Skip to content
/ ShapKa Public

An open source library for key drivers analysis based on Shapley values and Kano Theory

License

Notifications You must be signed in to change notification settings

uyanik/ShapKa

Repository files navigation

ShapKa: Customer Satisfaction Key Drivers based on Shapley values and Kano model

Codacy Badge https://travis-ci.org/uyanik/ShapKa.svg?branch=master Documentation Status

Installation

Use the following command to install the package:

pip install ShapKa

Usage

Use the following command for a key dissatisfaction drivers analysis (kda) :

import pandas as pd
from ShapKa.kanomodel import KanoModel

# Load data
df = pd.read_csv('data/example_03.csv')

# Define X and Y variables names
y_varname = 'Overall Satisfaction'
weight_varname = 'Weight'
X_varnames = df.columns.values.tolist()
X_varnames.remove(y_varname)
X_varnames.remove(weight_varname)

# Run analysis to identify key dissatisfiers
model = KanoModel(df,
                  y_varname, X_varnames,
                  analysis = 'kda',
                  y_dissat_upperbound = 6, y_sat_lowerbound = 9,
                  X_dissat_upperbound = 6, X_sat_lowerbound = 9,
                  weight_varname = weight_varname)

kda = model.key_drivers() ;kda

Here is the ouput :

img/output_ShapKa.png

Replace 'kda' by 'kea' in the analysis parameter if you want to identify key enhancers (kea) instead of key dissatisfiers

Documentation

Credits

References

  • Conklin, Michael & Powaga, Ken & Lipovetsky, Stan. (2004). Customer satisfaction analysis: Identification of key drivers. European Journal of Operational Research. 154. 819-827. 10.1016/S0377-2217(02)00877-9.
  • Sage - Open Source Mathematical Software : https://github.com/sagemath/sage

About

An open source library for key drivers analysis based on Shapley values and Kano Theory

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published