Skip to content

[Bug]: benchmark_throughput.py not working with data-parallelism #16222

@kartikx

Description

@kartikx

Your current environment

The output of `python collect_env.py`
INFO 04-07 19:57:43 [__init__.py:239] Automatically detected platform cuda.
Collecting environment information...
PyTorch version: 2.6.0+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A

OS: Red Hat Enterprise Linux release 8.8 (Ootpa) (x86_64)
GCC version: (Spack GCC) 11.4.0
Clang version: Could not collect
CMake version: version 3.20.2
Libc version: glibc-2.28

Python version: 3.12.9 | packaged by Anaconda, Inc. | (main, Feb  6 2025, 18:56:27) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-4.18.0-477.86.1.el8_8.x86_64-x86_64-with-glibc2.28
Is CUDA available: True
CUDA runtime version: 11.8.89
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: 
GPU 0: NVIDIA A100-SXM4-40GB
GPU 1: NVIDIA A100-SXM4-40GB
GPU 2: NVIDIA A100-SXM4-40GB
GPU 3: NVIDIA A100-SXM4-40GB

Nvidia driver version: 550.144.03
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:        x86_64
CPU op-mode(s):      32-bit, 64-bit
Byte Order:          Little Endian
CPU(s):              64
On-line CPU(s) list: 0-63
Thread(s) per core:  1
Core(s) per socket:  64
Socket(s):           1
NUMA node(s):        4
Vendor ID:           AuthenticAMD
CPU family:          25
Model:               1
Model name:          AMD EPYC 7763 64-Core Processor
Stepping:            1
CPU MHz:             2163.397
BogoMIPS:            4890.43
Virtualization:      AMD-V
L1d cache:           32K
L1i cache:           32K
L2 cache:            512K
L3 cache:            32768K
NUMA node0 CPU(s):   0-15
NUMA node1 CPU(s):   16-31
NUMA node2 CPU(s):   32-47
NUMA node3 CPU(s):   48-63
Flags:               fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 invpcid_single hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr wbnoinvd amd_ppin brs arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold v_vmsave_vmload vgif v_spec_ctrl umip pku ospke vaes vpclmulqdq rdpid overflow_recov succor smca fsrm

Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-cusparselt-cu12==0.6.2
[pip3] nvidia-ml-py==12.570.86
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] pyzmq==26.2.1
[pip3] torch==2.6.0
[pip3] torchaudio==2.6.0
[pip3] torchvision==0.21.0
[pip3] transformers==4.51.0
[pip3] triton==3.2.0
[conda] numpy                     1.26.4                   pypi_0    pypi
[conda] nvidia-cublas-cu12        12.4.5.8                 pypi_0    pypi
[conda] nvidia-cuda-cupti-cu12    12.4.127                 pypi_0    pypi
[conda] nvidia-cuda-nvrtc-cu12    12.4.127                 pypi_0    pypi
[conda] nvidia-cuda-runtime-cu12  12.4.127                 pypi_0    pypi
[conda] nvidia-cudnn-cu12         9.1.0.70                 pypi_0    pypi
[conda] nvidia-cufft-cu12         11.2.1.3                 pypi_0    pypi
[conda] nvidia-curand-cu12        10.3.5.147               pypi_0    pypi
[conda] nvidia-cusolver-cu12      11.6.1.9                 pypi_0    pypi
[conda] nvidia-cusparse-cu12      12.3.1.170               pypi_0    pypi
[conda] nvidia-cusparselt-cu12    0.6.2                    pypi_0    pypi
[conda] nvidia-ml-py              12.570.86                pypi_0    pypi
[conda] nvidia-nccl-cu12          2.21.5                   pypi_0    pypi
[conda] nvidia-nvjitlink-cu12     12.4.127                 pypi_0    pypi
[conda] nvidia-nvtx-cu12          12.4.127                 pypi_0    pypi
[conda] pyzmq                     26.2.1                   pypi_0    pypi
[conda] torch                     2.6.0                    pypi_0    pypi
[conda] torchaudio                2.6.0                    pypi_0    pypi
[conda] torchvision               0.21.0                   pypi_0    pypi
[conda] transformers              4.51.0                   pypi_0    pypi
[conda] triton                    3.2.0                    pypi_0    pypi
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.8.3
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
�[4mGPU0	GPU1	GPU2	GPU3	CPU Affinity	NUMA Affinity	GPU NUMA ID�[0m
GPU0	 X 	NV4	NV4	NV4		3		N/A
GPU1	NV4	 X 	NV4	NV4		2		N/A
GPU2	NV4	NV4	 X 	NV4		1		N/A
GPU3	NV4	NV4	NV4	 X 	0	0		N/A

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

LD_LIBRARY_PATH=/sw/spack/deltas11-2023-03/apps/linux-rhel8-zen3/gcc-11.4.0/cuda-11.8.0-vfixfmc/lib64:/opt/cray/libfabric/1.15.2.0/lib64:/opt/cray/libfabric/1.15.2.0/lib
CUDA_HOME=/sw/spack/deltas11-2023-03/apps/linux-rhel8-zen3/gcc-11.4.0/cuda-11.8.0-vfixfmc
CUDA_HOME=/sw/spack/deltas11-2023-03/apps/linux-rhel8-zen3/gcc-11.4.0/cuda-11.8.0-vfixfmc
NCCL_CUMEM_ENABLE=0
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY

🐛 Describe the bug

I am trying to benchmark vllm performance for various parallelism configurations. I am using the vllm provided benchmark_throughput.py script to do this.

I attempted to try data-parallel serving like so:

python benchmarks/benchmark_throughput.py --model meta-llama/Llama-2-13b-hf --dataset-name sharegpt --dataset-path kramesh/ShareGPT_V3_unfiltered_cleaned_split.json --data-parallel-size 4 --num_prompts 128

and it just gets stuck. Here is the stack trace:

INFO 04-07 19:41:39 [__init__.py:239] Automatically detected platform cuda.                                                                                                   
Namespace(backend='vllm', dataset_name='sharegpt', dataset=None, dataset_path='/work/hdd/bcjw/kramesh/ShareGPT_V3_unfiltered_cleaned_split.json', input_len=None, output_len=N
one, n=1, num_prompts=128, hf_max_batch_size=None, output_json=None, async_engine=False, disable_frontend_multiprocessing=False, disable_detokenize=False, lora_path=None, pre
fix_len=None, random_range_ratio=None, hf_subset=None, hf_split=None, model='meta-llama/Llama-2-13b-hf', task='auto', tokenizer='meta-llama/Llama-2-13b-hf', hf_config_path=No
ne, skip_tokenizer_init=False, revision=None, code_revision=None, tokenizer_revision=None, tokenizer_mode='auto', trust_remote_code=False, allowed_local_media_path=None, down
load_dir=None, load_format='auto', config_format=<ConfigFormat.AUTO: 'auto'>, dtype='auto', kv_cache_dtype='auto', max_model_len=None, guided_decoding_backend='xgrammar', log
its_processor_pattern=None, model_impl='auto', distributed_executor_backend=None, pipeline_parallel_size=1, tensor_parallel_size=1, data_parallel_size=4, enable_expert_parall
el=False, max_parallel_loading_workers=None, ray_workers_use_nsight=False, block_size=None, enable_prefix_caching=None, prefix_caching_hash_algo='builtin', disable_sliding_wi
ndow=False, use_v2_block_manager=True, num_lookahead_slots=0, seed=0, swap_space=4, cpu_offload_gb=0, gpu_memory_utilization=0.9, num_gpu_blocks_override=None, max_num_batche
d_tokens=None, max_num_partial_prefills=1, max_long_partial_prefills=1, long_prefill_token_threshold=0, max_num_seqs=None, max_logprobs=20, disable_log_stats=False, quantizat
ion=None, rope_scaling=None, rope_theta=None, hf_overrides=None, enforce_eager=False, max_seq_len_to_capture=8192, disable_custom_all_reduce=False, tokenizer_pool_size=0, tok
enizer_pool_type='ray', tokenizer_pool_extra_config=None, limit_mm_per_prompt=None, mm_processor_kwargs=None, disable_mm_preprocessor_cache=False, enable_lora=False, enable_l
ora_bias=False, max_loras=1, max_lora_rank=16, lora_extra_vocab_size=256, lora_dtype='auto', long_lora_scaling_factors=None, max_cpu_loras=None, fully_sharded_loras=False, en
able_prompt_adapter=False, max_prompt_adapters=1, max_prompt_adapter_token=0, device='auto', num_scheduler_steps=1, use_tqdm_on_load=True, multi_step_stream_outputs=True, sch
eduler_delay_factor=0.0, enable_chunked_prefill=None, speculative_config=None, model_loader_extra_config=None, ignore_patterns=[], preemption_mode=None, served_model_name=Non
e, qlora_adapter_name_or_path=None, show_hidden_metrics_for_version=None, otlp_traces_endpoint=None, collect_detailed_traces=None, disable_async_output_proc=False, scheduling
_policy='fcfs', scheduler_cls='vllm.core.scheduler.Scheduler', override_neuron_config=None, override_pooler_config=None, compilation_config=None, kv_transfer_config=None, wor
ker_cls='auto', worker_extension_cls='', generation_config='auto', override_generation_config=None, enable_sleep_mode=False, calculate_kv_scales=False, additional_config=None
, enable_reasoning=False, reasoning_parser=None, disable_cascade_attn=False, disable_log_requests=False)                                                                      
INFO 04-07 19:41:52 [config.py:600] This model supports multiple tasks: {'generate', 'score', 'embed', 'classify', 'reward'}. Defaulting to 'generate'.                       
INFO 04-07 19:41:52 [config.py:1780] Chunked prefill is enabled with max_num_batched_tokens=8192.                                                                             
INFO 04-07 19:41:52 [cuda.py:165] Data Parallel: Forcing enforce eager to be True since DP is currently not supported with CUDA Graphs.

There is no output after this. I waited for 5 minutes.

Log when I press Ctrl-C to exit.

^CTraceback (most recent call last):
  File "/u/kramesh/Code/vllm/benchmarks/benchmark_throughput.py", line 623, in <module>
    main(args)
  File "/u/kramesh/Code/vllm/benchmarks/benchmark_throughput.py", line 369, in main
    elapsed_time, request_outputs = run_vllm(
                                    ^^^^^^^^^
  File "/u/kramesh/Code/vllm/benchmarks/benchmark_throughput.py", line 40, in run_vllm
    llm = LLM(**dataclasses.asdict(engine_args))
          ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/u/kramesh/anaconda3/envs/vllm/lib/python3.12/site-packages/vllm/utils.py", line 1096, in inner
    return fn(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^
  File "/u/kramesh/anaconda3/envs/vllm/lib/python3.12/site-packages/vllm/entrypoints/llm.py", line 243, in __init__
    self.llm_engine = LLMEngine.from_engine_args(
                      ^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/u/kramesh/anaconda3/envs/vllm/lib/python3.12/site-packages/vllm/engine/llm_engine.py", line 521, in from_engine_args
    return engine_cls.from_vllm_config(
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/u/kramesh/anaconda3/envs/vllm/lib/python3.12/site-packages/vllm/v1/engine/llm_engine.py", line 115, in from_vllm_config
    return cls(vllm_config=vllm_config,
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/u/kramesh/anaconda3/envs/vllm/lib/python3.12/site-packages/vllm/v1/engine/llm_engine.py", line 90, in __init__
    self.engine_core = EngineCoreClient.make_client(
                       ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/u/kramesh/anaconda3/envs/vllm/lib/python3.12/site-packages/vllm/v1/engine/core_client.py", line 72, in make_client
    return SyncMPClient(vllm_config, executor_class, log_stats)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/u/kramesh/anaconda3/envs/vllm/lib/python3.12/site-packages/vllm/v1/engine/core_client.py", line 439, in __init__                                                                                                                     
    super().__init__(
  File "/u/kramesh/anaconda3/envs/vllm/lib/python3.12/site-packages/vllm/v1/engine/core_client.py", line 401, in __init__                                                                                                                     
    engine.proc_handle.wait_for_startup()
  File "/u/kramesh/anaconda3/envs/vllm/lib/python3.12/site-packages/vllm/v1/utils.py", line 127, in wait_for_startup
    if self.reader.recv()["status"] != "READY":
       ^^^^^^^^^^^^^^^^^^
  File "/u/kramesh/anaconda3/envs/vllm/lib/python3.12/multiprocessing/connection.py", line 250, in recv
    buf = self._recv_bytes()
          ^^^^^^^^^^^^^^^^^^
  File "/u/kramesh/anaconda3/envs/vllm/lib/python3.12/multiprocessing/connection.py", line 430, in _recv_bytes
    buf = self._recv(4)
          ^^^^^^^^^^^^^
  File "/u/kramesh/anaconda3/envs/vllm/lib/python3.12/multiprocessing/connection.py", line 395, in _recv
    chunk = read(handle, remaining)

I have exported TOKENIZERS_PARALLELISM=false, because otherwise I get a warning. It gets stuck after this warning regardless.

INFO 04-07 20:14:43 [cuda.py:165] Data Parallel: Forcing enforce eager to be True since DP is currently not supported with CUDA Graphs.
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
        - Avoid using `tokenizers` before the fork if possible
        - Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)

The benchmarking command works fine if I replace data-parallel-size with tensor-parallel-size. I have the latest source code of vLLM and I haven't modified benchmark_throughput.py

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't working

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions