common terms such as IMPLEMENTATION DEFINED.
Used for a few terms that have specific technical meanings, and are included in the Terms
and abbreviations.
Red text Indicates an open issue.
Blue text Indicates a link. This can be

e A cross-reference to another location within the document
e A URL, for example example.com

Numbers

Numbers are normally written in decimal. Binary numbers are preceded by Ob, and hexadecimal numbers
by ox.

In both cases, the prefix and the associated value are written in a monospace font, for example oxFFFFoo0e.
To improve readability, long numbers can be written with an underscore separator between every four
characters, for example oxFFFF_0000_0000_0000. Ignore any underscores when interpreting the value of a
number.

AES 0119 Copyright © 2024 Arm Limited and/or its affiliates Page ix
1.3 PQC Extension Beta (Issue 0) [DRAFT] Non-confidential

https://example.com

Current status and anticipated changes

This document is at Beta quality status which has a particular meaning to Arm of which the recipient must
be aware. A Beta quality specification will be sufficiently stable & committed for initial product
development, however all aspects of the architecture described herein remain SUBJECT TO CHANGE.
Please ensure that you have the latest revision.

Feedback
We welcome feedback on the PSA Certified APl documentation.

If you have comments on the content of this book, visit github.com/arm-software/psa-api/issues to create
a new issue at the PSA Certified API GitHub project. Give:

e The title (Crypto API).
e The number and issue (AES 0119 1.3 PQC Extension Beta (Issue O) [DRAFT]).
e The location in the document to which your comments apply.

e A concise explanation of your comments.

We also welcome general suggestions for additions and improvements.

AES 0119 Copyright © 2024 Arm Limited and/or its affiliates Page x
1.3 PQC Extension Beta (Issue 0) [DRAFT] Non-confidential

https://github.com/arm-software/psa-api/issues

1 Introduction
1.1 About Platform Security Architecture

This document is one of a set of resources provided by Arm that can help organizations develop products
that meet the security requirements of PSA Certified on Arm-based platforms. The PSA Certified scheme
provides a framework and methodology that helps silicon manufacturers, system software providers and
OEMs to develop more secure products. Arm resources that support PSA Certified range from threat
models, standard architectures that simplify development and increase portability, and open-source
partnerships that provide ready-to-use software. You can read more about PSA Certified here at
www.psacertified.org and find more Arm resources here at
developer.arm.com/platform-security-resources.

1.2 About the Crypto API PQC Extension

This document defines an extension to the PSA Certified Crypto API [PSA-CRYPT] specification, to provide
support for Post-Quantum Cryptography (PQC) algorithms. Specifically, for the NIST-approved schemes for
LMS, HSS, XMSS, XMSSMT ML-DSA, SLH-DSA, and ML-KEM.

When the proposed extension is sufficiently stable to be classed as Final, it will be integrated into a future
version of [PSA-CRYPT].

This specification must be read and implemented in conjunction with [PSA-CRYPT]. All of the conventions,
design considerations, and implementation considerations that are described in [PSA-CRYPT] apply to this
specification.

1.3 Obijectives for the PQC Extension

1.3.1 Background

The justification for developing new public-key cryptography algorithms due to the risks posed by quantum
computing are described by NIST in Post-Quantum Cryptography [NIST-PQC].

Extract from Post-Quantum Cryptography:

In recent years, there has been a substantial amount of research on quantum computers — machines that
exploit quantum mechanical phenomena to solve mathematical problems that are difficult or intractable
for conventional computers. If large-scale quantum computers are ever built, they will be able to break
many of the public-key cryptosystems currently in use. This would seriously compromise the confidentiality
and integrity of digital communications on the Internet and elsewhere. The goal of post-quantum
cryptography (also called quantum-resistant cryptography) is to develop cryptographic systems that are
secure against both quantum and classical computers, and can interoperate with existing communications
protocols and networks.

The question of when a large-scale quantum computer will be built is a complicated one. While in the past
it was less clear that large quantum computers are a physical possibility, many scientists now believe it to
be merely a significant engineering challenge. Some engineers even predict that within the next twenty or
so years sufficiently large quantum computers will be built to break essentially all public key schemes
currently in use. Historically, it has taken almost two decades to deploy our modern public key

AES 0119 Copyright © 2024 Arm Limited and/or its affiliates Page 11
1.3 PQC Extension Beta (Issue 0) [DRAFT] Non-confidential

https://www.psacertified.org
https://developer.arm.com/platform-security-resources

cryptography infrastructure. Therefore, regardless of whether we can estimate the exact time of the arrival
of the quantum computing era, we must begin now to prepare our information security systems to be able
to resist quantum computing.

NIST is hosting a project to collaboratively develop, analyze, refine, and select cryptographic schemes that
are resistant to attack by both classical and quantum computing.

1.3.2 Selection of algorithms

NIST PQC project finalists
PQC algorithms that have been standardized are obvious candidates for inclusion in the Crypto API. The
current set of standards is the following:

e FIPS Publication 203: Module-Lattice-Based Key-Encapsulation Mechanism Standard [FIPS203]
e FIPS Publication 204: Module-Lattice-Based Digital Signature Standard [FIPS204]
e FIPS Publication 205: Stateless Hash-Based Digital Signature Standard [FIPS205]

Although the NIST standards for these algorithms are now finalized, the definition of keys in the Crypto
API depends on import and export formats. To maximize key exchange interoperability with other
specifications, the default export format in the Crypto API should be aligned with the definitions selected
for X.509 public-key infrastructure. As the IETF process for defining the X.509 key formats is still ongoing
at the time of publishing this document, the interfaces within this document are at BETA status.

However, it is not expected that other aspects of the APl in this document will change when it becomes
FINAL.

Note:

Although PQC algorithms that are draft standards could be considered, any definitions for these
algorithms would be have to be considered experimental. Significant aspects of the algorithm, such
as approved parameter sets, can change before publication of a final standard, potentially requiring a
revision of any proposed interface for the Crypto API.

Other NIST-approved schemes

In NIST Special Publication 800-208: Recommendation for Stateful Hash-Based Signature Schemes
[SP800-208], NIST approved use of the following stateful hash-based signature (HBS) schemes:

e The Leighton-Micali Signature (LMS) system, and its multi-tree variant, the Hierarchical Signature
System (HSS/LMS). These are defined in Leighton-Micali Hash-Based Signatures [RFC8554].

e The eXtended Merkle Signature Scheme (XMSS), and its multi-tree variant XMSSMT. These are
defined in XMSS: eXtended Merkle Signature Scheme [RFC8391].

HBS schemes have additional challenges with regards to deploying secure and resilient systems for signing
operations. These challenges, outlined in [SP800-208] sections §1.2 and §8.1, result in a recommendation
to use these schemes in a limited set of use cases, for example, authentication of firmware in constrained
devices.

At present, it is not expected that the Crypto API will be used to create HBS private keys, or to carry out
signing operations. However, there is a use case with the Crypto API for verification of HBS signatures.

AES 0119 Copyright © 2024 Arm Limited and/or its affiliates Page 12
1.3 PQC Extension Beta (Issue 0) [DRAFT] Non-confidential

Therefore, for these HBS schemes, the Crypto API only provides support for public keys and signature
verification algorithms.

AES 0119 Copyright © 2024 Arm Limited and/or its affiliates Page 13
1.3 PQC Extension Beta (Issue 0) [DRAFT] Non-confidential

2 API Reference

Note:
The API defined in this specification will be integrated into a future version of [PSA-CRYPT].

This chapter is divided into sections for each of the PQC algorithms in the Crypto API:

2.1 Additional Hash algorithms

2.1.1 SHA-256-based hash algorithms
PSA_ALG_SHA_256_192 (macro)
The SHA-256/192 message digest algorithm.

Added in version 1.3.

#define PSA_ALG_SHA_256_192 ((psa_algorithm_t)0x0200000E)
SHA-256/192 is the first 192 bits (24 bytes) of the SHA-256 output. SHA-256 is defined in [FIPS180-4].

2.1.2 SHAKE-based hash algorithms
PSA_ALG_SHAKE128_256 (macro)
The SHAKE128/256 message digest algorithm.

Added in version 1.3.

#define PSA_ALG_SHAKE128_256 ((psa_algorithm_t)0x02000016)
SHAKE128/256 is the first 256 bits (32 bytes) of the SHAKE128 output. SHAKE128 is defined in
[FIPS202].

This can be used as pre-hashing for SLH-DSA (see PSA_ALG_HASH_SLH_DSA()).

Note:

For other scenarios where a hash function based on SHA3 or SHAKE is required, SHA3-256 is
recommended. SHA3-256 has the same output size, and a theoretically higher security strength.

PSA_ALG_SHAKE256_192 (macro)
The SHAKE256/192 message digest algorithm.

Added in version 1.3.

#define PSA_ALG_SHAKE256_192 ((psa_algorithm_t)0x02000017)

SHAKE256/192 is the first 192 bits (24 bytes) of the SHAKE256 output. SHAKE256 is defined in
[FIPS202].

AES 0119 Copyright © 2024 Arm Limited and/or its affiliates Page 14
1.3 PQC Extension Beta (Issue 0) [DRAFT] Non-confidential

PSA_ALG_SHAKE256_256 (macro)
The SHAKE256/256 message digest algorithm.

Added in version 1.3.

#define PSA_ALG_SHAKE256_256 ((psa_algorithm_t)0x02000018)

SHAKE256/256 is the first 256 bits (32 bytes) of the SHAKE256 output. SHAKE256 is defined in
[FIPS202].

2.2 Module Lattice-based key encapsulation

2.2.1 Module Lattice-based key-encapsulation keys

The Crypto API supports Module Lattice-based key ecapsulation (ML-KEM) as defined in FIPS Publication
203: Module-Lattice-Based Key-Encapsulation Mechanism Standard [FIPS203].

PSA_KEY_TYPE_ML_KEM_KEY_PAIR (macro)

ML-KEM key pair: both the decapsulation and encapsulation key.
Added in version 1.3.

#define PSA_KEY_TYPE_ML_KEM_KEY_PAIR ((psa_key_type_t)0x7004)

The Crypto API treats decapsulation keys as private keys and encapsulation keys as public keys.

The key attribute size of an ML-KEM key is specified by the numeric part of the parameter-set identifier
defined in [FIPS203]. The parameter-set identifier refers to the key strength, and not to the actual size of
the key. The following values for the key_bits key attribute are used to select a specific ML-KEM
parameter set:

o ML-KEM-512 : key_bits = 512
o ML-KEM-768 : key_bits
o ML-KEM-1024 : key_bits = 1024

768

See also §8 in [FIPS203].

Compatible algorithms
e PSA_ALG_ML_KEM

Key format

Warning

The key format may change in a final version of this API. The standardization of exchange formats for
ML-KEM public and private keys is in progress, but final documents have not been published. See
Internet X.509 Public Key Infrastructure - Algorithm Identifiers for Module-Lattice-Based Key-Encapsulation
Mechanism (ML-KEM) [LAMPS-MLKEM].

The current proposed format is based on the expected outcome of that process.

An ML-KEM key pair is the (ek, dk) pair of encapsulation key and decapsulation key, which are generated
from two secret 32-byte seeds, d and z. See [FIPS203] §7.1.

AES 0119 Copyright © 2024 Arm Limited and/or its affiliates Page 15
1.3 PQC Extension Beta (Issue 0) [DRAFT] Non-confidential

The data format for import and export of the key pair is the concatenation of the two seed values: d || z.

Rationale

The IETF working group responsible for defining the format of the ML-DSA keys in SubjectPublicKeylnfo
and OneAsymmetricKey structures is discussing the formats at present (September 2024), with the
current consensus to using just the seed values as the private key, for the following reasons:

e ML-KEM decapsulation keys are 1.5-3.0 kB in size, but can be recomputed efficiently from the
initial 64-byte seed-pair.

e There is no need to validate an imported ML-KEM key pair — every 64-byte pair of seed values is
valid.

e It is better for the standard to choose a single format to improve interoperability.

See PSA_KEY_TYPE_ML_KEM_PUBLIC_KEY for the data format used when exporting the public key with
psa_export_public_key().

Implementation note

An implementation can optionally compute and store the dk value, which also contains the
encapsulation key ek, to accelerate operations that use the key. It is recommended that an
implementation retains the seed pair (d, z) with the decapsulation key, in order to export the key, or
copy the key to a different location.

Key derivation
A call to psa_key_derivation_output_key() will construct an ML-KEM key pair using the following process:

1. Draw 32 bytes of output as the seed value d.

2. Draw 32 bytes of output as the seed value z.

The key pair (ek, dk) is generated from the seed as defined by ML-KEM.KeyGen_internal () in [FIPS203] §6.1.

Implementation note

It is IMPLEMENTATION DEFINED Whether the seed-pair (d, z) is expanded to (ek, dk) at the point of
derivation, or only just before the key is used.

PSA_KEY_TYPE_ML_KEM_PUBLIC_KEY (macro)
ML-KEM public (encapsulation) key.

Added in version 1.3.

#define PSA_KEY_TYPE_ML_KEM_PUBLIC_KEY ((psa_key_type_t)0x4004)

The key attribute size of an ML-KEM public key is the same as the corresponding private key. See
PSA_KEY_TYPE_ML_KEM_KEY_PAIR.

AES 0119 Copyright © 2024 Arm Limited and/or its affiliates Page 16
1.3 PQC Extension Beta (Issue 0) [DRAFT] Non-confidential

Compatible algorithms
e PSA_ALG_ML_KEM (encapsulation only)

Key format

Warning

The key format may change in a final version of this API. The standardization of exchange formats for
ML-KEM public and private keys is in progress, but final documents have not been published. See
Internet X.509 Public Key Infrastructure - Algorithm Identifiers for Module-Lattice-Based Key-Encapsulation
Mechanism (ML-KEM) [LAMPS-MLKEM].

The current proposed format is based on the expected outcome of that process.

An ML-KEM public key is the ek output of ML-KEM.KeyGen(), defined in [FIPS203] §7.1.
The size of the public key depends on the ML-KEM parameter set as follows:

Parameter set Public-key size in bytes

ML-KEM-512 800
ML-KEM-768 1184
ML-KEM-1024 1568

PSA_KEY_TYPE_IS_ML_KEM (macro)
Whether a key type is an ML-DSA key, either a key pair or a public key.

Added in version 1.3.
#define PSA_KEY_TYPE_IS_ML_KEM(type) /x specification-defined value */

Parameters
type A key type: a value of type psa_key_type_t.

2.2.2 Module Lattice-based key-encapsulation algorithm

ML-KEM is defined in FIPS Publication 203: Module-Lattice-Based Key-Encapsulation Mechanism Standard
[FIPS203]. ML-KEM has three parameter sets which provide differing security strengths.

The generation of an ML-KEM key depends on the full parameter specification. The encoding of each
parameter set into the key attributes is described in Module Lattice-based key-encapsulation keys on
page 15.

See [FIPS203] §8 for details on the parameter sets.
PSA_ALG_ML_KEM (macro)

Module Lattice-based key-encapsulation mechanism (ML-KEM).
Added in version 1.3.

AES 0119 Copyright © 2024 Arm Limited and/or its affiliates Page 17
1.3 PQC Extension Beta (Issue 0) [DRAFT] Non-confidential

#define PSA_ALG_ML_KEM ((psa_algorithm_t)0x0c000200)

This is the ML-KEM key-encapsulation algorithm, defined by [FIPS203]. ML-KEM requires an ML-KEM key,
which determines the ML-KEM parameter set for the operation.

When using ML-KEM, the size of the encapsulation data returned by a call to psa_encapsulate() is as
follows:

Parameter set Encapsulation data size in bytes

ML-KEM-512 768
ML-KEM-768 1088
ML-KEM-1024 1568

The 32-byte shared output key that is produced by ML-KEM is pseudorandom. Although it can be used
directly as an encryption key, it is recommended to use the output key as an input to a key-derivation
operation to produce additional cryptographic keys.

Compatible key types
PSA_KEY_TYPE_ML_KEM_KEY_PAIR

PSA_KEY_TYPE_ML_KEM_PUBLIC_KEY (encapsulation only)

2.3 Module Lattice-based signatures

2.3.1 Module Lattice-based signature keys

The Crypto API supports Module Lattice-based digital signatures (ML-DSA), as defined in FIPS Publication
204: Module-Lattice-Based Digital Signature Standard [FIPS204].

PSA_KEY_TYPE_ML_DSA_KEY_PAIR (macro)
ML-DSA key pair: both the private and public key.

Added in version 1.3.

#define PSA_KEY_TYPE_ML_DSA_KEY_PAIR ((psa_key_type_t)@x7002)

The key attribute size of an ML-DSA key is the numeric ML-DSA parameter-set identifier defined in
[FIPS204]. The values are based on the dimensions of the matrix A, and do not directly define the key size
in bytes:

o ML-DSA-44 : key_bits = 44
e ML-DSA-65 : key_bits = 65
e ML-DSA-87 : key_bits = 87
See also §4 in [FIPS204].
AES 0119 Copyright © 2024 Arm Limited and/or its affiliates Page 18

1.3 PQC Extension Beta (Issue 0) [DRAFT] Non-confidential

Compatible algorithms

PSA_ALG_ML_DSA
PSA_ALG_HASH_ML_DSA
PSA_ALG_DETERMINISTIC_ML_DSA
PSA_ALG_DETERMINISTIC_HASH_ML_DSA

Key format

Warning

The key format may change in a final version of this API. The standardization of exchange formats for
ML-DSA public and private keys is in progress, but final documents have not been published. See
Internet X.509 Public Key Infrastructure: Algorithm Identifiers for ML-DSA [LAMPS-MLDSA].

The current proposed format is based on the expected outcome of that process.

An ML-DSA key pair is the (pk, sk) pair of public key and secret key, which are generated from a secret
32-byte seed, £. See [FIPS204] §5.1.

The data format for import and export of the key pair is the 32-byte seed &.

Rationale

The IETF working group responsible for defining the format of the ML-DSA keys in SubjectPublicKeyInfo
and OneAsymmetricKey structures is discussing the formats at present (September 2024), with the
current consensus to using just the seed value as the private key, for the following reasons:

o ML-DSA key pairs are several kB in size, but can be recomputed efficiently from the initial 32-byte
seed.

e There is no need to validate an imported ML-DSA private key — every 32-byte seed values is valid.

e The public key cannot be derived from the secret key, so a key pair must store both the secret key
and the public key. The size of the key pair depends on the ML-DSA parameter set as follows:
Parameter set Key-pair size in bytes

ML-DSA-44 3872
ML-DSA-65 5984
ML-DSA-87 7488

e It is better for the standard to choose a single format to improve interoperability.

See PSA_KEY_TYPE_ML_DSA_PUBLIC_KEY for the data format used when exporting the public key with
psa_export_public_key().

Implementation note

An implementation can optionally compute and store the (pk, sk) values, to accelerate operations

AES 0119 Copyright © 2024 Arm Limited and/or its affiliates Page 19
1.3 PQC Extension Beta (Issue 0) [DRAFT] Non-confidential

that use the key. It is recommended that an implementation retains the seed ¢ with the key pair, in
order to export the key, or copy the key to a different location.

Key derivation

A call to psa_key_derivation_output_key() will draw 32 bytes of output and use these as the 32-byte
ML-DSA key-pair seed, xi. The key pair (pk, sk) is generated from the seed as defined by
ML-DSA.KeyGen_internal() in [FIPS204] §6.1.

Implementation note

It is IMPLEMENTATION DEFINED whether the seed i is expanded to (pk, sk) at the point of derivation, or
only just before the key is used.

PSA_KEY_TYPE_ML_DSA_PUBLIC_KEY (macro)
ML-DSA public key.

Added in version 1.3.

#define PSA_KEY_TYPE_ML_DSA_PUBLIC_KEY ((psa_key_type_t)0x4002)

The key attribute size of an ML-DSA public key is the same as the corresponding private key. See
PSA_KEY_TYPE_ML_DSA_KEY_PAIR.

Compatible algorithms

PSA_ALG_ML_DSA

PSA_ALG_HASH_ML_DSA

PSA_ALG_DETERMINISTIC_ML_DSA

PSA_ALG_DETERMINISTIC_HASH_ML_DSA

Key format

Warning

The key format may change in a final version of this API. The standardization of exchange formats for
ML-DSA public and private keys is in progress, but final documents have not been published. See
Internet X.509 Public Key Infrastructure: Algorithm Identifiers for ML-DSA [LAMPS-MLDSA].

The current proposed format is based on the expected outcome of that process.

An ML-DSA public key is the pk output of ML-DSA.KeyGen(), defined in [FIPS204] §5.1.
The size of the public key depends on the ML-DSA parameter set as follows:

Parameter set Public-key size in bytes

ML-DSA-44 1312
ML-DSA-65 1952
ML-DSA-87 2592

AES 0119 Copyright © 2024 Arm Limited and/or its affiliates Page 20
1.3 PQC Extension Beta (Issue 0) [DRAFT] Non-confidential

PSA_KEY_TYPE_IS_ML_DSA (macro)
Whether a key type is an ML-DSA key, either a key pair or a public key.

Added in version 1.3.
#define PSA_KEY_TYPE_IS_ML_DSA(type) /* specification-defined value */

Parameters
type A key type: a value of type psa_key_type_t.

2.3.2 Module Lattice-based signature algorithms

The ML-DSA signature and verification scheme is defined in FIPS Publication 204: Module-Lattice-Based
Digital Signature Standard [FIPS204]. ML-DSA has three parameter sets which provide differing security
strengths.

ML-DSA keys are large: 1.2-2.5kB for the public key, and triple that for the key pair. ML-DSA signatures
are much larger than those for RSA and Elliptic curve schemes, between 2.4kB and 4.6kB, depending on
the selected parameter set.

See [FIPS204] §4 for details on the parameter sets, and the key and generated signature sizes.

The generation of an ML-DSA key depends on the full parameter specification. The encoding of each
parameter set into the key attributes is described in Module Lattice-based signature keys on page 18.

[FIPS204] defines pure and pre-hashed variants of the signature scheme, which can either be hedged
(randomized) or deterministic. Four algorithms are defined to support these variants: PSA_ALG_ML_DSA,
PSA_ALG_DETERMINISTIC_ML_DSA, PSA_ALG_HASH_ML_DSA(), and PSA_ALG_DETERMINISTIC_HASH_ML_DSA().

Hedged and deterministic signatures

Hedging incorporates fresh randomness in the signature computation, resulting in distinct signatures on
every signing operation when given identical inputs. Deterministic signatures do not require additional
random data, and result in an identical signature for the same inputs.

Signature verification does not distinguish between a hedged and a deterministic signature. Either hedged
or deterministic algorithms can be used when verifying a signature.

When computing a signature, the key’s permitted-algorithm policy must match the requested algorithm,
treating hedged and deterministic versions as distinct. When verifying a signature, the hedged and
deterministic versions of each algorithm are considered equivalent when checking the key's
permitted-algorithm policy.

Note:

The hedged version provides message secrecy and some protection against side-channels. [FIPS204]
recommends that users should use the hedged version if either of these issues are a concern. The
deterministic variant should only be used if the implementation does not include any source of
randomness.

Implementation note

[FIPS204] recommends that implementations use an approved random number generator to provide
the random value in the hedged version. However, it notes that use of the hedged variant with a

AES 0119 Copyright © 2024 Arm Limited and/or its affiliates Page 21
1.3 PQC Extension Beta (Issue 0) [DRAFT] Non-confidential

weak RNG is generally preferable to the deterministic variant.

Rationale

The use of fresh randomness, or not, when computing a signature seems like an implementation
decision based on the capability of the system, and its vulnerability to specific threats, following the
recommendations in [FIPS204].

However, the Crypto API gives distinct algorithm identifiers for the hedged and deterministic variants,
to enable an application use case to require a specific variant.

Pure and pre-hashed algorithms
The pre-hashed signature computation HashML-DSA generates distinct signatures to a pure signature
ML-DSA, with the same key and message hashing algorithm.

An ML-DSA signature can only be verified with an ML-DSA algorithm. A HashML-DSA signature can only
be verified with a HashML-DSA algorithm.

Contexts

Contexts are not supported in the current version of this specification because there is no suitable
signature interface that can take the context as a parameter. A empty context string is used when
computing or verifying ML-DSA signatures.

A future version of this specification may add suitable functions and extend this algorithm to support
contexts.

PSA_ALG_ML_DSA (macro)
Module lattice-based digital signature algorithm without pre-hashing (ML-DSA).

Added in version 1.3.

#define PSA_ALG_ML_DSA ((psa_algorithm_t) 0x06004400)

This algorithm can only be used with the psa_sign_message() and psa_verify_message() functions.

This is the pure ML-DSA digital signature algorithm, defined by FIPS Publication 204: Module-Lattice-Based
Digital Signature Standard [FIPS204], using hedging. ML-DSA requires an ML-DSA key, which determines
the ML-DSA parameter set for the operation.

This algorithm is randomized: each invocation returns a different, equally valid signature. See the notes on
hedged signatures.

When PSA_ALG_ML_DSA is used as a permitted algorithm in a key policy, this permits:

e PSA_ALG_ML_DSA as the algorithm in a call to psa_sign_message().

e PSA_ALG_ML_DSA Or PSA_ALG_DETERMINISTIC_ML_DSA as the algorithm in a call to psa_verify_message().

Note:

To sign or verify the pre-computed hash of a message using ML-DSA, the HashML-DSA algorithms
(PSA_ALG_HASH_ML_DSA() and PSA_ALG_DETERMINISTIC_HASH_ML_DSA()) can also be used with
psa_sign_hash() and psa_verify_hash().

AES 0119 Copyright © 2024 Arm Limited and/or its affiliates Page 22
1.3 PQC Extension Beta (Issue 0) [DRAFT] Non-confidential

The signature produced by HashML-DSA is distinct from that produced by ML-DSA.

Compatible key types
PSA_KEY_TYPE_ML_DSA_KEY_PAIR

PSA_KEY_TYPE_ML_DSA_PUBLIC_KEY (signature verification only)

PSA_ALG_DETERMINISTIC_ML_DSA (macro)
Deterministic module lattice-based digital signature algorithm without pre-hashing (ML-DSA).

Added in version 1.3.

#define PSA_ALG_DETERMINISTIC_ML_DSA ((psa_algorithm_t) 0x06004500)

This algorithm can only be used with the psa_sign_message() and psa_verify_message() functions.

This is the pure ML-DSA digital signature algorithm, defined by FIPS Publication 204: Module-Lattice-Based
Digital Signature Standard [FIPS204], without hedging. ML-DSA requires an ML-DSA key, which determines
the ML-DSA parameter set for the operation.

This algorithm is deterministic: each invocation with the same inputs returns an identical signature.

A\ Warning

It is recommended to use the hedged PsAa_ALG_ML_DSA algorithm instead, when supported by the
implementation. See the notes on deterministic signatures.

When PSA_ALG_DETERMINISTIC_ML_DSA is used as a permitted algorithm in a key policy, this permits:

e PSA_ALG_DETERMINISTIC_ML_DSA as the algorithm in a call to psa_sign_message().

e PSA_ALG_ML_DSA Or PSA_ALG_DETERMINISTIC_ML_DSA as the algorithm in a call to psa_verify_message().

Note:

To sign or verify the pre-computed hash of a message using ML-DSA, the HashML-DSA algorithms
(PSA_ALG_HASH-ML_DSA() and PSA_ALG_DETERMINISTIC_HASH_ML_DSA()) can also be used with
psa_sign_hash() and psa_verify_hash().

The signature produced by HashML-DSA is distinct from that produced by ML-DSA.

Compatible key types
PSA_KEY_TYPE_ML_DSA_KEY_PAIR

PSA_KEY_TYPE_ML_DSA_PUBLIC_KEY (signature verification only)

PSA_ALG_HASH_ML_DSA (macro)
Module lattice-based digital signature algorithm with pre-hashing (HashML-DSA).

Added in version 1.3.

AES 0119 Copyright © 2024 Arm Limited and/or its affiliates Page 23
1.3 PQC Extension Beta (Issue 0) [DRAFT] Non-confidential

#define PSA_ALG_HASH_ML_DSA(hash_alg) /* specification-defined value */

Parameters
hash_alg A hash algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_HASH(hash_alg) is true. This includes PSA_ALG_ANY_HASH
when specifying the algorithm in a key policy.
Returns

The corresponding HashML-DSA signature algorithm, using hash_alg to pre-hash the message.

Unspecified if hash_alg is not a supported hash algorithm.
Description
This algorithm can be used with both the message and hash signature functions.

This is the pre-hashed ML-DSA digital signature algorithm, defined by FIPS Publication 204:
Module-Lattice-Based Digital Signature Standard [FIPS204], using hedging. ML-DSA requires an ML-DSA
key, which determines the ML-DSA parameter set for the operation.

Note:

For the pre-hashing, [FIPS204] §5.4 recommends the use of an approved hash function with an
equivalent, or better, security strength than the chosen ML-DSA parameter set.

This algorithm is randomized: each invocation returns a different, equally valid signature. See the notes on
hedged signatures.

When PSA_ALG_HASH_ML_DSA() is used as a permitted algorithm in a key policy, this permits:

® PSA_ALG_HASH_ML_DSA() as the algorithm in a call to psa_sign_message() and psa_sign_hash().

e PSA_ALG_HASH_ML_DSA() Or PSA_ALG-DETERMINISTIC_HASH_ML_DSA() as the algorithm in a call to
psa_verify_message() and psa_verify_hash().

Note:
The signature produced by HashML-DSA is distinct from that produced by ML-DSA.

Usage
This is a hash-and-sign algorithm. To calculate a signature, use one of the following approaches:

e Call psa_sign_message() with the message.

e Calculate the hash of the message with psa_hash_compute(), or with a multi-part hash operation,
using the hash_alg hash algorithm. Note that hash_alg can be extracted from the signature algorithm
using PSA_ALG_GET_HASH(sig_alg). Then sign the calculated hash with psa_sign_hash().

Verifying a signature is similar, using psa_verify_message() or psa_verify_hash() instead of the signature
function.

AES 0119 Copyright © 2024 Arm Limited and/or its affiliates Page 24
1.3 PQC Extension Beta (Issue 0) [DRAFT] Non-confidential

Compatible key types
PSA_KEY_TYPE_ML_DSA_KEY_PAIR

PSA_KEY_TYPE_ML_DSA_PUBLIC_KEY (signature verification only)

PSA_ALG_DETERMINISTIC_HASH_ML_DSA (macro)
Deterministic module lattice-based digital signature algorithm with pre-hashing (HashML-DSA).

Added in version 1.3.

#define PSA_ALG_DETERMINISTIC_HASH_ML_DSA(hash_alg) \
/* specification-defined value */

Parameters
hash_alg A hash algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_HASH(hash_alg) is true. This includes PSA_ALG_ANY_HASH
when specifying the algorithm in a key policy.
Returns

The corresponding deterministic HashML-DSA signature algorithm, using hash_alg to pre-hash the
message.

Unspecified if hash_alg is not a supported hash algorithm.

Description
This algorithm can be used with both the message and hash signature functions.

This is the pre-hashed ML-DSA digital signature algorithm, defined by FIPS Publication 204:
Module-Lattice-Based Digital Signature Standard [FIPS204], without hedging. ML-DSA requires an ML-DSA
key, which determines the ML-DSA parameter set for the operation.

Note:

For the pre-hashing, [FIPS204] §5.4 recommends the use of an approved hash function with an
equivalent, or better, security strength than the chosen ML-DSA parameter set.

This algorithm is deterministic: each invocation with the same inputs returns an identical signature.

Warning

It is recommended to use the hedged PsA_ALG_HASH_ML_DSA() algorithm instead, when supported by the
implementation. See the notes on deterministic signatures.

When PSA_ALG_DETERMINISTIC_HASH_ML_DSA() is used as a permitted algorithm in a key policy, this permits:

® PSA_ALG_DETERMINISTIC_HASH_ML_DSA() as the algorithm in a call to psa_sign_message() and
psa_sign_hash().

® PSA_ALG_HASH_ML_DSA() Or PSA_ALG_DETERMINISTIC_HASH_ML_DSA() as the algorithm in a call to
psa_verify_message() and psa_verify_hash().

Note:

AES 0119 Copyright © 2024 Arm Limited and/or its affiliates Page 25
1.3 PQC Extension Beta (Issue 0) [DRAFT] Non-confidential

The signature produced by HashML-DSA is distinct from that produced by ML-DSA.

Usage
See PSA_ALG_HASH_ML_DSA() for example usage.

Compatible key types
PSA_KEY_TYPE_ML_DSA_KEY_PAIR

PSA_KEY_TYPE_ML_DSA_PUBLIC_KEY (signature verification only)

PSA_ALG_IS_ML_DSA (macro)
Whether the specified algorithm is ML-DSA, without pre-hashing.

Added in version 1.3.
#define PSA_ALG_IS_ML_DSA(alg) /* specification-defined value */

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1 if alg is a pure ML-DSA algorithm, o otherwise.

This macro can return either o or 1 if alg is not a supported algorithm identifier.
Description

Note:

Use PSA_ALG_IS_HASH_ML_DSA() to determine if an algorithm identifier is a HashML-DSA algorithm.

PSA_ALG_IS_HASH_ML_DSA (macro)
Whether the specified algorithm is HashML-DSA.

Added in version 1.3.
#define PSA_ALG_IS_HASH_ML_DSA(alg) /* specification-defined value =*/

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1 if alg is a HashML-DSA algorithm, @ otherwise.

This macro can return either o or 1 if alg is not a supported algorithm identifier.
Description
Note:

Use PSA_ALG_IS_ML_DSA() to determine if an algorithm identifier is a pre-hashed ML-DSA algorithm.

AES 0119 Copyright © 2024 Arm Limited and/or its affiliates Page 26
1.3 PQC Extension Beta (Issue 0) [DRAFT] Non-confidential

PSA_ALG_IS_DETERMINISTIC_HASH_ML_DSA (macro)
Whether the specified algorithm is deterministic HashML-DSA.

Added in version 1.3.

#define PSA_ALG_IS_DETERMINISTIC_HASH_ML_DSA(alg) \
/* specification-defined value */

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1 if alg is a deterministic HashML-DSA algorithm, ¢ otherwise.

This macro can return either o or 1 if alg is not a supported algorithm identifier.

Description
See also PSA_ALG_IS_HASH_ML_DSA() and PSA_ALG_IS_HEDGED_HASHZML_DSA().

PSA_ALG_IS_HEDGED_HASH_ML_DSA (macro)
Whether the specified algorithm is hedged HashML-DSA.

Added in version 1.3.
#define PSA_ALG_IS_HEDGED_HASH_ML_DSA(alg) /* specification-defined value */

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1 if alg is a hedged HashML-DSA algorithm, @ otherwise.

This macro can return either @ or 1 if alg is not a supported algorithm identifier.

Description
See also PSA_ALG_IS_HASH_ML_DSA() and PSA_ALG_IS_DETERMINISTIC_HASH_ML_DSA().

2.4 Stateless Hash-based signatures

2.4.1 Stateless Hash-based signature keys

The Crypto API supports Stateless Hash-based digital signatures (SLH-DSA), as defined in FIPS Publication
205: Stateless Hash-Based Digital Signature Standard [FIPS205].

psa_slh_dsa_family_t (typedef)
The type of identifiers of a Stateless hash-based DSA parameter set.
Added in version 1.3.

typedef uint8_t psa_slh_dsa_family_t;

The parameter-set identifier is required to create an SLH-DSA key using the
PSA_KEY_TYPE_SLH_DSA_KEY_PAIR() Or PSA_KEY_TYPE_SLH_DSA_PUBLIC_KEY() macros.

The specific SLH-DSA parameter set within a family is identified by the key_bits attribute of the key.
The range of SLH-DSA family identifier values is divided as follows:

AES 0119 Copyright © 2024 Arm Limited and/or its affiliates Page 27
1.3 PQC Extension Beta (Issue 0) [DRAFT] Non-confidential

0x00 Reserved. Not allocated to an SLH-DSA parameter-set family.

ox01 - ox7f SLH-DSA parameter-set family identifiers defined by this standard. Unallocated values in
this range are reserved for future use.

ox80 - oxff Invalid. Values in this range must not be used.

The least significant bit of an SLH-DSA family identifier is a parity bit for the whole key type. See SLH-DSA
key encoding on page 48 for details of the encoding of asymmetric key types.

PSA_KEY_TYPE_SLH_DSA_KEY_PAIR (macro)
SLH-DSA key pair: both the private key and public key.

Added in version 1.3.

#define PSA_KEY_TYPE_SLH_DSA_KEY_PAIR(set) /* specification-defined value */

Parameters
set A value of type psa_slh dsa_family_t that identifies the SLH-DSA
parameter-set family to be used.
Description

The key attribute size of of an SLH-DSA key pair is the bit-size of each component in the SLH-DSA keys
defined in [FIPS205]. That is, for a parameter set with security parameter n, the bit-size in the key
attributes is 8n. See the documentation of each SLH-DSA parameter-set family for details.

Compatible algorithms

PSA_ALG_SLH_DSA

PSA_ALG_HASH_SLH_DSA

PSA_ALG_DETERMINISTIC_SLH_DSA

PSA_ALG_DETERMINISTIC.HASH_SLH_DSA

Key format

Warning

The key format may change in a final version of this API. The standardization of exchange formats for
SHL-DSA public and private keys is in progress, but final documents have not been published. See
Internet X.509 Public Key Infrastructure: Algorithm Identifiers for SLH-DSA [LAMPS-SLHDSA.

The current proposed format is based on the expected outcome of that process.

A SLH-DSA key pair is defined in [FIPS205] §9.1 as the four n-byte values, SK.seed, SK.prf, PK .seed,
and PK.root, where n is the security parameter.

The data format for import and export of the key pair is the concatenation of the four octet strings:
SK.seed || SK.prf || PK.seed || PK.root

See PSA_KEY_TYPE_SLH_DSA_PUBLIC_KEY for the data format used when exporting the public key with
psa_export_public_key().

AES 0119 Copyright © 2024 Arm Limited and/or its affiliates Page 28
1.3 PQC Extension Beta (Issue 0) [DRAFT] Non-confidential

Key derivation
A call to psa_key_derivation_output_key() will draw output bytes as follows:

e 32 bytes are drawn as SK.seed.
e 32 bytes are drawn as S K .prf.
e 32 bytes are drawn as PK .seed.

The private key (SK.seed, SK.prf, PK .seed, PK.root) is generated from these values as defined by
slh_keygen_internal() in [FIPS205] §9.1.

PSA_KEY_TYPE_SLH_DSA_PUBLIC_KEY (macro)
SLH-DSA public key.

Added in version 1.3.

#define PSA_KEY_TYPE_SLH_DSA_PUBLIC_KEY(set) /* specification-defined value */

Parameters
set A value of type psa_slh_dsa_family_t that identifies the SLH-DSA
parameter-set family to be used.
Description

The key attribute size of an SLH-DSA public key is the same as the corresponding private key. See
PSA_KEY_TYPE_SLH_DSA_KEY_PAIR() and the documentation of each SLH-DSA parameter-set family for details.
Compatible algorithms

PSA_ALG_SLH_DSA

PSA_ALG_HASH_SLH_DSA

PSA_ALG_DETERMINISTIC.SLH_DSA

PSA_ALG_DETERMINISTIC_HASH_SLH_DSA

Key format

Warning

The key format may change in a final version of this API. The standardization of exchange formats for
SHL-DSA public and private keys is in progress, but final documents have not been published. See
Internet X.509 Public Key Infrastructure: Algorithm Identifiers for SLH-DSA [LAMPS-SLHDSA.

The current proposed format is based on the expected outcome of that process.

A SLH-DSA public key is defined in [FIPS205] §9.1 as two n-byte values, PK .seed and PK .root, where n
is the security parameter.

The data format for export of the public key is the concatenation of the two octet strings:

PK seed || PK.root

AES 0119 Copyright © 2024 Arm Limited and/or its affiliates Page 29
1.3 PQC Extension Beta (Issue 0) [DRAFT] Non-confidential

PSA_SLH_DSA_FAMILY_SHA2_S (macro)
SLH-DSA family for the SLH-DSA-SHA2-NNNs parameter sets.

Added in version 1.3.

#define PSA_SLH_DSA_FAMILY_SHA2_S ((psa_slh_dsa_family_t) 0x02)

This family comprises the following parameter sets:

o SLH-DSA-SHA2-128s : key_bits = 128
o SLH-DSA-SHA2-192s : key_bits = 192
o SLH-DSA-SHA2-256s : key_bits = 256

They are defined in [FIPS205].

PSA_SLH_DSA_FAMILY_SHA2_F (macro)
SLH-DSA family for the SLH-DSA-SHA2-NNNf parameter sets.

Added in version 1.3.

#define PSA_SLH_DSA_FAMILY_SHA2_F ((psa_slh_dsa_family_t) 0x04)

This family comprises the following parameter sets:

o SLH-DSA-SHA2-128f : key_bits = 128
e SLH-DSA-SHA2-192f : key_bits =192
o SLH-DSA-SHA2-256f : key_bits = 256

They are defined in [FIPS205].

PSA_SLH_DSA_FAMILY_SHAKE_S (macro)
SLH-DSA family for the SLH-DSA-SHAKE-NNNs parameter sets.

Added in version 1.3.

#define PSA_SLH_DSA_FAMILY_SHAKE_S ((psa_slh_dsa_family_t) 0x@b)

This family comprises the following parameter sets:

e SLH-DSA-SHAKE-128s : key_bits = 128
e SLH-DSA-SHAKE-192s : key_bits = 192
e SLH-DSA-SHAKE-256s : key_bits = 256

They are defined in [FIPS205].

PSA_SLH_DSA_FAMILY_SHAKE_F (macro)
SLH-DSA family for the SLH-DSA-SHAKE-NNNf parameter sets.

Added in version 1.3.

AES 0119 Copyright © 2024 Arm Limited and/or its affiliates
1.3 PQC Extension Beta (Issue 0) [DRAFT] Non-confidential

Page 30

#define PSA_SLH_DSA_FAMILY_SHAKE_F ((psa_slh_dsa_family_t) ox@d)

This family comprises the following parameter sets:

e SLH-DSA-SHAKE-128f : key_bits = 128
e SLH-DSA-SHAKE-192f : key_bits
e SLH-DSA-SHAKE-256f : key_bits

192

256

They are defined in [FIPS205].
PSA_KEY_TYPE_IS_SLH_DSA (macro)

Whether a key type is an SLH-DSA key, either a key pair or a public key.
Added in version 1.3.

#define PSA_KEY_TYPE_IS_SLH_DSA(type) /* specification-defined value */

Parameters
type A key type: a value of type psa_key_type_t.

PSA_KEY_TYPE_IS_SLH_DSA_KEY_PAIR (macro)
Whether a key type is an SLH-DSA key pair.
Added in version 1.3.

#define PSA_KEY_TYPE_IS_SLH_DSA_KEY_PAIR(type) \
/* specification-defined value */

Parameters
type A key type: avalue of type psa_key_type_t.

PSA_KEY_TYPE_IS_SLH_DSA_PUBLIC_KEY (macro)
Whether a key type is an SLH-DSA public key.

Added in version 1.3.

#define PSA_KEY_TYPE_IS_SLH_DSA_PUBLIC_KEY(type) \
/* specification-defined value */

Parameters
type A key type: a value of type psa_key_type_t.

PSA_KEY_TYPE_SLH_DSA_GET_FAMILY (macro)
Extract the parameter-set family from an SLH-DSA key type.

Added in version 1.3.

#define PSA_KEY_TYPE_SLH_DSA_GET_FAMILY(type) /* specification-defined value */

AES 0119 Copyright © 2024 Arm Limited and/or its affiliates Page 31
1.3 PQC Extension Beta (Issue 0) [DRAFT] Non-confidential

Parameters
type An SLH-DSA key type: a value of type psa_key_type_t such that
PSA_KEY_TYPE_IS_SLH_DSA(type) is true.

Returns: psa_dh_family_t
The SLH-DSA parameter-set family id, if type is a supported SLH-DSA key. Unspecified if type is not a
supported SLH-DSA key.

2.4.2 Stateless Hash-based signature algorithms

The SLH-DSA signature and verification scheme is defined in FIPS Publication 205: Stateless Hash-Based
Digital Signature Standard [FIPS205]. SLH-DSA has twelve parameter sets which provide differing security
strengths, trade-off between signature size and computation cost, and selection between SHA2 and
SHAKE-based hashing.

SLH-DSA keys are fairly compact, 32, 48, or 64 bytes for the public key, and double that for the key pair.
SLH-DSA signatures are much larger than those for RSA and Elliptic curve schemes, between 7.8kB and
49kB depending on the selected parameter set. An SLH-DSA signature has the structure described in
[FIPS205] §9.2, Figure 17.

See [FIPS205] §11 for details on the parameter sets, and the public key and generated signature sizes.

The generation of an SLH-DSA key depends on the full parameter specification. The encoding of each
parameter set into the key attributes is described in Stateless Hash-based signature keys on page 27.

[FIPS205] defines pure and pre-hashed variants of the signature scheme, which can either be hedged
(randomized) or deterministic. Four algorithms are defined to support these variants: PSA_ALG_SLH_DSA,
PSA_ALG_DETERMINISTIC_SLH_DSA, PSA_ALG_HASH_SLH_DSA(),-and PSA_ALG_DETERMINISTIC_HASH_SLH_DSA().
Hedged and deterministic signatures

Hedging incorporates fresh randomness in the signature computation, resulting in distinct signatures on
every signing operation when given identical inputs. Deterministic signatures do not require additional
random data, and result in an identical signature for the same inputs.

Signature verification does not distinguish between a hedged and a deterministic signature. Either hedged
or deterministic algorithms can be used when verifying a signature.

When computing a signature, the key’s permitted-algorithm policy must match the requested algorithm,
treating hedged and deterministic versions as distinct. When verifying a signature, the hedged and
deterministic versions of each algorithm are considered equivalent when checking the key’s
permitted-algorithm policy.

Note:

The hedged version provides message secrecy and some protection against side-channels. [FIPS205]
recommends that users should use the hedged version if either of these issues are a concern. The
deterministic variant should only be used if the implementation does not include any source of
randomness.

Implementation note

[FIPS205] recommends that implementations use an approved random number generator to provide
the random value in the hedged version. However, it notes that use of the hedged variant with a

AES 0119 Copyright © 2024 Arm Limited and/or its affiliates Page 32
1.3 PQC Extension Beta (Issue 0) [DRAFT] Non-confidential

weak RNG is generally preferable to the deterministic variant.

Rationale

The use of fresh randomness, or not, when computing a signature seems like an implementation
decision based on the capability of the system, and its vulnerability to specific threats, following the
recommendations in [FIPS205].

However, the Crypto API gives distinct algorithm identifiers for the hedged and deterministic variants
for the following reasons:

e [FIPS205] §9.1 recommends that SLH-DSA signing keys are only used to compute either
deterministic, or hedged, signatures, but not both. Supporting this recommendation requires
separate algorithm identifiers, and requiring an exact policy match for signature computation.

e Enable an application use case to require a specific variant.

Pure and pre-hashed algorithms
The pre-hashed signature computation HashSLH-DSA generates distinct signatures to a pure signature
SLH-DSA, with the same key and message hashing algorithm.

An SLH-DSA signature can only be verified with an SLH-DSA algorithm. A HashSLH-DSA signature can
only be verified with a HashSLH-DSA algorithm.

Contexts

Contexts are not supported in the current version of this specification because there is no suitable
signature interface that can take the context as a parameter. A empty context string is used when
computing or verifying SLH-DSA signatures.

A future version of this specification may add suitable functions and extend this algorithm to support
contexts.

PSA_ALG_SLH_DSA (macro)
Stateless hash-based digital signature algorithm without pre-hashing (SLH-DSA).

Added in version 1.3.

#tdefine PSA_ALG_SLH_DSA ((psa_algorithm_t) 0x06004000)

This algorithm can only be used with the psa_sign_message() and psa_verify_message() functions.

This is the pure SLH-DSA digital signature algorithm, defined by FIPS Publication 205: Stateless Hash-Based
Digital Signature Standard [FIPS205], using hedging. SLH-DSA requires an SLH-DSA key, which determines
the SLH-DSA parameter set for the operation.

This algorithm is randomized: each invocation returns a different, equally valid signature. See the notes on
hedged signatures.

When PSA_ALG_SLH_DSA is used as a permitted algorithm in a key policy, this permits:

e PSA_ALG_SLH_DSA as the algorithm in a call to psa_sign_message().

® PSA_ALG_SLH_DSA Or PSA_ALG_DETERMINISTIC_SLH_DSA as the algorithm in a call to psa_verify_message().

AES 0119 Copyright © 2024 Arm Limited and/or its affiliates Page 33
1.3 PQC Extension Beta (Issue 0) [DRAFT] Non-confidential

Note:

To sign or verify the pre-computed hash of a message using SLH-DSA, the HashSLH-DSA algorithms
(PSA_ALG_HASH_SLH_DSA() and PSA_ALG_DETERMINISTIC_HASH_SLH_DSA()) can also be used with
psa_sign_hash() and psa_verify_hash().

The signature produced by HashSLH-DSA is distinct from that produced by SLH-DSA.

Compatible key types
PSA_KEY_TYPE_SLH_DSA_KEY_PAIR()

PSA_KEY_TYPE_SLH_DSA_PUBLIC_KEY() (signature verification only)

PSA_ALG_DETERMINISTIC_SLH_DSA (macro)
Deterministic stateless hash-based digital signature algorithm without pre-hashing (SLH-DSA).

Added in version 1.3.

#define PSA_ALG_DETERMINISTIC_SLH_DSA ((psa_algorithm_t) 0x06004100)

This algorithm can only be used with the psa_sign_message() and psa_verify_message() functions.

This is the pure SLH-DSA digital signature algorithm, defined by [FIPS205], without hedging. SLH-DSA
requires an SLH-DSA key, which determines the SLH-DSA parameter set for the operation.

This algorithm is deterministic: each invocation with the same inputs returns an identical signature.

A\ Warning

It is recommended to use the hedged pPsa_ALG_SLH_DSA algorithm instead, when supported by the
implementation. See the notes on deterministic signatures.

When PSA_ALG_DETERMINISTIC_SLH.DSA is used as a permitted algorithm in a key policy, this permits:

e PSA_ALG_DETERMINISTIC_SLH_DSA as the algorithm in a call to psa_sign_message().

® PSA_ALG_SLH_DSA Or PSA_ALG_DETERMINISTIC_SLH_DSA as the algorithm in a call to psa_verify_message().

Note:

To sign or verify the pre-computed hash of a message using SLH-DSA, the HashSLH-DSA algorithms
(PSA_ALG_HASH_SLH_DSA() and PSA_ALG_DETERMINISTIC_HASH_SLH_DSA()) can also be used with
psa_sign_hash() and psa_verify_hash().

The signature produced by HashSLH-DSA is distinct from that produced by SLH-DSA.

Compatible key types
PSA_KEY_TYPE_SLH_DSA_KEY_PAIR()

PSA_KEY_TYPE_SLH_DSA_PUBLIC_KEY() (signature verification only)

AES 0119 Copyright © 2024 Arm Limited and/or its affiliates Page 34
1.3 PQC Extension Beta (Issue 0) [DRAFT] Non-confidential

PSA_ALG_HASH_SLH_DSA (macro)
Stateless hash-based digital signature algorithm with pre-hashing (HashSLH-DSA).

Added in version 1.3.

#define PSA_ALG_HASH_SLH_DSA(hash_alg) /* specification-defined value */

Parameters
hash_alg A hash algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_HASH(hash_alg) is true. This includes PSA_ALG_ANY_HASH
when specifying the algorithm in a key policy.
Returns

The corresponding HashSLH-DSA signature algorithm, using hash_alg to pre-hash the message.

Unspecified if hash_alg is not a supported hash algorithm.

Description
This algorithm can be used with both the message and hash signature functions.

This is the pre-hashed SLH-DSA digital signature algorithm, defined by [FIPS205], using hedging. SLH-DSA
requires an SLH-DSA key, which determines the SLH-DSA parameter set for the operation.

Note:

For the pre-hashing, [FIPS205] §10.2 recommends the use of an approved hash function with an
equivalent, or better, security strength than the chosen SLH-DSA parameter set.

This algorithm is randomized: each invocation returns a different, equally valid signature. See the notes on
hedged signatures.

When PSA_ALG_HASH_SLH_DSA() is used as a permitted algorithm in a key policy, this permits:

® PSA_ALG_HASH_SLH.DSA() as the algorithm in a call to psa_sign_message() and psa_sign_hash().

e PSA_ALG_HASH_SLH_DSA() Or PSA_ALG_DETERMINISTIC_HASH_SLH_DSA() as the algorithm in a call to
psa_verify_message() and psa_verify_hash().

Note:
The signature produced by HashSLH-DSA is distinct from that produced by SLH-DSA.

Usage
This is a hash-and-sign algorithm. To calculate a signature, use one of the following approaches:

e Call psa_sign_message() with the message.

e Calculate the hash of the message with psa_hash_compute(), or with a multi-part hash operation,
using the hash_alg hash algorithm. Note that hash_alg can be extracted from the signature algorithm
using PSA_ALG_GET_HASH(sig_alg). Then sign the calculated hash with psa_sign_hash().

Verifying a signature is similar, using psa_verify_message() or psa_verify_hash() instead of the signature
function.

AES 0119 Copyright © 2024 Arm Limited and/or its affiliates Page 35
1.3 PQC Extension Beta (Issue 0) [DRAFT] Non-confidential

Compatible key types
PSA_KEY_TYPE_SLH_DSA_KEY_PAIR()

PSA_KEY_TYPE_SLH_DSA_PUBLIC_KEY() (signature verification only)

PSA_ALG_DETERMINISTIC_HASH_SLH_DSA (macro)
Deterministic stateless hash-based digital signature algorithm with pre-hashing (HashSLH-DSA).

Added in version 1.3.

#define PSA_ALG_DETERMINISTIC_HASH_SLH_DSA(hash_alg) \
/* specification-defined value */

Parameters
hash_alg A hash algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_HASH(hash_alg) is true. This includes PSA_ALG_ANY_HASH
when specifying the algorithm in a key policy.
Returns

The corresponding deterministic HashSLH-DSA signature algorithm, using hash_alg to pre-hash the
message.

Unspecified if hash_alg is not a supported hash algorithm.

Description
This algorithm can be used with both the message and hash signature functions.

This is the pre-hashed SLH-DSA digital signature algorithm, defined by [FIPS205], without hedging.
SLH-DSA requires an SLH-DSA key, which determines the SLH-DSA parameter set for the operation.

Note:

For the pre-hashing, [FIPS205] 8§10.2 recommends the use of an approved hash function with an
equivalent, or better, security strength than the chosen SLH-DSA parameter set.

This algorithm is deterministic: each invocation with the same inputs returns an identical signature.

A\ Warning

It is recommended to use the hedged PsA_ALG_HASH_SLH_DSA() algorithm instead, when supported by
the implementation. See the notes on deterministic signatures.

When PSA_ALG_DETERMINISTIC_HASH_SLH_DSA() is used as a permitted algorithm in a key policy, this permits:

® PSA_ALG_DETERMINISTIC_HASH_SLH_DSA() as the algorithm in a call to psa_sign_message() and
psa_sign_hash().

@ PSA_ALG_HASH_SLH_DSA() Or PSA_ALG_DETERMINISTIC_HASH_SLH_DSA() as the algorithm in a call to
psa_verify_message() and psa_verify_hash().

Note:

AES 0119 Copyright © 2024 Arm Limited and/or its affiliates Page 36
1.3 PQC Extension Beta (Issue 0) [DRAFT] Non-confidential

The signature produced by HashSLH-DSA is distinct from that produced by SLH-DSA.

Usage
See PSA_ALG_HASH_SLH_DSA() for example usage.

Compatible key types
PSA_KEY_TYPE_SLH_DSA_KEY_PAIR()

PSA_KEY_TYPE_SLH_DSA_PUBLIC_KEY() (signature verification only)

PSA_ALG_IS_SLH_DSA (macro)
Whether the specified algorithm is SLH-DSA.

Added in version 1.3.
#define PSA_ALG_IS_SLH_DSA(alg) /* specification-defined value x/

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1 if alg is an SLH-DSA algorithm, @ otherwise.

This macro can return either o or 1 if alg is not a supported algorithm identifier.
PSA_ALG_IS_HASH_SLH_DSA (macro)

Whether the specified algorithm is HashSLH-DSA.

Added in version 1.3.

#tdefine PSA_ALG_IS_HASH_SLH_DSA(alg) /* specification-defined value */

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1 if alg is a HashSLH-DSA algorithm, @ otherwise.

This macro can return either o or 1 if alg is not a supported algorithm identifier.
PSA_ALG_IS_DETERMINISTIC_HASH_SLH_DSA (macro)

Whether the specified algorithm is deterministic HashSLH-DSA.

Added in version 1.3.

#define PSA_ALG_IS_DETERMINISTIC_HASH_SLH_DSA(alg) \
/* specification-defined value */

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.
AES 0119 Copyright © 2024 Arm Limited and/or its affiliates Page 37

1.3 PQC Extension Beta (Issue 0) [DRAFT] Non-confidential

Returns
1 if alg is a deterministic HashSLH-DSA algorithm, @ otherwise.
This macro can return either o or 1 if alg is not a supported algorithm identifier.

Description
See also PSA_ALG_IS_HASH_SLH_DSA() and PSA_ALG_IS_HEDGED_HASH_SLH_DSA().

PSA_ALG_IS_HEDGED_HASH_SLH_DSA (macro)
Whether the specified algorithm is hedged HashSLH-DSA.

Added in version 1.3.
#define PSA_ALG_IS_HEDGED_HASH_SLH_DSA(alg) /* specification-defined value */

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1 if alg is a hedged HashSLH-DSA algorithm, @ otherwise.

This macro can return either o or 1 if alg is not a supported algorithm identifier.

Description
See also PSA_ALG_IS_HASH_SLH_DSA() and PSA_ALG2IS_DETERMINISTIC_HASH_SLH_DSA().

2.5 Leighton-Micali Signatures

The Crypto API supports Leighton-Micali Signatures (LMS), and the multi-level Hierarchical Signature
Scheme (HSS). These schemes are defined in Leighton-Micali Hash-Based Signatures [RFC8554].

For the Crypto API to support signature verification, it is only necessary to define a public keys for these
schemes, and the default public key formats for import and export.

Rationale

At present, it is not expected that the Crypto API will be used to generate LMS or HSS private keys, or
to carry out signing operations. However, there is value in supporting verification of LMS and HSS
signatures. Therefore, the Crypto APl does not support LMS or HSS key pairs, or the associated signing
operations.

Note:

A full set of NIST-approved parameter sets for LMS and HSS is defined in NIST Special Publication
800-208: Recommendation for Stateful Hash-Based Signature Schemes [SP800-208] §4, with the
additional IANA identifiers defined in Additional Parameter sets for HSS/LMS Hash-Based Signatures
[CFRG-LMS].

AES 0119 Copyright © 2024 Arm Limited and/or its affiliates Page 38
1.3 PQC Extension Beta (Issue 0) [DRAFT] Non-confidential

2.5.1 Leighton-Micali Signature keys
PSA_KEY_TYPE_LMS_PUBLIC_KEY (macro)
Leighton-Micali Signatures (LMS) public key.

Added in version 1.3.

#define PSA_KEY_TYPE_LMS_PUBLIC_KEY ((psa_key_type_t)0x4007)

The parameterization of an LMS key is fully encoded in the key data.

The key attribute size of an LMS public key is output length, in bits, of the hash function identified by the
LMS parameter set.

e SHA-256/192, SHAKE256/192 : key_bits = 192
o SHA-256, SHAKE256/256 : key_bits = 256

Compatible algorithms
® PSA_ALG_LMS

Key format
The data format for import or export of the public key is the encoded 1ms_public_key structure, defined in
[RFC8554] §3.

PSA_KEY_TYPE_HSS_PUBLIC_KEY (macro)

Hierarchical Signature Scheme (HSS) public key.
Added in version 1.3.

#define PSA_KEY_TYPE_HSS_PUBLIC_KEY ((psa_key_type_t)0x4008)

The parameterization of an HSS key is fully encoded in the key data.

The key attribute size of an HSS public key is output length, in bits, of the hash function identified by the
HSS parameter set.

e SHA-256/192, SHAKE256/192 : key_bits = 192
o SHA-256, SHAKE256/256 : key_bits = 256

Compatible algorithms
® PSA_ALG_HSS

Key format

Warning

The key format may change in a final version of this API. The standardization of exchange formats for
HSS public keys is in progress, but final documents have not been published. See Use of the HSS and
XMSS Hash-Based Signature Algorithms in Internet X.509 Public Key Infrastructure [LAMPS-SHBS].

The current proposed format is based on the expected outcome of that process.

The data format for import or export of the public key is the encoded hss_public_key structure, defined in
[RFC8554] §3.

AES 0119 Copyright © 2024 Arm Limited and/or its affiliates Page 39
1.3 PQC Extension Beta (Issue 0) [DRAFT] Non-confidential

https://datatracker.ietf.org/doc/html/rfc8554.html#section-3
https://datatracker.ietf.org/doc/html/rfc8554.html#section-3

2.5.2 Leighton-Micali Signature algorithms
PSA_ALG_LMS (macro)
Leighton-Micali Signatures (LMS) signature algorithm.

Added in version 1.3.

#define PSA_ALG_LMS ((psa_algorithm_t) 0x06004800)

This message-signature algorithm can only be used with the psa_verify_message() function.

This is the LMS stateful hash-based signature algorithm, defined by Leighton-Micali Hash-Based Signatures
[RFC8554]. LMS requires an LMS key. The key and the signature must both encode the same LMS
parameter set, which is used for the verification procedure.

Note:

LMS signature calculation is not supported.

Compatible key types
PSA_KEY_TYPE_LMS_PUBLIC_KEY (signature verification only)

PSA_ALG_HSS (macro)
Hierarchical Signature Scheme (HSS) signature algorithm.

Added in version 1.3.

#define PSA_ALG_HSS ((psa_algorithm_t) 0x06004900)

This message-signature algorithm can only be used with the psa_verify_message() function.

This is the HSS stateful hash-based signature algorithm, defined by Leighton-Micali Hash-Based Signatures
[RFC8554]. HSS requires an HSS key. The key and the signature must both encode the same HSS
parameter set, which is used for the verification procedure.

Note:

HSS signature calculation is not supported.

Compatible key types
PSA_KEY_TYPE_HSS_PUBLIC_KEY (signature verification only)

2.6 eXtended Merkle Signature Scheme

The Crypto API supports eXtended Merkle Signature Scheme (XMSS), and the multi-tree variant XMSSMT.
These schemes are defined in XMSS: eXtended Merkle Signature Scheme [RFC8391].

For the Crypto API to support signature verification, it is only necessary to define public keys for these
schemes, and the default public key formats for import and export.

AES 0119 Copyright © 2024 Arm Limited and/or its affiliates Page 40
1.3 PQC Extension Beta (Issue 0) [DRAFT] Non-confidential

Rationale

At present, it is not expected that the Crypto API will be used to generate XMSS or XMSSMT private
keys, or to carry out signing operations. However, there is value in supporting verification of XMSS and
XMSSMT signatures. Therefore, the Crypto API does not support XMSS or XMSSMT key pairs, or the
associated signing operations.

Note:

A full set of NIST-approved parameter sets for XMSS or XMSSMT is defined in NIST Special
Publication 800-208: Recommendation for Stateful Hash-Based Signature Schemes [SP800-208] §5.

2.6.1 XMSS and XMSSMT keys
PSA_KEY_TYPE_XMSS_PUBLIC_KEY (macro)
eXtended Merkle Signature Scheme (XMSS) public key.

Added in version 1.3.

#define PSA_KEY_TYPE_XMSS_PUBLIC_KEY ((psa_key_type_t)0x400B)

The parameterization of an XMSS key is fully encoded in the key data.

The key attribute size of an XMSS public key is output length, in bits, of the hash function identified by the
XMSS parameter set.

e SHA-256/192, SHAKE256/192 : key_bits = 192
o SHA-256, SHAKE256/256 : key_bits = 256

Note:

For a multi-tree XMSS key, see PSA_KEY_TYPE_XMSS_MT_PUBLIC_KEY.
Compatible algorithms

® PSA_ALG_XMSS

Key format

Warning

The key format may change in a final version of this API. The standardization of exchange formats for
XMSS public keys is in progress, but final documents have not been published. See Use of the HSS and
XMSS Hash-Based Signature Algorithms in Internet X.509 Public Key Infrastructure [LAMPS-SHBS].

The current proposed format is based on the expected outcome of that process.

The data format for import or export of the public key is the encoded xmss_public_key structure, defined in
[RFC8391] Appendix B.3.

AES 0119 Copyright © 2024 Arm Limited and/or its affiliates Page 41
1.3 PQC Extension Beta (Issue 0) [DRAFT] Non-confidential

https://datatracker.ietf.org/doc/html/rfc8391.html#appendix-B.3

PSA_KEY_TYPE_XMSS_MT_PUBLIC_KEY (macro)
Multi-tree eXtended Merkle Signature Scheme (XMSSMT) public key.

Added in version 1.3.

#define PSA_KEY_TYPE_XMSS_MT_PUBLIC_KEY ((psa_key_type_t)@x400D)

The parameterization of an XMSSMT key is fully encoded in the key data.

The key attribute size of an XMSSMT public key is output length, in bits, of the hash function identified by
the XMSSMT parameter set.

e SHA-256/192, SHAKE256/192 : key_bits = 192
o SHA-256, SHAKE256/256 : key_bits = 256

Compatible algorithms
® PSA_ALG_XMSS_MT

Key format

Warning

The key format may change in a final version of this API. The standardization of exchange formats for
XMSSMT public keys is in progress, but final documents have not been published. See Use of the HSS
and XMSS Hash-Based Signature Algorithms in Internet X.509 Public Key Infrastructure [LAMPS-SHBS].

The current proposed format is based on the expected outcome of that process.

The data format for import or export of the public key is the encoded xmssmt_public_key structure, defined
in [RFC8391] Appendix C.3.

2.6.2 XMSS and XMSSMT algorithms
PSA_ALG_XMSS (macro)
eXtended Merkle Signature Scheme (XMSS) signature algorithm.

Added in version 1.3.

#define PSA_ALG_XMSS ((psa_algorithm_t) 0x06004A00)

This message-signature algorithm can only be used with the psa_verify_message() function.

This is the XMSS stateful hash-based signature algorithm, defined by XMSS: eXtended Merkle Signature
Scheme [RFC8391]. XMSS requires an XMSS key. The key and the signature must both encode the same
XMSS parameter set, which is used for the verification procedure.

Note:

XMSS signature calculation is not supported.

AES 0119 Copyright © 2024 Arm Limited and/or its affiliates Page 42
1.3 PQC Extension Beta (Issue 0) [DRAFT] Non-confidential

https://datatracker.ietf.org/doc/html/rfc8391.html#appendix-C.3

Compatible key types
PSA_KEY_TYPE_XMSS_PUBLIC_KEY (signature verification only)

PSA_ALG_XMSS_MT (macro)
Multi-tree eXtended Merkle Signature Scheme (XMSSMT) signature algorithm.

Added in version 1.3.

#define PSA_ALG_XMSS_MT ((psa_algorithm_t) 0x06004B00)

This message-signature algorithm can only be used with the psa_verify_message() function.

This is the XMSSMT stateful hash-based signature algorithm, defined by XMSS: eXtended Merkle Signature
Scheme [RFC8391]. XMSSMT requires an XMSSMT key. The key and the signature must both encode the
same XMSSMT parameter set, which is used for the verification procedure.

Note:

XMSSMT signature calculation is not supported.

Compatible key types
PSA_KEY_TYPE_XMSS_MT_PUBLIC_KEY (signature verification only)

See Algorithm and key type encoding on page 46 for the encoding of the key types and algorithm identifiers
added by this extension.

AES 0119 Copyright © 2024 Arm Limited and/or its affiliates Page 43
1.3 PQC Extension Beta (Issue 0) [DRAFT] Non-confidential

Appendix A: Example header file

The API elements in this specification, once finalized, will be defined in psa/crypto.h.

This is an example of the header file definition of the PAKE API elements. This can be used as a starting
point or reference for an implementation.

Note:
Not all of the API elements are fully defined. An implementation must provide the full definition.

The header will not compile without these missing definitions, and might require reordering to
satisfy C compilation rules.

A.1 psa/crypto.h

/* This file contains reference definitions for implementation of the
* PSA Certified Crypto API v1.3 PQC Extension beta

*

* These definitions must be embedded in, or included by, psa/crypto.h
*/

#define PSA_ALG_SHA_256_192 ((psa_algorithm_t)0x0200000E)
#define PSA_ALG_SHAKE128_256 ((psa_algorithm_t)0x02000016)
#define PSA_ALG_SHAKE256_192 ((psa_algorithm_t)0x02000017)
#define PSA_ALG_SHAKE256_256 ((psa_algorithm_t)0x02000018)
#define PSA_KEY_TYPE_ML_KEM_KEY_PAIR ((psa_key_type_t)0x7004)
#tdefine PSA_KEY_TYPE_ML_KEM_PUBLIC_KEY ((psa_key_type_t)0x4004)
#define PSA_KEY_TYPE_IS_ML_KEM(type) /x specification-defined value */
#define PSA_ALG_ML_KEM ((psa_algorithm_t)@x0c000200)
#define PSA_KEY_TYPE_ML_DSA_KEY_PAIR ((psa_key_type_t)0x7002)
#define PSA_KEY_TYPE_ML_DSA_PUBLIC_KEY ((psa_key_type_t)0x4002)
#define PSA_KEY_TYPE_IS_ML_DSA(type) /x specification-defined value */
#define PSA_ALG_ML_DSA ((psa_algorithm_t) 0x06004400)
#define PSA_ALG_DETERMINISTIC_ML_DSA ((psa_algorithm_t) 0x06004500)
#define PSA_ALG_HASH_ML_DSA(hash_alg) /* specification-defined value */
#define PSA_ALG_DETERMINISTIC_HASH_ML_DSA(hash_alg) \
/* specification-defined value x/
#define PSA_ALG_IS_ML_DSA(alg) /* specification-defined value */
#define PSA_ALG_IS_HASH_ML_DSA(alg) /* specification-defined value =*/
#define PSA_ALG_IS_DETERMINISTIC_HASH_ML_DSA(alg) \
/* specification-defined value x/
#define PSA_ALG_IS_HEDGED_HASH_ML_DSA(alg) /* specification-defined value */
typedef uint8_t psa_slh_dsa_family_t;
#define PSA_KEY_TYPE_SLH_DSA_KEY_PAIR(set) /* specification-defined value */
(continues on next page)

AES 0119 Copyright © 2024 Arm Limited and/or its affiliates Page 44
1.3 PQC Extension Beta (Issue 0) [DRAFT] Non-confidential

(continued from previous page)

#define PSA_KEY_TYPE_SLH_DSA_PUBLIC_KEY(set) /* specification-defined value =*/
#define PSA_SLH_DSA_FAMILY_SHA2_S ((psa_slh_dsa_family_t) 0x02)
#define PSA_SLH_DSA_FAMILY_SHA2_F ((psa_slh_dsa_family_t) 0x04)
#define PSA_SLH_DSA_FAMILY_SHAKE_S ((psa_slh_dsa_family_t) @x@b)
#define PSA_SLH_DSA_FAMILY_SHAKE_F ((psa_slh_dsa_family_t) @x@d)
#define PSA_KEY_TYPE_IS_SLH_DSA(type) /* specification-defined value =*/
#define PSA_KEY_TYPE_IS_SLH_DSA_KEY_PAIR(type) \

/* specification-defined value */
#define PSA_KEY_TYPE_IS_SLH_DSA_PUBLIC_KEY(type) \

/* specification-defined value *x/
#define PSA_KEY_TYPE_SLH_DSA_GET_FAMILY(type) /* specification-defined value */
#define PSA_ALG_SLH_DSA ((psa_algorithm_t) 0x06004000)
#define PSA_ALG_DETERMINISTIC_SLH_DSA ((psa_algorithm_t) 0x06004100)
#define PSA_ALG_HASH_SLH_DSA(hash_alg) /* specification-defined value */
#define PSA_ALG_DETERMINISTIC_HASH_SLH_DSA(hash_alg) \

/* specification-defined value *x/
#define PSA_ALG_IS_SLH_DSA(alg) /* specification-defined value */
#define PSA_ALG_IS_HASH_SLH_DSA(alg) /x specification-defined value */
#define PSA_ALG_IS_DETERMINISTIC_HASH_SLH_DSA(alg) \

/* specification-defined value *x/
#define PSA_ALG_IS_HEDGED_HASH_SLH_DSA(alg) /* specification-defined value */
#define PSA_KEY_TYPE_LMS_PUBLIC_KEY ((psa_key_type_t)0x4007)
#define PSA_KEY_TYPE_HSS_PUBLIC_KEY ((psa_key_type_t)0x4008)
#define PSA_ALG_LMS ((psa_algorithm_t) 0x06004800)
#define PSA_ALG_HSS ((psa_algorithm_t) 0x06004900)
#define PSA_KEY_TYPE_XMSS_PUBLIC_KEY ((psa_key_type_t)0x400B)
#define PSA_KEY_TYPE_XMSS_MT_PUBLIC_KEY ((psa_key_type_t)0x400D)
#define PSA_ALG_XMSS ((psa_algorithm_t) 0x06004A00)
#define PSA_ALG_XMSS_MT ((psa_algorithm_t) 0x06004B00)

AES 0119 Copyright © 2024 Arm Limited and/or its affiliates Page 45
1.3 PQC Extension Beta (Issue 0) [DRAFT] Non-confidential

Appendix B: Algorithm and key type encoding

These are encodings for PQC algorithms and keys defined in this extension. This information should be
read in conjunction with [PSA-CRYPT] Appendix B.

Note:
These encodings will be integrated into a future version of [PSA-CRYPT].

B.1 Algorithm encoding

B.1.1 Hash algorithm encoding

Additional hash algorithms defined by this extension are shown in Table 4. See also Hash algorithm
encoding in [PSA-CRYPT] Appendix B.

Table 4 Hash algorithm sub-type values

Hash algorithm HASH-TYPE Algorithm identifier Algorithm value

SHA-256/192 OxQE PSA_ALG_SHA_256_192 - @x0200000E
SHAKE128/256 ox16 PSA_ALG_SHAKE128_256 0x02000016
SHAKE256/192 ex17 PSA_ALG_SHAKE256_192 0x02000017
SHAKE256/256 ox18 PSA_ALG_SHAKE256_256 0x02000018

B.1.2 Asymmetric signature algorithm encoding

Additional signature algorithms defined by this extension are shown in Table 5 on page 47. See also
Asymmetric signature algorithm encoding in [PSA-CRYPT] Appendix B.

Table 5 Asymmetric signature algorithm sub-type values

AES 0119 Copyright © 2024 Arm Limited and/or its affiliates Page 46
1.3 PQC Extension Beta (Issue 0) [DRAFT] Non-confidential

Signature algorithm SIGN-TYPE Algorithm identifier Algorithm value

Hedged SLH-DSA 0x40 PSA_ALG_SLH_DSA 0x06004000
Deterministic SLH-DSA 0x41 PSA_ALG_DETERMINISTIC_SLH_DSA 0x06004100
Hedged HashSLH-DSA 0x42 PSA_ALG_HASH_SLH_DSA(hash) 0x060042hh @
Deterministic HashSLH-DSA ox43 PSA_ALG_DETERMINISTIC_HASH_SLH_DSA(hash) 0x060043hh @
Hedged ML-DSA 0x44 PSA_ALG_ML_DSA 0x06004400
Deterministic ML-DSA 0x45 PSA_ALG_DETERMINISTIC_ML_DSA 0x06004500
Hedged HashML-DSA 0x46 PSA_ALG_HASH_ML_DSA (hash) 0x060046hh @
Deterministic HashML-DSA ox47 PSA_ALG_DETERMINISTIC_HASH_ML_DSA(hash) 0x060047hh @
LMS 0x48 PSA_ALG_LMS 0x06004800
HSS 0x49 PSA_ALG_HSS 0x06004900
XMSS Ox4A PSA_ALG_XMSS 0x06004A00
XMSSMT 0x4B PSA_ALG_XMSS_MT, 0x06004B00

a. hhis the HASH-TYPE for the hash algorithm, hash, used to construct the signature algorithm.

B.1.3 Key-encapsulation algorithm encoding
Additional key-encapsulation algorithms defined by this extension are shown in Table 6.

Table 6 Encapsulation algorithm sub-type values
Encapsulation algorithm ENCAPS-TYPE Algorithm identifier Algorithm value

ML-KEM 0x02 PSA_ALG_ML_KEM 0x0C000200

B.2 Key encoding

Additional asymmetric key types defined by this extension are shown in Table 7. See also Asymmetric key
encoding in [PSA-CRYPT] Appendix B.

Table 7 Asymmetric key sub-type values
Asymmetric key type ASYM-TYPE Details

SLH-DSA 3 See SLH-DSA key encoding on page 48

B.2.1 Non-parameterized asymmetric key encoding

Additional non-parameterized asymmetric key types defined by this extension are shown in Table 8 on
page 48. See also Non-parameterized asymmetric key encoding in [PSA-CRYPT] Appendix B.

Table 8 Non-parameterized asymmetric key family values

AES 0119 Copyright © 2024 Arm Limited and/or its affiliates Page 47
1.3 PQC Extension Beta (Issue 0) [DRAFT] Non-confidential

Key family

ML-DSA

ML-KEM

LMS
HSS
XMSS
XMSSMT

B.2.2 SLH-DSA key encoding

Public/pair

Public key
Key pair

Public key
Key pair

Public key
Public key
Public key
Public key

PAIR NP-FAMILY P Key type

O O O O W O w O

N U BAWNN R R

PSA_KEY_TYPE_ML_DSA_PUBLIC_KEY
PSA_KEY_TYPE_ML_DSA_KEY_PAIR
PSA_KEY_TYPE_ML_KEM_PUBLIC_KEY
PSA_KEY_TYPE_ML_KEM_KEY_PAIR
PSA_KEY_TYPE_LMS_PUBLIC_KEY
PSA_KEY_TYPE_HSS_PUBLIC_KEY

PSA_KEY_TYPE_XMSS_PUBLIC.KEY

» »r O r»r O O O O

PSA_KEY_TYPE_XMSS_MT_PUBLIC_KEY

Key value

0x4002
0x7002
0x4004
0x7004
0x4007
0x4008
0x400B
0x400D

The key type for SLH-DSA keys defined in this specification are encoded as shown in Figure 1.

15 14 13 12 11

0

11 PAIR

Figure 1 SLH-DSA key encoding

PAIR is either O for a public key, or 3 for a key pair.
The defined values for FAMILY and P are shown in Table 9.

SLH-DSA key family

SLH-DSA-SHA2-Ns
SLH-DSA-SHA2-Nf
SLH-DSA-SHAKE-Ns
SLH-DSA-SHAKE-Nf

FAMILY

0x01
0x02
0x05
0x06

P SLH-DSA family @

~ L O O

Table 9 SLH-DSA key family values

Public-key value

PSA_SLH_DSA_FAMILY_SHA2_S 0x4182
PSA_SLH_DSA_FAMILY_SHA2_F 0x4184
PSA_SLH_DSA_FAMILY_SHAKE_S ©0x418B

PSA_SLH_DSA_FAMILY_SHAKE_F ©x418D

Key-pair value

0x7182
0x7184
0x718B
0x718D

a. The SLH-DSA family values defined in the API also include the parity bit. The key type value is
constructed from the SLH-DSA family using either PSA_KEY_TYPE_SLH_DSA_PUBLIC_KEY(family) or
PSA_KEY_TYPE_SLH_DSA_KEY_PAIR(family) as required.

AES 0119

Copyright © 2024 Arm Limited and/or its affiliates
1.3 PQC Extension Beta (Issue 0) [DRAFT]

Non-confidential

Page 48

Appendix C: Example macro implementations

This section provides example implementations of the function-like macros that have specification-defined

values.

Note:

In a future version of this specification, these example implementations will be replaced with a
pseudo-code representation of the macro’s computation in the macro description.

The examples here provide correct results for the valid inputs defined by each API, for an implementation
that supports all of the defined algorithms and key types. An implementation can provide alternative

definitions of these macros:

C.1 Algorithm macros
C.1.1 Updated macros

#define PSA_ALG_IS_HASH_AND_SIGN(alg) \
(PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \
PSA_ALG_IS_ECDSA(alg) || PSA_ALG_IS_HASH_EDDSA(alg) || \
PSA_ALG_IS_HASH_ML_DSA(alg) || PSA_ALG_IS_HASH_SLH_DSA(alg))

#define PSA_ALG_IS_SIGN_HASH(alg) \
(PSA_ALG_IS_HASH_AND_SIGN(alg) ||
(alg) == PSA_ALG_RSA_PKCSTV15_SIGN_RAW ||
(alg) == PSA_ALG_ECDSA_ANY
)

C.1.2 New macros

#define PSA_ALG_DETERMINISTIC_HASH_ML_DSA(hash_alg) \
((psa_algorithm_t) (0x06004700 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_DETERMINISTIC_HASH_SLH_DSA(hash_alg) \
((psa_algorithm_t) (0x06004300 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_HASH_ML_DSA(hash_alg) \
((psa_algorithm_t) (0x06004600 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_HASH_SLH_DSA(hash_alg) \
((psa_algorithm_t) (0x06004200 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_IS_DETERMINISTIC_HASH_ML_DSA(alg) \

AES 0119 Copyright © 2024 Arm Limited and/or its affiliates
1.3 PQC Extension Beta (Issue 0) [DRAFT] Non-confidential

(continues on next page)

Page 49

(((alg) & ~0x000000ff) == 0x06004700)

#define PSA_ALG_IS_DETERMINISTIC_HASH_SLH_DSA(alg) \
(((alg) & ~0x000000ff) == 0x06004300)

#define PSA_ALG_IS_HASH_ML_DSA(alg) \
(((alg) & ~0x000001ff) == 0x06004600)

#define PSA_ALG_IS_HASH_SLH_DSA(alg) \
(((alg) & ~0x000001ff) == 0x06004200)

#define PSA_ALG_IS_HEDGED_HASH_ML_DSA(alg) \
(((alg) & ~0x000000ff) == 0x06004600)

#define PSA_ALG_IS_HEDGED_HASH_SLH_DSA(alg) \
(((alg) & ~0x000000ff) == 0x06004200)

#define PSA_ALG_IS_ML_DSA(alg) \
(((alg) & ~0x00000100) == 0x06004400)

#define PSA_ALG_IS_SLH_DSA(alg) \
(((alg) & ~0x00000100) == 0x06004000)

C.2 Key type macros
#define PSA_KEY_TYPE_IS_ML_DSA(type) \
(PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == 0x4002)

#define PSA_KEY_TYPE_IS_ML_KEM(type) \
(PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == 0x4004)

#define PSA_KEY_TYPE_IS_SLH_DSA(type) \
((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & Oxff80) == 0x4180)

#define PSA_KEY_TYPE_IS_SLH_DSA_KEY_PAIR(type) \
(((type) & oxff80) == 0x7180)

#define PSA_KEY_TYPE_IS_SLH_DSA_PUBLIC_KEY(type) \
(((type) & oxff80) == 0x4180)

#define PSA_KEY_TYPE_SLH_DSA_GET_FAMILY(type) \
((psa_slh_dsa_family_t) ((type) & 0x007f))

#define PSA_KEY_TYPE_SLH_DSA_KEY_PAIR(set) \
((psa_key_type_t) (0x7180 | ((set) & 0x007f)))

AES 0119 Copyright © 2024 Arm Limited and/or its affiliates
1.3 PQC Extension Beta (Issue 0) [DRAFT] Non-confidential

(continued from previous page)

(continues on next page)

Page 50

(continued from previous page)
#define PSA_KEY_TYPE_SLH_DSA_PUBLIC_KEY(set) \
((psa_key_type_t) (0x4180 | ((set) & 0x007f)))

AES 0119 Copyright © 2024 Arm Limited and/or its affiliates Page 51
1.3 PQC Extension Beta (Issue 0) [DRAFT] Non-confidential

Appendix D: Changes to the API

D.1 Document change history
D.1.1 Betarelease
e First release of the PQC Extension.

e Added support for FIPS 203 ML-KEM key-encapsulation algorithm and keys. See Module
Lattice-based key encapsulation on page 15.

e Added support for FIPS 204 ML-DSA signature algorithm and keys. See Module Lattice-based
signatures on page 18.

e Added support for FIPS 205 SLH-DSA signature algorithm and keys. See Stateless Hash-based
signatures on page 27.

e Added support for LMS and HSS stateful hash-based signature verification and public keys. See
Leighton-Micali Signatures on page 38.

e Added support for XMSS and XMSSMT stateful hash-based signature verification and public keys.
See eXtended Merkle Signature Scheme on page 40:

AES 0119 Copyright © 2024 Arm Limited and/or its affiliates Page 52
1.3 PQC Extension Beta (Issue 0) [DRAFT] Non-confidential

Index of API elements

PSA_ALG_D

PSA_ALG_DETERMINISTIC_HASH_ML_DSA, 25
PSA_ALG_DETERMINISTIC_HASH_SLH_DSA, 36
PSA_ALG_DETERMINISTIC_ML_DSA, 23
PSA_ALG_DETERMINISTIC_SLH_DSA, 34

PSA_ALG_H

PSA_ALG_HASH_ML_DSA, 23
PSA_ALG_HASH_SLH_DSA, 35
PSA_ALG_HSS, 40

PSA_ALG_I

PSA_ALG_IS_DETERMINISTIC_HASH_ML_DSA, 27
PSA_ALG_IS_DETERMINISTIC_HASH_SLH_DSA, 37
PSA_ALG_IS_HASH_ML_DSA, 26
PSA_ALG_IS_HASH_SLH_DSA, 37
PSA_ALG_IS_HEDGED_HASH_ML_DSA, 27
PSA_ALG_IS_HEDGED_HASH_SLH_DSA, 38
PSA_ALG_IS_ML_DSA, 26

PSA_ALG_IS_SLH_DSA, 37

PSA_ALG_L
PSA_ALG_LMS, 40

PSA_ALG_M
PSA_ALG_ML_DSA, 22
PSA_ALG_ML_KEM, 17
PSA_ALG_S

PSA_ALG_SHAKE128_256, 14
PSA_ALG_SHAKE256_192, 14
PSA_ALG_SHAKE256_256, 15
PSA_ALG_SHA_256_192, 14
PSA_ALG_SLH_DSA, 33

PSA_ALG_X

PSA_ALG_XMSS, 42
PSA_ALG_XMSS_MT, 43

PSA_K
PSA_KEY_TYPE_HSS_PUBLIC_KEY, 39

PSA_KEY_TYPE_IS_ML_DSA, 21
PSA_KEY_TYPE_IS_ML_KEM, 17
PSA_KEY_TYPE_IS_SLH_DSA, 31
PSA_KEY_TYPE_IS.SLH_DSA_KEY_PAIR, 31

PSA_KEY_TYPE_IS_SLH_DSA_PUBLIC_KEY, 31

PSA_KEY_TYPE_LMS_PUBLIC_KEY, 39
PSA_KEY_TYPE_ML_DSA_KEY_PAIR, 18
PSA_KEY_TYPE_ML_DSA_PUBLIC_KEY, 20
PSA_KEY_TYPE_ML_KEM_KEY_PAIR, 15
PSA_KEY_TYPE_ML_KEM_PUBLIC_KEY, 16
PSA_KEY_TYPE_SLH_DSA_GET_FAMILY, 31
PSA_KEY_TYPE_SLH_DSA_KEY_PAIR, 28
PSA_KEY_TYPE_SLH_DSA_PUBLIC_KEY, 29
PSA_KEY_TYPE_XMSS_MT_PUBLIC_KEY, 42
PSA_KEY_TYPE_XMSS_PUBLIC_KEY, 41

PSA_S

PSA_SLH_DSA_FAMILY_SHA2_F, 30
PSA_SLH_DSA_FAMILY_SHA2_S, 30
PSA_SLH_DSA_FAMILY_SHAKE_F, 30
PSA_SLH_DSA_FAMILY_SHAKE_S, 30
psa_slh_dsa_family_t, 27

AES 0119 Copyright © 2024 Arm Limited and/or its affiliates

1.3 PQC Extension Beta (Issue 0) [DRAFT]

Non-confidential

	About this document
	Release information
	License
	References
	Terms and abbreviations
	Conventions
	Typographical conventions
	Numbers

	Current status and anticipated changes
	Feedback

	1 Introduction
	1.1 About Platform Security Architecture
	1.2 About the Crypto API PQC Extension
	1.3 Objectives for the PQC Extension
	1.3.1 Background
	1.3.2 Selection of algorithms
	NIST PQC project finalists
	Other NIST-approved schemes

	2 API Reference
	2.1 Additional Hash algorithms
	2.1.1 SHA-256-based hash algorithms
	PSA_ALG_SHA_256_192 (macro)

	2.1.2 SHAKE-based hash algorithms
	PSA_ALG_SHAKE128_256 (macro)
	PSA_ALG_SHAKE256_192 (macro)
	PSA_ALG_SHAKE256_256 (macro)

	2.2 Module Lattice-based key encapsulation
	2.2.1 Module Lattice-based key-encapsulation keys
	PSA_KEY_TYPE_ML_KEM_KEY_PAIR (macro)
	PSA_KEY_TYPE_ML_KEM_PUBLIC_KEY (macro)
	PSA_KEY_TYPE_IS_ML_KEM (macro)

	2.2.2 Module Lattice-based key-encapsulation algorithm
	PSA_ALG_ML_KEM (macro)

	2.3 Module Lattice-based signatures
	2.3.1 Module Lattice-based signature keys
	PSA_KEY_TYPE_ML_DSA_KEY_PAIR (macro)
	PSA_KEY_TYPE_ML_DSA_PUBLIC_KEY (macro)
	PSA_KEY_TYPE_IS_ML_DSA (macro)

	2.3.2 Module Lattice-based signature algorithms
	PSA_ALG_ML_DSA (macro)
	PSA_ALG_DETERMINISTIC_ML_DSA (macro)
	PSA_ALG_HASH_ML_DSA (macro)
	PSA_ALG_DETERMINISTIC_HASH_ML_DSA (macro)
	PSA_ALG_IS_ML_DSA (macro)
	PSA_ALG_IS_HASH_ML_DSA (macro)
	PSA_ALG_IS_DETERMINISTIC_HASH_ML_DSA (macro)
	PSA_ALG_IS_HEDGED_HASH_ML_DSA (macro)

	2.4 Stateless Hash-based signatures
	2.4.1 Stateless Hash-based signature keys
	psa_slh_dsa_family_t (typedef)
	PSA_KEY_TYPE_SLH_DSA_KEY_PAIR (macro)
	PSA_KEY_TYPE_SLH_DSA_PUBLIC_KEY (macro)
	PSA_SLH_DSA_FAMILY_SHA2_S (macro)
	PSA_SLH_DSA_FAMILY_SHA2_F (macro)
	PSA_SLH_DSA_FAMILY_SHAKE_S (macro)
	PSA_SLH_DSA_FAMILY_SHAKE_F (macro)
	PSA_KEY_TYPE_IS_SLH_DSA (macro)
	PSA_KEY_TYPE_IS_SLH_DSA_KEY_PAIR (macro)
	PSA_KEY_TYPE_IS_SLH_DSA_PUBLIC_KEY (macro)
	PSA_KEY_TYPE_SLH_DSA_GET_FAMILY (macro)

	2.4.2 Stateless Hash-based signature algorithms
	PSA_ALG_SLH_DSA (macro)
	PSA_ALG_DETERMINISTIC_SLH_DSA (macro)
	PSA_ALG_HASH_SLH_DSA (macro)
	PSA_ALG_DETERMINISTIC_HASH_SLH_DSA (macro)
	PSA_ALG_IS_SLH_DSA (macro)
	PSA_ALG_IS_HASH_SLH_DSA (macro)
	PSA_ALG_IS_DETERMINISTIC_HASH_SLH_DSA (macro)
	PSA_ALG_IS_HEDGED_HASH_SLH_DSA (macro)

	2.5 Leighton-Micali Signatures
	2.5.1 Leighton-Micali Signature keys
	PSA_KEY_TYPE_LMS_PUBLIC_KEY (macro)
	PSA_KEY_TYPE_HSS_PUBLIC_KEY (macro)

	2.5.2 Leighton-Micali Signature algorithms
	PSA_ALG_LMS (macro)
	PSA_ALG_HSS (macro)

	2.6 eXtended Merkle Signature Scheme
	2.6.1 XMSS and XMSSMT keys
	PSA_KEY_TYPE_XMSS_PUBLIC_KEY (macro)
	PSA_KEY_TYPE_XMSS_MT_PUBLIC_KEY (macro)

	2.6.2 XMSS and XMSSMT algorithms
	PSA_ALG_XMSS (macro)
	PSA_ALG_XMSS_MT (macro)

	A Example header file
	A.1 psa/crypto.h

	B Algorithm and key type encoding
	B.1 Algorithm encoding
	B.1.1 Hash algorithm encoding
	B.1.2 Asymmetric signature algorithm encoding
	B.1.3 Key-encapsulation algorithm encoding

	B.2 Key encoding
	B.2.1 Non-parameterized asymmetric key encoding
	B.2.2 SLH-DSA key encoding

	C Example macro implementations
	C.1 Algorithm macros
	C.1.1 Updated macros
	C.1.2 New macros

	C.2 Key type macros

	D Changes to the API
	D.1 Document change history
	D.1.1 Beta release

	Index of API elements

