
Latency-optimal allreduce and cuda graph 

optimization​

Background​

For most LLMs, LLM tensor parallel serving requires 2 allreduces per layer. During the decoding 

stage, the allreduce size is very small since we only decode 1 token at a time. For example, batch 

size 32 float16 serving of Llama 65B or Llama 2 70B only requires an allreduce size of (32 * 8192 * 

2) = 512KB.  ​

Typical implementations invoke NCCL allreduce. However, NCCL has the following problems:​

1. Not latency optimal. NCCL implements bandwidth optimal tree or ring base allreduce, 

which have O(log n) and O(n) latency respectively. The tree method has more constant 

overhead and is typically not used in a single node. Given the enormous bandwidth between 

modern GPUs (480GB/s effective bidirectional for A100 and 1.5x for H100s), small size 

allreduce is latency-bound.​

2. Unfriendly to kernel fusion. NCCL is a black box for developers and is hard to hack. If we write 

our own kernels, we can easily fuse subsequent elementwise operations, which are common 

in LLMs. ​

3. CUDA-graph unfriendly. NCCL's cuda graph support requires inserting synchronizing host 

nodes which block the GPUs, causing gaps in GPU stream, even if the stream has a lot of 

kernels queued. ​

Therefore, it is beneficial to have a custom kernel that performs allreduce with lower (preferably 

O(1)) latency. ​

Mechanism​



Buffer registration​

CUDA IPC support allows each rank to get hold of a pointer pointing to other GPU's memory. 

Therefore, during initialization step, each rank can export its buffer to an Ipc handle, and then 

do an allgather to collect ipc handles from all ranks. Using these pointers, each rank can 

simultaneously read from other GPUs.​

One-shot allreduce​

In one hop allreduce, each rank sends complete data to all other ranks and receives complete 

data from all ranks. The allreduce part is simple. The main performance trick for this part is to 

use custom aligned array type for loads and stores so that compiler can generate LD.128 and 

ST.128 instructions (load and store 16 bytes per thread per instruction)​

The harder part is synchronization. ​

1. Allreduce can only start when all ranks have reached the allreduce kernel, or otherwise the 

reduce buffer may not be ready.​

2. Allreduce can only end when all ranks have finished reading each other's buffer, or otherwise 

subsequent kernels that write to the same buffer may corrupt data. ​

We tried a few different ways:​

1. CUDA IPC event. Each rank waits for all other ranks' events inserted before the allreduce 

kernel. ​

a. Latency too high: Latency > 100us​

2. Busy waiting on the host's shared memory​

a. Still too slow. Latency >= 10us in addition to the reduction part (3~6us)​

3. In kernel synchronization​

a. This is probably as good as we can get: 8.5 ~ 9us including the reduction part​

The details of synchronization are tricky and we suggest reading the code to understand it 

better. We specifically avoided using atomics to be compatible with links that don't natively 

support atomics (e.g. PCIe).​

We think the 8.5us latency (on A100s) is optimal, because it is simply a bit more than the latency 

of 3 NVLink remote read/write (2.5us each)​

1. 1 remote write to start sync​

2. Multiple pipelined remote read for allreduce​

3. 1 remote write for end sync​

And there's probably no way to do better than this, unless we make an unsafe assumption about 

the later kernels so that we can elide the end sync.​



Two-shot allreduce​

During two shows allreduce, we first perform a reduce scatter by letting each rank reads 1/N 

data from all ranks and summing them. Then, we do an allgather by sending each ranks' 

partition to all other ranks. We use the same synchronization method described in one-shot 

allreduce. ​

Half butterfly allreduce​

In PCIe topologies such as 4xA10, we observe that the all-to-all style of reduction reduces PCIe 

throughput significantly. The reason is that on these systems, the GPUs are directly connected 

to the CPUs without PCIe switches, and CPUs are often terrible PCIe switches, offering bad 

performance when multiple flows are present. To alleviate this problem, we designed a butterfly-

style allreduce but with only half of the stages. During each stage, each rank pair exchanges 

complete data, thereby reducing latency by half compared to the original butterfly allreduce.​

Butterfly allreduce. Note that our half butterfly allreduce only has half of the stages compared to 

full butterfly allreduce.​

Latency and Bandwidth Analysis​

N = number of nodes, P = data size per rank, L = unidirectional p2p latency​

Latency (excluding 

synchronization 

overhead)​

Total communication 

volume (per rank)​

Bandwidth 

optimal​

Full nvlink 

required 

for >2 

GPUs?​

Ring​ 2*(N-1)*L​ 2(N-1/N)*P​ Yes​ No​

One shot​ L​ (N-1)*P​ No​ Yes​

Two shot​ 2L​ 2(N-1/N)*P​ Yes​ Yes​



Half butterfly​ log2(N)*L​ log2(N)*P​ No​ No​

Butterfly​ 2log2(N)*L - 1​ 2(N-1/N)*P​ Yes​ No​

Speed vs NCCL​

When there are only two GPUs (pcie or nvlink, doesn't matter), my one shot implementation is 

faster across-the-board for all practical serving sizes. ​

On nvlink fully connected systems (A100s and 4V100s), two-stage allreduce is faster than NCCL 

across all practical serving sizes because its bandwidth optimal and has constant latency. One 

hop allreduce is faster than two hop allreduce when size is small (e.g. <=512K for 4A100s and 

<=256k for 8A100s). Therefore, during actual application, we choose between these two kernels 

depending on data size.​

On PCIe systems such as 4A10, one shot allreduce is practically useless, being only faster than 

NCCL when size is <10k. Half butterfly allreduce is faster than NCCL up to 512K. This is because 

on 4 GPUs, half butterfly requires 2P send/recv per rank while NCCL Ring requires 1.5P send/recv 

per rank, so NCCL will be faster when allreduce is no longer latency bound. ​

8 A100 GPUs​

4 A100 GPUs​



4 A10 GPUs​

4 V100 GPUs​



Numerical Accuracy vs NCCL​

Since we can do reductions in registers, we can upcast half and bfloat16 types to float and then 

do the accumulation. This leads to better numerical accuracy than NCCL, which can't keep 

intermediate results in higher precision. ​

Benchmark: allreduce float16 on different number of gpus. Ground truth is calculated with 

double precision.​

NCCL mean abs diff​ Our mean abs diff​

8 GPUs​ 0.0396678​ 0.0234039​

4 GPUs​ 0.0158518​ 0.0115507​

End-to-end speedup​

Allreduce usually takes 8 - 10% of overall execution time, and this optimization usually reduces 

allreduce's time by 40 - 60%, so end-to-end gain is about 3% to 5%​

Additionally, our kernel is more cuda graph friendly (explained in the background section), 

which leads to about additional 2% end-to-end speedup​

Elementwise fusion​

In Llama, there is a residual connection (elementwise add) immediately after each allreduce. We 

can conveniently use an out-of-place allreduce that adds to result instead of writing to result to 

perform a fusion with an elementwise add. ​

End-to-end speedup​



Roughly 2.5% end-to-end speed up​

CUDA graph replay optimization​

Note: this is not entirely relevant to the allreduce optimization​

Pytorch's cuda graph launch has extra considerations on RNG seeding that requires a few cuda 

API calls and 2 kernel launches to fill just 2 int64s. This is not necessary during serving where 

kernels don't involve any randomness. Therefore, we removed this part for performance. 

Additionally, pytorch has a safe guard against older versions of the cuda driver, which is also 

removed in this optimization.  ​

End-to-end speedup​

1% less kernel execution time. 1% to 5% speed up depending on how cpu-bound the model is.​

Overall end-to-end speedup​

On A100 SXM4 80GB​

65b 256 256 tp8 bs8: 7.59 -> 6.55​

65b 256 256 tp4 bs8: 9.64 -> 8.82​

33b 128 128 tp4 bs1: 2.67 -> 2.30​



33b 128 128 tp2 bs1:  3.80 -> 3.57​

13b 128 128 tp2 bs1: 1.95 -> 1.77​

On A10 24GB​

13b 128 128 tp2 bs1: 4.85 -> 4.44​

>10% gain most of the time across-the-board​


