

TINY CHANGE

huge improvement*

*maybe not that huge

This is the result of several years researching how to best
express HTTP caching rules in VCL. The focus of the research
was not Varnish internals, but desirable behavior. This session is
backed only by prior knowledge (or misunderstanding) via my
personal Varnish and HTTP experience and you are most
welcome to challenge suggestions made on shaky ground.

{introduction}

!
This is a high level overview of Varnish’s caching
model, made with the assumption that attendees
can follow. Still, I tried to make it accessible.

{disclaimer}

Agenda
● Warm up

– Cache-Control quizz for cache wizzards
● New paradigm

– Waiting list today
– Waiting list tomorrow?

● Cool down
– Cache-Control redux

● Consequences
– RFC compliance revisited (focus on behavior)
– Built-in VCL (promote and use more caching criteria)

4/37

{warm up}

Cache-Control pop quiz

● Which directives tell us not
to cache?

● Cheat sheet
– public
– private
– no-cache
– no-store
– must-revalidate
– proxy-revalidate
– stale-while-revalidate
– max-age
– s-maxage

6/37

{new paradigm*}

*allegedly a tiny change

Waiting list today (1/3)

● Lookup is serialized
● Possible outcomes (plural)

– Straight miss => trigger fetch and wait for it
– Straight hit => probably deliver a cached copy
– Grace hit => trigger a bgfetch and probably deliver a cached copy
– Hit-for-miss => trigger a fetch and wait for it
– Hit-for-pass => trigger a private fetch and wait for it
– Busy hit => disembark into a waiting list

8/37

Waiting list today (2/3)
● Waiting list outcome (singular)

– Reembark at the lookup step
– Find the new lookup outcome (plural)
– It keeps the waiting list “stateless”

● Lookup is serialized
– A property inherited by the waiting list

● When the new object is already expired
– A cache miss “starts” a new waiting list
– Difficult to diagnose but usually easy to remedy

9/37

Waiting list today (3/3)

● Moving parts
– Lookup finds (or creates) an objhead
– Requests enter objhead waiting lists (with a ref)
– A rush is triggered on the objhead
– Releasing an objcore ref triggers a rush too

● The objhead may trigger spurious rushes
– A cacheable object may not be compatible (Vary)

10/37

Waiting list tomorrow? (1/3)
● Validation straw man

– Getting an expired object is valid if the origin server generated it
– The origin server could be another Varnish tier in grace mode
– What prevents the resource from being cached is the built-in VCL

● Core code contains a mitigation for vcl_backend_error

– Currently a small change can help, ideally we do nothing

 sub vcl_beresp_stale {
- if (beresp.ttl <= 0s) {
+ if (beresp.ttl + beresp.grace <= 0s) {
 call vcl_beresp_hitmiss;
 }
 }

11/37

Waiting list tomorrow? (2/3)
● Change of paradigm

– Move the waiting list from objhead to busyobj
● Keep a busyobj ref instead of an objhead ref in a parked req

– Inspect the busyobj on reembark
● Incompatible variant => perform a new lookup (serialized loop back)
● OC_F_HFM => miss transition
● OC_F_HFP => pass transition
● OC_F_FAILED => stale-if-error (discussed later)
● None of the above => valid object, hit transition

– Waiting list serialization almost gone
● Shifted from expired objects to variants proliferation
● We have vary_notice for diagnostics
● We could have a vary_limit too

12/37

Waiting list tomorrow? (3/3)

● Walk away from the waiting list
– Honorable mention for today
– Already implemented in Varnish Enterprise
– Already submitted to Varnish Cache

● Not in a merge-able state
– Limited to h2 connections
– Maybe best postponed until after this change, if applicable

13/37

{cool down}

Cache-Control Rosetta stone (1/3)

Cache-Control directive VCL
public # override uncacheable criteria
private set beresp.uncacheable = true;

should be overridable by user VCL
no-cache set beresp.ttl = 0s;

set beresp.grace = 0s;
set beresp.keep = param.default_keep;

no-store set beresp.uncacheable = true;
{must,proxy}-revalidate set beresp.grace = 0s;
stale-while-revalidate=X set beresp.grace = Xs;
s-maxage=X
max-age=X

set beresp.ttl = Xs – beresp.age;
shared max age takes precedence

15/37

Cache-Control Rosetta stone (2/3)

Cache-Control directive VCL
private=X set beresp.private = “X”;
no-cache=X set beresp.nocache = “X”;

● New HTTP header flags
– HTTPH_A_PRIVATE and HTTPH_A_NOCACHE
– Private and no-cache headers only served to the original request

● But waiting list hits can deliver no-cache headers
– Private and no-cache headers not merged with 304 headers
– Tolerate private and no-cache headers in persistent caches

● Maybe allow stevedores to repack headers to disk, omitting them
16/37

Cache-Control Rosetta stone (3/3)

Cache-Control directive VCL
immutable set beresp.ttl = param.immutable_ttl;
no-transform # fail depending on beresp.filters?
must-understand # hitmiss depending on beresp.status?
stale-if-error=X set beresp.mercy = Xs; # for stale_oc

● New parameters to consider
– immutable_ttl parameter (default to 1 week for example)
– uncacheable_ttl parameter (default to 2 minutes)
– Expose certain parameters in VCL

● Use the param.uncacheable_ttl symbol in vcl_beresp_hitmiss

17/37

{consequences}

Default parameters
● Currently we cache by default

– default_ttl=2m
– default_grace=10s
– default_keep=0s

● Instead we could validate by default
– default_ttl=0s
– default_grace=0s
– default_keep=2m
– On the condition that waiting lists don’t serialize (modulus Vary)
– Make sure we only keep revalidation candidates
– Potentially a lower hit ratio, but overall safer

19/37

Parameter symbols in VCL

● Survey existing parameters
– Expose some as read-only param.* symbols
– Start with DURATION values (timeouts etc)
– Consider new parameters for magic values

20/37

 sub vcl_beresp_hitmiss {
- set beresp.ttl = 120s;
+ set beresp.ttl = param.uncacheable_ttl;
 set beresp.uncacheable = true;
 return (deliver);
 }

To cache or not to cache (1/9)
● RFC9111 Section 3 gives a nice (but not comprehensive) breakdown

– We had it already in RFC7234 Section 3
● This could be implemented in VCL

– We begin vcl_backend_response with a fully computed beresp
– We would move some checks to vcl_backend_response
– This is more expensive than a pass transition from vcl_recv

● How to deal with conflicting directives?
– Cache-Control: stale-while-revalidate=42, must-revalidate
– According to the Rosetta Stone we have Schrödinger’s grace
– The sane solution is to iterate: later directives take precedence
– Precedence requires the promotion of more caching directives to new beresp fields

21/37

To cache or not to cache (2/9)

● Cache-Control: public
– Raises beresp.is_public, cleared by the private directive
– Overrides the Authorization header
– Same treatment for the Cookie header (as we do today)

sub vcl_bereq_authorization {
 if (bereq.http.Authorization && !beresp.is_public) {
 call vcl_beresp_hitmiss;
 }
}

22/37

To cache or not to cache (3/9)

● Cache-Control: private
– Raises beresp.is_private
– Cleared by the public directive
– Also cleared by the private=X directive

● Which implies only a subset of the response is private

23/37

To cache or not to cache (4/9)

● Cache-Control: private=X
– Map to beresp.private (contains a list of header names)
– Set or clear HTTPH_A_PRIVATE flags
– New HEADER.is_private property

24/37

 sub vcl_beresp_cookie {
- if (beresp.http.Set-Cookie) {
+ if (beresp.http.Set-Cookie &&
 !beresp.http.Set-Cookie.is_private) {
 call vcl_beresp_hitmiss;
 }
 }

To cache or not to cache (5/9)

● Cache-Control: no-cache=X
– Map to beresp.nocache (just like beresp.private)
– Set or clear HTTPH_A_NOCACHE flags
– New HEADER.is_nocache property
– Probably not used by the built-in VCL

● But required for waiting list hits

25/37

To cache or not to cache (6/9)

● Cache-Control: stale-if-error=X
– Map to beresp.mercy
– Mercy period capped to grace period
– Applies when there is a stale objcore

26/37

To cache or not to cache (7/9)

● Cache-Control: no-transform
– Map to a beresp.can_transform field?
– Fail if a content-altering filter is set up?
– We don’t know what filters do the beresp.body

● VRG is probably fine
– What about resp.body?
– Probably best ignored

27/37

To cache or not to cache (8/9)

● Cache-Control: must-understand
– Map to a beresp.must_understand field?
– Overrides no-store, but requires a status code check

● This could be moved from core code to the built-in VCL

28/37

sub vcl_beresp_status {
 if (beresp.status == <custom>) {
 # skip must-understand check
 return;
 }
}

To cache or not to cache (9/9)

29/37

 beresp

 Type: HTTP

 Readable from: vcl_backend_response, vcl_backend_error

+ Resettable from: vcl_backend_response, vcl_backend_error
+
 The entire backend response HTTP data structure, useful as
 argument to VMOD functions.
+
+ When ``beresp`` is reset, the following fields are recomputed
+ based on the current values of ``beresp.http.*``:
+
+ - beresp.ttl
+ - beresp.grace
+ - beresp.mercy
+ - beresp.keep
+ - beresp.uncacheable
+ - beresp.is_public
+ - beresp.is_private
+ - beresp.private
+ - beresp.nocache
+ - beresp.must_understand

RFC9111 Section 3 washed
● the request method is understood by the cache
● the response status code is final*
● if the response status code is 206 or 304, or the must-understand cache directive is present: the cache understands the

response status code
● the no-store cache directive is not present in the response
● if the cache is shared: the private response directive is either not present or allows a shared cache to store a modified

response
● if the cache is shared: the Authorization header field is not present in the request or a response directive is present that

explicitly allows shared caching
● the response contains at least one of the following:

– a public response directive
– a private response directive, if the cache is not shared
– an Expires header field
– a max-age response directive
– if the cache is shared: an s-maxage response directive
– a cache extension that allows it to be cached*
– a status code that is defined as heuristically cacheable

30/37

Built-in vcl_recv

31/37

 sub vcl_recv {
 call vcl_req_host;
 call vcl_req_method;
- call vcl_req_authorization;
- call vcl_req_cookie;
 }
-
-sub vcl_req_authorization {
- if (req.http.Authorization) {
- # Not cacheable by default.
- return (pass);
- }
-}
-
-sub vcl_req_cookie {
- if (req.http.Cookie) {
- # Risky to cache by default.
- return (pass);
- }
-}

Built-in vcl_backend_response

32/37

 sub vcl_backend_response {
 if (bereq.uncacheable) {
 return (deliver);
 }
+ call vcl_bereq_authorization;
+ call vcl_bereq_cookie;
+ call vcl_beresp_status;
+ call vcl_beresp_private;
- call vcl_beresp_stale;
 call vcl_beresp_cookie;
- call vcl_beresp_control;
 call vcl_beresp_vary;
 }

Built-in vcl_bereq_*

33/37

sub vcl_bereq_authorization {
 if (bereq.http.Authorization && !beresp.public) {
 # Not cacheable unless stated explicitly
 call vcl_beresp_hitmiss;
 }
}

sub vcl_bereq_cookie {
 if (bereq.http.Cookie && !beresp.public) {
 # Risky to cache unless stated explicitly
 call vcl_beresp_hitmiss;
 }
}

Built-in vcl_beresp_status

34/37

sub vcl_beresp_status {
 if (!beresp.must_understand) {
 return;
 }
 if (beresp.status != 200 &&
 beresp.status != 203 &&
 beresp.status != 204 &&
 beresp.status != 300 &&
 beresp.status != 301 &&
 beresp.status != 304 &&
 beresp.status != 404 &&
 beresp.status != 410 &&
 beresp.status != 414) {
 call vcl_beresp_hitmiss;
 }
}

Built-in vcl_beresp_private

35/37

sub vcl_beresp_private {
 if (beresp.is_private) {
 call vcl_beresp_hitmiss;
 }
}

Built-in VCL miscellany
● After fiddling with beresp headers

– reset beresp;
– As if we just entered vcl_backend_response in this state

● Remove subroutines (or leave them empty)
– vcl_beresp_stale (change of paradigm to validation by default)
– vcl_beresp_control (what about Surrogate-Control: no-store?)

● Rename subroutines (or alias them)
– vcl_beresp_hitmiss to vcl_beresp_uncacheable
– vcl_builtin_* to something more specific

● vcl_builtin_backend_fetch to vcl_bereq_body
● vcl_builtin_synth to vcl_synth_body
● etc

36/37

This theme is licensed under a Creative Commons
Attribution-ShareAlike 3.0 Unported License.

It makes use of the works of Mateus Machado Luna.

{thank you}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

