Use the following command to install the package:
pip install ShapKa
Use the following command for a key dissatisfaction drivers analysis (kda) :
import pandas as pd
from ShapKa.kanomodel import KanoModel
# Load data
df = pd.read_csv('data/example_03.csv')
# Define X and Y variables names
y_varname = 'Overall Satisfaction'
weight_varname = 'Weight'
X_varnames = df.columns.values.tolist()
X_varnames.remove(y_varname)
X_varnames.remove(weight_varname)
# Run analysis to identify key dissatisfiers
model = KanoModel(df,
y_varname, X_varnames,
analysis = 'kda',
y_dissat_upperbound = 6, y_sat_lowerbound = 9,
X_dissat_upperbound = 6, X_sat_lowerbound = 9,
weight_varname = weight_varname)
kda = model.key_drivers() ;kda
Here is the ouput :
Replace 'kda' by 'kea' in the analysis parameter if you want to identify key enhancers (kea) instead of key dissatisfiers
- Documentation: https://shapka.readthedocs.io.
- The ShapKa package is based on the methodology developped by W. Michael Conklin, Ken Powaga and Stan Lipovetsky
- Some parts of the code are based on functions implemented in the Open Source Sage Mathematical Software
- Conklin, Michael & Powaga, Ken & Lipovetsky, Stan. (2004). Customer satisfaction analysis: Identification of key drivers. European Journal of Operational Research. 154. 819-827. 10.1016/S0377-2217(02)00877-9.
- Sage - Open Source Mathematical Software : https://github.com/sagemath/sage