Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 3 additions & 1 deletion .github/workflows/vllm_ascend_test.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -136,12 +136,14 @@ jobs:
pytest -sv tests/singlecard/test_camem.py
# test_ascend_config.py should be ran separately because it will regenerate the global config many times.
pytest -sv tests/singlecard/test_ascend_config.py
pytest -sv tests/singlecard/test_prompt_embedding.py
pytest -sv tests/singlecard/ \
--ignore=tests/singlecard/test_offline_inference.py \
--ignore=tests/singlecard/test_scheduler.py \
--ignore=tests/singlecard/test_guided_decoding.py \
--ignore=tests/singlecard/test_camem.py \
--ignore=tests/singlecard/test_ascend_config.py
--ignore=tests/singlecard/test_ascend_config.py \
--ignore=tests/singlecard/test_prompt_embedding.py
else
pytest -sv tests/multicard/test_ilama_lora_tp2.py
# Fixme: run VLLM_USE_MODELSCOPE=True pytest -sv tests/multicard/test_offline_inference_distributed.py will raise error.
Expand Down
83 changes: 83 additions & 0 deletions examples/prompt_embedding_inference.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,83 @@
import torch
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Nice example

from transformers import (AutoModelForCausalLM, AutoTokenizer,
PreTrainedTokenizer)
from vllm import LLM


def init_tokenizer_and_llm(model_name: str):
tokenizer = AutoTokenizer.from_pretrained(model_name)
transformers_model = AutoModelForCausalLM.from_pretrained(model_name)
embedding_layer = transformers_model.get_input_embeddings()
llm = LLM(model=model_name, enable_prompt_embeds=True)
return tokenizer, embedding_layer, llm


def get_prompt_embeds(chat: list[dict[str,
str]], tokenizer: PreTrainedTokenizer,
embedding_layer: torch.nn.Module):
token_ids = tokenizer.apply_chat_template(chat,
add_generation_prompt=True,
return_tensors='pt')
prompt_embeds = embedding_layer(token_ids).squeeze(0)
return prompt_embeds


def single_prompt_inference(llm: LLM, tokenizer: PreTrainedTokenizer,
embedding_layer: torch.nn.Module):
chat = [{
"role": "user",
"content": "Please tell me about the capital of France."
}]
prompt_embeds = get_prompt_embeds(chat, tokenizer, embedding_layer)

outputs = llm.generate({
"prompt_embeds": prompt_embeds,
})

print("\n[Single Inference Output]")
print("-" * 30)
for o in outputs:
print(o.outputs[0].text)
print("-" * 30)


def batch_prompt_inference(llm: LLM, tokenizer: PreTrainedTokenizer,
embedding_layer: torch.nn.Module):
chats = [[{
"role": "user",
"content": "Please tell me about the capital of France."
}],
[{
"role": "user",
"content": "When is the day longest during the year?"
}],
[{
"role": "user",
"content": "Where is bigger, the moon or the sun?"
}]]

prompt_embeds_list = [
get_prompt_embeds(chat, tokenizer, embedding_layer) for chat in chats
]

outputs = llm.generate([{
"prompt_embeds": embeds
} for embeds in prompt_embeds_list])

print("\n[Batch Inference Outputs]")
print("-" * 30)
for i, o in enumerate(outputs):
print(f"Q{i+1}: {chats[i][0]['content']}")
print(f"A{i+1}: {o.outputs[0].text}\n")
print("-" * 30)


def main():
model_name = "meta-llama/Llama-3.2-1B-Instruct"
tokenizer, embedding_layer, llm = init_tokenizer_and_llm(model_name)
single_prompt_inference(llm, tokenizer, embedding_layer)
batch_prompt_inference(llm, tokenizer, embedding_layer)


if __name__ == "__main__":
main()
259 changes: 259 additions & 0 deletions tests/singlecard/test_prompt_embedding.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,259 @@
#
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
# Copyright 2023 The vLLM team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This file is a part of the vllm-ascend project.
# Adapted from vllm/tests/entrypoints/openai/test_completion_with_prompt_embeds.py
#
import base64
import io
import os

import openai # use the official client for correctness check
import pytest
import pytest_asyncio
import torch
from modelscope import snapshot_download # type: ignore
from openai import BadRequestError
from transformers import AutoConfig
from vllm.engine.arg_utils import EngineArgs

from tests.utils import RemoteOpenAIServer

if not hasattr(EngineArgs, "enable_prompt_embeds"):
pytest.skip("Not supported vllm version", allow_module_level=True)

# any model with a chat template should work here
MODEL_NAME = snapshot_download("LLM-Research/Llama-3.2-1B-Instruct")

CONFIG = AutoConfig.from_pretrained(MODEL_NAME)


@pytest.fixture(scope="module")
def default_server_args() -> list[str]:
return [
# use half precision for speed and memory savings in CI environment
"--dtype",
"bfloat16",
"--max-model-len",
"8192",
"--max-num-seqs",
"128",
"--enforce-eager",
# Prompt Embeds server args
"--enable-prompt-embeds",
"--no-enable-chunked-prefill",
]


@pytest.fixture(scope="module",
params=["", "--disable-frontend-multiprocessing"])
def server_with_prompt_embeds(default_server_args, request):
if request.param:
default_server_args.append(request.param)

with RemoteOpenAIServer(MODEL_NAME, default_server_args) as remote_server:
yield remote_server


@pytest_asyncio.fixture
async def client_with_prompt_embeds(server_with_prompt_embeds):
async with server_with_prompt_embeds.get_async_client() as async_client:
yield async_client


def create_dummy_embeds(num_tokens: int = 5) -> str:
"""Create dummy embeddings and return them as base64 encoded string."""
dummy_embeds = torch.randn(num_tokens, CONFIG.hidden_size)
buffer = io.BytesIO()
torch.save(dummy_embeds, buffer)
return base64.b64encode(buffer.getvalue()).decode('utf-8')


@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
@pytest.mark.skipif(
os.getenv("VLLM_USE_V1") == "1",
reason="Enable embedding input will fallback to v0, skip it")
async def test_completions_with_prompt_embeds(
client_with_prompt_embeds: openai.AsyncOpenAI, model_name: str):
# Test case: Single prompt embeds input
encoded_embeds = create_dummy_embeds()
completion = await client_with_prompt_embeds.completions.create(
model=model_name,
prompt="", # Add empty prompt as required parameter
max_tokens=5,
temperature=0.0,
extra_body={"prompt_embeds": encoded_embeds})
assert len(completion.choices[0].text) >= 1
assert completion.choices[0].prompt_logprobs is None

# Test case: batch completion with prompt_embeds
encoded_embeds2 = create_dummy_embeds()
completion = await client_with_prompt_embeds.completions.create(
model=model_name,
prompt="", # Add empty prompt as required parameter
max_tokens=5,
temperature=0.0,
extra_body={"prompt_embeds": [encoded_embeds, encoded_embeds2]})
assert len(completion.choices) == 2
assert len(completion.choices[0].text) >= 1
assert len(completion.choices[1].text) >= 1

# Test case: streaming with prompt_embeds
encoded_embeds = create_dummy_embeds()
single_completion = await client_with_prompt_embeds.completions.create(
model=model_name,
prompt="", # Add empty prompt as required parameter
max_tokens=5,
temperature=0.0,
extra_body={"prompt_embeds": encoded_embeds})
single_output = single_completion.choices[0].text

stream = await client_with_prompt_embeds.completions.create(
model=model_name,
prompt="", # Add empty prompt as required parameter
max_tokens=5,
temperature=0.0,
stream=True,
extra_body={"prompt_embeds": encoded_embeds})
chunks = []
finish_reason_count = 0
async for chunk in stream:
chunks.append(chunk.choices[0].text)
if chunk.choices[0].finish_reason is not None:
finish_reason_count += 1
assert finish_reason_count == 1
assert chunk.choices[0].finish_reason == "length"
assert chunk.choices[0].text
assert "".join(chunks) == single_output

# Test case: batch streaming with prompt_embeds
encoded_embeds2 = create_dummy_embeds()
stream = await client_with_prompt_embeds.completions.create(
model=model_name,
prompt="", # Add empty prompt as required parameter
max_tokens=5,
temperature=0.0,
stream=True,
extra_body={"prompt_embeds": [encoded_embeds, encoded_embeds2]})
chunks_stream_embeds: list[list[str]] = [[], []]
finish_reason_count = 0
async for chunk in stream:
chunks_stream_embeds[chunk.choices[0].index].append(
chunk.choices[0].text)
if chunk.choices[0].finish_reason is not None:
finish_reason_count += 1
assert finish_reason_count == 2
assert chunk.choices[0].finish_reason == "length"
assert chunk.choices[0].text
assert len(chunks_stream_embeds[0]) > 0
assert len(chunks_stream_embeds[1]) > 0

# Test case: mixed text and prompt_embeds
encoded_embeds = create_dummy_embeds()
completion_mixed = await client_with_prompt_embeds.completions.create(
model=model_name,
prompt="This is a prompt",
max_tokens=5,
temperature=0.0,
extra_body={"prompt_embeds": encoded_embeds})
assert len(completion.choices) == 2
completion_text_only = await client_with_prompt_embeds.completions.create(
model=model_name,
prompt="This is a prompt",
max_tokens=5,
temperature=0.0,
)
completion_embeds_only = await client_with_prompt_embeds.completions.create(
model=model_name,
prompt="",
max_tokens=5,
temperature=0.0,
extra_body={"prompt_embeds": encoded_embeds})
# Embeddings responses should be handled first
assert completion_mixed.choices[0].text == completion_embeds_only.choices[
0].text
assert completion_mixed.choices[1].text == completion_text_only.choices[
0].text


@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
@pytest.mark.skipif(
os.getenv("VLLM_USE_V1") == "1",
reason="Enable embedding input will fallback to v0, skip it")
async def test_completions_errors_with_prompt_embeds(
client_with_prompt_embeds: openai.AsyncOpenAI, model_name: str):
# Test error case: invalid prompt_embeds
with pytest.raises(BadRequestError):
await client_with_prompt_embeds.completions.create(
prompt="",
model=model_name,
max_tokens=5,
temperature=0.0,
extra_body={"prompt_embeds": "invalid_base64"})


@pytest.mark.asyncio
@pytest.mark.parametrize("logprobs_arg", [1, 0])
@pytest.mark.parametrize("model_name", [MODEL_NAME])
@pytest.mark.skipif(
os.getenv("VLLM_USE_V1") == "1",
reason="Enable embedding input will fallback to v0, skip it")
async def test_completions_with_logprobs_and_prompt_embeds(
client_with_prompt_embeds: openai.AsyncOpenAI, logprobs_arg: int,
model_name: str):
# Test case: Logprobs using prompt_embeds
encoded_embeds = create_dummy_embeds()
completion = await client_with_prompt_embeds.completions.create(
model=model_name,
prompt="", # Add empty prompt as required parameter
max_tokens=5,
temperature=0.0,
echo=False,
logprobs=logprobs_arg,
extra_body={"prompt_embeds": encoded_embeds})

logprobs = completion.choices[0].logprobs
assert logprobs is not None
assert len(logprobs.text_offset) == 5
assert len(logprobs.token_logprobs) == 5
assert len(logprobs.top_logprobs) == 5
for top_logprobs in logprobs.top_logprobs[1:]:
assert max(logprobs_arg, 1) <= len(top_logprobs) <= logprobs_arg + 1
assert len(logprobs.tokens) == 5

# Test case: Log probs with batch completion and prompt_embeds
encoded_embeds2 = create_dummy_embeds()
completion = await client_with_prompt_embeds.completions.create(
model=model_name,
prompt="", # Add empty prompt as required parameter
max_tokens=5,
temperature=0.0,
echo=False,
logprobs=logprobs_arg,
extra_body={"prompt_embeds": [encoded_embeds, encoded_embeds2]})

assert len(completion.choices) == 2
for choice in completion.choices:
logprobs = choice.logprobs
assert logprobs is not None
assert len(logprobs.text_offset) == 5
assert len(logprobs.token_logprobs) == 5
assert len(logprobs.top_logprobs) == 5
for top_logprobs in logprobs.top_logprobs[1:]:
assert max(logprobs_arg,
1) <= len(top_logprobs) <= logprobs_arg + 1
assert len(logprobs.tokens) == 5
Loading