|
| 1 | +# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved. |
| 2 | +# This file is a part of the vllm-ascend project. |
| 3 | +# Adapted from vllm/tests/kernels/test_moe.py |
| 4 | +# Copyright 2023 The vLLM team. |
| 5 | +# |
| 6 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 7 | +# you may not use this file except in compliance with the License. |
| 8 | +# You may obtain a copy of the License at |
| 9 | +# |
| 10 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 11 | +# |
| 12 | +# Unless required by applicable law or agreed to in writing, software |
| 13 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 14 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 15 | +# See the License for the specific language governing permissions and |
| 16 | +# limitations under the License. |
| 17 | +# SPDX-License-Identifier: Apache-2.0 |
| 18 | +"""Tests for the MOE layers. |
| 19 | +
|
| 20 | +Run `pytest tests/ops/test_fused_moe.py`. |
| 21 | +""" |
| 22 | + |
| 23 | +import pytest |
| 24 | +import torch |
| 25 | +from vllm.model_executor.layers.activation import SiluAndMul |
| 26 | + |
| 27 | +from vllm_ascend.ops.fused_moe import fused_experts |
| 28 | + |
| 29 | +NUM_EXPERTS = [8, 64] |
| 30 | +EP_SIZE = [1, 4] |
| 31 | +TOP_KS = [2, 6] |
| 32 | +DEVICE = ["npu"] |
| 33 | + |
| 34 | + |
| 35 | +def torch_moe(a, w1, w2, topk_weights, topk_ids, topk, expert_map): |
| 36 | + B, D = a.shape |
| 37 | + a = a.view(B, -1, D).repeat(1, topk, 1).reshape(-1, D) |
| 38 | + out = torch.zeros(B * topk, w2.shape[1], dtype=a.dtype, device=a.device) |
| 39 | + topk_weights = topk_weights.view(-1) |
| 40 | + topk_ids = topk_ids.view(-1) |
| 41 | + if expert_map is not None: |
| 42 | + topk_ids = expert_map[topk_ids] |
| 43 | + for i in range(w1.shape[0]): |
| 44 | + mask = topk_ids == i |
| 45 | + if mask.sum(): |
| 46 | + out[mask] = SiluAndMul()( |
| 47 | + a[mask] @ w1[i].transpose(0, 1)) @ w2[i].transpose(0, 1) |
| 48 | + return (out.view(B, -1, w2.shape[1]) * |
| 49 | + topk_weights.view(B, -1, 1).to(out.dtype)).sum(dim=1) |
| 50 | + |
| 51 | + |
| 52 | +@pytest.mark.parametrize("m", [1, 33, 64, 222, 1024 * 128]) |
| 53 | +@pytest.mark.parametrize("n", [128, 1024, 2048]) |
| 54 | +@pytest.mark.parametrize("k", [128, 511, 1024]) |
| 55 | +@pytest.mark.parametrize("e", NUM_EXPERTS) |
| 56 | +@pytest.mark.parametrize("topk", TOP_KS) |
| 57 | +@pytest.mark.parametrize("ep_size", EP_SIZE) |
| 58 | +@pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16]) |
| 59 | +@pytest.mark.parametrize("device", DEVICE) |
| 60 | +def test_fused_experts( |
| 61 | + m: int, |
| 62 | + n: int, |
| 63 | + k: int, |
| 64 | + e: int, |
| 65 | + topk: int, |
| 66 | + ep_size: int, |
| 67 | + dtype: torch.dtype, |
| 68 | + device: str, |
| 69 | +): |
| 70 | + a = torch.randn((m, k), device=device, dtype=dtype) / 10 |
| 71 | + w1 = torch.randn((e, 2 * n, k), device=device, dtype=dtype) / 10 |
| 72 | + w2 = torch.randn((e, k, n), device=device, dtype=dtype) / 10 |
| 73 | + |
| 74 | + score = torch.randn((m, e), device=device, dtype=dtype) |
| 75 | + |
| 76 | + if ep_size > 1: |
| 77 | + local_e = e // ep_size |
| 78 | + e_ids = torch.randint(0, |
| 79 | + e, (local_e, ), |
| 80 | + device=device, |
| 81 | + dtype=torch.int32) |
| 82 | + e_map = torch.full((e, ), -1, device=device, dtype=torch.int32) |
| 83 | + e_map[e_ids] = torch.arange(local_e, device=device, dtype=torch.int32) |
| 84 | + w1 = w1[e_ids] |
| 85 | + w2 = w2[e_ids] |
| 86 | + else: |
| 87 | + e_map = None |
| 88 | + |
| 89 | + score = torch.softmax(score, dim=-1, dtype=dtype) |
| 90 | + topk_weights, topk_ids = torch.topk(score, topk) |
| 91 | + topk_ids = topk_ids.to(torch.int32) |
| 92 | + |
| 93 | + output = fused_experts(a, w1, w2, topk_weights, topk_ids, topk, e_map) |
| 94 | + torch_output = torch_moe(a, w1, w2, topk_weights, topk_ids, topk, e_map) |
| 95 | + # TODO: The native params are: atol=2e-2, rtol=0, maybe related to the nan problem |
| 96 | + torch.testing.assert_close(output, torch_output, atol=4e-2, rtol=1) |
0 commit comments